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Abstract-It is well known that the ability to support pre- 
dictable interprocess communication is of great significance to 
computer-integrated manufacturing and process control systems. 
In this paper, we propose a strategy for an industrial standard, 
the SP-50 FieldBus, to support both intracell and intercell real- 
time communications. We first describe our strategy in detail 
and show that it is compatible with the current FieldBus draft 
standard. Under our strategy, the capacity of each link is divided 
into two parts. The first part is managed by the local link active 
scheduler (LAS) for intracell (intralink) communication. The sec- 
ond part is managed by a proposed global network manager for 
intercell (interlink) communication. By dividing the link capacity 
in this way, our strategy allows for fast local intracell connection 
establishment, while supporting global intercell connections. Us- 
ing two examples, one for typical manufacturing systems and the 
other for multimedia networking, we also demonstrate the power 
and utility of the proposed strategy as compared to token-passing 
protocols. 

1. INTRODUCTION 
N AUTOMATED FACTORY (AF) is usually composed A of several workcells (or simply cells), each of which 

contains robots, sensors, and transport mechanisms. A mul- 
tiaccess bus connects all devices in a workcell. Bridges then 
connect multiple workcells to form an AF. Hence, the network 
of an AF consists of many links, each of which is usually a 
multiaccess bus. The ability to provide predictable interprocess 
communication is of great significance to an AF, because 
unpredictable communication delays may lead to missing the 
deadline of one or more communicating tasks that collectively 
monitor and control manufacturing equipment and processes. 
In this paper, we will address the real-time communication 
issue of the FieldBus protocol which is designed to support 
time-critical communication to and from devices in manufac- 
turing and/or process control systems. 

Although computer networking has been extensively re- 
searched, its specific application to AF’s  has not yet been 
addressed thoroughly. Most of analytic research deals with 
the general area of network communication, focusing on 
flexible systems design and performance evaluation. Howevsr, 
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real-time communication between devices in an AF has sel- 
dom been addressed. The manufacturing automation protocol 
(MAP) which was proposed by GM and other companies 
for the AF network is based on the OS1 seven-layer model 
and the token bus protocol, IEEE 802.4. The MAP can 
provide some limited form of real-time communication, but it 
cannot guarantee the delivery of time-critical messages before 
their dleadlines. In fact, the MAP only provides temporal 
ordering between devices based on their priorities. The seven- 
layer MAP is usually too slow to be used for real-time 
communication, since there are at least 14 layers’ delays in 
a single one-way message communication. Another protocol 
called MINIMAP employs only the first two layers of MAP 
and combines the remaining five layers into a single layer. 
MINIMAP is expected to reduce the communication delay, 
but it still leaves the real-time issue unaddressed. Token-ring 
type pirotocols cannot be used either, for the same reason as 
the token bus. CSMNCD type protocols are not applicable to 
real-tirne systems because of their unbounded communication 
delays. As we shall see, the FieldBus has only three layers, 
reserves the required communication capacity in advance for 
each real-time channel (a point-to-point unidirectional connec- 
tion wlhich can provide end-to-end delivery delay guarantees), 
and uses a centralized scheme for scheduling messages in order 
to guarantee the delivery of real-time messages before their 
deadlines. 

The problem of supporting time-constrained communication 
has been studied by several researchers, since it plays an 
important role in many applications, such as exchange of 
control messages and audio- and video-transmissions over a 
commiunication network. Most of these efforts can be classified 
into two categories. The first category is mainly concerned 
with the design of medium access protocols for multiaccess 
networks subject to timing constraints in delivering messades. 
In this context, most of the proposed schemes can be classified 
as best-effort schemes in which the system tries to ensure that 
most messages can meet their deadlines, but it cannot give 
any guarantee of delivery time [13], [17]. However, based 
on the given information about the message arrivallgeneration 
pattern, some of them can make guarantees about their delivery 
time I 181. The other category deals with the problem of 
establishing real-time point-to-point channels and providing 
guarantees of maximum delivery delays [4], [9], [ll]. The 
main issues addressed in these schemes are message sched- 
uling, buffer management, and flow control in the network 
nodes. However, the type of networks used in these schemes 
is not suitable for manufacturing automation systems for the 
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following two reasons. First, using a point-to-point network 
to connect all devices in a workcell is not practical because 
the network could become too complex to manage if there 
are tens of devices in a workcell. Second, these schemes may 
suffer the long delay of channel establishment, even when two 
communicating nodes are physically close to each other. 

Since most time-critical communications are likely to occur 
between two devices in the same workcell, a fast connection 
establishment procedure is desirable. Therefore, a multiaccess 
bus is a natural candidate for connecting devices in a workcell. 
On the other hand, since the ability to provide predictable 
communication between any two devices is also essential 
to the system, we will focus on quick real-time channel 
establishment within a workcell (i.e., two nodes on the same 
multiaccess bus), while providing the ability to support real- 
time communication between any two iYorkcells. 

The paper is organized as follows. In Section 11, we state the 
problem of Supporting time-constrained communication under 
the FieldBus protocol. The proposed approaches are discussed 
in Section 111. Section IV discusses the compatibility between 
the proposed protocol and the FieldBus protocol draft. The per- 
formance of the proposed protocol is comparatively analyzed 
in Section V, and the paper concludes with Section VI. 

11. PROBLEM STATEMENT 

Our main goal is to analyze and/or enhance the data link 
layer of FieldBus protocol which is designed to support time- 
critical communication in process control and manufacturing 
systems. Most of the data link layer protocol of FieldBus has 
already been well developed. However, the support for time- 
critical communication is left unspecified. To facilitate our 
presentation, we need to briefly describe the FieldBus data 
link layer protocol. 

In order to reduce communication latencies, unlike the 
OS1 seven layer model, the FieldBus has only three layers: 
physical layer, data link layer, and application layer. Since a 
manufacturing system is composed of many workcells, and 
each workcell contains a multiaccess bus which connects 
all the devices in the workcell, the entlre network is a 
collection of multiaccess buses which are further connected 
via several bridges. A data link entity (DLE) of FieldBus 
is a logically active object, such as a part of the network 
operating system, which can sendlreceive packets to and 
from the interconnection network and acts according to the 
data link layer protocol of FieldBus. Hence, there could be 
several DLE’s on a node which is physically attached to the 
interconnection network, such as computers, sensors, or any 
manufacturing devices. However, it is conceptually simple to 
treat each DLE as a node. Thus, the terms “DLE’ and “n 
will be used interchangeably. 

