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Abstract 

Parallel machines have the potential to satisfy the 
large computational demands of emerging real-time ap­
plications. These applications require a predictable 
communication network, where time-constrained traf­
fic requires bounds on latency or throughput while 
good average performance suffices for best-effort pack­
ets. This paper presents a router architecture that tai­
lors low-level routing, switching, arbitration and flow­
control policies to the conflicting demands of each traffic 
class. The router implements deadline-based schedul­
ing, with packet switching and table-driven multicast 
routing, to bound end-to-end delay for time-constrained 
traffic, while allowing best-effort traffic to capitalize on 
the low-latency routing and switching schemes common 
in modern parallel machines. To limit the cost of ser­
vicing time-constrained traffic, the router shares packet 
buffers and link-scheduling logic between the multiple 
output ports. Verilog simulations demonstrate that 
the design meets the performance goals of both traffic 
classes in a single-chip solution. 

1 Introduction 

Emerging real-time applications, such as avionics, in­
dustrial process control, and automated manufacturing, 
impose strict timing requirements on the underlying 
computing system. As these applications grow in size 
and complexity, parallel processing plays an important 
role in satisfying large computational demands. Effec­
tive real-time parallel computing hinges on predictable 
communication between cooperating processing nodes, 
since lost or late messages can result in human catas­
trophe or economic harm. However, instead of guar­
anteeing bounds on worst-case communication latency, 
most existing parallel architectures focus on providing 
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good average network throughput and packet delay. 
Consequently, recent years have seen increasing interest 
in developing networks that provide performance guar­
antees for communication in parallel machines [1-6]. 

Real-time systems employ a variety of network archi­
tectures, depending on the application performance re­
quirements. Although prioritized bus and ring networks 
are commonly used in small-scale systems [7], larger ap­
plications can benefit from the higher bandwidth avail­
able in multi-hop topologies. In addition, multi-hop 
networks often have several disjoint routes between each 
pair of processing nodes, improving the application's re­
silience to link and node failures. However, these net­
works complicate the effort to guarantee end-to-end per­
formance, since the system must bound delay at each 
link in a packet's route. This paper presents a router 
design that supports end-to-end latency and through­
put guarantees by scheduling packets at each network 
link. Although the implementation is geared toward 
two-dimensional meshes, as shown in Figure 1, the ar­
chitecture directly extends to other network topologies. 

Communication predictability can be improved by 
assigning priority to time-constrained traffic or to pack­
ets that have experienced large delays earlier in their 
routes [8]. Ultimately, though, bounding worst-case la­
tency requires prior reservation of link and buffer re­
sources, based on the application's anticipated traffic 
load. Under this traffic contract, the network can pro­
vide end-to-end performance guarantees through effec­
tive link-scheduling and buffer-allocation policies. The 
real-time router design handles a wide range of through­
put and delay requirements by implementing the real­
time channel [9] abstraction for packet scheduling, as 
described in Section 2. A real-time channel is a unidi­
rectional virtual connection between two nodes, with a 
source traffic specification and end-to-end delay bound; 
separate parameters for delay and bandwidth permit the 
model to accommodate a wider range and larger number 
of connections than other disciplines [10], at the expense 
of increased implementation complexity. 



Figure I: Router in a 4 x 4 square mesh 

At run-time, the network guarantees end-to-end per­
formance through bandwidth regulation and deadline­
based packet scheduling at each link. Implementing 
deadline-based scheduling in software would impose a 
significant burden on the processing resources at each 
node and would prove too slow to serve multiple high­
speed links. This software would have to sort packets by 
deadline for each outgoing link, in addition to scheduling 
and executing application tasks. With high-speed links 
and tight timing constraints, real-time parallel machines 
require hardware support for communication schedul­
ing. An efficient, low-cost solution requires a design that 
integrates this run-time scheduling with packet trans­
mission. Hence, we present a chip-level router design 
that handles run-time packet scheduling, while relegat­
ing non-real-time operations (such as admission control 
and route selection) to the protocol software. 

