
616 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 10, OCTOBER 1997

Structuring Communication Software
for Quality-of-Service Guarantees

Ashish Mehra, Member, IEEE, Atri Indiresan, Member, IEEE Computer Society,
and Kang G. Shin, Fellow, IEEE

Abstract —A growing number of real-time applications require quality-of-service (QoS) guarantees from the underlying
communication subsystem. The communication subsystem (host and network) must support real-time communication services to
provide the required QoS of these applications. In this paper, we propose architectural mechanisms for structuring host
communication software to provide QoS guarantees. In particular, we present and evaluate a QoS-sensitive communication
subsystem architecture for end hosts that provides real-time communication support for generic network hardware. This architecture
provides services for managing communication resources for guaranteed-QoS (real-time) connections, such as admission control,
traffic enforcement, buffer management, and CPU and link scheduling. The design of the architecture is based on three key goals:
maintenance of QoS-guarantees on a per-connection basis, overload protection between established connections, and fairness in
delivered performance to best-effort traffic.

Using this architecture we implement real-time channels, a paradigm for real-time communication services in packet-switched
networks. The proposed architecture features a process-per-channel model that associates a channel handler with each established
channel. The model employed for handler execution is one of “cooperative” preemption, where an executing handler yields the CPU
to a waiting higher-priority handler at well-defined preemption points. The architecture provides several configurable policies for
protocol processing and overload protection. We present extensions to the admission control procedure for real-time channels to
account for cooperative preemption and overlap between protocol processing and link transmission at a sending host. We evaluate
the implementation to demonstrate the efficacy with which the architecture maintains QoS guarantees on outgoing traffic while
adhering to the stated design goals. The evaluation also demonstrates the need for specific features and policies provided in the
architecture. In subsequent work, we have refined this architecture and used it to realize a full-fledged guaranteed-QoS
communication service that performs QoS-sensitive resource management for outgoing as well as incoming traffic.

Index Terms —Real-time communication, traffic enforcement, QoS-sensitive resource management, CPU, and link scheduling.

—————————— ✦ ——————————

1 INTRODUCTION

HE advent of high-speed networks has generated an in-
creasing demand for a new class of distributed applica-

tions that require quality-of-service (QoS) guarantees from
the underlying network. QoS guarantees may be specified in
terms of parameters such as the end-to-end delay, delay jitter,
and bandwidth delivered on each connection; additional re-
quirements regarding packet loss and in-order delivery can
also be specified. Examples of such applications include dis-
tributed multimedia applications (e.g., video conferencing,
video-on-demand, digital libraries) and distributed real-time
command/control systems. To support these applications,
the communication subsystem in end hosts and the network
must be designed to provide per-connection QoS guarantees.
Assuming that the network provides appropriate support to
establish and maintain guaranteed-QoS connections, we fo-
cus on the design of the host communication subsystem to
maintain QoS guarantees.

Consider the problem of servicing several guaranteed-
QoS and best-effort connections engaged in network in-
put/output at a host. The data to be transmitted over each
connection resides either in an input device (such as a
frame-grabber) or in host memory; the computation sub-
system prepares outgoing data in a QoS-sensitive fashion
before handing it to the communication subsystem. Each
guaranteed-QoS connection has traffic-flow semantics of
unidirectional data flow, in-order message delivery, and
unreliable data transfer.

Protocol processing for large data transfers, common in
multimedia applications, can be quite expensive. Resource
management policies geared towards statistical fairness
and/or time-sharing can introduce excessive interference
between different connections, thus degrading the deliv-
ered QoS on individual connections. Since the local delay
bound at a node may be fairly tight, the unpredictability
and excessive delays due to interference between different
connections may even result in QoS violations. This per-
formance degradation can be eliminated by designing the
communication subsystem to provide: 1) maintenance of
QoS guarantees, 2) overload protection via per-connection
traffic enforcement, and 3) fairness to best-effort traffic.
These requirements together ensure that per-connection
QoS guarantees are maintained as the number of connec-
tions or per-connection traffic load increases.

0098-5589/97/$10.00 © 1997 IEEE

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

• A. Mehra is with the IBM Thomas J. Watson Research Center, Hawthorne,
NY 10532. E-mail: mehraa@watson.ibm.com.

