CRIP 27, May 21-23, 1995, Ann Arbor, Michigan

An Open Architecture Real-Time Controller

for Machining Processes

Jachyun Park *, Zbigniew J. Pasek T, Yansong Shan ¥,
Yoram Koren °, Kang G. Shin *, and Galip Ulsoy *

The University of Michigan, Ann Arbor, MI 48109

Abstract

This paper presents an open architecture
controller (OAC) for advanced machining and
describes the OAC testbed at the University
of Michigan. Because our OAC is designed for
fully open systems, it does not depend on spe-
cific hardware or software components. This
openness includes software resuability which
enables integration of a wide range of mon-
itoring and control features. Besides open-
ness, our OAC system provides guaranteed
real-time operation, an important require-
ment for advanced manufacturing.

1 Introduction

To develop a next-generation manufacturing
system with flexibility, while minimizing life-
cycle cost for a machine controller, as well
as for developing the control system itself, it
is necessary to define hardware and software
architectures based on an open architecture
concept. In this paper, we present an Open
Architecture Controller (OAC) for machining
systems and the OAC testbed we have been
building up at the University of Michigan.
Previous OAC approaches could be classi-

* Research fellow, Dept. of EECS
T Research fellow, Dept. of MEAM
! Research fellow, Dept. of MEAM
° Professor, Dept. of MEAM

* Professor, Dept. of EECS

§ Professor, Dept. of MEAM

fied into two major groups: one driven by in-
dustry focusing on the compatibility among
commercial products, and the other offering
hardware flexibility and software adaptability
driven by the need of basic research organi-
zations. Although these two approaches are
different, the final goal of developing an OAC
is to provide an open system for manufactur-
ing.

The OSACA (Open System Architecture
for Controls within Automation systems; ES-
PRIT III project 6379) project may be one
of the largest-scale projects for OAC [5, 6], in
which almost all of standardization matters
including networking, application software as
well as hardware, have been considered. The
National Institute of Standards and Tech-
nology (NIST) proposed and used the RCS
(Real-time Control System) reference model
architecture over the past 15 years. Based on
the RCS reference model, the National Center
for Manufacturing Sciences (NCMS) and the
U.S. Air Force co-sponsored the Next Gener-
ation Controller Program (NGC), and Martin
Marietta organized industry requirements [4]
and prepared a specification for an open sys-
tems architecture standard (SOSAS) [3]. The
next step beyond NGC/SOSAS by NIST is
the Enhanced Machine Controller Architec-
ture (ECA) project [7, 8. In the ECA
project, an open machine tool has been imple-
mented based on the NGC/SOSAS and RCS

reference model. Other research projects like

CRIP 27, May 21-23, 1995, Ann Arbor, Michigan

the Chimera project at Carnegie Mellon Uni-
versity [10], the Multiprocessor Database Ar-
chitecture for Real-Time Systems (MDARTS)
at the University of Michigan [2], and the Hi-
erarchical Open Architecture Multi-Processor
Motion Control System (HOAM-CNC) at
the University of British Columbia [1], have
demonstrated a variety of approaches to the
OAC.

Although it is very difficult to form a
universal agreement on the definition of an
open system, basically, vendor-neutrality and
component-integration are thought of as two
fundamental features of an open system.
Vendor-neutrality represents the requirement
“an open system should be designed based
on well-established standards that are inde-
pendent of a single proprietary vendor”. The
component-integration feature represents the
requirement that an open system should be
highly portable and expandable incremen-
tally. Although these two basic requirements
could be accepted widely, each OAC project
usually defines its own specific constraints
and requirements such as portability, interop-
erability, scalability, interchangeability, mod-
ularity, extensibility, reusability, and compat-
ibility.

With respect to application programs, this
OAC definition enables us to integrate any
new requirements for machine control in a
modular manner. For example, if temper-
ature compensation is needed, the system
should be able to integrate existing results
from thermal compensation research (i.e.,
temperature sensors, thermal models, com-
pensation algorithms) into the controller with
minimal effort. Hence, an open system should
have compatibility and interoperability for
vendor-neutral openness, and modularity and
reusability for component-integration.

