
A Router Architecture for Real-Time Point-to-Point Networks

Jennifer Rexford, John Hall, and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, MI 48109-2122

E-mail: {jrexford.hallj.kgshin}@eecs.umich.edu
Web: http://www.eecs.umich.edu/RTCL

Abstract

Parallel machines have the potential to satisfy the
large computational demands of emerging real-time ap­
plications. These applications require a predictable
communication network, where time-constrained traf­
fic requires bounds on latency or throughput while
good average performance suffices for best-effort pack­
ets. This paper presents a router architecture that tai­
lors low-level routing, switching, arbitration and flow­
control policies to the conflicting demands of each traffic
class. The router implements deadline-based schedul­
ing, with packet switching and table-driven multicast
routing, to bound end-to-end delay for time-constrained
traffic, while allowing best-effort traffic to capitalize on
the low-latency routing and switching schemes common
in modern parallel machines. To limit the cost of ser­
vicing time-constrained traffic, the router shares packet
buffers and link-scheduling logic between the multiple
output ports. Verilog simulations demonstrate that
the design meets the performance goals of both traffic
classes in a single-chip solution.

1 Introduction

Emerging real-time applications, such as avionics, in­
dustrial process control, and automated manufacturing,
impose strict timing requirements on the underlying
computing system. As these applications grow in size
and complexity, parallel processing plays an important
role in satisfying large computational demands. Effec­
tive real-time parallel computing hinges on predictable
communication between cooperating processing nodes,
since lost or late messages can result in human catas­
trophe or economic harm. However, instead of guar­
anteeing bounds on worst-case communication latency,
most existing parallel architectures focus on providing

Permission m make dlgitaJ..tlard copy of part or all of this work. for personal
or classroom use is 9ranted without fee provided that oopies are not made
or distribu5d for profit or commercial advantage, the copyright notice, the
title of the publication and I1s data appear, and nob Is given that
copying Is by permission of ACM, Inc. To copy otharwlse, m republish, m
post on servers, or to redistribute m lisls, requires prior specific permission
andIora tH.

IseA '96 5196 PA, USA
Ie> 1996 ACM 0-89791-786-319610005 ... $3.50

237

good average network throughput and packet delay.
Consequently, recent years have seen increasing interest
in developing networks that provide performance guar­
antees for communication in parallel machines [1-6].

Real-time systems employ a variety of network archi­
tectures, depending on the application performance re­
quirements. Although prioritized bus and ring networks
are commonly used in small-scale systems [7], larger ap­
plications can benefit from the higher bandwidth avail­
able in multi-hop topologies. In addition, multi-hop
networks often have several disjoint routes between each
pair of processing nodes, improving the application's re­
silience to link and node failures. However, these net­
works complicate the effort to guarantee end-to-end per­
formance, since the system must bound delay at each
link in a packet's route. This paper presents a router
design that supports end-to-end latency and through­
put guarantees by scheduling packets at each network
link. Although the implementation is geared toward
two-dimensional meshes, as shown in Figure 1, the ar­
chitecture directly extends to other network topologies.

Communication predictability can be improved by
assigning priority to time-constrained traffic or to pack­
ets that have experienced large delays earlier in their
routes [8]. Ultimately, though, bounding worst-case la­
tency requires prior reservation of link and buffer re­
sources, based on the application's anticipated traffic
load. Under this traffic contract, the network can pro­
vide end-to-end performance guarantees through effec­
tive link-scheduling and buffer-allocation policies. The
real-time router design handles a wide range of through­
put and delay requirements by implementing the real­
time channel [9] abstraction for packet scheduling, as
described in Section 2. A real-time channel is a unidi­
rectional virtual connection between two nodes, with a
source traffic specification and end-to-end delay bound;
separate parameters for delay and bandwidth permit the
model to accommodate a wider range and larger number
of connections than other disciplines [10], at the expense
of increased implementation complexity.

Figure I: Router in a 4 x 4 square mesh

At run-time, the network guarantees end-to-end per­
formance through bandwidth regulation and deadline­
based packet scheduling at each link. Implementing
deadline-based scheduling in software would impose a
significant burden on the processing resources at each
node and would prove too slow to serve multiple high­
speed links. This software would have to sort packets by
deadline for each outgoing link, in addition to scheduling
and executing application tasks. With high-speed links
and tight timing constraints, real-time parallel machines
require hardware support for communication schedul­
ing. An efficient, low-cost solution requires a design that
integrates this run-time scheduling with packet trans­
mission. Hence, we present a chip-level router design
that handles run-time packet scheduling, while relegat­
ing non-real-time operations (such as admission control
and route selection) to the protocol software.

Although deadline�based scheduling bounds worst­
case latency for time-constrained traffic, real-time ap­
plications also include best-effort packets that do not
have stringent performance requirements [8-11]; for ex­
ample, good average delay may suffice for some status
and monitoring information. Best-effort traffic should
be able to capitalize on the low-latency communication
techniques available in modern parallel machines with­
out jeopardizing the performance guarantees of time­
constrained packets. Section 3 describes how our de­
sign tailors network routing, switching, arbitration, and
flow-control policies to the conflicting requirements of
these two traffic classes. Time-constrained traffic em­
ploys packet switching and small, fixed-size packets to
bound worst-case performance, while best-effort pack­
ets employ wormhole switching [12] to reduce average
latency and minimize buffer space requirements, even
for large packets.