• A. Indiresan is with Cisco Systems, San Jose, CA. E-mail: atri@cisco.com.
• K.G. Shin is with the Real-Time Computing Laboratory, Department of

Electrical Engineering and Computer Science, University of Michigan,
Ann Arbor, MI 48109. E-mail: kgshin@eecs.umich.edu.

Manuscript received 31 Jan. 1997.
Recommended for acceptance by S.H. Son.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 105517.

T

MEHRA ET AL.: STRUCTURING COMMUNICATION SOFTWARE FOR QUALITY-OF-SERVICE GUARANTEES 617

In this paper, we propose and evaluate a QoS-sensitive
communication subsystem architecture for guaranteed-QoS
connections. Our focus is on the architectural mechanisms
used within the communication subsystem to satisfy the
QoS requirements of all connections, without undue degra-
dation in performance of best-effort traffic (with no QoS
guarantees). While the proposed architecture is applicable
to other proposals for guaranteed-QoS connections [1], [2],
we focus on real-time channels, a paradigm for guaranteed-
QoS communication services in packet-switched networks
[3], [4]; for this work we use the model proposed and ana-
lyzed in [4].

The proposed architecture features a process-per-channel
model for protocol processing on each channel, coordinated
by a unique channel handler created on successful estab-
lishment of the channel. While the service within a channel
is FIFO, QoS guarantees on multiple channels are provided
via appropriate CPU scheduling of channel handlers and
link scheduling of packet transmissions. Traffic isolation
between channels is facilitated via per-channel traffic en-
forcement and interaction between the CPU and link
schedulers. Channels violating their traffic specification are
prevented from consuming processing and link capacity
either by blocking the execution or lowering the priority of
the corresponding handlers. Protocol processing can be
work-conserving or non-work-conserving, with best-effort
traffic given processing and transmission priority over
“work ahead” real-time traffic. The architectural framework
adopted utilizes an abstraction of the underlying communi-
cation subsystem in terms of various processing costs,
overheads, and policies, which are used for admission con-
trol [5] and runtime resource management.

We have implemented the proposed architecture using a
communication executive derived from x-kernel 3.1 [6] that
exercises complete control over a Motorola 68040 CPU. This
configuration avoids any interference from computation or
other operating system activities on the host, allowing us to
focus on the communication subsystem. We evaluate the
proposed architecture under varying degrees of traffic load,
and demonstrate in isolating real-time channels from each
other and from best-effort traffic. the efficacy with which it
maintains QoS guarantees on real-time channels and pro-
vides fair performance for best-effort traffic, even in the
presence of ill-behaved real-time channels.

While the proposed architecture is designed to handle
both incoming and outgoing traffic, this paper focuses pri-
marily on runtime communication resource management
for outgoing traffic. The issues involved in QoS-sensitive
handling of incoming traffic and the associated admission
control extensions are presented in [7], but are beyond the
scope of this paper. We note, however, that the proposed
architecture facilitates provision of per-connection QoS
guarantees while preventing receive livelock [8]. Based on
the proposed architecture and admission control exten-
sions, we have designed, implemented, and evaluated a
full-fledged guaranteed-QoS communication service on
Open Software Foundation’s Mach MK/x-kernel frame-
work in the context of the ARMADA project [9]. Details of
resource management for outgoing and incoming traffic in
this service are provided in [10].

For end-to-end guarantees, resource management within
the communication subsystem must be integrated with that
for applications. The architecture proposed and analyzed in
this paper is directly applicable if a portion of the host
processing capacity can be reserved for communication-
related activities [11], [12]. The proposed architectural ex-
tensions can be realized as a server with appropriate capac-
ity reserves and/or execution priority. Our implementation
is indeed such a server executing in a standalone configu-
ration. More importantly, our approach decouples protocol
processing priority from that of the application. We believe
that the protocol processing priority of a connection must
be derived from the QoS requirements, traffic characteris-
tics, and runtime communication behavior of the applica-
tion on that connection.