In addition to the openness requirements,
the OAC must provide guaranteed real-time
performance which is one of the fundamen-
tal features of automated manufacturing sys-

tems. A control task in a manufacturing
system consists of several sub-tasks, such as
sensing the machine status, several levels of
control algorithms, and controlling actuators.
Some of these tasks are executed periodically
while others aperiodically. However, all of
them must meet certain timing constraints.
In a real-time system like a manufacturing
system, monitoring/control becomes mean-
ingless if these time constraints are not met.
However, the issue of meeting real-time con-
straints has not been adequately addressed
in previous research on OAC. Thus, to de-
velop an advanced manufacturing controller,
we must achieve two goals. The first goal is
to build a flexible open system to meet the
need of integrating advanced machine moni-
toring and control technologies in a modular
manner. The second goal is to build a sys-
tem with guaranteed task response times at
different levels of hierarchy and real-time in-
terfaces between a machine tool application
task components in an advanced manufactur-
ing system.

In this paper, we describe our efforts at the
University of Michigan in building an open
architecture real-time controller for manufac-
turing systems, or UMOAC (the University
of Michigan Open Architecture Controller)
for short, that meets the above requirements.
Section 2 describes the hardware configura-
tion of UMOAC, and Section 3 discusses its
software configuration. Section 4 introduces
our laboratory evaluation system (UMOAC-
testbed).

2 Hardware Configura-

tion

The UMOAC (University of Michigan Open
Architecture Controller) is designed based on
two basic concepts: openness to meet the
need of integrating advanced machine mon-

CRIP 27, May 21-23, 1995, Ann Arbor, Michigan

itoring and controls in a modular manner,
and real-time operation to guarantee task re-
sponse times at different levels of the hierar-
chy in an advanced manufacturing system.

The base hardware configuration of
UMOAC is a highly distributed system
in which processing nodes are connected
through a real-time link/bus. This dis-
tributed system enables us to use a range of
hardware configurations. Anything from a
small micro-controller to a medium-size com-
puter can be a processing node in a particular
configuration. However, regardless their size
and functionality, they operate within a
unified software hierarchy and maintain
communication compatibility. To build a
heterogeneous configuration while preserving
vendor-neutrality, no specific hardware plat-
form is defined for the UMOAC. However,
each processing node adopts an industry
standard architecture and components
such as the VMEbus platform. Figure 1
shows a typical example of the UMOAC
configuration. There are three kinds of
processing nodes in this configuration: op-
erator node, real-time computing node, and
real-time control node. The operator node
is usually used for non-real-time tasks such
as programming and non-real-time plant
monitoring. The real-time computing node
deals with real-time control and monitoring
such as real-time data-logging, diagnosis
and scheduling. The real-time control node
performs fine-grain real-time tasks including
servo-level control and data acquisition.

In a distributed system like the UMOAC,
the communication channel between process-
ing nodes plays an important role for real-
time performance as well as its openness.
Although there are several communication
protocols used for manufacturing automation
(e.g., Mini-MAP, and Ethernet), to send pe-
riodic, sporadic, and non-real-time messages
over a single network in a timely manner,

the UMOAC adopts the CAN (Controller

Redl-time OIS/
. Control application”

% Rea-time
.., Control application

Controlled Plant

Figure 1: Hardware configuration

Area Network) [9] as a real-time communi-
cation link between processing nodes. Be-
cause it provides a small worst-case bus ac-
cess latency and a distributed bus acquisi-
tion scheme based on the priority of messages,
when used with a proper scheduling policy, it
provides better performance in meeting real-
time requirements than other existing com-
munication protocols. We proposed a MTS
(Mixed Traffic Scheduler) [12] to support pe-
riodic, sporadic, and non-real-time messages
over a single CAN. Our simulation of real
machine-control tasks has shown MTS to out-
perform DM (Deadline Monotonic) in han-
dling high-speed real-time data.

3 Software Configuration

To enable us to write portable application
programs, which should be completely iso-
lated from the hardware configuration, the
software hierarchy of UMOAC consists of
three major layers: (1) application software
layer, (2) object management layer, and (3)
device driver layer as shown in Figure 2.
The application layer is composed of ap-
plication programs, functional modules, and
abstract machine models. Application pro-
grams are top-level software which includes
the user interface, programming, and mon-
itoring. To make this application program
portable, abstract machine models and highly

CRIP 27, May 21-23, 1995, Ann Arbor, Michigan

‘ Application Software ‘

|
I
B
Application)
Integrator]
[}
2
=
3
Abstract || Abstract || Abstract Function || Function || Function | |
Machine || Machine || Machine Module Module Module !
| | | |
‘ Virtual Device Driver ‘ |
B
'8
stem : g
Cosnyfigurator g
=
&
‘ Real-time Object Manager ‘ g
I =
O
‘ Micro-kernel-based O/S ‘
[[zn
‘ Dewce Driver ‘ ‘ Network Drlver ‘ Tf
'2
‘ k-
Remote Remote '8
I rlver I/O Driver 1/0 Driver Process |/F 'g
Ra)

Figure 2: UMOAC Software hierarchy

modular functional modules are used, which
are independent of hardware configuration.
The functional modules and abstract machine
models are managed by an application inte-
grator, with which functional modules writ-
ten for a specific application program can be
reused for other applications and can also be
extended easily.