The data link layer protocol of FieldBus is a delegated token 
protocol. There is a central control entity on each multiaccess 
link which is responsible for scheduling messages on the local 
link, i.e., this central control entity is responsible for managing 
the token. The data link layer service of FieldBus provides 
both connectionless and connection-oriented communication 
between two peer communicating DLE’s. The connection- 

oriented communication service, which supports both real-time 
and nonreal-time communication, requires the source DLE to 
establish a connection, thus allowing the source and interme- 
diate nodes to collect and exchange the information needed 
for the delivery of packets, e.g., buffer requirements and route 
information. In general, static routing is used for the delivery 
of connection-oriented packets, although it is not required by 
the FieldBus standard [2], [3]. If a real-time connection is 
requested, the system also has to reserve sufficient bandwidth 
and perform appropriate admission tests during the connection 
establishment. The connectionless service, which supports 
only nonreal-time communication, is similar to traditional 
multiaccess packet switching networks. 

There are three classes of DLE’s in the FieldBus data link 
layer protocol: Basic, Link Master (LM), and Bridge. The LM 
class DLE’s can also act as another distinct “class” of DLE’s: 
link active scheduler (LAS). Every LM class DLE’s have the 
capability to be a LAS, but each time exactly one LM DLE can 
act as the LAS of a FieldBus link. In order to avoid confusion, 
the LM class represents those LM DLE’s which currently do 
not act as a LAS in the rest of this paper unless explicitly 
stated otherwise. 

Basic and LM classes are conceptually the same, except that 
the LM class DLE’s are equipped with more functions, while 
the Basic class DLE’s have only those functions which are 
absolutely necessary for adequate operations on a FieldBus 
network. In general, these two classes of DLE’ s are the “user” 
nodes on the FieldBus networks. 

Unlike other popular timed-token protocols (e.g., token 
rings, token buses, FDDI), FieldBus has a control unit, LAS 
DLE, for each FieldBus link. (Note that a FieldBus network 
consists of a set of links.) The LAS DLE is responsible 
for scheduling messages on the local link. It receives, and 
responds to, scheduling requests from all DLE’s on the same 
link by giving a token to one of these DLE’s which then 
assumes the exclusive right to use the link over some period 
of time specified in the token. A bridge DLE which performs 
a store-and-forward function to connect two or more separate 
multiaccess links. In the draft standard of the FieldBus data 
link layer protocol [2], [3] ,  the routing strategy used by bridges 
is not specified. However, the transparency of bridges to the 
source node is implicitly assumed in the draft standard. 

All of the normal communication requests for use of a 
link are scheduled by the link’s LAS. Th’e LAS generates 
“polling” tokens for DLE’s on the link, and the receiver 
DLE responds immediately by returning a message which may 
include requests for future scheduling and the priorities of the 
current requests. The LAS derives a schedule according to 
some policy and provides the token to the “winner” DLE. 

Based on the above brief d . eldBus protocol 
and the nature of workcells i , of time-critical 
communication can be handled by the local LAS, since most 
of real-time communication is likely to take place between 
two peer DLE’s on the same link. As mentioned before, 
time-constrained communication on a multiaccess bus has 
been extensively researched. However, most of the proposed 
schemes cannot give any guarantee on the message delivery 
delay. Although some of them might be able to support 
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predictable communication, they require a priori information 
about the message arrival patterns. In order to provide pre- 
dictable communication services, the authors of [ 1 11 proposed 
a scheme which can give a guarantee on maximum message 
delivery delays by introducing a centralized network manager, 
which is responsible for establishing a real-time point-to- 
point channel between two communicating nodes based on 
the worst-case resource requirement of the channel. With three 
parameters-maximum message size, maximum message rate, 
and maximum burst size-which will be given in the channel 
establishment phase, the scheme in [l 11 can give an end-to- 
end guarantee on the message delivery delay. However, their 
scheme is built on a point-to-point interconnection network 
which is seldom used in manufacturing systems due to its 
inherent complexity. Besides, the centralized connection es- 
tablishment process could be very slow, since each connection 
request has to traverse several links to the network manager 
and a reply must be sent back to both the requesting and 
destination nodes. Therefore, even if two peer nodes are on 
the same link, the connection establishment process is time- 
consuming. 

In the draft standard of FieldBus protocol [2], [3],  a dis- 
tributed scheme is implicitly assumed, since the existence of 
a network manager is not mentioned at all. A distributed 
scheme can handle nonreal-time communication well, but 
its ability for handling real-time communication is limited. 
In order to provide predictable communication for real-time 
applications, the system has to reserve certain resources (e.g., 
link bandwidth), verify that certain conditions are met (e.g., the 
end-to-end delivery delay is small enough), and guarantee that 
these conditions will always be met during the lifetime of the 
application. A distributed scheme can handle these operations 
well if the two peer DLE’s are on the same link. However, if 
the two communicating peer DLE’s are located on different 
links, there are several serious disadvantages associated with 
a distributed solution. The most significant is the difficulty in 
coordinating bridges. Without a centralized network manager, 
each bridge has to be equipped with complete information of 
the real-time traffic load on each node and each link, and the 
routes to all the other nodes. Note that since real-time messages 
have higher priority than nonreal-time messages, we ignore the 
load of nonreal-time traffic when the system deals with the 
information for real-time communication. No matter how the 
information is collected, it is very difficult and expensive to 
keep the information up-to-date, since frequently broadcasting 
and processing such information will consume significant 
link capacity and CPU time. For nonreal-time connectionless 
traffic, the system can still use conventional routing methods 
to deliver nonreal-time packets, i.e., each bridge still needs a 
routing table for nonreal-time messages. This routing table (for 
nonreal-time connectionless communication) is much easier 
to construct and maintain than that for both real-time and 
nonreal-time traffic. Since the goal of this paper is to provide 
predictable communication for the FieldBus protocol, we will 
focus on real-time traffic and ignore nonreal-time traffic in the 
rest of the paper. 

