
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 3, JUNE 1996 351

Design and Evaluation of Real-Time Communication
for FieldB us -B ased Manufacturing S y s terns

Kang G. Shin, Fellow, IEEE, and Chih-Che Chou, Member, IEEE

Abstract-It is well known that the ability to support pre-
dictable interprocess communication is of great significance to
computer-integrated manufacturing and process control systems.
In this paper, we propose a strategy for an industrial standard,
the SP-50 FieldBus, to support both intracell and intercell real-
time communications. We first describe our strategy in detail
and show that it is compatible with the current FieldBus draft
standard. Under our strategy, the capacity of each link is divided
into two parts. The first part is managed by the local link active
scheduler (LAS) for intracell (intralink) communication. The sec-
ond part is managed by a proposed global network manager for
intercell (interlink) communication. By dividing the link capacity
in this way, our strategy allows for fast local intracell connection
establishment, while supporting global intercell connections. Us-
ing two examples, one for typical manufacturing systems and the
other for multimedia networking, we also demonstrate the power
and utility of the proposed strategy as compared to token-passing
protocols.

1. INTRODUCTION
N AUTOMATED FACTORY (AF) is usually composed A of several workcells (or simply cells), each of which

contains robots, sensors, and transport mechanisms. A mul-
tiaccess bus connects all devices in a workcell. Bridges then
connect multiple workcells to form an AF. Hence, the network
of an AF consists of many links, each of which is usually a
multiaccess bus. The ability to provide predictable interprocess
communication is of great significance to an AF, because
unpredictable communication delays may lead to missing the
deadline of one or more communicating tasks that collectively
monitor and control manufacturing equipment and processes.
In this paper, we will address the real-time communication
issue of the FieldBus protocol which is designed to support
time-critical communication to and from devices in manufac-
turing and/or process control systems.

Although computer networking has been extensively re-
searched, its specific application to AF’s has not yet been
addressed thoroughly. Most of analytic research deals with
the general area of network communication, focusing on
flexible systems design and performance evaluation. Howevsr,

Manuscript received Apnl 23, 1992; revised July 10, 1994. This paper was
recommended for publication by Editor A. Desrochers upon evaluation of
reviewers’ comments. This work was supported in part by General Motors,
the National Science Foundation under Grant MIP-9203895, and the Office
of Naval Research under Grant NOOO14-94-1-0229, This paper was partially
presented at 1992 IEEE Local Computer Network Conference, Minneapolis,
MN, September 1992.

The authors are with the Real-Time Computing Laboratory, Department of
Electncal Engineering and Computer Science, University of Michigan, Ann
Arbor, MI 48109-2122 USA.

Publisher Item Identifier S 1042-296X(96)03825-6.

real-time communication between devices in an AF has sel-
dom been addressed. The manufacturing automation protocol
(MAP) which was proposed by GM and other companies
for the AF network is based on the OS1 seven-layer model
and the token bus protocol, IEEE 802.4. The MAP can
provide some limited form of real-time communication, but it
cannot guarantee the delivery of time-critical messages before
their dleadlines. In fact, the MAP only provides temporal
ordering between devices based on their priorities. The seven-
layer MAP is usually too slow to be used for real-time
communication, since there are at least 14 layers’ delays in
a single one-way message communication. Another protocol
called MINIMAP employs only the first two layers of MAP
and combines the remaining five layers into a single layer.
MINIMAP is expected to reduce the communication delay,
but it still leaves the real-time issue unaddressed. Token-ring
type pirotocols cannot be used either, for the same reason as
the token bus. CSMNCD type protocols are not applicable to
real-tirne systems because of their unbounded communication
delays. As we shall see, the FieldBus has only three layers,
reserves the required communication capacity in advance for
each real-time channel (a point-to-point unidirectional connec-
tion wlhich can provide end-to-end delivery delay guarantees),
and uses a centralized scheme for scheduling messages in order
to guarantee the delivery of real-time messages before their
deadlines.

The problem of supporting time-constrained communication
has been studied by several researchers, since it plays an
important role in many applications, such as exchange of
control messages and audio- and video-transmissions over a
commiunication network. Most of these efforts can be classified
into two categories. The first category is mainly concerned
with the design of medium access protocols for multiaccess
networks subject to timing constraints in delivering messades.
In this context, most of the proposed schemes can be classified
as best-effort schemes in which the system tries to ensure that
most messages can meet their deadlines, but it cannot give
any guarantee of delivery time [13], [17]. However, based
on the given information about the message arrivallgeneration
pattern, some of them can make guarantees about their delivery
time I 181. The other category deals with the problem of
establishing real-time point-to-point channels and providing
guarantees of maximum delivery delays [4], [9], [ll]. The
main issues addressed in these schemes are message sched-
uling, buffer management, and flow control in the network
nodes. However, the type of networks used in these schemes
is not suitable for manufacturing automation systems for the

1042-296X/96$05.00 0 1996 IEEE

358 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL 12, NO 3, JUNE 1996

following two reasons. First, using a point-to-point network
to connect all devices in a workcell is not practical because
the network could become too complex to manage if there
are tens of devices in a workcell. Second, these schemes may
suffer the long delay of channel establishment, even when two
communicating nodes are physically close to each other.

Since most time-critical communications are likely to occur
between two devices in the same workcell, a fast connection
establishment procedure is desirable. Therefore, a multiaccess
bus is a natural candidate for connecting devices in a workcell.
On the other hand, since the ability to provide predictable
communication between any two devices is also essential
to the system, we will focus on quick real-time channel
establishment within a workcell (i.e., two nodes on the same
multiaccess bus), while providing the ability to support real-
time communication between any two iYorkcells.

The paper is organized as follows. In Section 11, we state the
problem of Supporting time-constrained communication under
the FieldBus protocol. The proposed approaches are discussed
in Section 111. Section IV discusses the compatibility between
the proposed protocol and the FieldBus protocol draft. The per-
formance of the proposed protocol is comparatively analyzed
in Section V, and the paper concludes with Section VI.

11. PROBLEM STATEMENT

Our main goal is to analyze and/or enhance the data link
layer of FieldBus protocol which is designed to support time-
critical communication in process control and manufacturing
systems. Most of the data link layer protocol of FieldBus has
already been well developed. However, the support for time-
critical communication is left unspecified. To facilitate our
presentation, we need to briefly describe the FieldBus data
link layer protocol.