An abstract machine model is an abstract
definition which corresponds to a real ma-
chine’s hardware. This abstract machine
model contains a specification of the machine
itself as well as the data acquired at run-time.
The run-time data is managed by the real-
time object manager while ensuring the pre-
defined response time. Since an application
program as well as functional modules inter-
act only with the abstract machine models,
they are isolated from hardware. This isola-
tion enables the modules to maintain modu-

larity and reusability.
The second software layer of the UMOAC,

the object management layer, consists of vir-
tual device driver, system configurator, real-
time object manger, and real-time operat-
ing system. The main role of the system

configurator is a mapping between hardware-
independent application software (including
functional modules and abstract machine
models) and real hardware such as controlled
plants and remote processing modules. If
the controlled plant is connected to the lo-
cal I/O interface hardware, the virtual device
driver is used, of which a hardware-specific
device driver would eventually have an in-
herent interface scheme. This virtual de-
vice driver concept used in the UMOAC pro-
vides interoperability at the hardware level.
If the controlled plant is connected to re-
mote processing modules or any functional
module wanting to use the data from the re-
mote processing module, the system config-
urator uses a network driver for that data.
Because these mappings by the system con-
figurator are also isolated from application
programs, they maximize software modular-
ity and reusability.

The real-time object manager provides sys-
tem services tuned to the domain of object-
oriented machine control applications. These
services extend the micro-kernel operating
system services and include domain-specific
The ob-
ject manager also supports persistence and
configuration definition. The real-time object

scheduling of tasks and resources.

manger is designed on top of a commercially
available real-time operating system which
has a micro-kernel architecture and a POSIX-
compliant interface.

The third software layer of the UMOAC,
the device driver layer, is the only hardware-
dependent part, which is the hardware-
specific implementation of virtual device
driver in object management layer. Because
both local and remote /O drivers provide the
same interface protocol, remote data through

CAN can be handled like local data.

CRIP 27, May 21-23, 1995, Ann Arbor, Michigan

Technology Migration Path

Current System UMOAC(Current) UMOAC(Future)

[RoBoTOOL | [umenc [umoac [umoac |

Commer ci al
Controller

‘ PC-based

Programmed
Feed & Speed i

Requesed
Force

Cutting force

i Programmed

,,,,,,,,,,,

Figure 3: Hardware configuration of testbed

4 Evaluation

An important component of our OAC re-
search is the development of an experimen-
tal testbed in which we can implement and
test openness issues. While multi-axis milling
was chosen as an example application, similar
approaches would be useful to other applica-
tions like robotics.

The current testbed has evolved from the
activities in the University of Michigan CNC
Laboratory, where our research on the next-
generation CNC controllers has been con-
ducted [11]. To effectively perform research
in that area, an open and readily modifiable
control system was needed — these features
were not possessed by any of the commer-
cially available CNC systems.
mental system developed at the University of
Michigan, shown in Figure 3, consists of:

The experi-

e a 6-axis CNC milling machine
e an Intel i486/33MHz computer
e multiple sensors

e multiple sensor interfaces

e commercial CNC controller (Robotool).

Adaptive Control

Error Compensation

* ACC

* Variable Gain AC

* temperatur
* friction
*geometry

Feed l l Position

Interpol ator

* CCW

*Nonlinear Interplator
*Flat-end cutter Interplator
*5-axix realtime Interpolator

I

Spindle Control

Servo Control

Sensor Interface

* Cross-coupling control
* Real-time inertia adjust
* Friction compensation

* tachometers
* encoders
* dynamometers

T |

Feedback Main drive Feedback Drives Sensors Sensors

Figure 4: Testbed software configuration

The system was more open as compared
to commercial CNC controllers, allowing re-
searchers to implement, modify, and then test
various algorithms for servo control, interpo-
lation, adaptive control and error compensa-
tion. The system also allows the users to ac-
cess data from 16 different sensors, includ-
ing tachometers, digital encoders (rotary and
linear), motor current sensors and a spindle
power sensor. All system software was writ-
ten in C. When a new control or compen-
sation algorithm was to be investigated, the
user had to code it in C in a procedure form
and then combine it with the rest of exist-
ing source code necessary to run the machine.
The system can also be configured according
to the current needs by providing access to
existing sensors.