Section 4 discusses the router's support for run-time
scheduling of time-constrained packets. To reduce hard­
ware complexity, the architecture shares packet buffers
and sorting logic between the router's multiple output
links. The router overlaps communication scheduling
with packet transmission to maximize utilization of the
network links. The design limits the complexity of the

238

link scheduler by bounding the range of packet dead­
lines and handling the effects of clock rollover. Sec­
tion 5 describes the router implementation, using the
Verilog hardware description language and the Epoch
silicon compiler. Verilog simulations demonstrate that
the design satisfies the performance goals of both traf­
fic classes in a single-chip solution. Section 6 discusses
related work, while Section 7 concludes the paper with
a discussion of future research directions.

2 Real-Time Channels

Real-time communication requires reservation of
bandwidth and buffer resources, coupled with packet
scheduling at the network links. The real-time chan­
nel model [9] provides a useful abstraction for bound­
ing end-to-end network delay, under certain application
traffic characteristics.

Traffic parameters: A real-time channel is a unidi­
rectional virtual connection that traverses one or more
network links. Since communication is typically peri­
odic, or nearly periodic, in real-time systems, each con­
nection is characterized by its minimum temporal spac­
ing between messages (Imin) and maximum message size

(Smax bytes) . To permit some variation from purely pe­
riodic traffic, a connection can generate a burst of up to
Bmax messages in excess of the periodic restriction [min.
Together, these three parameters form a linear bounded
arrival process [13] that governs a connection's traffic
generation at. the source node.

End-to-end delay bound: In addition to these traffic
parameters, a connection has a bound D on end-to-end
message delay, based on the minimum message spacing
[min. At the source node, a message mi generated at
time ti has a logical arrival time

io(mi) =
{ ti

max{io (mi -d + Imin, t;}
if i = 0
if i > O.

By basing performance guarantees on these logical ar­
rival times, the real-time channels model limits the in­
fluence an ill-behaving or malicious connection can have
on other traffic in the network. The run-time link sched­
uler guarantees that message mi reaches its destination
node by its deadline io(mi) + D.

Per-hop delay bounds: The network does not ad­
mit a new connection unless it can reserve sufficient
buffer and bandwidth resources without violating the
requirements of existing connections [9, 14]. A connec­
tion establishment procedure decomposes the connec­
tion's end-ta-end delay bound D into local delay bounds
dj for each hop in its route such that dj � Imin and
l:j dj � D. Based on the local delay bounds, a mes­
sage mi has a logical arrival time

Traffic Data Structure
Queue 1 On-time time-constrained packets Priority queue (by deadline £(m)+d)
Queue 2 Best-effort packets First-in-first-out queue
Queue 3 Early time-constrained packets Priority queue (by logical arrival time i(m))

Table 1: Link scheduling queues in real-time channels model

at node j in its route, where j = 0 corresponds to the
source node. Link scheduling ensures that message mj
arrives at node j no later than time ij -1 (mj) + dj -1,
the local deadline at node j -1; however, message mj
could reach node j earlier, due to variations in delay at
previous hops in the route.

Run-time link scheduling: Each link schedules time­
constrained traffic in order to bound message delay
without exceeding the reserved buffer space at inter­
mediate nodes. The scheduler, which employs a multi­
class variation of the earliest due-date algorithm [15],
gives highest priority to time-constrained messages that
have reached their logical arrival time (i.e., ij(mj) � t),
transmitting the message with the smallest deadline
lj(m;) + dj, as shown in Table 1. If Queue 1 is empty,
the link services best-effort traffic from Queue 2, ahead
of any early time-constrained messages, thus improv­
ing the average performance of best-effort traffic with­
out violating the delay requirements of time-constrained
communication. Queue 3 holds early time-constrained
traffic, effectively absorbing variations in delay at the
previous node; upon reaching its logical arrival time, a
message moves from Queue 3 to Queue 1.

Buffer requirements: By postponing the transmis­
sion of early time-constrained traffic, the link scheduler
avoids overloading the buffer space at the downstream
node [9,10). If the first two scheduling queues are empty,
the link can transmit early time-constrained traffic from
Queue 3, as long as these messages are within a small
distance h 2.: 0 of their logical arrival time. Incorpo­
rating this horizon parameter improves average latency
and bandwidth utilization, at the expense of increased
buffer requirements at the downstream node. A con­
nection's local delay bound, coupled with the incom­
ing link's horizon parameter, limits the required buffer
space at the next node in the route. Node j can re­
ceive a message as early as lj(mi) - (hj-l + dj-l), if
the incoming link has horizon hj -1; the node can hold
a message until its deadline ij (mi) + dj. If messages ar­
rive as early as possible, and depart as late as possible,
then node j could have to store as many as

r(hj-1 + dj-l) + djl
Imm

messages from this connection at the same time. Al­
though each connection could conceivably have its own
horizon value, employing a single h parameter allows

239

the link to transmit early traffic directly from the head
of Queue 3, without any per-connection data structures.