In order to reduce communication latencies, unlike the
OS1 seven layer model, the FieldBus has only three layers:
physical layer, data link layer, and application layer. Since a
manufacturing system is composed of many workcells, and
each workcell contains a multiaccess bus which connects
all the devices in the workcell, the entlre network is a
collection of multiaccess buses which are further connected
via several bridges. A data link entity (DLE) of FieldBus
is a logically active object, such as a part of the network
operating system, which can sendlreceive packets to and
from the interconnection network and acts according to the
data link layer protocol of FieldBus. Hence, there could be
several DLE’s on a node which is physically attached to the
interconnection network, such as computers, sensors, or any
manufacturing devices. However, it is conceptually simple to
treat each DLE as a node. Thus, the terms “DLE’ and “n
will be used interchangeably.

The data link layer protocol of FieldBus is a delegated token
protocol. There is a central control entity on each multiaccess
link which is responsible for scheduling messages on the local
link, i.e., this central control entity is responsible for managing
the token. The data link layer service of FieldBus provides
both connectionless and connection-oriented communication
between two peer communicating DLE’s. The connection-

oriented communication service, which supports both real-time
and nonreal-time communication, requires the source DLE to
establish a connection, thus allowing the source and interme-
diate nodes to collect and exchange the information needed
for the delivery of packets, e.g., buffer requirements and route
information. In general, static routing is used for the delivery
of connection-oriented packets, although it is not required by
the FieldBus standard [2], [3]. If a real-time connection is
requested, the system also has to reserve sufficient bandwidth
and perform appropriate admission tests during the connection
establishment. The connectionless service, which supports
only nonreal-time communication, is similar to traditional
multiaccess packet switching networks.

There are three classes of DLE’s in the FieldBus data link
layer protocol: Basic, Link Master (LM), and Bridge. The LM
class DLE’s can also act as another distinct “class” of DLE’s:
link active scheduler (LAS). Every LM class DLE’s have the
capability to be a LAS, but each time exactly one LM DLE can
act as the LAS of a FieldBus link. In order to avoid confusion,
the LM class represents those LM DLE’s which currently do
not act as a LAS in the rest of this paper unless explicitly
stated otherwise.

Basic and LM classes are conceptually the same, except that
the LM class DLE’s are equipped with more functions, while
the Basic class DLE’s have only those functions which are
absolutely necessary for adequate operations on a FieldBus
network. In general, these two classes of DLE’ s are the “user”
nodes on the FieldBus networks.

Unlike other popular timed-token protocols (e.g., token
rings, token buses, FDDI), FieldBus has a control unit, LAS
DLE, for each FieldBus link. (Note that a FieldBus network
consists of a set of links.) The LAS DLE is responsible
for scheduling messages on the local link. It receives, and
responds to, scheduling requests from all DLE’s on the same
link by giving a token to one of these DLE’s which then
assumes the exclusive right to use the link over some period
of time specified in the token. A bridge DLE which performs
a store-and-forward function to connect two or more separate
multiaccess links. In the draft standard of the FieldBus data
link layer protocol [2], [3] , the routing strategy used by bridges
is not specified. However, the transparency of bridges to the
source node is implicitly assumed in the draft standard.

All of the normal communication requests for use of a
link are scheduled by the link’s LAS. Th’e LAS generates
“polling” tokens for DLE’s on the link, and the receiver
DLE responds immediately by returning a message which may
include requests for future scheduling and the priorities of the
current requests. The LAS derives a schedule according to
some policy and provides the token to the “winner” DLE.

Based on the above brief d . eldBus protocol
and the nature of workcells i , of time-critical
communication can be handled by the local LAS, since most
of real-time communication is likely to take place between
two peer DLE’s on the same link. As mentioned before,
time-constrained communication on a multiaccess bus has
been extensively researched. However, most of the proposed
schemes cannot give any guarantee on the message delivery
delay. Although some of them might be able to support

SHIN AND CHOU: DESIGN AND EVALUATION OF REAL-TIME COMMUNICATION 359

predictable communication, they require a priori information
about the message arrival patterns. In order to provide pre-
dictable communication services, the authors of [1 11 proposed
a scheme which can give a guarantee on maximum message
delivery delays by introducing a centralized network manager,
which is responsible for establishing a real-time point-to-
point channel between two communicating nodes based on
the worst-case resource requirement of the channel. With three
parameters-maximum message size, maximum message rate,
and maximum burst size-which will be given in the channel
establishment phase, the scheme in [l 11 can give an end-to-
end guarantee on the message delivery delay. However, their
scheme is built on a point-to-point interconnection network
which is seldom used in manufacturing systems due to its
inherent complexity. Besides, the centralized connection es-
tablishment process could be very slow, since each connection
request has to traverse several links to the network manager
and a reply must be sent back to both the requesting and
destination nodes. Therefore, even if two peer nodes are on
the same link, the connection establishment process is time-
consuming.

In the draft standard of FieldBus protocol [2], [3], a dis-
tributed scheme is implicitly assumed, since the existence of
a network manager is not mentioned at all. A distributed
scheme can handle nonreal-time communication well, but
its ability for handling real-time communication is limited.
In order to provide predictable communication for real-time
applications, the system has to reserve certain resources (e.g.,
link bandwidth), verify that certain conditions are met (e.g., the
end-to-end delivery delay is small enough), and guarantee that
these conditions will always be met during the lifetime of the
application. A distributed scheme can handle these operations
well if the two peer DLE’s are on the same link. However, if
the two communicating peer DLE’s are located on different
links, there are several serious disadvantages associated with
a distributed solution. The most significant is the difficulty in
coordinating bridges. Without a centralized network manager,
each bridge has to be equipped with complete information of
the real-time traffic load on each node and each link, and the
routes to all the other nodes. Note that since real-time messages
have higher priority than nonreal-time messages, we ignore the
load of nonreal-time traffic when the system deals with the
information for real-time communication. No matter how the
information is collected, it is very difficult and expensive to
keep the information up-to-date, since frequently broadcasting
and processing such information will consume significant
link capacity and CPU time. For nonreal-time connectionless
traffic, the system can still use conventional routing methods
to deliver nonreal-time packets, i.e., each bridge still needs a
routing table for nonreal-time messages. This routing table (for
nonreal-time connectionless communication) is much easier
to construct and maintain than that for both real-time and
nonreal-time traffic. Since the goal of this paper is to provide
predictable communication for the FieldBus protocol, we will
focus on real-time traffic and ignore nonreal-time traffic in the
rest of the paper.