While providing the openness necessary for
research, the experimental system in Figure 4
exhibited a number of drawbacks. Its per-
formance depends on the programmer’s skill;
for example, execution times of the subrou-
tines are a function of the length of the
code. Therefore, execution of critical real-
time tasks cannot be strictly enforced. This
issue becomes even more important as the

computational load increases due to a grow-

CRIP 27, May 21-23, 1995, Ann Arbor, Michigan

Operator Information Database

User Interface

'
I
'
I
I
I
I
I
I
'
|
'
|
| Non-realtime

Monitoring & Control CNC Machine
| SR SR

Supervisory control

Modulel

Process control =

Module

Servo control

Pre-Operation Machining Operation Post-Operation

Figure 5: Testbed software configuration

ing number of involved control routines and
their complexity. Also, change of the control
algorithm was impossible unless the whole
source code was recompiled. Moreover, the
controller based on a single processor, rely-
ing on interrupts, practically excluded appli-
cations that require multitasking.

Functionally, an OAC for multi-axis ma-
chining should provide the multi-level, hier-
archical configuration presented in Figure 5.
The operator is provided with an efficient in-
terface to create and update database infor-
mation as well as monitoring and control rou-
tines. The operator may also acquire infor-
mation from the database and control rou-
tines for diagnostic purposes. The informa-
tion database and the monitoring and control
routines are divided into specific modules,
providing data integrity. The system’s modu-
larity simplifies installation, maintenance and
upgradability of software. Monitoring and
control modules have access to the informa-
tion database, real-time measurements, and
near real-time measurements. The informa-
tion database may also be dynamically up-
dated.

An OAC system to support process and su-
pervisory control modules implies a need to
meet multiple requirements. One important
aspect from the standpoint of real-time op-
erations is the timing constraints. Table 1

Table 1: Machining requirements

Feature Sampling | Function Measurements
Chatter 0.01 - estimate chatter | depth-of-cut
1 msec avoid chatter spindle speed
suppress chatter | acoustic emis.
cutting force
feed
vibrations
Cutting 0.01 - estimate cutting | depth-of-cut
forces 1 msec forces and spindle speed
maintain specs acoustic emis.
cutting force
feed
vibrations
Chip/Burr | 10msec - estimate forma- feed
formation 1 sec tion and spindle speed
maintain cutting force
specs tool wear
depth-of-cut
Cutting 1 sec - estimate feed
tempera- temperature and | tool wear
ture maintain infrared image
spec chip contact
length
Tool wear 1 msec - estimate, depth-of-cut
maintain feed
specified rate, cutting force
compensate acoustic emis.
surface finish
part dimensions
tool geometry
tool vibrations
spindle power
Tool 1 psec - estimate, avoid, acoutic emission
failure 1 msec and detect cutting force
spindle power
tool vibrations
Surface 1 sec - estimate surface | cutting forces

errors

finish and
tolerances,

maintain specs

tool deflections
tool wear

feed

cutting speed
cutting

temperature

CRIP 27, May 21-23, 1995, Ann Arbor, Michigan

summarizes typical machining requirements.

The main issue in developing controllers for
machining processes is the relative complexity
of the system. While research on control com-
ponents involved in such applications, such as
servo or process controllers, is well developed,
most of the research results are not imple-
mentable, due mainly to the lack of attention
paid to the interactions between the various
processes. The higher-level, hierarchical, su-
pervisory control is needed to integrate and
coordinate control modules. The structure of
such a controller is shown in Figure 5.

The servo-level control refers here to the
dynamics, hardware and controls of the basic
motions of the machine tool and its auxiliary
equipment, such as, for example, motor ve-
locity and position control. The process level
includes dynamics, hardware and controls in-
volving interactions between the machine tool
and the workpiece. Finally, the supervisory
level corresponds to the control architecture
capable of intelligent integration and coordi-
nation of involved modules at all levels by in-
telligently selecting appropriate process con-
trol strategies.