Although deadline�based scheduling bounds worst­
case latency for time-constrained traffic, real-time ap­
plications also include best-effort packets that do not 
have stringent performance requirements [8-11]; for ex­
ample, good average delay may suffice for some status 
and monitoring information. Best-effort traffic should 
be able to capitalize on the low-latency communication 
techniques available in modern parallel machines with­
out jeopardizing the performance guarantees of time­
constrained packets. Section 3 describes how our de­
sign tailors network routing, switching, arbitration, and 
flow-control policies to the conflicting requirements of 
these two traffic classes. Time-constrained traffic em­
ploys packet switching and small, fixed-size packets to 
bound worst-case performance, while best-effort pack­
ets employ wormhole switching [12] to reduce average 
latency and minimize buffer space requirements, even 
for large packets. 

Section 4 discusses the router's support for run-time 
scheduling of time-constrained packets. To reduce hard­
ware complexity, the architecture shares packet buffers 
and sorting logic between the router's multiple output 
links. The router overlaps communication scheduling 
with packet transmission to maximize utilization of the 
network links. The design limits the complexity of the 
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link scheduler by bounding the range of packet dead­
lines and handling the effects of clock rollover. Sec­
tion 5 describes the router implementation, using the 
Verilog hardware description language and the Epoch 
silicon compiler. Verilog simulations demonstrate that 
the design satisfies the performance goals of both traf­
fic classes in a single-chip solution. Section 6 discusses 
related work, while Section 7 concludes the paper with 
a discussion of future research directions. 

2 Real-Time Channels 

Real-time communication requires reservation of 
bandwidth and buffer resources, coupled with packet 
scheduling at the network links. The real-time chan­
nel model [9] provides a useful abstraction for bound­
ing end-to-end network delay, under certain application 
traffic characteristics. 

Traffic parameters: A real-time channel is a unidi­
rectional virtual connection that traverses one or more 
network links. Since communication is typically peri­
odic, or nearly periodic, in real-time systems, each con­
nection is characterized by its minimum temporal spac­
ing between messages (Imin) and maximum message size 

(Smax bytes) . To permit some variation from purely pe­
riodic traffic, a connection can generate a burst of up to 
Bmax messages in excess of the periodic restriction [min. 
Together, these three parameters form a linear bounded 
arrival process [13] that governs a connection's traffic 
generation at. the source node. 

End-to-end delay bound: In addition to these traffic 
parameters, a connection has a bound D on end-to-end 
message delay, based on the minimum message spacing 
[min. At the source node, a message mi generated at 
time ti has a logical arrival time 

io(mi) = 
{ ti 

max{io (mi -d  + Imin, t;} 
if i = 0 
if i > O. 

By basing performance guarantees on these logical ar­
rival times, the real-time channels model limits the in­
fluence an ill-behaving or malicious connection can have 
on other traffic in the network. The run-time link sched­
uler guarantees that message mi reaches its destination 
node by its deadline io(mi) + D. 

Per-hop delay bounds: The network does not ad­
mit a new connection unless it can reserve sufficient 
buffer and bandwidth resources without violating the 
requirements of existing connections [9, 14]. A connec­
tion establishment procedure decomposes the connec­
tion's end-ta-end delay bound D into local delay bounds 
dj for each hop in its route such that dj � Imin and 
l:j dj � D. Based on the local delay bounds, a mes­
sage mi has a logical arrival time 



Traffic Data Structure 
Queue 1 On-time time-constrained packets Priority queue (by deadline £(m)+d) 
Queue 2 Best-effort packets First-in-first-out queue 
Queue 3 Early time-constrained packets Priority queue (by logical arrival time i( m)) 

Table 1: Link scheduling queues in real-time channels model 

at node j in its route, where j = 0 corresponds to the 
source node. Link scheduling ensures that message mj 
arrives at node j no later than time ij -1 (mj) + dj -1, 
the local deadline at node j -1; however, message mj 
could reach node j earlier, due to variations in delay at 
previous hops in the route. 

Run-time link scheduling: Each link schedules time­
constrained traffic in order to bound message delay 
without exceeding the reserved buffer space at inter­
mediate nodes. The scheduler, which employs a multi­
class variation of the earliest due-date algorithm [15], 
gives highest priority to time-constrained messages that 
have reached their logical arrival time (i.e., ij(mj) � t), 
transmitting the message with the smallest deadline 
lj(m;) + dj, as shown in Table 1. If Queue 1 is empty, 
the link services best-effort traffic from Queue 2, ahead 
of any early time-constrained messages, thus improv­
ing the average performance of best-effort traffic with­
out violating the delay requirements of time-constrained 
communication. Queue 3 holds early time-constrained 
traffic, effectively absorbing variations in delay at the 
previous node; upon reaching its logical arrival time, a 
message moves from Queue 3 to Queue 1. 