For the above reasons and in order to provide predictable
communication services with the FieldBus protocol while

avoiding the disadvantages in both distributed and central-
ized schemes, we propose a hybrid approach. The real-time
communication problem associated with the FieldBus protocol
can be decomposed into two related subproblems. The first
subproblem is to provide real-time communication between
two peer DLE’s on the same link. The second subproblem
deals with the ability to establish real-time channels between
two peer DLE’s located on two different links. As mentioned
above, establishing a connection between two communicating
DLE’s and reserving all the required resources are the only
way to achieve predictable communication. Since the first
subproblem is more likely to happen than the second one,
the connection establishment procedure and the resource man-
agement for the connections of two peer DLE’s on the same
link should be fast and efficient. For the second subproblem,
in order to improve the utilization of the entire network, and
facilitate the routing problem between two peer communicat-
ing DLE’s, a network manager is used to handle connections
betweein two nonlocal DLE’s.

The network manager (NM), which is a centralized service
that handles real-time connection establishment and mainte-
nance, is not present on all nodes in the system. Basically,
the Nh4’ s function includes receiving real-time connection
requests, trying to select a route which can provide the
requested quality of service, informing all intermediate nodes
(LAS and bridges) if such a route is available, and replying to
the requesting node. The NM must maintain the information
necessary for connection establishment, including the topol-
ogy of the network and the reservatiodutilization status of
resources like link capacities and buffer space in all bridges. It
also maintains a table containing the resource requirements, the
assigned routes and the priorities of all existing connections in
the system. In order to ensure the consistency of this data, the
NM serializes the connection creatioddeletion operations. The
detailed NM operations will be described in the next section.

111. BASIC APPROACH
The communication capacity of each link is divided into two

parts. One part is concemed with intralink communications
which are managed by the local LAS. The other part deals with
interlink communications which are managed by a global NM.
In other words, all intraworkcell communications between two
peer DLE’s on a link are scheduled by the LAS on that link.
The interworkcell real-time communications between two peer
DLE’s on two different links are managed by the global NM,
and scheduled by the LAS of each link of the path over which
the coiresponding connection runs. The fraction of the link
capacity assigned to each of these two parts depends on the
distribution of communication demands on each link. That is,
the LAS of a link can reserve a different fraction of link
capacity for local (or intra-link) communications based on
the characteristics of local communication demands. Since
communication traffic may vary, the reserved capacity may
also vary. In this paper, we will use a version of the linear
boundtpd model to describe the traffic generated by a real-time
connection. If D is the maximum delivery-delay bound of a
packet, the traffic generated by a real-time connection is said

360 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL 12, NO 3, JUNE 1996

to follow the linear bounded model if the number of packets
generated in any interval T 2 D is bounded by a linear
function of the length of the interval T , i.e., (GT + B), where
G is the maximum packet-generation rate of this connection
and B is the maximum burst size. This model was first
proposed by Cruz [8] and also adopted by several researchers
[6] , [7], [9], [lo], [12], [21]. The proposed solutions to the
two subproblems are described in detal in the following two
subsections.

A. Intralink Communication

Intralink (intracell) communications occur between two peer
DLEs on the same multiaccess link. This type of commu-
nication can be either connection-oriented or connectionless.
Intralink real-time communications are handled by the LAS
DLE on the corresponding multiaccess link, because the
LAS is designed to be the centralized control entity for
scheduling messages on that local link under the FieIdBus
protocol [2], [3]. Since real-time communication requires a
bounded delay in message delivery, we need to reserve all
the required resources in advance in order to guarantee all
real-time messages to be delivered before their deadlines. This
implies that real-time communication be connection-oriented,

In the proposed coniiection establishment procedure, the
operations of the peer DLE’s are the same as those in the
description of the draft standard [2], [3]. That is, the source
DLE will make a connection request which contains necessary
information for establishing the connection according to the
FieldBus protocol, such as a frame control field, the destination
address, and the quality of service. In order to support real-
time communication, the traffic generation characteristics and
the delivery delay requirement also need to be specified in
a connection request message. Specifically, in addition to
the required information in the draft standard, the following
two parameters must be included in the connection request
message:

* D (seconds): the user-specified delivery-delay bound for

M (packets): the maximum number of packets that can

These two parameters describe a more general model than
the linear bounded model, because the linear bounded model
is only a special case of this model (by letting M = GD + B).
Note that the maximum packet size is not included here
because in the FieldBus protocol [2], [3], the maximum size
of a high priority packet is fixed to be 64 bytes.

Based on these two parameters, the LAS can make necessary
and sufficient reservation to guarantee all real-time messages
to be delivered by their deadlines [7]. After receiving a
connection request, the LAS will try to reserve the link
capacity for this connectioq by performing the following
admission test:

a message;

be generated in an interval of length D.

where P,,, denotes the time needed to transmit a maximum-
size packet and the index i runs over all existing real-time

connections and the currently requested connection. The main
part of overhead is determined by the token passing time.

If the-admission test can be satisfied after adding this new
connection, the LAS will reserve the required link capacity,
update the information about the existing real-time connec-
tions, and send a confirmation message to the requesting node.
Otherwise, the LAS will send a rejection message to the
requesting node.

Using these parameters, the LAS can use the deadline-driven
scheduling algorithm described in [14] to allocate tokens to
each real-time connection. Basically, after an intralink real-
time connection i with parameter D, and M, is established, the
LAS will allocate a token to connection i at least once every
D; units of time and during the lifetime of each token, at least
h& maximum-size packets of connection z can be transmitted.

In addition to the operations specified in the draft standard,
the LAS has to respond to all connection requests for local
real-time connections since all real-time connections running
through this local link are subject to its approval. Note that the
LAS’s approval is not required for nonreal-time connections
since no resource and link capacity has to be reserved in
advance for them. A connection request message includes
a resewation (0 or 1) field, representing whether the local
LAS has reserved the requested capacity or not. When the
LAS receives a real-time connection request from a local
DLE with a destination DLE located on the same link, the
LAS will try to reserve the requested link capacity and
respond to this connection request. Consequently, a real-time
connection request is handled in three steps (see Fig. l),
whereas a nonreal-time connection request requires only two
steps. First, the requesting DLE sends a connection request
to the corresponding local LAS with reservation = 0 which
represents the connection request has not yet been approved
by the local LAS. Both the LAS and the designated receiver
DLE receive this request, but the designated receiver DLE will
ignore all real-time connection requests with reservation =
0. The LAS will respond to this request by sendmg out
the modified connection request message with the requested
quality of service and reservation = I, if the LAS can
reserve a sufficient capacity and accept this connection request.
Otherwise, the LAS will reject this request by sending a
rejection message to the requesting DLE. After receiving the
positive response from the LAS, the receiver DLE will respond
as described in the draft standard, i.e., report the connection
request to the destination user, and the user will decide whether
to accept this request or not. If the connection cannot be
accepted, the receiver DLE will respond with a disconnection
message, which will be received (almost) simultaneously by
both the LAS and the requesting DLE since the link is a
multiaccess bus. The LAS will then release all the resources
reserved for this connection.