For the above reasons and in order to provide predictable 
communication services with the FieldBus protocol while 

avoiding the disadvantages in both distributed and central- 
ized schemes, we propose a hybrid approach. The real-time 
communication problem associated with the FieldBus protocol 
can be decomposed into two related subproblems. The first 
subproblem is to provide real-time communication between 
two peer DLE’s on the same link. The second subproblem 
deals with the ability to establish real-time channels between 
two peer DLE’s located on two different links. As mentioned 
above, establishing a connection between two communicating 
DLE’s and reserving all the required resources are the only 
way to achieve predictable communication. Since the first 
subproblem is more likely to happen than the second one, 
the connection establishment procedure and the resource man- 
agement for the connections of two peer DLE’s on the same 
link should be fast and efficient. For the second subproblem, 
in order to improve the utilization of the entire network, and 
facilitate the routing problem between two peer communicat- 
ing DLE’s, a network manager is used to handle connections 
betweein two nonlocal DLE’s. 

The network manager (NM), which is a centralized service 
that handles real-time connection establishment and mainte- 
nance, is not present on all nodes in the system. Basically, 
the Nh4’ s function includes receiving real-time connection 
requests, trying to select a route which can provide the 
requested quality of service, informing all intermediate nodes 
(LAS and bridges) if such a route is available, and replying to 
the requesting node. The NM must maintain the information 
necessary for connection establishment, including the topol- 
ogy of the network and the reservatiodutilization status of 
resources like link capacities and buffer space in all bridges. It 
also maintains a table containing the resource requirements, the 
assigned routes and the priorities of all existing connections in 
the system. In order to ensure the consistency of this data, the 
NM serializes the connection creatioddeletion operations. The 
detailed NM operations will be described in the next section. 

111. BASIC APPROACH 
The communication capacity of each link is divided into two 

parts. One part is concemed with intralink communications 
which are managed by the local LAS. The other part deals with 
interlink communications which are managed by a global NM. 
In other words, all intraworkcell communications between two 
peer DLE’s on a link are scheduled by the LAS on that link. 
The interworkcell real-time communications between two peer 
DLE’s on two different links are managed by the global NM, 
and scheduled by the LAS of each link of the path over which 
the coiresponding connection runs. The fraction of the link 
capacity assigned to each of these two parts depends on the 
distribution of communication demands on each link. That is, 
the LAS of a link can reserve a different fraction of link 
capacity for local (or intra-link) communications based on 
the characteristics of local communication demands. Since 
communication traffic may vary, the reserved capacity may 
also vary. In this paper, we will use a version of the linear 
boundtpd model to describe the traffic generated by a real-time 
connection. If D is the maximum delivery-delay bound of a 
packet, the traffic generated by a real-time connection is said 
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to follow the linear bounded model if the number of packets 
generated in any interval T 2 D is bounded by a linear 
function of the length of the interval T ,  i.e., (GT + B), where 
G is the maximum packet-generation rate of this connection 
and B is the maximum burst size. This model was first 
proposed by Cruz [8] and also adopted by several researchers 
[6] ,  [7], [9], [lo], [12], [21]. The proposed solutions to the 
two subproblems are described in detal in the following two 
subsections. 

A. Intralink Communication 

Intralink (intracell) communications occur between two peer 
DLEs on the same multiaccess link. This type of commu- 
nication can be either connection-oriented or connectionless. 
Intralink real-time communications are handled by the LAS 
DLE on the corresponding multiaccess link, because the 
LAS is designed to be the centralized control entity for 
scheduling messages on that local link under the FieIdBus 
protocol [2],  [3]. Since real-time communication requires a 
bounded delay in message delivery, we need to reserve all 
the required resources in advance in order to guarantee all 
real-time messages to be delivered before their deadlines. This 
implies that real-time communication be connection-oriented, 

In the proposed coniiection establishment procedure, the 
operations of the peer DLE’s are the same as those in the 
description of the draft standard [2], [3]. That is, the source 
DLE will make a connection request which contains necessary 
information for establishing the connection according to the 
FieldBus protocol, such as a frame control field, the destination 
address, and the quality of service. In order to support real- 
time communication, the traffic generation characteristics and 
the delivery delay requirement also need to be specified in 
a connection request message. Specifically, in addition to 
the required information in the draft standard, the following 
two parameters must be included in the connection request 
message: 

* D (seconds): the user-specified delivery-delay bound for 

M (packets): the maximum number of packets that can 

These two parameters describe a more general model than 
the linear bounded model, because the linear bounded model 
is only a special case of this model (by letting M = GD + B). 
Note that the maximum packet size is not included here 
because in the FieldBus protocol [2],  [3], the maximum size 
of a high priority packet is fixed to be 64 bytes. 

Based on these two parameters, the LAS can make necessary 
and sufficient reservation to guarantee all real-time messages 
to be delivered by their deadlines [7]. After receiving a 
connection request, the LAS will try to reserve the link 
capacity for this connectioq by performing the following 
admission test: 

a message; 

be generated in an interval of length D.  

where P,,, denotes the time needed to transmit a maximum- 
size packet and the index i runs over all existing real-time 

connections and the currently requested connection. The main 
part of overhead is determined by the token passing time. 

If the-admission test can be satisfied after adding this new 
connection, the LAS will reserve the required link capacity, 
update the information about the existing real-time connec- 
tions, and send a confirmation message to the requesting node. 
Otherwise, the LAS will send a rejection message to the 
requesting node. 

Using these parameters, the LAS can use the deadline-driven 
scheduling algorithm described in [14] to allocate tokens to 
each real-time connection. Basically, after an intralink real- 
time connection i with parameter D, and M, is established, the 
LAS will allocate a token to connection i at least once every 
D; units of time and during the lifetime of each token, at least 
h& maximum-size packets of connection z can be transmitted. 