Buffer requirements: By postponing the transmis­
sion of early time-constrained traffic, the link scheduler 
avoids overloading the buffer space at the downstream 
node [9,10). If the first two scheduling queues are empty, 
the link can transmit early time-constrained traffic from 
Queue 3, as long as these messages are within a small 
distance h 2.: 0 of their logical arrival time. Incorpo­
rating this horizon parameter improves average latency 
and bandwidth utilization, at the expense of increased 
buffer requirements at the downstream node. A con­
nection's local delay bound, coupled with the incom­
ing link's horizon parameter, limits the required buffer 
space at the next node in the route. Node j can re­
ceive a message as early as lj(mi) - (hj-l + dj-l), if 
the incoming link has horizon hj -1; the node can hold 
a message until its deadline ij (mi) + dj. If messages ar­
rive as early as possible, and depart as late as possible, 
then node j could have to store as many as 

r(hj-1 + dj-l) + djl 
Imm 

messages from this connection at the same time. Al­
though each connection could conceivably have its own 
horizon value, employing a single h parameter allows 
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the link to transmit early traffic directly from the head 
of Queue 3, without any per-connection data structures. 

3 Mixing Traffic Classes 

Best-effort and time-constrained traffic have conflict­
ing performance goals that complicate network design. 
Figure 2 shows the architecture of the real-time router, 
with separate control and data path for the two traf­
fic classes; solid lines denote the flow of packet data, 
while dashed lines indicate control information. To in­
sulate the local processor from packet scheduling, the 
design has separate injection ports for time-constrained 
and best-effort traffic, while the router coordinates ac­
cess to a shared reception port and the four outgoing 
links. Careful selection of router policies, coupled with 
fine-grain link arbitration, enables time-constrained and 
best-effort packets to share network bandwidth without 
sacrificing the performance of either class. 

3.1 Switching 

To ensure that time-constrained packets meet their 
delay requirements, the router must have control over 
bandwidth and memory allocation. In most real-time 
systems, time-constrained communication con5i5t5 of 
10-20 byte exchanges of command or status infor­
mation [7]. Consequently, our design restricts time­
constrained traffic to small, fixed-size packets, as shown 
in Table 2; this bounds network access latency and 
buffering delay while simplifying memory allocation in 
the router. To ensure predictable consumption of link 
and buffer resources, time-constrained traffic employs 
store-and-forward packet switching. By buffering pack­
ets at each node, packet switching allows each router to 
independently schedule packet transmissions to satisfy 
per-hop delay requirements. 

However, this approach unduly penalizes the per­
formance of best-effort traffic. Most modern paral­
lel machines employ cut-through switching schemes for 
lower latency and reduced buffer space requirements. 
In particular, wormhole switching permits an arriving 
packet to proceed directly to the next node in its route, 
stalling in the network if the outgoing link is not avail­
able [12]. In effect, this converts the best-effort schedul­
ing "queue" in Table 1 into a logical queue that spans 
multiple nodes. Instead of storing entire best-effort 
packets at intermediate nodes, the router simply in­
cludes small fiit (flow control unit) buffers to hold a few 
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Figure 2: Real-time router architecture 

bytes of a packet from each input link; inter-node flow 
control stalls further transmission of the packet until 
this buffer space is available. This permits best-effort 
traffic to use variable-size packets, to reduce or even 
avoid packetization overheads, without increasing buffer 
complexity in the router. 

3.2 Arbitration 

By cutting through intermediate nodes, best.-effort 
packets can avoid unnecessary buffering delay. How­
ever, these wormhole packets can stall in the network 
for an unpredictable amount of time, delaying the ad­
vancement of other packets heading for different desti­
nations. The effective mixing of time-constrained and 
best-effort traffic hinges on controlling the interaction 
between these two classes [16]. In particular, best-effort 
packets should not consume arbitrary amounts of band­
width resources while time-constrained packets await 
service. To control the interaction between the two traf­
fic classes, the real-time router divides each link into two 
vidual channels [17]. A single bit on each link differen­
tiates between time-constrained and best-effort packets; 
each link also includes an acknowledgement bit for flow 
control on the best-effort virtual channel. 