If there are already too many real-time connections estab-
lished nearly exhausting all the link capacity under the control
of a LAS, the LAS can make a request to the global NM for
more link capacity for local usage. However, this is subject to
the availability of the remaining link capacity at the NM level.

In order to be compatible with the current draft standard,
if the source DLE requires an immediate reply for a real-

SHIN AND CHOU: DESIGN AND EVALUATION OF REAL-TIME COMMUNICATION

1 Local U S D E sends

-

361

I LocallASDLEsends

Source Node makes
Connection Establishment Request

Destination Node’s
addre88 on the same
link.

1
Local LAS DLE

n a a v C e t b e n q u i n d U n l ; ~ r y

U tbeRquest can
be accepted.

If the Reqwt can
not be amptsd.

Rejection
to the Source Node

Connection Eptablisht Requat

If the Request can
be accepted by tbe
destination node.

Destination Node sends
a Confirmation message

U the Request can
notbeacepiedby
the destinauon nodc

Destination Node sends
Rejection

Fig. 1. Procedure for handling an intralink connection request.

time connection request, the receiver DLE will respond with
an acknowledgment immediately. Otherwise, the source node
will send the connection request again as specified in the draft
standard. If the addressed destination still does not respond,
the source DLE will report the failure of the destination DLE
to the user, and the LAS will stop the reservation process
and free all the resources reserved thus far for this particular
request. When an immediate reply is required, the LAS will
respond to the requesting DLE in the very next time slot after
detecting the required immediate reply.

B. Interlink Communication

The entire operation for establishing a connection between
two DLE’s on different links is conceptually similar to the case
when they are on the same link. The only significant difference
is that the real-time connection requests are granted by the NM,
rather than a local LAS. The real-time connection establish-
ment procedure still consists of three steps (see Fig. 2). First,
the requesting DLE makes a real-time connection request with
reservation = 0 which represents the connection request has
not yet been approved by the NM. Since the destination DLE
is not on the same local link as the requesting DLE, the local
LAS will ignore this connection request, and the bridges will
forward this request to the NM by using datagram services.
(Note that in the nonreal-time connection request case, the
bridge will forward the request to the addressed destination
DLE, instead of the NM.) Then the NM will try to find a
path from the source DLE to the destination DLE with the
required quality of service. If there are many paths available,
it will choose a path by balancing the network traffic. If such
a path is found, the NM will reserve the required resources
and send a connection request to the destination DLE with
reservation = 1 and the source address is the requesting
DLE. At the same time, the NM also informs all the LAS’s
and bridges along the path of this new connection. Each
intermediate bridge in this path will have the information on

Destiantion Nodc’a
address is not on
the same link

If the Resucst can
not be accepted.

Conrdon Establishmcnt Request Reiection
with reservation = 1 to the Source Node 1 to the Destination Node I

resetvation information to
LASS and Bridges thc destination node

If the Request can
be accepted by the
destination node.

a Confirmation message
to the Source Node

The Destination Node sends
Rejection

to the Source Node &
the Network Manager

and
All the LASS 8 Bridges along
the path of connection cancel
the corresponding resetvations.

I I I

Fig. 2. Procedure for handling an interlink connection request.

the size of reserved buffer space and how to forward messages
of the newly-established connection. Each LAS also has the
information on how to assign the required link capacity to
some intermediate bridges. On the other hand, if no path can
be found with the requested quality of service, the NM will
send a rejection message to the requesting DLE.

Finally, after the destination DLE receives the connection
request from the NM, the receiver DLE will report this
request to the destination user who will then decide its
acceptance/rejection. In case of acceptance, the destination
DLE will send a confirmation message back to the requesting
DLE. Otherwise, a disconnection message will be sent along
the established path to the requesting node, thus making all
intermediate LAS’s and bridges aware of this disconnection.
A disconnection message is also sent to the NM by the
destination DLE, and the NM will update its information and
release all the associated resources. In this case, the NM does
not have to inform the intermediate nodes of the cancellation
of the connection, since all intermediate LAS’s and bridges
have already been informed of this by the destination DLE.

If the destination DLE does not exist or does not respond
within a timeout period to the connection request sent by the
NM, the failure of the destination DLE can be detected by
the bridlge on the same link where the destination DLE resides
and will be reported to the NM by retuming the connection
request to the NM. The NM may choose to retry or inform the
requesting DLE and all intermediate LAS’s and bridges about
the rejection of this connection.

Iv. COMPATIBILITY WITH THE DRAFT FIELDBUS PROTOCOL

Since most part of the FieldBus protocol has been well de-
veloped and gained general acceptance from the manufacturing
and process control communities, the proposed scheme for

real-time communication must be compatible with the draft
FieldBus protocol. The most notable aspects of the proposed
scheme are the introduction of the network manager, the
division of link capacity, and the difference in establishing
real-time and nonreal-time connections.

Since the NM is responsible for all interlink (intercell) real-
time connections, it has to be reachable from all entities in
the entire network. There are two ways to achieve this goal:
1) all entities that may make an interlink real-time connection
request maintain the NM’s address individually; and 2) all
bridge DLE’ s are responsible for recognizing interlink real-
time connection request packets, forwarding interlink real-
time connection requests to the NM, and thus, only bridge
DLE’s have to know the NM’s address. Both 1) and 2) are
compatible with the current draft FieldBus protocol, and easy
to implement.