We note that the proposed architecture is also applicable
to application-level framing [13] and user-level protocol
processing architectures explored in recent efforts [14], [15],
[16] to improve data transfer throughput in high-speed
networks. In our design approach we have not made any
specific assumptions about the location of the protocol
stack, which could reside in the kernel or in user space. Ar-
chitectural features such as CPU scheduling of channel
handlers and cooperative preemption can be utilized irre-
spective of the address space and protection domain. With
user-level protocol processing, however, allocation of
communication resources is coupled directly with alloca-
tion of computation resources, and as such the admission
control and runtime resource management must be more
comprehensive. Regardless of the location of the protocol
stack, realization of QoS guarantees in practice necessitates
architectural mechanisms and extensions similar in nature
to the ones considered in this paper. The issues and mecha-
nisms for integrating the proposed architecture with QoS-
sensitive application scheduling [17], [18], [19] and/or
processor capacity reserves will be addressed in a forth-
coming paper.

The architectural framework and methodology adopted in
this paper can be applied to other host platforms and net-
working technologies. It is important to note that provision of
QoS guarantees is platform specific; specific instances of this
architecture depend on the CPU and network capacities of a
platform. Implementing this architecture requires that the
host communication subsystem be parameterized accurately
to capture overheads and processing costs that comprise the
abstraction of the underlying communication subsystem. The
admission control extensions and runtime management sup-
port can then be retargeted for a given host platform and/or
networking technology. We are addressing the issues of
portability and accurate parameterization of QoS-sensitive
communication subsystems separately [20]. While we have
implemented the architecture on an x-kernel platform, the
architecture and the implementation do not utilize any fea-
tures specific to this platform. The underlying resource man-
agement policies can be supported on any operating system
platform.

The rest of the paper is organized as follows. Section 2
discusses architectural requirements for guaranteed-QoS
communication and provides a brief description of real-
time channels. Section 3 presents a QoS-sensitive communi-

618 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 10, OCTOBER 1997

cation subsystem architecture realizing the requirements
outlined in Section 4, and Section 5 describes its imple-
mentation. Section 6 experimentally evaluates the efficacy
of the proposed architecture. Section 6 discusses related
work, and Section 7 concludes the paper.

2 ARCHITECTURAL REQUIREMENTS FOR
GUARANTEED-QOS COMMUNICATION

For guaranteed-QoS communication, we consider unidirec-
tional data transfer, from source to sink via intermediate
nodes, with data being delivered at the sink in the order in
which it is generated at the source. Corrupted, delayed, or
lost data is of little value; with a continuous flow of time-
sensitive data, there is insufficient time for error recovery.
Thus, we consider data transfer with unreliable-datagram
semantics with no acknowledgments and retransmissions.
To provide per-connection QoS guarantees, host communi-
cation resources must be managed in a QoS-sensitive fash-
ion, i.e., according to the relative importance of the connec-
tions requesting service. Host communication resources
include CPU bandwidth for protocol processing, link
bandwidth for packet transmissions, and buffer space.

There are two related aspects to provision of guaranteed-
QoS communication [1]: traffic specification and resource
management. When requesting this service, an application
must specify its traffic characteristics and QoS require-
ments. Since network resources (buffers, processing capac-
ity, link bandwidth) are finite, the communication subsys-
tem and the network must perform admission control to
provide QoS guarantees. As part of admission control tests,
the resources required to satisfy the application’s request
are computed based on the specified worst-case traffic, and
the request accepted if sufficient resources can be reserved
for it. Once the application’s request has been accepted, the
communication subsystem and the network maintain QoS
guarantees via resource management and traffic enforce-
ment policies. When the application no longer needs guar-
anteed-QoS service, all resources allocated to it are released
by the network and the communication subsystems at the
source and destination hosts.

Fig. 1a illustrates a generic software architecture for
guaranteed-QoS communication services at the host. The
components constituting this architecture are briefly dis-
cussed below.

Application Programming Interface (API). The API must
export routines that can be used to set up and teardown
guaranteed-QoS connections, and perform data transfer on
these connections.

Signaling and Admission Control. A signaling protocol is
required to establish/tear down guaranteed-QoS connec-
tions across the communicating hosts, possibly via multiple
network nodes. The communication subsystem must keep
track of communication resources, perform admission con-
trol on new connection requests, and establish connection
state to store connection specific information.

Network Data Transport. Protocols are needed for unidi-
rectional reliable and unreliable data transfers, including
fragmentation (reassembly) of application data into smaller
units (i.e., packets) for network transmission (reception).

Traffic Enforcement. Traffic enforcement forces an applica-
tion to conform to its traffic specification and provide over-
load protection between established connections. This is re-
quired at the session level, and may be required at the link
level depending on the nature of the traffic violation; link
level traffic enforcement may be required at receiving hosts.