In addition to the operations specified in the draft standard, 
the LAS has to respond to all connection requests for local 
real-time connections since all real-time connections running 
through this local link are subject to its approval. Note that the 
LAS’s approval is not required for nonreal-time connections 
since no resource and link capacity has to be reserved in 
advance for them. A connection request message includes 
a resewation (0 or 1) field, representing whether the local 
LAS has reserved the requested capacity or not. When the 
LAS receives a real-time connection request from a local 
DLE with a destination DLE located on the same link, the 
LAS will try to reserve the requested link capacity and 
respond to this connection request. Consequently, a real-time 
connection request is handled in three steps (see Fig. l), 
whereas a nonreal-time connection request requires only two 
steps. First, the requesting DLE sends a connection request 
to the corresponding local LAS with reservation = 0 which 
represents the connection request has not yet been approved 
by the local LAS. Both the LAS and the designated receiver 
DLE receive this request, but the designated receiver DLE will 
ignore all real-time connection requests with reservation = 
0. The LAS will respond to this request by sendmg out 
the modified connection request message with the requested 
quality of service and reservation = I, if the LAS can 
reserve a sufficient capacity and accept this connection request. 
Otherwise, the LAS will reject this request by sending a 
rejection message to the requesting DLE. After receiving the 
positive response from the LAS, the receiver DLE will respond 
as described in the draft standard, i.e., report the connection 
request to the destination user, and the user will decide whether 
to accept this request or not. If the connection cannot be 
accepted, the receiver DLE will respond with a disconnection 
message, which will be received (almost) simultaneously by 
both the LAS and the requesting DLE since the link is a 
multiaccess bus. The LAS will then release all the resources 
reserved for this connection. 

If there are already too many real-time connections estab- 
lished nearly exhausting all the link capacity under the control 
of a LAS, the LAS can make a request to the global NM for 
more link capacity for local usage. However, this is subject to 
the availability of the remaining link capacity at the NM level. 

In order to be compatible with the current draft standard, 
if the source DLE requires an immediate reply for a real- 
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Fig. 1.  Procedure for handling an intralink connection request. 

time connection request, the receiver DLE will respond with 
an acknowledgment immediately. Otherwise, the source node 
will send the connection request again as specified in the draft 
standard. If the addressed destination still does not respond, 
the source DLE will report the failure of the destination DLE 
to the user, and the LAS will stop the reservation process 
and free all the resources reserved thus far for this particular 
request. When an immediate reply is required, the LAS will 
respond to the requesting DLE in the very next time slot after 
detecting the required immediate reply. 

B. Interlink Communication 

The entire operation for establishing a connection between 
two DLE’s on different links is conceptually similar to the case 
when they are on the same link. The only significant difference 
is that the real-time connection requests are granted by the NM, 
rather than a local LAS. The real-time connection establish- 
ment procedure still consists of three steps (see Fig. 2). First, 
the requesting DLE makes a real-time connection request with 
reservation = 0 which represents the connection request has 
not yet been approved by the NM. Since the destination DLE 
is not on the same local link as the requesting DLE, the local 
LAS will ignore this connection request, and the bridges will 
forward this request to the NM by using datagram services. 
(Note that in the nonreal-time connection request case, the 
bridge will forward the request to the addressed destination 
DLE, instead of the NM.) Then the NM will try to find a 
path from the source DLE to the destination DLE with the 
required quality of service. If there are many paths available, 
it will choose a path by balancing the network traffic. If such 
a path is found, the NM will reserve the required resources 
and send a connection request to the destination DLE with 
reservation = 1 and the source address is the requesting 
DLE. At the same time, the NM also informs all the LAS’s 
and bridges along the path of this new connection. Each 
intermediate bridge in this path will have the information on 

Destiantion Nodc’a 
address is not on 
the same link 

If the Resucst can 
not be accepted. 

Conrdon Establishmcnt Request Reiection 
with reservation = 1 to the Source Node 1 to the Destination Node I 

resetvation information to 
LASS and Bridges thc destination node 

If the Request can 
be accepted by the 
destination node. 

a Confirmation message 
to the Source Node 

The Destination Node sends 
Rejection 

to the Source Node & 
the Network Manager 

and 
All the LASS 8 Bridges along 
the path of connection cancel 
the corresponding resetvations. 

I I I 

Fig. 2. Procedure for handling an interlink connection request. 

the size of reserved buffer space and how to forward messages 
of the newly-established connection. Each LAS also has the 
information on how to assign the required link capacity to 
some intermediate bridges. On the other hand, if no path can 
be found with the requested quality of service, the NM will 
send a rejection message to the requesting DLE. 

Finally, after the destination DLE receives the connection 
request from the NM, the receiver DLE will report this 
request to the destination user who will then decide its 
acceptance/rejection. In case of acceptance, the destination 
DLE will send a confirmation message back to the requesting 
DLE. Otherwise, a disconnection message will be sent along 
the established path to the requesting node, thus making all 
intermediate LAS’s and bridges aware of this disconnection. 
A disconnection message is also sent to the NM by the 
destination DLE, and the NM will update its information and 
release all the associated resources. In this case, the NM does 
not have to inform the intermediate nodes of the cancellation 
of the connection, since all intermediate LAS’s and bridges 
have already been informed of this by the destination DLE. 

If the destination DLE does not exist or does not respond 
within a timeout period to the connection request sent by the 
NM, the failure of the destination DLE can be detected by 
the bridlge on the same link where the destination DLE resides 
and will be reported to the NM by retuming the connection 
request to the NM. The NM may choose to retry or inform the 
requesting DLE and all intermediate LAS’s and bridges about 
the rejection of this connection. 

Iv. COMPATIBILITY WITH THE DRAFT FIELDBUS PROTOCOL 

Since most part of the FieldBus protocol has been well de- 
veloped and gained general acceptance from the manufacturing 
and process control communities, the proposed scheme for 



real-time communication must be compatible with the draft 
FieldBus protocol. The most notable aspects of the proposed 
scheme are the introduction of the network manager, the 
division of link capacity, and the difference in establishing 
real-time and nonreal-time connections. 

Since the NM is responsible for all interlink (intercell) real- 
time connections, it has to be reachable from all entities in 
the entire network. There are two ways to achieve this goal: 
1) all entities that may make an interlink real-time connection 
request maintain the NM’s address individually; and 2) all 
bridge DLE’ s are responsible for recognizing interlink real- 
time connection request packets, forwarding interlink real- 
time connection requests to the NM, and thus, only bridge 
DLE’s have to know the NM’s address. Both 1) and 2) are 
compatible with the current draft FieldBus protocol, and easy 
to implement. 