The second difference introduced by the proposed scheme
is the division of the link capacity into two parts which
are controlled by either the corresponding local LAS or the
NM. This link capacity division can be easily accommodated
into the current protocol. In the current FieldBus protocol
standard, the entire link communication capacity is controlled
by the local LAS, regardless whether the communication
is intralink or interlink and whether it is connectionless or
connection-oriented. In order to improve the utilization and
traffic balancing of the network, we introduced the NM for
interlink real-time communication, and as mentioned before, a
portion of link capacity is controlled by the NM. Each LAS can
still function as described in the draft FieldBus protocol except
some portion of link capacity is assumed to have already been
reserved for global usage. The LAS just follows the NM’s
instruction (in the request form) when assigning the requested
link capacity to some designated bridge DLE(s) andor the
application DLE(s). Since the NM is only allowed to allocate a
prenegotiated portion of the link capacity, and never exceeds it,
the LAS must follow the NM’s instruction. At the same time,
the LAS may also grant its local requests without any further
checking with the NM. The portion of link capacity which is
controlled by the NM can be negotiated, i.e., when a LM DLE
becomes the active LAS on a link, it first informs the NM of
the portion of link capacity of this local link that the “I can
use. From a scheduling perspective, the local LAS schedules
the tokens according to the requests granted by both itself and
the NM. Since both the LAS and the NM cannot exceed their
prenegotiated limits, the messages for real-time connections
can always be delivered in time once the connection has been
established.

The real-time connection establishment procedure is also
different from the nonreal-time counterpart. Establishing a
real-time connection requires three steps, while establishing a
nonreal-time connection requires only two steps. This differ-
ence comes from the fact that a real-time connection establish-
ment has to be granted by either the locd LAS or the NM. The
real-time connection request is considered valid by the node
where the destination DLE resides even before the destination
DLE accepts the request. In such a case, the destination DLE
may receive not-yet-accepted (reservation = 0) requests, but
it will ignore them. So, the real-time connection request can

,
362 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL 12, NO 3, JUNE 1996

be processed by the DLE’s in the same way as a nonreal-time
connection request. The draft FieldBus protocol uses a state-
driven procedure to manage a nonreal-time connection, which
is briefly described here. As we shall see later, a real-time
connection can also be achieved by this state-driven procedure.
The source (requesting) node makes a real-time or nonreal-
time connection request, initiates a state machine (V,(ST)
in the standard) for the connection, and enters “Outgoing
Connection Pending” state from “Idle” state after the request
is sent [2], [3] . A node in “Outgoing Connection Pending”
state that has received a connection establishment confirmation
enters “Data Transfer Ready” state and begins transmission.
On the other hand, a node receives a nonreal-time or a valid
real-time connection request will enter “Incoming Connection
Pending” state. After receiving the user’s positive response
to this request, the DLE in “Incoming Connection Pendmg”
state sends out a connection establishment confirmation to
the requesting node, enters “Data Transfer Ready” state, and
begins transmission. A user’s negative response (reject or
close) to a state machme will force the node to send a
disconnection message and the associated state machine will
enter “Idle” state. Therefore, real-time connection requests
can be processed by the same state-driven model with minor
modification (adding a reservation bit) as the nonreal-time
connection case. However, the NM and the LAS have to
be equipped with the ability to handle real-time connection
requests, make appropriate reservations, and respond to such
requests adequately. The bndge DLE’s also require additional
functions to make correct run-time scheduling and flow control
in order to provide predictable communication [lo], [1 11.
Although these changes to the LAS and bridge are nontrivial,
they are compatible with the draft FieldBus protocol, and are
necessary to support real-time communication.

V. PERFORMANCE EVALUATION

In this section, using two protypical example systems we
demonstrate the superior performance of the proposed modi-
fication of FieldBus. The first example deals with a typical
manufacturing system network and the second example is
concemed with multimedia networking; both the examples
require real-time communication services. These examples are
used to compare the proposed scheme and the token-passing
protocols (e.g., token buses, token rings, and FDDI) in terms
of the ability of supporting real-time communication.

Example 1: We simulated a typical manufacturing system
(Fig. 3) to determine the percentage of accepting real-time
connection requests and the average maximum nonreal-time
message throughput achievable under diffqrent link load con-
ditions for both intracell and intercell communications [2], [3] ,
[lo], [14]. A cell in Fig. 3 represents a workcell.

Real-time communications in manufacturing systems are
usually periodic in nature, and the deadline of a message is
related to its period. For example, the controller of a workcell
usually must read sensors periodically, and the sensed data
shpuld be processed before the next period begins. Based on
this observation, we assume that each real-time connection
has its own period, and in each period, a fixed amount of

SHIN AND CHOU DESIGN AND EVALUATION OF REAL-TIME COMMUNICATION 363

Fig. 3. Two-level hierarchical network for an AF.

time is assigned to the source node of the connection if the
connection can be established, because the size of each time-
critical message is limited in the FieldBus. This fixed amount
of time is assumed to be used for handling a message of
256 bytes-which includes a maximum of 128 bytes user
data for time-critical messages-and all overheads such as
token passing time, transmission delay, and framing delay. The
reason why we do not use any specific message packetization
is that the ISA (Instrument Society of America) has not yet
finalized the formats of the packet header and various tokens
[2], [3]. Those connections needing to send more than 256
bytes in a period are simulated by making multiple connection
requests.

Arrivals of real-time connection requests are assumed to
be exponentially distributed with a fixed rate. The real-time
connection periods are assumed to be uniformly distributed
within the range from 20-500 ms for the manufacturing system
under consideration. Since all operations in a manufacturing
system are usually carefully planned in advance, the lifetime
of each activity will be approximately the same for all of
its invocations. Therefore, in addition to the arrival rate and
period, the lifetime of each connection is assumed to be
normally distributed with a fixed mean ranging from one to
tens of seconds (depending on the type of the corresponding
activity) and a small variance. For example, a robot may need
a connection with a short-life device for 10 s when it operates
on an assembly line, but it may only need a connection with a
long-life device for the next several seconds when the transport
belt is moving.

In this example, we use several different lifetime distri-
butions, but, as long as the total requesting load remains
the same, the percentage of accepting real-time connection
requests and the average maximum achievable nonreal-time
message throughput do not make any significant difference.

Figs. 4 and 6 show the probability of accepting an intra-
cellhntercell real-time connection request under a wide range
of requested real-rime connection load. When the requested
real-time connection load is under 100% of the link capacity,
the speed of the link is important to the acceptance probability.
The reason for this tendency can be given as follows. The
requested connection's load on a link is the sum of the loads of
all requested connections regardless whether they are accepted
or not. Insofar as a single connection request is concerned, the
load of a single real-time connection request is measured by
the number of slots (each of which is the time required to
handle a 256-byte packet) the connection needs per second or
its period in terms of slots, and this load occupies a higher

Probatililty

1.0

0.9

128 Kbp.
a56 bps

A 512 Kbps
1 Mbps
2Mbps

-'.