Link Access Scheduling and Link Abstraction. Link band-
width must be managed such that all active connections
receive their promised QoS. This necessitates abstracting
the link in terms of transmission delay and bandwidth, and
scheduling all outgoing packets for network access. The
minimum requirement for provision of QoS guarantees is
that packet transmission time on the link be bounded and
predictable.

Assuming support for signaling, our primary focus is on
the components involved in data transfer, namely, traffic
enforcement, protocol processing and link transmission. In
particular, we study architectural mechanisms for structuring
host communication software to provide QoS guarantees.

2.1 Software Structure for QoS-Sensitive Data
Transport

In Fig. 1b, an application presents the API with data
(messages) to be transported on a guaranteed-QoS connec-
tion. The API must allocate buffers for this data and queue
it appropriately. Data that is conformant (as per the traffic
specification) is forwarded for protocol processing and
transmission.

Maintenance of Per-Connection QoS Guarantees. Pro-
tocol processing involves, at the very least, fragmentation of
application messages, including transport and network
layer encapsulation, into packets with length smaller than a
certain maximum (typically the MTU of the attached net-
work). Additional computationally intensive services such
as coding, compression, or checksums may also be per-
formed during protocol processing. QoS-sensitive alloca-
tion of processing bandwidth necessitates multiplexing of
the CPU amongst active connections under control of the
CPU scheduler, which must provide deadline-based or pri-
ority-based policies for scheduling protocol processing on
individual connections.

Nonpreemptive protocol processing on a connection im-
plies that the CPU can be reallocated to another connection
only after processing an entire message, resulting in a
coarser temporal grain of multiplexing and making admis-
sion control less effective. More importantly, admission
control must consider the largest possible message size
(maximum number of bytes presented by the application in
one request) across all connections, including best-effort
traffic. While maximum message size for guaranteed-QoS
connections can be derived from application-level attributes
such as frame size for multimedia applications, the same
for best-effort traffic may not be known a priori. Accord-
ingly, mechanisms to suspend and resume protocol proc-
essing on a connection are needed. Protocol processing on a
connection may also need to be suspended if there are no
packet buffers available for that connection.

The packets generated via protocol processing cannot be
directly transmitted on the link as that would result in FIFO
(i.e., QoS-insensitive) consumption of link bandwidth. In-
stead, they are forwarded to the link scheduler, which must

MEHRA ET AL.: STRUCTURING COMMUNICATION SOFTWARE FOR QUALITY-OF-SERVICE GUARANTEES 619

provide QoS-sensitive policies for scheduling packet
transmissions. The link scheduler selects a packet and initi-
ates packet transmission on the network adapter. Notifica-
tion of packet transmission completion is relayed to the link
scheduler so that another packet can be transmitted. The
link scheduler must signal the CPU scheduler to resume
protocol processing on a connection that was suspended
earlier due to shortage of packet buffers.

Overload Protection via Per-Connection Traffic. En-
forcement . As mentioned earlier, only conformant data is
forwarded for protocol processing and transmission. This is
necessary since QoS guarantees are based on a connection’s
traffic specification; a connection violating its traffic specifi-
cation should not be allowed to consume communication
resources over and above those reserved for it. Traffic specifi-
cation violations on one connection should not affect QoS
guarantees on other connections and the performance deliv-
ered to best-effort traffic. Accordingly, the communication
subsystem must police per-connection traffic; in general, each
parameter constituting the traffic specification (e.g., rate,
burst length) must be policed individually. An important
issue is the handling of nonconformant traffic, which could
be buffered (shaped) until it is conformant, provided with
degraded QoS, treated as best-effort traffic, or dropped alto-
gether. Under certain situations, such as buffer overflows, it
may be necessary to block the application until buffer space
becomes available, although this may interfere with the tim-
ing behavior of the application. The most appropriate policy,
therefore, is application-dependent.

Buffering nonconformant traffic until it becomes con-
formant makes protocol processing nonwork-conserving
since the CPU idles even when there is work available; the
above discussion corresponds to this option. Alternately,
protocol processing can be work-conserving, with CPU
scheduling mechanisms ensuring QoS-sensitive allocation

of CPU bandwidth to connections. Work-conserving proto-
col processing can potentially improve CPU utilization,
since the CPU does not idle when there is work available.
While the unused capacity can be utilized to execute other
best-effort activities (such as background computations),
one can also utilize this CPU bandwidth by processing non-
conformant traffic, if any, assuming there is no pending
best-effort traffic. This can free up CPU processing capacity
for subsequent messages. In the absence of best-effort traf-
fic, work-conserving protocol processing can also improve
the average QoS delivered to individual connections, espe-
cially if link scheduling is work-conserving.