The second difference introduced by the proposed scheme 
is the division of the link capacity into two parts which 
are controlled by either the corresponding local LAS or the 
NM. This link capacity division can be easily accommodated 
into the current protocol. In the current FieldBus protocol 
standard, the entire link communication capacity is controlled 
by the local LAS, regardless whether the communication 
is intralink or interlink and whether it is connectionless or 
connection-oriented. In order to improve the utilization and 
traffic balancing of the network, we introduced the NM for 
interlink real-time communication, and as mentioned before, a 
portion of link capacity is controlled by the NM. Each LAS can 
still function as described in the draft FieldBus protocol except 
some portion of link capacity is assumed to have already been 
reserved for global usage. The LAS just follows the NM’s 
instruction (in the request form) when assigning the requested 
link capacity to some designated bridge DLE(s) andor the 
application DLE(s). Since the NM is only allowed to allocate a 
prenegotiated portion of the link capacity, and never exceeds it, 
the LAS must follow the NM’s instruction. At the same time, 
the LAS may also grant its local requests without any further 
checking with the NM. The portion of link capacity which is 
controlled by the NM can be negotiated, i.e., when a LM DLE 
becomes the active LAS on a link, it first informs the NM of 
the portion of link capacity of this local link that the “I can 
use. From a scheduling perspective, the local LAS schedules 
the tokens according to the requests granted by both itself and 
the NM. Since both the LAS and the NM cannot exceed their 
prenegotiated limits, the messages for real-time connections 
can always be delivered in time once the connection has been 
established. 

The real-time connection establishment procedure is also 
different from the nonreal-time counterpart. Establishing a 
real-time connection requires three steps, while establishing a 
nonreal-time connection requires only two steps. This differ- 
ence comes from the fact that a real-time connection establish- 
ment has to be granted by either the locd LAS or the NM. The 
real-time connection request is considered valid by the node 
where the destination DLE resides even before the destination 
DLE accepts the request. In such a case, the destination DLE 
may receive not-yet-accepted (reservation = 0) requests, but 
it will ignore them. So, the real-time connection request can 
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be processed by the DLE’s in the same way as a nonreal-time 
connection request. The draft FieldBus protocol uses a state- 
driven procedure to manage a nonreal-time connection, which 
is briefly described here. As we shall see later, a real-time 
connection can also be achieved by this state-driven procedure. 
The source (requesting) node makes a real-time or nonreal- 
time connection request, initiates a state machine (V,(ST) 
in the standard) for the connection, and enters “Outgoing 
Connection Pending” state from “Idle” state after the request 
is sent [2], [ 3 ] .  A node in “Outgoing Connection Pending” 
state that has received a connection establishment confirmation 
enters “Data Transfer Ready” state and begins transmission. 
On the other hand, a node receives a nonreal-time or a valid 
real-time connection request will enter “Incoming Connection 
Pending” state. After receiving the user’s positive response 
to this request, the DLE in “Incoming Connection Pendmg” 
state sends out a connection establishment confirmation to 
the requesting node, enters “Data Transfer Ready” state, and 
begins transmission. A user’s negative response (reject or 
close) to a state machme will force the node to send a 
disconnection message and the associated state machine will 
enter “Idle” state. Therefore, real-time connection requests 
can be processed by the same state-driven model with minor 
modification (adding a reservation bit) as the nonreal-time 
connection case. However, the NM and the LAS have to 
be equipped with the ability to handle real-time connection 
requests, make appropriate reservations, and respond to such 
requests adequately. The bndge DLE’s also require additional 
functions to make correct run-time scheduling and flow control 
in order to provide predictable communication [lo], [ 1 11. 
Although these changes to the LAS and bridge are nontrivial, 
they are compatible with the draft FieldBus protocol, and are 
necessary to support real-time communication. 

V. PERFORMANCE EVALUATION 

In this section, using two protypical example systems we 
demonstrate the superior performance of the proposed modi- 
fication of FieldBus. The first example deals with a typical 
manufacturing system network and the second example is 
concemed with multimedia networking; both the examples 
require real-time communication services. These examples are 
used to compare the proposed scheme and the token-passing 
protocols (e.g., token buses, token rings, and FDDI) in terms 
of the ability of supporting real-time communication. 

Example 1: We simulated a typical manufacturing system 
(Fig. 3) to determine the percentage of accepting real-time 
connection requests and the average maximum nonreal-time 
message throughput achievable under diffqrent link load con- 
ditions for both intracell and intercell communications [2], [3] ,  
[lo], [14]. A cell in Fig. 3 represents a workcell. 

Real-time communications in manufacturing systems are 
usually periodic in nature, and the deadline of a message is 
related to its period. For example, the controller of a workcell 
usually must read sensors periodically, and the sensed data 
shpuld be processed before the next period begins. Based on 
this observation, we assume that each real-time connection 
has its own period, and in each period, a fixed amount of 



SHIN AND CHOU DESIGN AND EVALUATION OF REAL-TIME COMMUNICATION 363 

Fig. 3. Two-level hierarchical network for an AF. 

time is assigned to the source node of the connection if the 
connection can be established, because the size of each time- 
critical message is limited in the FieldBus. This fixed amount 
of time is assumed to be used for handling a message of 
256 bytes-which includes a maximum of 128 bytes user 
data for time-critical messages-and all overheads such as 
token passing time, transmission delay, and framing delay. The 
reason why we do not use any specific message packetization 
is that the ISA (Instrument Society of America) has not yet 
finalized the formats of the packet header and various tokens 
[2], [3]. Those connections needing to send more than 256 
bytes in a period are simulated by making multiple connection 
requests. 

Arrivals of real-time connection requests are assumed to 
be exponentially distributed with a fixed rate. The real-time 
connection periods are assumed to be uniformly distributed 
within the range from 20-500 ms for the manufacturing system 
under consideration. Since all operations in a manufacturing 
system are usually carefully planned in advance, the lifetime 
of each activity will be approximately the same for all of 
its invocations. Therefore, in addition to the arrival rate and 
period, the lifetime of each connection is assumed to be 
normally distributed with a fixed mean ranging from one to 
tens of seconds (depending on the type of the corresponding 
activity) and a small variance. For example, a robot may need 
a connection with a short-life device for 10 s when it operates 
on an assembly line, but it may only need a connection with a 
long-life device for the next several seconds when the transport 
belt is moving. 

In this example, we use several different lifetime distri- 
butions, but, as long as the total requesting load remains 
the same, the percentage of accepting real-time connection 
requests and the average maximum achievable nonreal-time 
message throughput do not make any significant difference. 