Each wormhole virtual channel performs round-robin 
arbitration on the input links to select an incoming best­
effort packet for service, while the packet-switched vir­
tual channel transmits time-constrained packets based 
on their deadlines. Priority arbitration amongst the 
virtual channels tightly regulates the intrusion of best­
effort traffic on time-constrained packets. This effec­
tively provides flit-level preemption of best-effort traf­
fic whenever an on-time time-constrained packet awaits 
service, while permitting wormhole flits to consume any 
excess link bandwidth. The link transmits best-effort 
flits ahead of any early time-constrained packets. 
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Figure 3: Packet formats in real-time router 

3.3 Routing 

As part of establishing a real-time channel, the net­
work reserves link bandwidth and buffer space along a 
fixed path between the source and destination nodes; 
the chosen route depends on the resources available 
at various nodes and links in the network. Conse­
quently, the real-time router maintains a routing t.able, 
indexed on the connection identifier of the arriving time­
constrained packet, as shown in Figure 3(a); Section 4 
describes how the controlling processor can edit this ta­
ble as part of a connection establishment protocol. Since 
a node may wish to send information to a collection of 
destination nodes (i.e. , multicast), the router can for­
ward an incoming time-constrained packet to multiple 
outgoing links; this facilitates efficient, timely commu­
nication between a set of cooperating nodes. 

In contrast, best-effort traffic does not require re­
source reservation along packet routes. Instead, the 
real-time router implements dimension-ordered routing, 
a shortest-path scheme that completely routes a packet 
in the x-direction before proceeding in the y-direction 
to the destination, as shown by the shaded nodes in Fig­
ure 1. Dimension-ordered routing avoids packet dead­
lock in a square mesh [18] and also facilitates an efficient 
implementation based on x and y offsets in the packet 
header, as shown in Figure 3(b); the offsets reach zero 
when the packet has arrived at its destination node. The 
router could improve best-effort performance by imple­
menting adaptive wormhole routing, with additional vir­
tual channels to avoid deadlock, at the expense of in­
creased implementation complexity [19,20]. In partic­
ular, non-minimal adaptive routing would enable best­
effort packets to circumvent links with a heavy load of 
time-constrained traffic. 

3.4 Buffer Architecture 

The real-time router includes a packet memory for 
storing time-constrained traffic awaiting access to the 
outgoing links; in contrast, blocked best-effort pack­
ets stall in the network. The router queues time­
constrained packets at the output ports to avoid the 
throughput limitations of input queueing [21]; this per­
mits each output link to select a packet for transmis-



TiUle-Constramed Best-Effort 
Switching Packet switching Wormhole switching 
Packet size 20 bytes Variable length 
Link arbitration Deadline-driven Round-robin on input links 
Routing Table-driven multicast Dimension-ordered unicast 
Buffers Shared output queues Flit buffers at input links 
Flow control Rate-based Flit acknowledgements 

Table 2: Architectural parameters in real-time router design 

sion amongst all time-constrained traffic buffered in the 
router. The reception port and four output links share 
a single packet memory to maximize usage of the avail­
able buffer space. To accommodate the aggregate band­
width of the five input and five output ports, the router 
stores packets in lO-byte chunks, with demand-driven 
round-robin arbitration amongst the ports. As shown 
in Figure 2, each port includes nominal buffer space to 
avoid stalling the flow of data while waiting for bus ac­
cess to the packet memory. Similarly, each port includes 
a small flit buffer to permit continuous transmission of 
wormhole packets in the absence of link contention. 

Similar to many shared-memory switches in high­
speed networks [21 ], our design includes an idle-address 
FIFO for assigning unused memory locations to arriving 
time-constrained packets. An incoming packet retrieves 
an address from this FIFO; upon packet departure, the 
router returns the location to this idle-address pool. To 
avoid buffer overflow or packet loss, a real-time channel 
reserves sufficient buffer slots at each node in its route, 
as described in Section 2. Although the output. ports 
share a single packet memory, the connection establish­
ment procedure can logically partition the memory by 
limiting the number of packet buffers dedicated t.o con­
nections on each outgoing link; otherwise, one link could 
reserve the bulk of the memory slots, limiting the chance 
of establishing real-time channels on the other outgo­
ing links. By implementing a physically shared mem­
ory, the router permits the protocol software to balance 
the trade-offs between buffer partitioning and complete 
sharing to enhance future channel admissability. 