Fairness to Best-Effort Traffic. Best-effort traffic in-
cludes data transported by conventional protocols such as
TCP and UDP, and signaling for guaranteed-QoS connec-
tions. Best-effort traffic should not be unduly penalized by
nonconformant real-time traffic, especially under work-
conserving processing.

2.2 Real-Time Channels: A Model for Guaranteed-
QoS Communication

Several models have been proposed for guaranteed-QoS
communication in packet-switched networks [1]. While the
architectural mechanisms proposed in this paper are appli-
cable to most of the proposed models, we focus on real-time
channels [4]. A real-time channel is a simplex, fixed-route,
virtual connection between a source and destination host,
with sequenced messages and associated performance
guarantees on message delivery. It, therefore, conforms to
the connection semantics mentioned earlier.

Traffic and QoS Specification. Traffic generation on
real-time channels is based on a linear bounded arrival process
[21], [22] characterized by three parameters: maximum
message size (Mmax bytes), maximum message rate (Rmax

messages/sec), and maximum burst size (Bmax messages).

(a) (b)

Fig. 1. Desired software architecture. (a) overall architecture; (b) protocol processing and transmission.

620 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 10, OCTOBER 1997

The notion of logical arrival time is used to enforce a mini-

mum separation I Rmin
max

1
 between messages on the

same real-time channel. This ensures that a channel does
not use more resources than it reserved at the expense of
other channels. The QoS on a real-time channel is specified
as the desired deterministic, worst-case bound on the end-
to-end delay experienced by a message. See [4] for more
details.

Resource Management. Admission control for real-time
channels is provided by Algorithm D_order [4], which uses
fixed-priority scheduling for computing the worst-case de-
lay experienced by a channel at a link. When a channel is to
be established at a link, the worst-case response time for a
message (when the message completes transmission on the
link) on this channel is estimated based on nonpreemptive
fixed-priority scheduling of packet transmissions. The total
response time, which is the sum of the response times over
all the links on the route of the channel, is checked against
the maximum permissible message delay and the channel
established only if the latter is greater. A local delay bound
is derived from the worse-case response time and the speci-
fied end-to-end delay bound. Runtime link scheduling, on
the other hand, is governed by a multi-class variation of the
earliest-deadline-first (EDF) policy [23].

2.3 Performance Related Considerations
To provide deterministic QoS guarantees on communication,
all processing costs and overheads involved in managing and
using resources must be accounted for. Processing costs in-
clude the time required to process and transmit a message,
while the overheads include preemption costs such as con-
text switches and cache misses, costs of accessing ordered
data structures, and handling of network interrupts. It is im-
portant to keep the overheads low and predictable (low vari-
ability) so that reasonable worst-case estimates can be ob-
tained. An important performance metric is scalability, i.e.,
the number of guaranteed-QoS connections that can be serv-
iced at the host. Resource management policies must maxi-
mize the number of connections accepted for service. In ad-
dition to processing costs and implementation overheads,
factors that affect admissibility include the relative band-
widths of the CPU and link and any coupling between CPU
and link bandwidth allocation. In a recent paper [5], we have
studied the extent to which these factors affect admissibility
in the context of real-time channels.

3 A QOS-SENSITIVE COMMUNICATION SUBSYSTEM
ARCHITECTURE

In the process-per-message model [24], a process or thread
shepherds a message through the protocol stack. Besides
eliminating extraneous context switches encountered in the
process-per-protocol model [24], it also facilitates protocol
processing to be scheduled according to a variety of poli-
cies, as opposed to the software-interrupt level processing
in BSD Unix. However, the process-per-message model
introduces additional complexity for supporting per-
channel QoS guarantees.