T 4 Mbps

t
Rewuested real-tme
connection load in
U of link capacity

Fig. 4. Probability for honoring intracell real-time connection requests.

Average non-real-tme
messag1~ max thmughPut
in % of link capacity

I 128 KbBs

50 100
Requested real-time
connection load i n
% of link camcity

Fig. 5. Average maximum throughput for intercell nonreal-time messages.

percentage of the capacity of a low-speed link than it does
on a Ihigh-speed link. Therefore, when the requested real-
time connection load is less than 100% of the link capacity
(i.e., the link has some unused capacity), the chance that a
new requested connection cannot be accommodated in the
remaining capacity of a low-speed link is much higher than
a high-speed link.

Figs. 4 and 5 show, respectively, the percentage of accept-
ing real-time connection requests and the average maximum
achievable nonreal-time message throughput for intracell com-
munication. As can be seen in Fig. 4, the higher link speed,
the higher acceptance probability. The nonreal-time message
throughput has an opposite trend. In Fig. 5, the low-speed
link h,as a higher nonreal-time message throughput in terms
of percentage of the link capacity, since a lower percentage of
link capacity is reserved for real-time communications.

Figs. 6 and 7 show, respectively, the percentage of grant-
ing re,al-time connection requests and the average maximum
achievable nonreal-time message throughput for intercell com-
munication. For these plots we used a 4 Mbps backbone to
connect 10 workcells, and three different link capacities for
connections within a workcell, i.e., 128 Kbps, 256 Kbps, and

364 EEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL 12, NO 3, JUNE 1996

Probablilty

1 0

i

0 9 cell link.
128 KbPS

256 KaPS
A 512 KbPs

backbone 4 MBPS

5 0 100
Requested real-time
Connection load in %
of bacwne cawcity

Fig. 6. Average maximum throughput for intracell nonred-time messages.

Average non-real-tlme
message max throughput
in 8 of link Capacity

I
cell link:

128 KbPs
256 K ~ P S

A 512 Kbps

backbane 4 Nbps

60

40

, I I I I I I /

50 100
Requested real-time
connection load m %
of backbone capacity

Fig. 7. Average maximum throughput for intercell nonreal-time messages.

512 Kbps. In our strategy, intercell and intracell communica-
tions do not interfere with each other, since they use different
portions of the link capacity. These two figures follow the
same trend as Figs. 4 and 5. However, the percentage of
accepting intercell real-time connection requests drops much
faster, since an intercell connection can be established only if
all links on the connection have sufficient capacity to support
this connection’s requirements, while an intracell connection
only needs one link which has sufficient capacity to establish.
Because a smaller percentage of link capacity is reserved
for real-time connections, the average maximum achievable
nonreal-time message throughput is higher in the intercell
communication case (as can be seen from Figs. 5 and 7).

Example 2. Since most real-time communication takes
place between two DLE’s on the same link, this example
focuses on the ability of supporting intralink real-time
communication. Both the normal token-passing protocol and
the proposed scheme are used to send compressed digital
motion-video frames and their performances are compared.
This example shows that the proposed scheme reserves
a bandwidth required for real-time traffic and utilizes the

65Mx)
JPEG INPUT -

Fig. 8 An example of frame sizes (compressed with JPEG).

network resources efficiently in the absence of real-time
traffic, thus, can provide adequate real-time performance and
outperform conventional token passing protocols.

The underlying interconnection hardware is a 100 Mbps
multiaccess linwbus with 20 or 50 nodes. The video data
were obtained by sampling a sequence of CNN headline news,
stored on a laser &sk [24]. The size of each frame, after
compressed with P E G [22], [24], is plotted in Fig. 8. The
video quality can be characterized by the rate of “successfully-
delivered” frames, where a “successfully-delivered” frame
is defined as the one delivered to its destination correctly
before the corresponding deadline. The maximum one-way
transmission delay of each frame must be less than 100 ms
in order to achieve the quality of live-video performance, i.e.,
D = 100 ms. If we use the transmission rate of 30 frames
per second, 3 frames will be transmitted during each 100
ms period. Assume the maximum packet size supported by
the network is 1 Kbytes, then by adding the sizes of three
consecutive frames (because there are three frame arrivals in
100 ms), we can derive M = 185 packets. By adding the token
passing overhead of 1 Kbytes per 100 ms (i.e., 500 bytes each
way), the network is expected to support [1250/186] = 6
real-tme connections under the proposed scheme because the
100 Mbps link can be used to transmit 1250 maximum-size
packets during each 100 ms period.

Certain uniformly-distributed nonreal-time traffic that re-
quires from 0-90% of the total link capacity is added to each
node during the simulation. However, the source nodes of real-
time connections are randomly chosen. (It is thus possible ,
that one node may become the source node of all real-time
connections.) The traffic data of real-time connections were
taken from Fig. 8 and each connection has its own starting
frame (also randomly chosen).

On the same multiaccess link (with 20 or 50 nodes), we
will also use the above real-time traffic to assess the ability of
supporting real-time communication under the normal token-
passing protocol. However, we assume the token-passing
overhead is negligible and the source nodes of existing ueal-
time connections are distributed evenly among all nodes.
Although these assumptions will make the token-passing pro-
tocol work better than actually is, this example will show

SHIN AND CHOU DESIGN AND EVALUATION OF REAL-TIME COMMUNICATION

that the proposed scheme still performs much better than the
token-passing protocol in supporting real-time communication.

Though the underlying network is a multiaccess bus, the
token will be passed among all nodes cm the bus in a manner
which is exactly the same as FDDI [l], [5], [151, [16], [191,
[20], [23]. Since the packet delivery deadline is 100 ms, the
target token rotation time (TTRT) of the token-passing protocol
is set to 50 ms. Depending on the number of nodes (20 or 50
in this example), the high-priority token holding time of each
node is set to be 50/20 = 2.5 ms or 50/50 = 1 ms. Basically,
each node is guaranteed to receive a token at least once every
2 x TTRT (100 ms) and upon capturing the token, the node
is allowed to transmit real-time (high-priority) traffic for up to
2.5 ms on a 20-node network or 1 ms on a 50-node network.
Nonreal-time traffic can be transmitted only when a node holds
the token and the elapsed time since this node’s last release
of the token is less than TTRT. After receiving the token, a
node may transmit real-time traffic for up to 2.5 ms (or 1 ms)
first, and then if the above condition is met, more real-time
traffic or nonreal-time traffic can be transmitted until the above
condition becomes no longer true or all packets are transmitted,
whichever occurs first. The token will then be passed to the
(logically) next node.