4 Real-Time Support 

Supporting time-constrained communication in a sin­
gle chip requires careful consideration of the interface to 
the controlling protocol software. The real-time router 
permits flexible software control of connection estab­
lishment, while implementing efficient run-time packet 
scheduling on the outgoing ports. 

4.1 Control Interface 

Establishing a real-time channel requires the applica­
tion to specify the traffic parameters and performance 
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Write COUlUland Fields 
Connection parameters outgoing connection id 

local delay bound d 
bit-mask of output ports 
incoming connection id 

Horizon parameter bit-mask of output ports 
horizon value h 

Table 3: Control interface commands 

requirements for the new connection. Admitting a 
new connection, and selecting a multi-hop route with 
suitable local delay parameters, is a computationally­
intensive procedure [8,9,14]. Fortunately, channel es­
tablishment typically does not impose tight timing con­
straints; in most cases, the network can create the re­
quired channels before data transfer commences. To 
permit a single-chip solution, the real-time router rel­
egates these non-real-time operations to the protocol 
software. Software control also permits greater flexibil­
ity in route selection and buffer allocation policies. 

As part of establishing a new real-time channel, each 
node in the connection's route writes control informa­
tion into a table in the router. Indexed off the connec­
tion identifier, the table stores the channel's local delay 
bound d and a bit mask for routing incoming packets to 
the appropriate output port(s) ; to simplify the design, 
a multicast connection uses the same value of d for any 
outgoing ports at the node. To minimize the number of 
pins on the chip, the controlling processor updates the 
connection table as a sequence of four write operations, 
as shown in Table 3. When a time-constrained packet 
arrives, the router reads the deadline and routing infor­
mation and assigns a new connection identifier for use 
at the next node in the packet's route. The router also 
assigns the packet's local deadline, based on the delay 
parameter d and the logical arrival time £(m). 

The packet deadline at one node serves as the logi­
cal arrival time at the downstream node in the route. 
Carrying these logical arrival times in the packet header 
implicitly assumes that the network routers have a com­
mon notion of time, within some bounded clock skew. 
Although this is not appropriate in a wide-area network 
context, the tight coupling in parallel machines mini-



On-time: 0 0 I £(m) + d - t I 

Early: 0 1 £(m) - t 
L--L __ -L __ �� ____ � 

Ineligible: 1 
�-L __ � ________ � 

Figure 4: Sorting key for time-constrained packets 

mizes the effects of clock skew. Alternatively, the router 
could store additional information in the connection ta­
ble to compute £j (m;) from a packet's actual arrival 
time and the logical arrival time of the connection's pre­
vious packet [22]; however, this approach would require 
the router to periodically refresh this connection state 
to correctly handle the effects of clock rollover. 

In addition to the connection table, the router main­
tains a separate horizon parameter h for each outgo­
ing port. As discussed in Section 2, these horizon val­
ues permit the router to transmit a time-constrained 
packet in advance of its logical arrival time, when no 
on-time packets or best-effort flits await service. The lo­
cal processor can write the horizon registers through the 
control interface, as shown in Table 3. Larger horizon 
values permit earlier transmission of time-constrained 
packets, but require connections to reserve more buffer 
space at the downstream node. If necessary, the pro­
tocol software could reduce a port's horizon parameter 
as more connections are established, to free downstream 
buffer space for reservation by the new connections. 

4.2 Scheduling Logic 

The real-time router schedules time-constrained traf­
fic for transmission based on logical arrival times and 
deadlines, as well as the link horizon parameters. To 
maximize link utilization and channel admissability, 
the router overlaps run-time communication schedul­
ing with packet transmission on each of the five output 
ports. As a result, packet size determines the accept­
able worst-case scheduling delay, limiting both the max­
imum number of time-constrained packets and the size 
of the sorting keys [23]; to facilitate a single-chip solu­
tion, our design efficiently handles a moderate number 
of packets. Since packet sorting can introduce consid­
erable hardware complexity [23-28], particularly when 
connections have a wide range of delay and bandwidth 
parameters, the real-time router shares the scheduling 
logic amongst the early and on-time packets headed for 
any of the five outgoing ports. 