3 Mixing Traffic Classes

Best-effort and time-constrained traffic have conflict­
ing performance goals that complicate network design.
Figure 2 shows the architecture of the real-time router,
with separate control and data path for the two traf­
fic classes; solid lines denote the flow of packet data,
while dashed lines indicate control information. To in­
sulate the local processor from packet scheduling, the
design has separate injection ports for time-constrained
and best-effort traffic, while the router coordinates ac­
cess to a shared reception port and the four outgoing
links. Careful selection of router policies, coupled with
fine-grain link arbitration, enables time-constrained and
best-effort packets to share network bandwidth without
sacrificing the performance of either class.

3.1 Switching

To ensure that time-constrained packets meet their
delay requirements, the router must have control over
bandwidth and memory allocation. In most real-time
systems, time-constrained communication con5i5t5 of
10-20 byte exchanges of command or status infor­
mation [7]. Consequently, our design restricts time­
constrained traffic to small, fixed-size packets, as shown
in Table 2; this bounds network access latency and
buffering delay while simplifying memory allocation in
the router. To ensure predictable consumption of link
and buffer resources, time-constrained traffic employs
store-and-forward packet switching. By buffering pack­
ets at each node, packet switching allows each router to
independently schedule packet transmissions to satisfy
per-hop delay requirements.

However, this approach unduly penalizes the per­
formance of best-effort traffic. Most modern paral­
lel machines employ cut-through switching schemes for
lower latency and reduced buffer space requirements.
In particular, wormhole switching permits an arriving
packet to proceed directly to the next node in its route,
stalling in the network if the outgoing link is not avail­
able [12]. In effect, this converts the best-effort schedul­
ing "queue" in Table 1 into a logical queue that spans
multiple nodes. Instead of storing entire best-effort
packets at intermediate nodes, the router simply in­
cludes small fiit (flow control unit) buffers to hold a few

time-constrained

Packet
Memory

:->1 Scheduling � __ _

�� Logic :
I , ______________ i

! :-Connectlon-]
--1 Table :

-------A-------'

control: interface

Figure 2: Real-time router architecture

bytes of a packet from each input link; inter-node flow
control stalls further transmission of the packet until
this buffer space is available. This permits best-effort
traffic to use variable-size packets, to reduce or even
avoid packetization overheads, without increasing buffer
complexity in the router.

3.2 Arbitration

By cutting through intermediate nodes, best.-effort
packets can avoid unnecessary buffering delay. How­
ever, these wormhole packets can stall in the network
for an unpredictable amount of time, delaying the ad­
vancement of other packets heading for different desti­
nations. The effective mixing of time-constrained and
best-effort traffic hinges on controlling the interaction
between these two classes [16]. In particular, best-effort
packets should not consume arbitrary amounts of band­
width resources while time-constrained packets await
service. To control the interaction between the two traf­
fic classes, the real-time router divides each link into two
vidual channels [17]. A single bit on each link differen­
tiates between time-constrained and best-effort packets;
each link also includes an acknowledgement bit for flow
control on the best-effort virtual channel.

Each wormhole virtual channel performs round-robin
arbitration on the input links to select an incoming best­
effort packet for service, while the packet-switched vir­
tual channel transmits time-constrained packets based
on their deadlines. Priority arbitration amongst the
virtual channels tightly regulates the intrusion of best­
effort traffic on time-constrained packets. This effec­
tively provides flit-level preemption of best-effort traf­
fic whenever an on-time time-constrained packet awaits
service, while permitting wormhole flits to consume any
excess link bandwidth. The link transmits best-effort
flits ahead of any early time-constrained packets.

240

x offset
connection id

y offset
£(m) + d

length

data bytes (18)
data bytes

(a) Time-constrained (b) Best-effort

Figure 3: Packet formats in real-time router

3.3 Routing

As part of establishing a real-time channel, the net­
work reserves link bandwidth and buffer space along a
fixed path between the source and destination nodes;
the chosen route depends on the resources available
at various nodes and links in the network. Conse­
quently, the real-time router maintains a routing t.able,
indexed on the connection identifier of the arriving time­
constrained packet, as shown in Figure 3(a); Section 4
describes how the controlling processor can edit this ta­
ble as part of a connection establishment protocol. Since
a node may wish to send information to a collection of
destination nodes (i.e. , multicast), the router can for­
ward an incoming time-constrained packet to multiple
outgoing links; this facilitates efficient, timely commu­
nication between a set of cooperating nodes.

In contrast, best-effort traffic does not require re­
source reservation along packet routes. Instead, the
real-time router implements dimension-ordered routing,
a shortest-path scheme that completely routes a packet
in the x-direction before proceeding in the y-direction
to the destination, as shown by the shaded nodes in Fig­
ure 1. Dimension-ordered routing avoids packet dead­
lock in a square mesh [18] and also facilitates an efficient
implementation based on x and y offsets in the packet
header, as shown in Figure 3(b); the offsets reach zero
when the packet has arrived at its destination node. The
router could improve best-effort performance by imple­
menting adaptive wormhole routing, with additional vir­
tual channels to avoid deadlock, at the expense of in­
creased implementation complexity [19,20]. In partic­
ular, non-minimal adaptive routing would enable best­
effort packets to circumvent links with a heavy load of
time-constrained traffic.