Creating a distinct thread to handle each message makes
the number of active threads a function of the number of
messages awaiting protocol processing on each channel.
Not only does this consume kernel resources (such as proc-
ess control blocks and kernel stacks), but it also increases
scheduling overheads which are typically a function of the
number of runnable threads in dynamic scheduling envi-
ronments. More importantly, with a process-per-message
model, it is relatively harder to maintain channel semantics,
provide QoS guarantees, and perform per-channel traffic
policing. For example, bursts on a channel get translated
into “bursts” of processes in the scheduling queues, making
it harder to police ill-behaved channels and ensure fairness
to best-effort traffic. Further, scheduling overhead becomes
unpredictable, making worst-case estimates either overly
conservative or impossible to provide.

Since QoS guarantees are specified on a per-channel ba-
sis, it suffices to have a single thread coordinate access to
resources for all messages on a given channel. We employ a
process-per-channel model, which is a QoS-sensitive exten-
sion of the process-per-connection model [24]. In the process-
per-channel model, protocol processing on each channel is
coordinated by a unique channel handler, a lightweight
thread created on successful establishment of the channel.
With unique per-channel handlers, CPU scheduling over-
head is only a function of the number of active channels,
those with messages waiting to be transported. Since the
number of established channels, and hence the number of
active channels, varies much more slowly compared to the
number of messages outstanding on all active channels,
CPU scheduling overhead is significantly more predictable.
As we discuss later, a process-per-channel model also fa-
cilitates per-channel traffic enforcement. Further, since it
reduces context switches and scheduling overheads, this
model is likely to provide good performance to connection-
oriented best-effort traffic.

Fig. 2 depicts the key components of the proposed ar-
chitecture at the source (transmitting) and destination
(receiving) hosts; only the components involved in data
transfer are illustrated. Associated with each channel is a
message queue, a FIFO queue of messages to be processed by
the channel handler (at the source host) or to be received by
the application (at the destination host). Each channel also
has associated with it a packet queue, a FIFO queue of pack-
ets waiting to be transmitted by the link scheduler (at the
source host) or to be reassembled by the channel handler (at
the destination host).

Transmission-Side Processing. In Fig. 2a, invocation of
message transmission transfers control to the API. After
traffic enforcement (traffic shaping and deadline assign-
ment), the message is enqueued onto the corresponding
channel’s message queue for subsequent processing by the
channel handler. Based on channel type, the channel han-
dler is assigned to one of three CPU run queues for execu-
tion (described in Section 3.1). It executes in an infinite loop,
dequeueing messages from the message queue and per-
forming protocol processing (including fragmentation). The
packets thus generated are inserted into the channel packet
queue and into one of three (outbound) link packet queues for
the corresponding link, based on channel type and traffic
generation, to be transmitted by the link scheduler.

MEHRA ET AL.: STRUCTURING COMMUNICATION SOFTWARE FOR QUALITY-OF-SERVICE GUARANTEES 621

Reception-Side Processing. In Fig. 2b, a received packet is
demultiplexed to the corresponding channel’s packet
queue, for subsequent processing and reassembly. As in
transmission-side processing, channel handlers are as-
signed to one of three CPU run queues for execution, and
execute in an infinite loop, waiting for packets to arrive in
the channel packet queue. Packets in the packet queue are
processed and transferred to the channel’s reassembly
queue. Once the last packet of a message arrives, the chan-
nel handler completes message reassembly and inserts the
message into the corresponding message queue. The appli-
cation retrieves the message from the message queue by
invoking the API’s receive routine.

At intermediate nodes, the link scheduler relays arriving
packets to the next node along the route. In the following
discussion, we focus on transmission-side processing at the
sending host. Much of this discussion is also applicable to
reception-side processing. The issues involved in QoS-
sensitive handling of incoming traffic are highlighted in [7],
and implementation of the receive-side architecture de-
scribed in [10].

3.1 Salient Features
Fig. 3a illustrates a portion of the state associated with a
channel at the host upon successful establishment. In addi-
tion to application requirements, channel state includes
parameters associated with admission control, data struc-
tures associated with buffer management, and attributes
associated with protocol processing. Each channel is as-
signed a priority relative to other channels, as determined
by the admission control procedure. The local delay bound
computed during admission control at the host is used to
compute deadlines of individual messages. Each handler is
associated with a type, and execution deadline or priority,
and execution status (runnable, blocked, etc.). In addition,

two semaphores are allocated to each channel handler, one
to synchronize with message insertions into the channel’s
message queue (the message queue semaphore), and the other
to synchronize with availability of buffer space in the chan-
nel’s packet queue (the packet queue semaphore).