Table 1 suggests that each outgoing port requires 
separate priority queues for early and on-time packets. 
However, implementing two priority queues for each link 
would incur significant hardware cost and would require 
logic to transfer packets from the early queue to the 
on-time queue; also, multiple packets can reach their 

242 

logical arrival times simultaneously, further complicat­
ing movement between the two priority queues. Hence, 
the real-time router does not attempt to store timc­
constrained packets in sorted order; instead, the router 
employs a tree of comparators to select the packet with 
the smallest key. The base of the tree computes a key for 
each packet, based on the packet state and the current 
time t; a bit in the packet key differentiates between 
early and on-time traffic, as shown in Figure 4. 

For on-time traffic, the lower bits of the key rep­
resent packet laxity, the time remaining till the local 
deadline expires, whereas the key for early traffic rep­
resents the time left before reaching the packet's logi­
cal arrival time. Normalizing the packet keys, relative 
to current time t, allows the rest of the tree to per­
form simple, unsigned comparison operations, even in 
the presence of clock rollover. To avoid replicating the 
scheduling logic, all five outgoing ports share access to a 
single comparator tree that arbitrates amongst all time­
constrained packets, as shown in Figure 5. Pipelining 
the comparator tree provides the necessary throughput 
to overlap run-time scheduling with packet transmission 
on each outgoing port. This also permits the ports to 
conveniently share the same packet memory. Although 
this buffer memory stores the actual packet data, the 
base of the comparator tree maintains a small amount 
of per-packet state to coordinate run-time scheduling. 

As shown in Figure 5, each leaf in the tree stores 
a logical arrival time £(m), a deadline £(m) + d, and 
a bit mask of outgoing ports, assigned at packet arrival 
based on the connection state. The bit mask determines 
if the leaf is eligible to compete for access to a partic­
ular outgoing port. When a port transmits a selected 
packet, it clears the corresponding field in the leaf's bit 
mask; a bit mask of zero indicates an empty packet leaf 
slot and a corresponding idle slot in the packet memory. 
The base of the tree also determines if packets are early 
(f(m) > t) or on-time (£(m) � t) and computes the 
sorting keys based on the current value of t. At the top 
of the sorting tree, an additional comparator checks to 
see if the winning packet is early traffic that falls within 
the link's horizon parameter; if so, the link transmits 
this packet, unless best-effort flit.s await. service. 

4.3 Handling Clock Rollover 

The number of bits in the sorting keys directly af­
fects the latency and implementation complexity of the 
comparator tree. However, by limiting the size of the 
keys, the router also restricts the range of local delay 
bounds d that can be selected by time-constrained con­
nections. To formalize this trade-off, consider a connec­
tion traversing consecutive links j -1 and j, with local 
delay parameters dj-1 and dj, respectively, and a hori­
zon parameter hj -1 at link j-I. A packet can arrive as 
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Figure 6: Handling clock rollover with an 8-bit clock 

much as hj_l+dj_1 time units ahead of its logical arrival 
time lj(m), if link j-l transmits the packet as early as 
possible. Similarly, link j must transmit the packet by 
its deadline lj (m) + dj. Hence, at time t and link j, any 
packets from this connection have logical arrival times 
lj(m) E [t - dj, t + (hj_1 + dj_I)]. 

This property permits the router to limit the size of 
the packet sorting keys, as well as the required num­
ber of bits in the on-chip clock, where the clock ticks 
once per packet transmission time. The router can cor­
rectly interpret logical arrival times and deadlines, even 
in the presence of clock rollover, as long as each con­
nection has hj_1+dj_l and dj values that are less than 
half the range of the on-chip clock register. For exam­
ple, Figure 6 shows a range of lj (m) values for different 
connections under an 8-bit clock, with a range of 256 
time units. A packet. with f(m) = 80 would be consid­
ered early traffic (since t-80 � 128) , while a packet with 
f(m) = 210 would be considered on-time traffic (since 
t - 210 < 128) . This enables the leaves of the sorting 
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tree to compute the normalized keys, relative to current 
time t, using modulo arithmetic. 