The goal of this example is to evaluate the capability
of supporting real-time communication by comparing the
maximum and average frame-miss rates of both the token-
passing protocol and the proposed scheme. (The frame-miss
rate is defined as the percentage of frames missing their
deadlines.) Our scheme is shown to always outperform the
token-passing protocol in supporting real-time communication.

Figs. 9 and 10 show the maximum frame-miss rate of
our scheme, and the maximum and average frame-miss rates
of 20-node and 50-node token-passing networks at a 50%
nonreal-time traffic load. The frame-miss rate is defined for
each connection, i.e., the ratio of the number of frame misses
for a connection C to the total number of frames of C. The
maximum (average) frame-miss rate is defined to be the largest
(average) value of individual connection frame-miss rates. A
point in the figure represents 30 000 cycles of the sequence for
each connection, i.e., about 911 000 frames or 8.4 h at the rate
of 30 frame& for each connection. As one can derive from (l),
both figures show that 6 connections can be supported under
the proposed scheme. For those points where the link does not
have sufficient bandwidth for both real-time and nonreal-time
traffic (e.g., 7-10th connections), we reserved the entire link
capacity for real-time connections, and nonreal-time traffic is
transmitted only when the bandwidth reserved for real-time
traffic is not fully used. Since we reserved the link bandwidth
using the worst-case values, this is very likely to happen.

For example, we reserved [1250/71 packet times for each
connection when there are 7 real-time connections. (Note,
however, that our scheme does not allow a seventh real-time
connection, because the system cannot guarantee the required
performance.) When a seventh connection is added, only about
2% of real-time packets of this connection will miss deadlines.

The token-passing protocol on a multiaccess bus can provide
4-5 real-time connections at a 50% nonreal-time load. As we
shall see, the token-passing protocol’s ability to support real-

~

365

Fig. 9. Maximum frame-miss rate at 50% nonreal-time traffic load (20
nodes).

Fig. 10.
nodes).

Maximum frame-miss rate at a 50% nonreal-time traffic load (50

time communication is highly sensitive to the nonreal-time
traffic load. The average frame-miss rate for our scheme is
very close to the maximum miss rate, so we only present the
maximum frame-miss rate in Figs. 9 and 10. By contrast, the
average and maximum frame-miss rates of the token-passing
protocol are significantly different when the multiaccess bus
cannot transmit all the real-time messages before their dead-
lines. The FDDI’s frame-miss rate is also sensitive to the
number of nodes on the ring, but our scheme can provide
the same number of real-time connections regardless of the
number of nodes on the multiaccess link. This observation
implies that the variance of frame-miss rates of our scheme is
very simall, whereas the token-passing protocol suffers a large
variation of frame-miss rates.

Figs. 11 and 12 show the maximum frame-miss rate of our
scheme as well as the maximum and average frame-miss rates
of 20-node and 50-node token-passing networks at a 90%
nonreal-time traffic load. At a high nonreal-time traffic load
like this, the token-passing protocol almost becomes incapable
of supporting real-time communication. It can only allow for
one connection (without loss) on both 20-node and 50-node
netwoirks.

366 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL 12, NO 3, JUNE 1996

Fig 11 Maximum frame-miss rate at a 90% background load (20 nodes).

0 J v
1 2 3 4 5 6 7 8 9 10

Number of Established Real-time Connectloos (So nodes)

Fig 12 Maximum frame-mss rate at a 90% background load (50 nodes).

By contrast, our scheme is insensitive to the nonreal-
time traffic load. The system can still provide 6 real-time
connections at a high nonreal-time traffic load. Agam, since
the average frame-miss rate of our scheme is very close to the
maximum frame-miss rate, we plot only the maximum frame-
miss rate. (Similarly to the previous case, the token-passing
protocol’s average frame-miss rate significantly differs from its
maximum frame-miss rate.) As far as the ability of supporting
real-time communication is concerned, our scheme is shown to
be far better than the token-passing protocols, such as token
buses, token rings, or FDDI.

We also calculated the token-passing overhead of the pro-
posed scheme under the assumption that the size of a token
is 500 bytes. Since two tokens are needed for each token
allocation (one to issue and the other to return), and the
average traffic arrival rate of a real-time connection is approx-
imately 132 Kbytes per 100 ms, the token-passing overhead
is approximately 0.76%.

VI. CONCLUSION
In this paper, we proposed a strategy to support real-

time communication under the FieldBus protocol which pro-
vides end-to-end delivery delay guarantees for time-critical
messages. This strategy provides a fast local mechanism

for establishing intraworkcell real-time connections, while
supporting global interworkcell real-time connections
proposed strategy is fully compatible with the current draft
standard of Fielaus protocol, and also provides flexibility for
the choice of scheduling algorithms, adaptability for different
traffic loads. Numerical examples are also given based on
typical manufacturing systems as well multimedia networking.

Our future work will focus on the scheduling algorithms
for the LAS and the route selection algorithm (to be used by
the network manager) which are also very important to the
success of FieldBus.

ACKNOWLEDGMENT

The authors would like to thank G. Workman and B. Gross
of General Motors for their technical support for the work
described in th s paper.

REFERENCES

[l] “FQDI hybnd nng control, draft proposal to American Nahonal Stan-
dard,” 1989.

[2] Fieldbus Standnrd for Use in Industrial Control Systems-Part 3. Data
Link Service DeJinitzons, Draft Standard, ISA-dS5O 02 ISAfSP50-1993-
359L, Instrument Society of America, 1993

[3] Fieldbus Standard for Use in Industrial Control Systems-Part 4 Data
Link Protocol Spec&atzon, Draft Standard, ISA-dS5O 02 ISAfSP50-
1993-360L, Instrument Society of America, 1993

[4] D. P Anderson, S. Y. Tzou, R. Wahbe, R Govmdan, and M. Andrews,
“Support for continuous media in the dash system,” in Proc 10th Int
Con$ Distnbuted Computing Systems, May 1990, pp. 54-61.