3.4 Buffer Architecture

The real-time router includes a packet memory for
storing time-constrained traffic awaiting access to the
outgoing links; in contrast, blocked best-effort pack­
ets stall in the network. The router queues time­
constrained packets at the output ports to avoid the
throughput limitations of input queueing [21]; this per­
mits each output link to select a packet for transmis-

TiUle-Constramed Best-Effort
Switching Packet switching Wormhole switching
Packet size 20 bytes Variable length
Link arbitration Deadline-driven Round-robin on input links
Routing Table-driven multicast Dimension-ordered unicast
Buffers Shared output queues Flit buffers at input links
Flow control Rate-based Flit acknowledgements

Table 2: Architectural parameters in real-time router design

sion amongst all time-constrained traffic buffered in the
router. The reception port and four output links share
a single packet memory to maximize usage of the avail­
able buffer space. To accommodate the aggregate band­
width of the five input and five output ports, the router
stores packets in lO-byte chunks, with demand-driven
round-robin arbitration amongst the ports. As shown
in Figure 2, each port includes nominal buffer space to
avoid stalling the flow of data while waiting for bus ac­
cess to the packet memory. Similarly, each port includes
a small flit buffer to permit continuous transmission of
wormhole packets in the absence of link contention.

Similar to many shared-memory switches in high­
speed networks [21], our design includes an idle-address
FIFO for assigning unused memory locations to arriving
time-constrained packets. An incoming packet retrieves
an address from this FIFO; upon packet departure, the
router returns the location to this idle-address pool. To
avoid buffer overflow or packet loss, a real-time channel
reserves sufficient buffer slots at each node in its route,
as described in Section 2. Although the output. ports
share a single packet memory, the connection establish­
ment procedure can logically partition the memory by
limiting the number of packet buffers dedicated t.o con­
nections on each outgoing link; otherwise, one link could
reserve the bulk of the memory slots, limiting the chance
of establishing real-time channels on the other outgo­
ing links. By implementing a physically shared mem­
ory, the router permits the protocol software to balance
the trade-offs between buffer partitioning and complete
sharing to enhance future channel admissability.

4 Real-Time Support

Supporting time-constrained communication in a sin­
gle chip requires careful consideration of the interface to
the controlling protocol software. The real-time router
permits flexible software control of connection estab­
lishment, while implementing efficient run-time packet
scheduling on the outgoing ports.

4.1 Control Interface

Establishing a real-time channel requires the applica­
tion to specify the traffic parameters and performance

241

Write COUlUland Fields
Connection parameters outgoing connection id

local delay bound d
bit-mask of output ports
incoming connection id

Horizon parameter bit-mask of output ports
horizon value h

Table 3: Control interface commands

requirements for the new connection. Admitting a
new connection, and selecting a multi-hop route with
suitable local delay parameters, is a computationally­
intensive procedure [8,9,14]. Fortunately, channel es­
tablishment typically does not impose tight timing con­
straints; in most cases, the network can create the re­
quired channels before data transfer commences. To
permit a single-chip solution, the real-time router rel­
egates these non-real-time operations to the protocol
software. Software control also permits greater flexibil­
ity in route selection and buffer allocation policies.

As part of establishing a new real-time channel, each
node in the connection's route writes control informa­
tion into a table in the router. Indexed off the connec­
tion identifier, the table stores the channel's local delay
bound d and a bit mask for routing incoming packets to
the appropriate output port(s) ; to simplify the design,
a multicast connection uses the same value of d for any
outgoing ports at the node. To minimize the number of
pins on the chip, the controlling processor updates the
connection table as a sequence of four write operations,
as shown in Table 3. When a time-constrained packet
arrives, the router reads the deadline and routing infor­
mation and assigns a new connection identifier for use
at the next node in the packet's route. The router also
assigns the packet's local deadline, based on the delay
parameter d and the logical arrival time £(m).

The packet deadline at one node serves as the logi­
cal arrival time at the downstream node in the route.
Carrying these logical arrival times in the packet header
implicitly assumes that the network routers have a com­
mon notion of time, within some bounded clock skew.
Although this is not appropriate in a wide-area network
context, the tight coupling in parallel machines mini-

On-time: 0 0 I £(m) + d - t I

Early: 0 1 £(m) - t
L--L __ -L __ �� ____ �

Ineligible: 1
�-L __ � ________ �

Figure 4: Sorting key for time-constrained packets

mizes the effects of clock skew. Alternatively, the router
could store additional information in the connection ta­
ble to compute £j (m;) from a packet's actual arrival
time and the logical arrival time of the connection's pre­
vious packet [22]; however, this approach would require
the router to periodically refresh this connection state
to correctly handle the effects of clock rollover.