5 Implementation 

5.1 Chip Design 

The router chip has been designed using the Verilog 
hardware description language and the Epoch silicon 
compiler, with the parameters in Table 4. Using a three­
metal, 0.5Jlm CMOS process, the 123-pin chip has di­
mensions 8.1 mm x 8.7 mm for an implementation with 
256 time-constrained packets and up to 256 connections. 
The link-scheduling logic accounts for the majority of 
the chip area, with the packet memory consuming much 
of the remaining space. Operating at 50 MHz, the chip 
can transmit or receive a byte of data on each of its ten 
ports every 20 nsec; this closely matches the access time 
of the 1O-byte-wide, single-ported SRAM for storing 
time-constrained traffic. Since time-constrained pack­
ets are 20-bytes long, the scheduling logic must select a 
packet for transmission every 400 nsec for each of the 
five output ports. To achieve the necessary throughput, 
the comparator tree consists of a two-stage pipeline, 
where each stage requires approximately 50 nsec; the 
boundary between the two pipeline stages consists of a 
set of latches across a row of comparators. 

Although the tree could incorporate up to five 
pipeline stages, the two-stage design provides sufficient 
throughput to satisfy the output ports. This sug­
gests that the link scheduler could effectively support a 
larger number of packet.s or additional output ports, for 
a higher-dimensional mesh topology. Alternately, the 
router design could reduce the hardware cost of the com­
parator tree by sharing comparator logic between mul-



Parameter Value Parameter Value 
Connections 256 Process 0.5J.lm 3-metal CMOS 
Time-constrained packets 256 Signal pins 123 
Clock (sorting key) 8 (9) bits Transistors 905, 104 
Comparator tree pipeline 2 stages Area 8.1 mm x 8.7 mm 
Flit input buffer 10 bytes Power 2.3 watts 

( a) Architectural parameters (b) Chip complexity 

Table 4: Router specification 

tiple leaves of the tree. In Figure 5, this would combine 
several leaf units into a single module with a small mem­
ory to store the packets' deadlines and logical arrival 
times; the router could sequence through each module's 
packets to serialize access to a single comparator at the 
base of the tree. This would reduce the number of com­
parators, as well as the loading on the bus to the packet 
control modules; currently, the design includes a buffer 
tree to provide the necessary fanout from this bus. 

5.2 Experiments 

Verilog simulations were used to test a single router 
chip under a variety of traffic patterns. A preliminary 
experiment tests the baseline performance of best-effort 
wormhole packets. To study a multi-hop configuration, 
the router connects its links in the x and y directions. 
The packet proceeds from the injection port to the pos­
itive x link, then travels from the negative x input link 
to the positive y direction; after reentering the router 
on the negative y link, the packet proceeds to the re­
ception port. In this test, a b byte wormhole packet 
incurs an end-to-end latency of 30 + b cycles, where the 
link transmits one byte in each cycle. This delay is pro­
portional to packet length, with a small overhead for 
synchronizing the arriving bytes, processing the packet 
header, and accumulating five-byte chunks for access to 
the router's internal bus. In contrast, packet switching 
would introduce additional delay to buffer the packet at 
each hop in its route. 

An additional experiment illustrates how the router 
schedules time-constrained packets to satisfy delay and 
throughput guarantees, while allowing best-effort traffic 
to capitalize on any excess link bandwidth. Figure 7 
plots the link bandwidth consumed by best-effort traffic 
and each of three tillle-constrained connections with the 
following parameters, in units of 20-byte slots: 

d Imin 
0 8 9 
1 5 7 
2 3 4 

All three connections compete for access to a single net­
work link with horizon parameter h = 0, where each 
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Figure 7: Time-constrained and best-effort service 

connection has a continual backlog of traffic. The time­
constrained connections receive service in proportion to 
their throughput requirements, since a packet is not el­
igible for service till its logical arrival time. Similarly, 
the link transmits each packet by its deadline, with best­
effort flits consuming any remaining link bandwidth. 

6 Related Work 

This paper complements recent work on support 
for real-time communication in parallel machines [1-6]. 
Several projects have proposed mechanisms to improve 
predictability in the wormhole-switched networks com­
mon in modern multicomputers. In the absence of hard­
ware support for priority-based scheduling, application 
and operating system software can control end-to-end 
performance by regulating the rate of packet injection at 
each source node [6]. However, this approach lllust limit 
utilization of the communication network to account for 
possible contention between packets, even from lower­
priority traffic. This is a particularly important issue 
in wormhole networks, since a stalled packet may indi­
rectly block the advancement of other traffic that does 
not even use the same links. The underlying router ar­
chitecture can improve predictability by favoring older 
packets when assigning virtual channels or arbitrating 
between channels on the same physical link [17]. 