Figs. 4 and 6 show the probability of accepting an intra- 
cellhntercell real-time connection request under a wide range 
of requested real-rime connection load. When the requested 
real-time connection load is under 100% of the link capacity, 
the speed of the link is important to the acceptance probability. 
The reason for this tendency can be given as follows. The 
requested connection's load on a link is the sum of the loads of 
all requested connections regardless whether they are accepted 
or not. Insofar as a single connection request is concerned, the 
load of a single real-time connection request is measured by 
the number of slots (each of which is the time required to 
handle a 256-byte packet) the connection needs per second or 
its period in terms of slots, and this load occupies a higher 
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percentage of the capacity of a low-speed link than it does 
on a Ihigh-speed link. Therefore, when the requested real- 
time connection load is less than 100% of the link capacity 
(i.e., the link has some unused capacity), the chance that a 
new requested connection cannot be accommodated in the 
remaining capacity of a low-speed link is much higher than 
a high-speed link. 

Figs. 4 and 5 show, respectively, the percentage of accept- 
ing real-time connection requests and the average maximum 
achievable nonreal-time message throughput for intracell com- 
munication. As can be seen in Fig. 4, the higher link speed, 
the higher acceptance probability. The nonreal-time message 
throughput has an opposite trend. In Fig. 5, the low-speed 
link h,as a higher nonreal-time message throughput in terms 
of percentage of the link capacity, since a lower percentage of 
link capacity is reserved for real-time communications. 

Figs. 6 and 7 show, respectively, the percentage of grant- 
ing re,al-time connection requests and the average maximum 
achievable nonreal-time message throughput for intercell com- 
munication. For these plots we used a 4 Mbps backbone to 
connect 10 workcells, and three different link capacities for 
connections within a workcell, i.e., 128 Kbps, 256 Kbps, and 
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512 Kbps. In our strategy, intercell and intracell communica- 
tions do not interfere with each other, since they use different 
portions of the link capacity. These two figures follow the 
same trend as Figs. 4 and 5. However, the percentage of 
accepting intercell real-time connection requests drops much 
faster, since an intercell connection can be established only if 
all links on the connection have sufficient capacity to support 
this connection’s requirements, while an intracell connection 
only needs one link which has sufficient capacity to establish. 
Because a smaller percentage of link capacity is reserved 
for real-time connections, the average maximum achievable 
nonreal-time message throughput is higher in the intercell 
communication case (as can be seen from Figs. 5 and 7). 

Example 2. Since most real-time communication takes 
place between two DLE’s on the same link, this example 
focuses on the ability of supporting intralink real-time 
communication. Both the normal token-passing protocol and 
the proposed scheme are used to send compressed digital 
motion-video frames and their performances are compared. 
This example shows that the proposed scheme reserves 
a bandwidth required for real-time traffic and utilizes the 

65Mx) 
JPEG INPUT - 

Fig. 8 An example of frame sizes (compressed with JPEG). 

network resources efficiently in the absence of real-time 
traffic, thus, can provide adequate real-time performance and 
outperform conventional token passing protocols. 

The underlying interconnection hardware is a 100 Mbps 
multiaccess linwbus with 20 or 50 nodes. The video data 
were obtained by sampling a sequence of CNN headline news, 
stored on a laser &sk [24]. The size of each frame, after 
compressed with P E G  [22], [24], is plotted in Fig. 8. The 
video quality can be characterized by the rate of “successfully- 
delivered” frames, where a “successfully-delivered” frame 
is defined as the one delivered to its destination correctly 
before the corresponding deadline. The maximum one-way 
transmission delay of each frame must be less than 100 ms 
in order to achieve the quality of live-video performance, i.e., 
D = 100 ms. If we use the transmission rate of 30 frames 
per second, 3 frames will be transmitted during each 100 
ms period. Assume the maximum packet size supported by 
the network is 1 Kbytes, then by adding the sizes of three 
consecutive frames (because there are three frame arrivals in 
100 ms), we can derive M = 185 packets. By adding the token 
passing overhead of 1 Kbytes per 100 ms (i.e., 500 bytes each 
way), the network is expected to support [1250/186] = 6 
real-tme connections under the proposed scheme because the 
100 Mbps link can be used to transmit 1250 maximum-size 
packets during each 100 ms period. 

Certain uniformly-distributed nonreal-time traffic that re- 
quires from 0-90% of the total link capacity is added to each 
node during the simulation. However, the source nodes of real- 
time connections are randomly chosen. (It is thus possible , 
that one node may become the source node of all real-time 
connections.) The traffic data of real-time connections were 
taken from Fig. 8 and each connection has its own starting 
frame (also randomly chosen). 

On the same multiaccess link (with 20 or 50 nodes), we 
will also use the above real-time traffic to assess the ability of 
supporting real-time communication under the normal token- 
passing protocol. However, we assume the token-passing 
overhead is negligible and the source nodes of existing ueal- 
time connections are distributed evenly among all nodes. 
Although these assumptions will make the token-passing pro- 
tocol work better than actually is, this example will show 
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that the proposed scheme still performs much better than the 
token-passing protocol in supporting real-time communication. 

Though the underlying network is a multiaccess bus, the 
token will be passed among all nodes cm the bus in a manner 
which is exactly the same as FDDI [l], [5], [151, [16], [191, 
[20], [23]. Since the packet delivery deadline is 100 ms, the 
target token rotation time (TTRT) of the token-passing protocol 
is set to 50 ms. Depending on the number of nodes (20 or 50 
in this example), the high-priority token holding time of each 
node is set to be 50/20 = 2.5 ms or 50/50 = 1 ms. Basically, 
each node is guaranteed to receive a token at least once every 
2 x TTRT (100 ms) and upon capturing the token, the node 
is allowed to transmit real-time (high-priority) traffic for up to 
2.5 ms on a 20-node network or 1 ms on a 50-node network. 
Nonreal-time traffic can be transmitted only when a node holds 
the token and the elapsed time since this node’s last release 
of the token is less than TTRT. After receiving the token, a 
node may transmit real-time traffic for up to 2.5 ms (or 1 ms) 
first, and then if the above condition is met, more real-time 
traffic or nonreal-time traffic can be transmitted until the above 
condition becomes no longer true or all packets are transmitted, 
whichever occurs first. The token will then be passed to the 
(logically) next node. 

The goal of this example is to evaluate the capability 
of supporting real-time communication by comparing the 
maximum and average frame-miss rates of both the token- 
passing protocol and the proposed scheme. (The frame-miss 
rate is defined as the percentage of frames missing their 
deadlines.) Our scheme is shown to always outperform the 
token-passing protocol in supporting real-time communication. 