In addition to the connection table, the router main­
tains a separate horizon parameter h for each outgo­
ing port. As discussed in Section 2, these horizon val­
ues permit the router to transmit a time-constrained
packet in advance of its logical arrival time, when no
on-time packets or best-effort flits await service. The lo­
cal processor can write the horizon registers through the
control interface, as shown in Table 3. Larger horizon
values permit earlier transmission of time-constrained
packets, but require connections to reserve more buffer
space at the downstream node. If necessary, the pro­
tocol software could reduce a port's horizon parameter
as more connections are established, to free downstream
buffer space for reservation by the new connections.

4.2 Scheduling Logic

The real-time router schedules time-constrained traf­
fic for transmission based on logical arrival times and
deadlines, as well as the link horizon parameters. To
maximize link utilization and channel admissability,
the router overlaps run-time communication schedul­
ing with packet transmission on each of the five output
ports. As a result, packet size determines the accept­
able worst-case scheduling delay, limiting both the max­
imum number of time-constrained packets and the size
of the sorting keys [23]; to facilitate a single-chip solu­
tion, our design efficiently handles a moderate number
of packets. Since packet sorting can introduce consid­
erable hardware complexity [23-28], particularly when
connections have a wide range of delay and bandwidth
parameters, the real-time router shares the scheduling
logic amongst the early and on-time packets headed for
any of the five outgoing ports.

Table 1 suggests that each outgoing port requires
separate priority queues for early and on-time packets.
However, implementing two priority queues for each link
would incur significant hardware cost and would require
logic to transfer packets from the early queue to the
on-time queue; also, multiple packets can reach their

242

logical arrival times simultaneously, further complicat­
ing movement between the two priority queues. Hence,
the real-time router does not attempt to store timc­
constrained packets in sorted order; instead, the router
employs a tree of comparators to select the packet with
the smallest key. The base of the tree computes a key for
each packet, based on the packet state and the current
time t; a bit in the packet key differentiates between
early and on-time traffic, as shown in Figure 4.

For on-time traffic, the lower bits of the key rep­
resent packet laxity, the time remaining till the local
deadline expires, whereas the key for early traffic rep­
resents the time left before reaching the packet's logi­
cal arrival time. Normalizing the packet keys, relative
to current time t, allows the rest of the tree to per­
form simple, unsigned comparison operations, even in
the presence of clock rollover. To avoid replicating the
scheduling logic, all five outgoing ports share access to a
single comparator tree that arbitrates amongst all time­
constrained packets, as shown in Figure 5. Pipelining
the comparator tree provides the necessary throughput
to overlap run-time scheduling with packet transmission
on each outgoing port. This also permits the ports to
conveniently share the same packet memory. Although
this buffer memory stores the actual packet data, the
base of the comparator tree maintains a small amount
of per-packet state to coordinate run-time scheduling.

As shown in Figure 5, each leaf in the tree stores
a logical arrival time £(m), a deadline £(m) + d, and
a bit mask of outgoing ports, assigned at packet arrival
based on the connection state. The bit mask determines
if the leaf is eligible to compete for access to a partic­
ular outgoing port. When a port transmits a selected
packet, it clears the corresponding field in the leaf's bit
mask; a bit mask of zero indicates an empty packet leaf
slot and a corresponding idle slot in the packet memory.
The base of the tree also determines if packets are early
(f(m) > t) or on-time (£(m) � t) and computes the
sorting keys based on the current value of t. At the top
of the sorting tree, an additional comparator checks to
see if the winning packet is early traffic that falls within
the link's horizon parameter; if so, the link transmits
this packet, unless best-effort flit.s await. service.

4.3 Handling Clock Rollover

The number of bits in the sorting keys directly af­
fects the latency and implementation complexity of the
comparator tree. However, by limiting the size of the
keys, the router also restricts the range of local delay
bounds d that can be selected by time-constrained con­
nections. To formalize this trade-off, consider a connec­
tion traversing consecutive links j -1 and j, with local
delay parameters dj-1 and dj, respectively, and a hori­
zon parameter hj -1 at link j-I. A packet can arrive as

12 horizon /< ���

• • •
,

, , ,

,
, ,

, , , ,

//,'r------------------------- - - ��;---- -f;;;w;;;;;-
eligible/
ineligible

write enable
(from decode)

(1+ d)-t

.. - --- - - ---- - - - - - -- - -- -. �- --- -----------------

Figure 5: Comparator tree for run-time scheduling

128

Figure 6: Handling clock rollover with an 8-bit clock

much as hj_l+dj_1 time units ahead of its logical arrival
time lj(m), if link j-l transmits the packet as early as
possible. Similarly, link j must transmit the packet by
its deadline lj (m) + dj. Hence, at time t and link j, any
packets from this connection have logical arrival times
lj(m) E [t - dj, t + (hj_1 + dj_I)].

This property permits the router to limit the size of
the packet sorting keys, as well as the required num­
ber of bits in the on-chip clock, where the clock ticks
once per packet transmission time. The router can cor­
rectly interpret logical arrival times and deadlines, even
in the presence of clock rollover, as long as each con­
nection has hj_1+dj_l and dj values that are less than
half the range of the on-chip clock register. For exam­
ple, Figure 6 shows a range of lj (m) values for different
connections under an 8-bit clock, with a range of 256
time units. A packet. with f(m) = 80 would be consid­
ered early traffic (since t-80 � 128) , while a packet with
f(m) = 210 would be considered on-time traffic (since
t - 210 < 128) . This enables the leaves of the sorting

243

tree to compute the normalized keys, relative to current
time t, using modulo arithmetic.