Although these mechanisms reduce variability in end­
to-end latency, more aggressive techniques are necessary 
to guarantee performance under high network utiliza­
tion. A router can support multiple classes of traffic, 
such as user and system packets, by partitioning traffic 
onto different virtual channels, with priority-based ar­
bitration for access to the network links [17]. Flit-level 
preemption of low-priority virtual channels can signif­
icantly reduce intrusion on the high-priority packets. 
Still, these coarse-grain priorities do not differentiate 
between packets with different latency tolerances. With 
additional virtual channels, the network has greater flex­
ibility in assigning packet priority, perhaps based on the 
end-ta-end delay requirement, and restricting access to 
virtual channels reserved for higher-priority traffic [3,4]. 

Coupled with restrictions on the source injection 
rate, these policies can bound end-ta-end packet latency 
by limiting the service and blocking times for higher­
priority traffic [2]. Although assigning priorities to vir­
tual channels provides some control over packet schedul­
ing, this ties priority resolution to the number of virtual 
channels. The router can support a finer grain of packet 
priorities by increasing the number of virtual channels, 
at the expense of implementation complexity; extra vir­
tual channels incur the cost of additional flit buffers 
and larger virtual channel identifiers, as well as more 
complex switching and arbitration logic [20]. Instead of 
dedicating virtual channels and flit buffers to each pri­
ority level, a router can increase priority resolution by 
adopting a packet-switched design. 

The priority-forwarding router chip [5] follows this 
approach by employing a 32-bit priority field in small, 
8-packet priority queues at each input port. The router 
incorporates a priority-inheritance protocol to limit the 
effects of priority inversion when a full input buffer lim­
its the transmission of high-priority packets from the 
previous node; the input buffer's head packet inher­
its the priority of the highest-priority packet still wait­
ing at the upstream router. In contrast, the real-time 
router implements a single, shared output buffer that 
holds up to 256 time-constrained packets, with a link­
scheduling and memory reservation model that implic­
itly avoids buffer overflow. By dynamically assigning an 
8-bit packet priority at each node, the real-time router 
can satisfy a diverse range of end-to-end delay bounds, 
while permitting best-effort wormhole traffic to capital­
ize on any excess link bandwidth. 

7 Conclusion 

Parallel real-time applications impose diverse com­
munication requirements on the underlying intercon­
nection network. The real-time router design supports 
these emerging applications by bounding packet delay 
for time-constrained traffic, while ensuring good aver-

245 

age performance for best-effort traffic. Low-level con­
trol over routing and switching, coupled with fine-grain 
arbitration at the network links, enables the router to 
effectively mix these two diverse traffic classes. Careful 
handling of clock rollover enables the router to support 
connections with diverse delay and throughput param­
eters with small packet sorting keys. Sharing sorting 
logic and packet buffers amongst the five output ports 
permits a single-chip solution that handles up to 256 
time-constrained packets simultaneously. 

As future work, we are extending the router architec­
ture to enhance performance and flexibility. In particu­
lar, the router can improve link utilization and average 
latency by using virtual cut-through switching [5,29] for 
time-constrained traffic; this would permit an arriving 
packet to proceed directly to its output link if no other 
packets have smaller sorting keys. We are also consid­
ering alternate link-scheduling algorithms that would 
improve the router's scalability; these algorithms could 
include approximate versions of real-time channels, as 
well as new schemes with reduced implementation com­
plexity. This would permit the router to efficiently han­
dle a larger number of time-constrained packets. 

To complement the Verilog simulations of the router 
chip, work is underway to incorporate the real-time 
router architecture in a multicomputer network simu­
lator [30]. This simulation environment will enable us 
to evaluate the design under larger network configura­
tions and more diverse traffic patterns, while facilitat­
ing direct comparisons to alternate router architectures. 
These experiments can also explore the ability of the 
chip to serve as a building block for constructing large, 
high-speed switches that support the quality-of-service 
requirements of real-time and multimedia applications. 
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