Channel handlers are broadly classified into two types,
best-effort and real-time. A best-effort handler is one that
processes messages on a best-effort channel. Real-time han-
dlers are further classified as current real-time and early
real-time. A current real-time handler is one that processes
on-time messages (obeying the channel’s rate specification),
while an early real-time handler is one that processes early
messages (violating the channel’s rate specification).

Fig. 3b shows the execution profile of a channel handler
at the source host. As long as messages are available, the
handler executes in an infinite loop processing messages
one at a time. When initialized, it simply waits for messages
to process from the message queue. Once a message be-
comes available, the handler dequeues the message and
inherits its deadline. If the message is early, the handler
computes the time until the message will become current
and suspends execution for that duration. If the message is
current, the handler initiates protocol processing of the
message. After creating each packet, the handler checks for
space in the packet queue (via the packet queue sema-
phore); it is automatically blocked if space is not available
and woken up when space becomes available.

The packets created by the handler are enqueued onto
the channel’s packet queue, and if the queue was previ-
ously empty, the link packet queues are also updated to
reflect that this channel has packets to transmit. That is,
only the head packet from the channel’s packet queue re-
sides in the ordered link packet queues at any given time.
When a packet from this channel completes transmission,
another packet is transferred from the channel packet

(a) (b)

Fig. 2. Proposed communication subsystem architecture. (a) source host; (b) destination host.

622 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 10, OCTOBER 1997

queue to the link packet queues. This design incurs a worst-
case packet enqueueing overhead proportional to the num-
ber of active channels, instead of the total number of pack-
ets outstanding on all active channels. The overhead of
managing per-channel packet queues is, therefore, minimal,
assuming that the device driver can classify a packet (i.e.,
identify the corresponding channel packet queue) without
any extra overhead. This is true in our architecture since
only one packet is kept outstanding on the network
adapter. Note that our approach is similar in flavor to Ro-
tating-Priority-Queues [25], with the service priority of each
channel queue determined dynamically from the deadline
of the head packet of the corresponding channel. The pre-
emption model employed for handler execution is one of
cooperative preemption; the currently-executing handler re-
linquishes the CPU to a waiting higher priority handler
after processing a block of packets, as explained below.

While the above suffices for nonwork-conserving proto-
col processing, a mechanism is needed to continue handler
execution in the case of work-conserving protocol process-
ing. Accordingly, in addition to blocking the handler as
before, a channel proxy is created on behalf of the handler. A
channel proxy is a thread that simply signals the (blocked)
channel handler to resume execution. It competes for CPU
access with other channel proxies in the order of logical
arrival time, and exits immediately if the handler has al-

ready woken up. This mechanism ensures that the handler
is made runnable if the channel proxy obtains access to the
CPU before the handler becomes current. Note that an early
handler must still relinquish the CPU to a waiting handler
that is already current.

Maintenance of QoS Guarantees. Per-channel QoS
guarantees are provided via appropriate preemptive
scheduling of channel handlers and nonpreemptive sched-
uling of packet transmissions. While CPU scheduling can
be priority-based (using relative channel priorities), we
consider deadline-based scheduling for channel handlers
and proxies. Execution deadline of a channel handler is
inherited dynamically from the deadline of the message to
be processed. Execution deadline of a channel proxy is de-
rived from the logical arrival time of the message to be
processed. Channel handlers are assigned to one of two run
queues based on their type (best-effort or real-time), while
channel proxies (representing early real-time traffic) are
assigned to a separate run queue. The relative priority as-
signment for handler run queues is such that on-time real-
time traffic gets the highest protocol processing priority,
followed by best-effort traffic and early real-time traffic in
that order.

Provision of QoS guarantees necessitates bounded de-
lays in obtaining the CPU for protocol processing. As
shown in [5], immediate preemption of an executing lower

(a) (b)

Fig. 3. Channel state and handler execution profile. (a) channel state at host; (b) handler execution profile.

MEHRA ET AL.: STRUCTURING COMMUNICATION SOFTWARE FOR QUALITY-OF-SERVICE GUARANTEES 623

priority handler results in significant overheads due to
context switches and cache misses; channel admissibility is
significantly improved if preemption overheads are amor-
tized over the processing of several packets. The maximum
number of packets processed in a block is a system pa-
rameter determined via experimentation on a given host
architecture. Cooperative preemption provides a reasonable
mechanism to bound CPU access delays while improving
utilization, especially if all handlers execute within a single
(kernel) address space.