5 Implementation

5.1 Chip Design

The router chip has been designed using the Verilog
hardware description language and the Epoch silicon
compiler, with the parameters in Table 4. Using a three­
metal, 0.5Jlm CMOS process, the 123-pin chip has di­
mensions 8.1 mm x 8.7 mm for an implementation with
256 time-constrained packets and up to 256 connections.
The link-scheduling logic accounts for the majority of
the chip area, with the packet memory consuming much
of the remaining space. Operating at 50 MHz, the chip
can transmit or receive a byte of data on each of its ten
ports every 20 nsec; this closely matches the access time
of the 1O-byte-wide, single-ported SRAM for storing
time-constrained traffic. Since time-constrained pack­
ets are 20-bytes long, the scheduling logic must select a
packet for transmission every 400 nsec for each of the
five output ports. To achieve the necessary throughput,
the comparator tree consists of a two-stage pipeline,
where each stage requires approximately 50 nsec; the
boundary between the two pipeline stages consists of a
set of latches across a row of comparators.

Although the tree could incorporate up to five
pipeline stages, the two-stage design provides sufficient
throughput to satisfy the output ports. This sug­
gests that the link scheduler could effectively support a
larger number of packet.s or additional output ports, for
a higher-dimensional mesh topology. Alternately, the
router design could reduce the hardware cost of the com­
parator tree by sharing comparator logic between mul-

Parameter Value Parameter Value
Connections 256 Process 0.5J.lm 3-metal CMOS
Time-constrained packets 256 Signal pins 123
Clock (sorting key) 8 (9) bits Transistors 905, 104
Comparator tree pipeline 2 stages Area 8.1 mm x 8.7 mm
Flit input buffer 10 bytes Power 2.3 watts

(a) Architectural parameters (b) Chip complexity

Table 4: Router specification

tiple leaves of the tree. In Figure 5, this would combine
several leaf units into a single module with a small mem­
ory to store the packets' deadlines and logical arrival
times; the router could sequence through each module's
packets to serialize access to a single comparator at the
base of the tree. This would reduce the number of com­
parators, as well as the loading on the bus to the packet
control modules; currently, the design includes a buffer
tree to provide the necessary fanout from this bus.

5.2 Experiments

Verilog simulations were used to test a single router
chip under a variety of traffic patterns. A preliminary
experiment tests the baseline performance of best-effort
wormhole packets. To study a multi-hop configuration,
the router connects its links in the x and y directions.
The packet proceeds from the injection port to the pos­
itive x link, then travels from the negative x input link
to the positive y direction; after reentering the router
on the negative y link, the packet proceeds to the re­
ception port. In this test, a b byte wormhole packet
incurs an end-to-end latency of 30 + b cycles, where the
link transmits one byte in each cycle. This delay is pro­
portional to packet length, with a small overhead for
synchronizing the arriving bytes, processing the packet
header, and accumulating five-byte chunks for access to
the router's internal bus. In contrast, packet switching
would introduce additional delay to buffer the packet at
each hop in its route.

An additional experiment illustrates how the router
schedules time-constrained packets to satisfy delay and
throughput guarantees, while allowing best-effort traffic
to capitalize on any excess link bandwidth. Figure 7
plots the link bandwidth consumed by best-effort traffic
and each of three tillle-constrained connections with the
following parameters, in units of 20-byte slots:

d Imin
0 8 9
1 5 7
2 3 4

All three connections compete for access to a single net­
work link with horizon parameter h = 0, where each

244

500

400 (i)
()) >. e..
()) 300
.�
.,
'"
"
0 200 ·u
.,
"
c:
0

0 100

0
0 200 400 600 800 1000

Time (clock cycles)

Figure 7: Time-constrained and best-effort service

connection has a continual backlog of traffic. The time­
constrained connections receive service in proportion to
their throughput requirements, since a packet is not el­
igible for service till its logical arrival time. Similarly,
the link transmits each packet by its deadline, with best­
effort flits consuming any remaining link bandwidth.

6 Related Work

This paper complements recent work on support
for real-time communication in parallel machines [1-6].
Several projects have proposed mechanisms to improve
predictability in the wormhole-switched networks com­
mon in modern multicomputers. In the absence of hard­
ware support for priority-based scheduling, application
and operating system software can control end-to-end
performance by regulating the rate of packet injection at
each source node [6]. However, this approach lllust limit
utilization of the communication network to account for
possible contention between packets, even from lower­
priority traffic. This is a particularly important issue
in wormhole networks, since a stalled packet may indi­
rectly block the advancement of other traffic that does
not even use the same links. The underlying router ar­
chitecture can improve predictability by favoring older
packets when assigning virtual channels or arbitrating
between channels on the same physical link [17].