Supervisory control is a promising struc-
ture for implementing multiple process con-
trol strategies. It has been implemented in
various forms; most of these controllers, how-
ever, were constructed in an ad hoc manner
to solve a single problem since no rigorous
controller design methodology exists.

For example, a simple face milling opera-
tion involves a number of process issues, such
as occurrence of chatter, tool wear, surface
finish, etc. To obtain satisfactory quality of
the workpiece the following process control
modules have to be used: the chatter mod-
ule detects the onset of chatter and adjusts
the operating point in the process input space
to assure cutting process stability. The force
control module manipulates the feed-rate to
maximize the productivity given tool wear

rate constraints. The tool wear rate con-

straint module provides the force controller
with the current tool wear rate constraint val-
ues. The surface finish controller adjusts the
feed-rate to maximize the surface finish qual-
ity. The supervisory controller integrates and
coordinates the control modules to complete
the operation. If an unstable depth-of-cut
is attempted during the roughing pass, the
force and chatter modules have to be coordi-
nated, since their actions may contradict each
other. Similarly, the actions of the surface
finish module and force controller have to be
coordinated during the finishing pass.
Additionally, a number of machine and
process constraint modules have to be inte-
grated within the supervisory control. Also, a
database structure is needed for maintenance
of machine data, model data, heuristic rules,
and systematic tracking of discrete events.

5 Conclusion

Although this project is still in a prelimi-
nary stage, our approach to an open architec-
ture control of machining systems has already
had some major impact. First, our system
is fully open, because it does not depend on
any specific hardware or software component.
Second, our system provides guaranteed real-
time operation, an important requirement for
advanced manufacturing. Third, our system
can integrate a wide range of monitoring or
control features in a modular manner. We
will fully test this system on a 6-axis milling
machine, and other machines at The Univer-
sity of Michigan.

Acknowledgments

The authors would like to thank L. Zhou, S.
Jee, and R. Landers for their assistance in
building our evaluation system.

CRIP 27, May 21-23, 1995, Ann Arbor, Michigan

References

1]

Y. Altintas and W. K. Munasinghe, “A
hierarchical open-architecture CNC sys-
tem for machine tools,” Annals of the

CIRP, vol. 43, no. 1, pp. 349-354, 1994.

V. B. Lortz and K. G. Shin, “MDARTS:
A multiprocessor database architecture
for real-time systems CSE-TR-155-93.”
Technical report, The University of
Michigan, EECS, Ann Arbor MI 48109-
2122, March 1993.

Next Generation Controller Specification
for an Open Systems Architecture Stan-
dard, Manufacturing Technology Direc-
torate Wright Laboratory,
1994. WI-TR-94-8033.

September

Neat Generation Workstation/Machine
Controller (NGC) Requirements Defini-
tion Document (RDD), 1989.

G. Pritschow, “Automation technology -
on the way to an open system architec-
ture,” Robotics & Computer-Integrated
Manufacturing, vol. 7, no. 1/2, pp. 103—
111, 1990.

G. Pritschow, C. Daniel, G. Junghans,
and W. Sperling, “Open system con-
trollers - a challenge for the future of
the machine tool industry,” Annals of
the CIRP, vol. 42, no. 1, pp. 449-452,
1993.

F. M. Proctor, B. Damazo, C. Yang,
and S. Frechette, “Open architecture for
machine control. NISTIR-5307,” Techni-
cal report, National Institute of Stan-

dards and Technology, Gaithersburg,
MD 20899, December 1993.

F. M. Proctor and J. Michaloski, “En-

hanced machine controller architecture

[11]

[12]

overview. NISTIR-5331,” Technical re-
port, National Institute of Standards
and Technology, Gaithersburg, MD
20899, December 1993.

CAN Specification Version 2.0, Robert
Bosch GmbH, 1991.

D. B. Stewart, R. A. Volpe,
P. K. Khosla, “Design of dynamically
reconfigurable real-time software using
port-based objects. CMU-RI-TR-93-11,”
Technical report, Carnegie Mellon Uni-

versity, Pittsburgh, PA 15213, July 1993.

and

A. G. Ulsoy and Y. Koren, “Control
of machining processes,” Journal of Dy-
namic Systems, Measurement and Con-
trol, vol. 115, no. 2, pp. 301-308, June
1993.

K. M. Zuberi and K. G. Shin, “Non-
preeemptive scheduling of messages on
controller area networks for real-time
control applications,” in Proc. 1995
IEEFE Real-Time Technology and Appli-
cations Symp., Chicago, U.S.A, 1995. in

press.