Figs. 9 and 10 show the maximum frame-miss rate of 
our scheme, and the maximum and average frame-miss rates 
of 20-node and 50-node token-passing networks at a 50% 
nonreal-time traffic load. The frame-miss rate is defined for 
each connection, i.e., the ratio of the number of frame misses 
for a connection C to the total number of frames of C. The 
maximum (average) frame-miss rate is defined to be the largest 
(average) value of individual connection frame-miss rates. A 
point in the figure represents 30 000 cycles of the sequence for 
each connection, i.e., about 911 000 frames or 8.4 h at the rate 
of 30 frame& for each connection. As one can derive from (l), 
both figures show that 6 connections can be supported under 
the proposed scheme. For those points where the link does not 
have sufficient bandwidth for both real-time and nonreal-time 
traffic (e.g., 7-10th connections), we reserved the entire link 
capacity for real-time connections, and nonreal-time traffic is 
transmitted only when the bandwidth reserved for real-time 
traffic is not fully used. Since we reserved the link bandwidth 
using the worst-case values, this is very likely to happen. 

For example, we reserved [1250/71 packet times for each 
connection when there are 7 real-time connections. (Note, 
however, that our scheme does not allow a seventh real-time 
connection, because the system cannot guarantee the required 
performance.) When a seventh connection is added, only about 
2% of real-time packets of this connection will miss deadlines. 

The token-passing protocol on a multiaccess bus can provide 
4-5 real-time connections at a 50% nonreal-time load. As we 
shall see, the token-passing protocol’s ability to support real- 
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Fig. 9. Maximum frame-miss rate at 50% nonreal-time traffic load (20 
nodes). 

Fig. 10. 
nodes). 

Maximum frame-miss rate at a 50% nonreal-time traffic load (50 

time communication is highly sensitive to the nonreal-time 
traffic load. The average frame-miss rate for our scheme is 
very close to the maximum miss rate, so we only present the 
maximum frame-miss rate in Figs. 9 and 10. By contrast, the 
average and maximum frame-miss rates of the token-passing 
protocol are significantly different when the multiaccess bus 
cannot transmit all the real-time messages before their dead- 
lines. The FDDI’s frame-miss rate is also sensitive to the 
number of nodes on the ring, but our scheme can provide 
the same number of real-time connections regardless of the 
number of nodes on the multiaccess link. This observation 
implies that the variance of frame-miss rates of our scheme is 
very simall, whereas the token-passing protocol suffers a large 
variation of frame-miss rates. 

Figs. 11 and 12 show the maximum frame-miss rate of our 
scheme as well as the maximum and average frame-miss rates 
of 20-node and 50-node token-passing networks at a 90% 
nonreal-time traffic load. At a high nonreal-time traffic load 
like this, the token-passing protocol almost becomes incapable 
of supporting real-time communication. It can only allow for 
one connection (without loss) on both 20-node and 50-node 
netwoirks. 
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Fig 11 Maximum frame-miss rate at a 90% background load (20 nodes). 
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Fig 12 Maximum frame-mss rate at a 90% background load (50 nodes). 

By contrast, our scheme is insensitive to the nonreal- 
time traffic load. The system can still provide 6 real-time 
connections at a high nonreal-time traffic load. Agam, since 
the average frame-miss rate of our scheme is very close to the 
maximum frame-miss rate, we plot only the maximum frame- 
miss rate. (Similarly to the previous case, the token-passing 
protocol’s average frame-miss rate significantly differs from its 
maximum frame-miss rate.) As far as the ability of supporting 
real-time communication is concerned, our scheme is shown to 
be far better than the token-passing protocols, such as token 
buses, token rings, or FDDI. 

We also calculated the token-passing overhead of the pro- 
posed scheme under the assumption that the size of a token 
is 500 bytes. Since two tokens are needed for each token 
allocation (one to issue and the other to return), and the 
average traffic arrival rate of a real-time connection is approx- 
imately 132 Kbytes per 100 ms, the token-passing overhead 
is approximately 0.76%. 

VI. CONCLUSION 
In this paper, we proposed a strategy to support real- 

time communication under the FieldBus protocol which pro- 
vides end-to-end delivery delay guarantees for time-critical 
messages. This strategy provides a fast local mechanism 

for establishing intraworkcell real-time connections, while 
supporting global interworkcell real-time connections 
proposed strategy is fully compatible with the current draft 
standard of Fielaus protocol, and also provides flexibility for 
the choice of scheduling algorithms, adaptability for different 
traffic loads. Numerical examples are also given based on 
typical manufacturing systems as well multimedia networking. 

Our future work will focus on the scheduling algorithms 
for the LAS and the route selection algorithm (to be used by 
the network manager) which are also very important to the 
success of FieldBus. 

ACKNOWLEDGMENT 

The authors would like to thank G. Workman and B. Gross 
of General Motors for their technical support for the work 
described in th s  paper. 

REFERENCES 

[l]  “FQDI hybnd nng control, draft proposal to American Nahonal Stan- 
dard,” 1989. 

[2] Fieldbus Standnrd for Use in Industrial Control Systems-Part 3. Data 
Link Service DeJinitzons, Draft Standard, ISA-dS5O 02 ISAfSP50-1993- 
359L, Instrument Society of America, 1993 

[3] Fieldbus Standard for Use in Industrial Control Systems-Part 4 Data 
Link Protocol Spec&atzon, Draft Standard, ISA-dS5O 02 ISAfSP50- 
1993-360L, Instrument Society of America, 1993 

[4] D. P Anderson, S. Y. Tzou, R. Wahbe, R Govmdan, and M. Andrews, 
“Support for continuous media in the dash system,” in Proc 10th Int 
Con$ Distnbuted Computing Systems, May 1990, pp. 54-61. 

[5] D. Bertsekas and R. Gallager, Datu Networks Englewood Cliffs, NJ. 
Prentlce-Hall, 1987 

[6] C.-C. Chou and K. G Slum, Multzplexzng Statistical Real-Tzme Channels 
on a Multiaccess Network, to be published 

[7] -, “Statisbcal real-time channels on multlaccess networks,” in 
Proc. Int. Conf Computer Communication, Aug 1995, pp 29-34 

[8] R. L. Cruz, “A calculus for network delay and a note on topologies of 
interconnection networks,” Ph.D. dmertatlon, Univ Illinois at Urbana- 
Champagn, July 1987. 