Although these mechanisms reduce variability in end­
to-end latency, more aggressive techniques are necessary
to guarantee performance under high network utiliza­
tion. A router can support multiple classes of traffic,
such as user and system packets, by partitioning traffic
onto different virtual channels, with priority-based ar­
bitration for access to the network links [17]. Flit-level
preemption of low-priority virtual channels can signif­
icantly reduce intrusion on the high-priority packets.
Still, these coarse-grain priorities do not differentiate
between packets with different latency tolerances. With
additional virtual channels, the network has greater flex­
ibility in assigning packet priority, perhaps based on the
end-ta-end delay requirement, and restricting access to
virtual channels reserved for higher-priority traffic [3,4].

Coupled with restrictions on the source injection
rate, these policies can bound end-ta-end packet latency
by limiting the service and blocking times for higher­
priority traffic [2]. Although assigning priorities to vir­
tual channels provides some control over packet schedul­
ing, this ties priority resolution to the number of virtual
channels. The router can support a finer grain of packet
priorities by increasing the number of virtual channels,
at the expense of implementation complexity; extra vir­
tual channels incur the cost of additional flit buffers
and larger virtual channel identifiers, as well as more
complex switching and arbitration logic [20]. Instead of
dedicating virtual channels and flit buffers to each pri­
ority level, a router can increase priority resolution by
adopting a packet-switched design.

The priority-forwarding router chip [5] follows this
approach by employing a 32-bit priority field in small,
8-packet priority queues at each input port. The router
incorporates a priority-inheritance protocol to limit the
effects of priority inversion when a full input buffer lim­
its the transmission of high-priority packets from the
previous node; the input buffer's head packet inher­
its the priority of the highest-priority packet still wait­
ing at the upstream router. In contrast, the real-time
router implements a single, shared output buffer that
holds up to 256 time-constrained packets, with a link­
scheduling and memory reservation model that implic­
itly avoids buffer overflow. By dynamically assigning an
8-bit packet priority at each node, the real-time router
can satisfy a diverse range of end-to-end delay bounds,
while permitting best-effort wormhole traffic to capital­
ize on any excess link bandwidth.

7 Conclusion

Parallel real-time applications impose diverse com­
munication requirements on the underlying intercon­
nection network. The real-time router design supports
these emerging applications by bounding packet delay
for time-constrained traffic, while ensuring good aver-

245

age performance for best-effort traffic. Low-level con­
trol over routing and switching, coupled with fine-grain
arbitration at the network links, enables the router to
effectively mix these two diverse traffic classes. Careful
handling of clock rollover enables the router to support
connections with diverse delay and throughput param­
eters with small packet sorting keys. Sharing sorting
logic and packet buffers amongst the five output ports
permits a single-chip solution that handles up to 256
time-constrained packets simultaneously.

As future work, we are extending the router architec­
ture to enhance performance and flexibility. In particu­
lar, the router can improve link utilization and average
latency by using virtual cut-through switching [5,29] for
time-constrained traffic; this would permit an arriving
packet to proceed directly to its output link if no other
packets have smaller sorting keys. We are also consid­
ering alternate link-scheduling algorithms that would
improve the router's scalability; these algorithms could
include approximate versions of real-time channels, as
well as new schemes with reduced implementation com­
plexity. This would permit the router to efficiently han­
dle a larger number of time-constrained packets.

To complement the Verilog simulations of the router
chip, work is underway to incorporate the real-time
router architecture in a multicomputer network simu­
lator [30]. This simulation environment will enable us
to evaluate the design under larger network configura­
tions and more diverse traffic patterns, while facilitat­
ing direct comparisons to alternate router architectures.
These experiments can also explore the ability of the
chip to serve as a building block for constructing large,
high-speed switches that support the quality-of-service
requirements of real-time and multimedia applications.

Acknowledgements

The authors would like to thank Ashish Mehra, Stu­
art Daniel, and Wu-chang Feng for their comments and
suggestions on the paper. Also, the authors appreci­
ate Stuart Daniel's assistance in using Verilog and the
Epoch Silicon Compiler. The work reported in this pa­
per was supported in part by the National Science Foun­
dation under grant MIP-9203895. Any opinions, find­
ings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessar­
ily reflect the views of NSF.

References

[1] L. R. Welch and K. Toda, "Architectural support for

real-time systems: Issues and trade-offs," in Proc. In­
ternational Workshop on Rcal- Time Computmg Sys­

tems and Applications, December 1994.

[2] M. W. Mutka, " Using rate monotonic scheduling tech­
nology for real-time communications in a wormhole net-

work," in Proe. Workshop on Parallel and Distributed

Real- Time Systems, April 1994.

[3] J.-P. Li and M. W. Mutka, "Priority based real-time

communication for large scale wormhole networks,"

in Proc. International Parallel Processing Symposium,

pp. 433-438, April 1994.

[4] A. Saha, "Simulator for real-time parallel processing
architectures," in Proe. IEEE Annual Simulation Sym­

posium, pp. 74-83, April 1995.

[5] K. Toda, K. Nishida, E. Takahashi, N. Michell, and

Y. Yamaguchi, "Design and implementation of a prior­
ity forwarding router chip for real-time interconnection

networks," International Journal of Mini and Micro­

computers, vol. 17, no. 1, pp. 42-51, 1995.