[5] D. Bertsekas and R. Gallager, Datu Networks Englewood Cliffs, NJ.
Prentlce-Hall, 1987

[6] C.-C. Chou and K. G Slum, Multzplexzng Statistical Real-Tzme Channels
on a Multiaccess Network, to be published

[7] -, “Statisbcal real-time channels on multlaccess networks,” in
Proc. Int. Conf Computer Communication, Aug 1995, pp 29-34

[8] R. L. Cruz, “A calculus for network delay and a note on topologies of
interconnection networks,” Ph.D. dmertatlon, Univ Illinois at Urbana-
Champagn, July 1987.

[9] D. Ferrari and D. C Verma, “A scheme for real-time channel establish
ment in wide-area networks,” IEEE J Select. Areas Commun , vol 8,
pp 368-379, Apr 1990.

[lo] D. D. Kandlur and K. G. Shin, “Design of a communication subsystem
for HARTS,” CSE Div , Dep Elect Eng Comput Sci , Univ Michigan,
Ann Arbor, Tech. Rep. CSE-TR-109-91, 1991

[l l] D. D. Kandlur, K. G Shin, and D Ferrari, “Real-tlme communication
in multi-hop networks,” in Proc. 11th Int Cons Distributed Computing
Systems, 1991, pp. 300-307.

[12] D. D. Kandlur, “Networhng in distnbuted real-time systems,” Ph D
dmertation, Univ. Michigan, Ann Arbor, 1991.

[13] J F. Kurose, M. Schwartz, and Y Yemini, “Multiple access protocols
and time-conshamed communication,” ACM Comput. Surveys, vol 16,
pp 43-70, 1984

[14] C L Liu and J. W Layland, “S~heduling algorithm for multiprogram
mng in a hard-red-time environment,” J ACM, vol 20, no 1, pp
4641. Jan. 1973.

[15] F E. Ross, “FDDI-A tutorial,” IEEE Commun. Mag., vol 24, pp.
10-17, May 1986

r161 -, “An overview of FDDI The fiber &slributed data interface.”
IEEE J Select Areas Commun, vol 7, no 7, pp 1043-1051, Sept
1989

[17] K. G Shin, “Real-time communications in a computer-controlled work-
cell,” IEEE Trans Robot Automat, vol 7, pp 105-113, Feb 1991

[18] J K Strosnider and T. E. Marchok, “Responsive, determmistic IEEE
802 5 token nng scheduling,” J Real-Time Syst , vol 1, pp 133-158,
Sept 1989

[19] A S Tanenbaum, Computer Networks, 2nd ed Englewood Cliffs, NJ.
Prentice-Hall, 1989

[20] M Tangemann and K Sauer, “Performance analysis of the timed token
protocol of FDDI and FDDI-11,” IEEE J Select Areas Commun , vol
9, no 2, pp 271-278, Feb 1991.

SHIN AND CHOU: DESIGN AND EVALUATION OF REAL-TIME COMMUNICATION 361

D. C. Verma, “Guaranteed performance communication in high speed
networks,” Ph.D. dissertation, Univ. Califomia, Berkeley, 1991.
G. K. Wallace, “The JPEG still picture compression standard,” Commun.
ACM, vol. 34, no. 4, pp. 3011.3, Apr. 1991.
J. Walrand, Communication Networks: A First Course. New York
Irwin and Aksen Assoc., 1991.
Q. Zheng, K. G. Shin, and E. Ahram-Profeta, “Transmission of com-
pressed digital motion video over computer networks,” in COMPCON
Spring’93, 1993, pp. 3746.

Kang G. Shin (S’75-M’78-SM’83-F’92) received
the B.S. degree in electronics engineering from
Seoul National University, Seoul, Korea, in 1970,
and both the M.S. and Ph.D. degrees in electrical
engineering from Come11 University, Ithaca, NY,
in 1976, and 1978, respectively.

He is currently Professor and Director of the
Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor. He has
authoredcoauthored more than 350 technical papers

(more than 150 of these in archival journals) and numerous book chapters
in the areas of distributed real-time computing and control, fault-tolerant
computing, computer architecture, robotics and automation, and intelligent
manufacturing. He is currently writing (jointly with C. M. Krishna) a textbook
entitled Real-Time Systems, which is scheduled to be published by McGraw-
Hill in 1996. In 1985, he founded the Real-Time Computing Laboratory,
where he and his colleagues are currently building a 19-node hexagonal
mesh multicomputer, called HARTS, and middleware services for distributed
real-time fault-tolerant applications. He has also been applying the basic
research results of real-time computing to multimedia systems, intelligent
transportation systems, and manufacturing applications ranging from the
control of robots and machine tools to the development of open architectures

for manufacturing equipment and processes. From 1978 to 1982, he was
on the faculty of Rensselaer Polytechnic Institute, Troy, NY. He has held
visiting positions at: the U.S. Air Force Flight Dynamics Laboratory; AT&T
Bell LalJoratories; Computer Science Division within the Department of
Electrical Engineering and Computer Science at UC Berkeley; International
Computer Science Institute, Berkeley, CA, IBM T. J. Watson Research
Center; and Software Engineering Institute, Carnegie Mellon University.
He also chaired the Computer Science and Engineering Division, EECS
Department, University of Michigan, for three years beginning January 1991.

Dr. Shin received the Outstanding IEEE Transactions on Automatic Control
Paper Award for a paper on robot trajectory planning in 1987. In 1989, he
received the Research Excellence Award from The University of Michigan. He
was the Program Chairman of the 1986 IEEE Real-Time Systems Symposium
(RTSS), the General Chairman of the 1987 RTSS, the Guest Editor of the
1987 August special issue of IEEE TRANSACTIONS ON COMPUTERS on Real-
Time Systems, a Program Co-chair for the 1992 International Conference on
Parallel Processing, and served on numerous technical program committees.
He also chaired the IEEE Technical Committee on Real-Time Systems during
1991-1993, was a Distinguished Visitor of the Computer Society of the IEEE,
an Editor of IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING,
and an Area Editor of International Journal of Time-Critical Computing
Systems.

Chih-Che Chou (S’91-M’93) received the B.S.E.E.
degree in electrical engineering from National Tai-
wan University, Taipei, Taiwan, in 1988, and both
the M.S. and Ph.D. degrees in computer science and
engineering from the University of Michigan, Ann
Arbor, in 1992 and 1994, respectively.

He joined AT&T Bell Laboratories in 1994 and
is currently a Member of Technical Staff. His re-
search interests include real-time communications,
real-time operating systems, and communication
networks.