[9] D. Ferrari and D. C Verma, “A scheme for real-time channel establish 
ment in wide-area networks,” IEEE J Select. Areas Commun , vol 8, 
pp 368-379, Apr 1990. 

[lo] D. D. Kandlur and K. G. Shin, “Design of a communication subsystem 
for HARTS,” CSE Div , Dep Elect Eng Comput Sci , Univ Michigan, 
Ann Arbor, Tech. Rep. CSE-TR-109-91, 1991 

[ l l ]  D. D. Kandlur, K. G Shin, and D Ferrari, “Real-tlme communication 
in multi-hop networks,” in Proc. 11th Int Cons Distributed Computing 
Systems, 1991, pp. 300-307. 

[12] D. D. Kandlur, “Networhng in distnbuted real-time systems,” Ph D 
dmertation, Univ. Michigan, Ann Arbor, 1991. 

[13] J F. Kurose, M. Schwartz, and Y Yemini, “Multiple access protocols 
and time-conshamed communication,” ACM Comput. Surveys, vol 16, 
pp 43-70, 1984 

[14] C L Liu and J. W Layland, “S~heduling algorithm for multiprogram 
mng in a hard-red-time environment,” J ACM, vol 20, no 1, pp 
4641.  Jan. 1973. 

[15] F E. Ross, “FDDI-A tutorial,” IEEE Commun. Mag., vol 24, pp. 
10-17, May 1986 

r161 -, “An overview of FDDI The fiber &slributed data interface.” 
IEEE J Select Areas Commun, vol 7, no 7, pp 1043-1051, Sept 
1989 

[17] K. G Shin, “Real-time communications in a computer-controlled work- 
cell,” IEEE Trans Robot Automat, vol 7, pp 105-113, Feb 1991 

[18] J K Strosnider and T. E. Marchok, “Responsive, determmistic IEEE 
802 5 token nng scheduling,” J Real-Time Syst , vol 1, pp 133-158, 
Sept 1989 

[19] A S Tanenbaum, Computer Networks, 2nd ed Englewood Cliffs, NJ. 
Prentice-Hall, 1989 

[20] M Tangemann and K Sauer, “Performance analysis of the timed token 
protocol of FDDI and FDDI-11,” IEEE J Select Areas Commun , vol 
9, no 2, pp 271-278, Feb 1991. 



SHIN AND CHOU: DESIGN AND EVALUATION OF REAL-TIME COMMUNICATION 361 

D. C. Verma, “Guaranteed performance communication in high speed 
networks,” Ph.D. dissertation, Univ. Califomia, Berkeley, 1991. 
G. K. Wallace, “The JPEG still picture compression standard,” Commun. 
ACM, vol. 34, no. 4, pp. 3011.3, Apr. 1991. 
J. Walrand, Communication Networks: A First Course. New York 
Irwin and Aksen Assoc., 1991. 
Q. Zheng, K. G. Shin, and E. Ahram-Profeta, “Transmission of com- 
pressed digital motion video over computer networks,” in COMPCON 
Spring’93, 1993, pp. 3746.  

Kang G. Shin (S’75-M’78-SM’83-F’92) received 
the B.S. degree in electronics engineering from 
Seoul National University, Seoul, Korea, in 1970, 
and both the M.S. and Ph.D. degrees in electrical 
engineering from Come11 University, Ithaca, NY, 
in 1976, and 1978, respectively. 

He is currently Professor and Director of the 
Real-Time Computing Laboratory, Department of 
Electrical Engineering and Computer Science, 
University of Michigan, Ann Arbor. He has 
authoredcoauthored more than 350 technical papers 

(more than 150 of these in archival journals) and numerous book chapters 
in the areas of distributed real-time computing and control, fault-tolerant 
computing, computer architecture, robotics and automation, and intelligent 
manufacturing. He is currently writing (jointly with C. M. Krishna) a textbook 
entitled Real-Time Systems, which is scheduled to be published by McGraw- 
Hill in 1996. In 1985, he founded the Real-Time Computing Laboratory, 
where he and his colleagues are currently building a 19-node hexagonal 
mesh multicomputer, called HARTS, and middleware services for distributed 
real-time fault-tolerant applications. He has also been applying the basic 
research results of real-time computing to multimedia systems, intelligent 
transportation systems, and manufacturing applications ranging from the 
control of robots and machine tools to the development of open architectures 

for manufacturing equipment and processes. From 1978 to 1982, he was 
on the faculty of Rensselaer Polytechnic Institute, Troy, NY. He has held 
visiting positions at: the U.S. Air Force Flight Dynamics Laboratory; AT&T 
Bell LalJoratories; Computer Science Division within the Department of 
Electrical Engineering and Computer Science at UC Berkeley; International 
Computer Science Institute, Berkeley, CA, IBM T. J. Watson Research 
Center; and Software Engineering Institute, Carnegie Mellon University. 
He also chaired the Computer Science and Engineering Division, EECS 
Department, University of Michigan, for three years beginning January 1991. 

Dr. Shin received the Outstanding IEEE Transactions on Automatic Control 
Paper Award for a paper on robot trajectory planning in 1987. In 1989, he 
received the Research Excellence Award from The University of Michigan. He 
was the Program Chairman of the 1986 IEEE Real-Time Systems Symposium 
(RTSS), the General Chairman of the 1987 RTSS, the Guest Editor of the 
1987 August special issue of IEEE TRANSACTIONS ON COMPUTERS on Real- 
Time Systems, a Program Co-chair for the 1992 International Conference on 
Parallel Processing, and served on numerous technical program committees. 
He also chaired the IEEE Technical Committee on Real-Time Systems during 
1991-1993, was a Distinguished Visitor of the Computer Society of the IEEE, 
an Editor of IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, 
and an Area Editor of International Journal of Time-Critical Computing 
Systems. 

Chih-Che Chou (S’91-M’93) received the B.S.E.E. 
degree in electrical engineering from National Tai- 
wan University, Taipei, Taiwan, in 1988, and both 
the M.S. and Ph.D. degrees in computer science and 
engineering from the University of Michigan, Ann 
Arbor, in 1992 and 1994, respectively. 

He joined AT&T Bell Laboratories in 1994 and 
is currently a Member of Technical Staff. His re- 
search interests include real-time communications, 
real-time operating systems, and communication 
networks. 