[6] R. Games, A. Kanevsky, P. Krupp, and 1. Monk, "Real­

time communications scheduling for massively parallel

processors," in Proc. Real- Time Technology and Appli­

cations Symposium, pp. 76-85, May 1995.

[7] R. S. Raji, "Smart networks for control," IEEE Spec­

trum, vol. 31, pp. 49-55, June 1994.

[8] C. M. Aras, J. F. Kurose, D. S. Reeves, and

H. Schulzrinne, "Real-time communication in packet­
switched networks," Proceedings of the IEEE, vol. 82,
pp. 122-139, January 1994.

[9] D. D. Kandlur, K. G. Shin, and D. Ferrari, "Real-time

communication in multi-hop networks," IEEE Trans.

on Parallel and Distributed Systems, vol. 5, pp. 1044-
1056, October 1994.

[10] H. Zhang, "Providing end-to-end performance guaran­

tees using non-work-conserving disciplines," Computer

Communications, vol. 18, pp. 769-781, October 1995.

[11] Y. Ofek and M. Yung, "The integrated MetaNet archi­
tecture: A switch-based multimedia LAN for parallel

computing and real-time traffic," in Proc. IEEE INFO­

COM, pp. 802-811, 1994.

[12] W. J. Dally and C. L. Seitz, "The torus routing chip,"

Journal of Distributed Computing, vol. 1, no. 3, pp. 187-
196, 1986.

[13] R. L. Cruz, "A calculus for network delay, part I: Net­

work elements in isolation," IEEE Trans. Information

T heory, vol. 37, pp. 114-131, January 1991.

[14] Q. Zheng and K. G. Shin, "On the ability of establish­

ing real-time channels in point-to-point packet-switched
networks," IEEE Trans. Communications, pp. 1096-
1105, February /March/ April 1994.

[15] C. L. Liu a.nd J. W. La.yla.nd, "Scheduling a.lgorithms for
multiprogramming in a hard real-time environment,"

Journal of the ACM, vol. 20, pp. 46-61, January 1973.

[16] J. Rexford and K. G. Shin, "Support for multiple classes
of traffic in multicomputer routers," in Proc. Paral­

lel Computer Routing and Communication Workshop,
pp. 116-130, May 1994.

[17] W. Dally, "Virtual-channel flow control," IEEE Trans.

Parallel and Distributed Systems, vol. 3, pp. 194-205,
March 1992.

246

[18] W. J. Dally and C. L. Seitz, "Deadlock-free messa.ge
routing in multiprocessor interconnection networks,"

IEEE Trans. Computers, vol. C-36, no. 5, pp. 547-553,
May 1987.

[19] L. Ni and P. McKinley, "A survey of wormhole rout­
ing techniques in direct networks," IEEE Computer,

pp. 62-76, February 1993.

[20] K. Aoyama and A. Chien, "Cost of adaptivity and vir­

tual lanes in a wormhole router," Journal of VLSI De­

sign, vol. 2, no. 4, pp. 315-333, 1995.

[21] F. A. Tobagi, "Fast packet switch architectures for

broadband integrated services digital networks," Pro­
ceedings of the IEEE, vol. 78, pp. 133-167, Janua.ry

1990.

[22] Q. Zheng, K. G. Shin, and C. Chen, "Real-time com­

munication in ATM," in Proc. Annual Conference on

Local Computer Networks, pp. 156-164, October 1994.

[23] D. P icker and R. D. Fellman, "Scaling and performance
of a priority packet queue for rea.l-time applications," in

Proc. Real- T ime Systems Symposium, pp. 56-62, De­

cember 1994.

[24] H. J. Chao, "A novel architecture for queue manage­

ment in the ATM network," IEEE Journal on Se­

lected Areas in Communications, vol. 9, pp. 1110-1118,
September 1991.

[25J P. E. Boyer, F . M. Guillemin, M. J. Servel, and J.-P.

Coudreuse, "Spacing cells protects and enhances uti­

lization of ATM network links," IEEE Network Maga­

zine, pp. 38-49, September 1992.

[26J E. Wallmeier and T. Worster, "The Spacing Policer, an

a.lgorithm for efficient peak bit rate control in ATM net­
works," in Proe. International Switching Symposium,

pp. 22-26, October 1992.

[27J J. Liebeherr and D. Wrege, "Versatile packet multi­

plexer for quality-of-service networks," in Proc. IEEE

International Symposium on High Performance Dis­

tributed Computing, pp. 148-155, August 1995.

[28] J. Rexford, A. Greenberg, and F. Bonomi, "Hardware­

efficient fair queueing architectures for high-speed net­
works," in Proc. IEEE INFO COM, March 1996.

[29J P. Kermani and L. Kleinrock, "Virtual cut-through:

A new computer communication switching technique,"

Computer Networks, vol. 3, pp. 267-286, September

1979.

[30] J. Rexford, J. DoIter, W. Feng, and K. G. Shin, "P P­

ME SS- SIM: A simulator for evaluating multicomputer
interconnection networks," in Proc. IEEE Annual Sim­

ulation Symposium, pp. 84-93, April 1995.