Link bandwidth is managed via multi-class nonpreemp-
tive EDF scheduling with link packet queues organized
similar to CPU run queues. Link scheduling is nonwork-
conserving to avoid stressing resources at downstream
hosts; in general, the link is allowed to “work ahead” in a
limited fashion, as determined by the link horizon [4].

Overload Protection. Per-channel traffic enforcement is
performed when new messages are inserted into the message
queue, and again when packets are inserted into the link
packet queues. The per-channel message queue absorbs mes-
sage bursts on a channel, preventing violations of Bmax and
Rmax on this channel from interfering with other, well-
behaved channels. During deadline assignment, new mes-
sages are checked for violations in Mmax and Rmax. Before in-
serting each message into the message queue, the intermes-
sage spacing is enforced according to Imin. For violations in
Mmax, the (logical) interarrival time between messages is in-
creased in proportion to the extra packets in the message.

The number of packet buffers available to a channel is
determined by the product of the maximum number of
packets constituting a message (derived from Mmax) and the
maximum allowable burst length Bmax. Under work-
conserving processing, it is possible that the packets gener-
ated by a handler cannot be accommodated in the channel
packet queue because all the packet buffers available to the
channel are exhausted. A similar situation could arise in
nonwork-conserving processing with violations of Mmax.
Handlers of such violating channels are prevented from
consuming excess processing and link capacity, either by
blocking their execution or lowering their priority relative
to well-behaved channels. Blocked handlers are subse-
quently woken up when the link scheduler indicates avail-
ability of packet buffers. Blocking handlers in this fashion is
also useful in that a slowdown in the service provided to a
channel propagates up to the application via the message
queue. Once the message queue fills up, the application can
be blocked until additional space becomes available. Alter-
nately, messages overflowing the queue can be dropped
and the application informed appropriately. Note that
while scheduling of handlers and packets provides isola-
tion between traffic on different channels, interaction be-
tween the CPU and link schedulers helps police per-
channel traffic.

Fairness to Best-Effort Traffic. Under nonwork-
conserving processing, early real-time traffic does not con-
sume any resources at the expense of best-effort traffic.
With work-conserving processing, best-effort traffic is
given processing and transmission priority over early real-
time traffic.

3.2 Accounting for CPU Preemption Delays and
Overheads

The admission control procedure (D_order) must account
for CPU preemption overheads, access delays due to coop-
erative preemption, and other overheads involved in man-
aging resources. For each new channel to be admitted,
D_order computes message service time, the worst-case time
for which the CPU and link must be allocated to the chan-
nel for processing a message, and wait time, the worst-case
time spent waiting for a lower-priority handler to relin-
quish the CPU and link. Accordingly, it must account for
the overlap between CPU processing and link transmis-
sion/reception, and hence the relative bandwidths of the
CPU and link. The deadlines assigned to messages are de-
rived from the worst-case service and wait times computed
by D_order. In recent work [5], we developed extensions to
D_order to account for the abovementioned factors at a
sending host; the extensions corresponding to interrupt-
mode link scheduling are included below for completeness.
Admission control extensions for receiving hosts, for two
packet input mechanisms, namely, interrupt mode and
polled mode, are outlined in [7].

Suppose the CPU is reallocated to a waiting handler, if
needed, every 3 packets; that is, up to 3 packets are proc-
essed between successive preemption points. Further, (see
Fig. 4a), suppose that the maximum packet size is 6, context
switch overhead between handlers is &sw, cache miss pen-
alty due to a context switch is &cm, and packet transmission
time is /x(6) for packet size 6. Per-packet protocol process-
ing cost is &p and per-packet (link) scheduling overhead of
selecting a packet and initiating transmission is &l. For the
following discussion, Fig. 4b illustrates the overlap between
processing and transmission of packets, where the link
scheduler is invoked as a function call either by the cur-
rently executing handler or in interrupt context (after
packet transmission).

&sw context switch time

&cm cache miss penalty

&p
st1 per-packet link scheduling cost

&p per-packet CPU processing cost

&l per-packet link scheduling cost

3 packets between preemption points

6 maximum packet size in bytes

/x(s) transmit time for packet size s

(a)

(i) ()& / 6p x�

(ii) ()& / 6p x�

(b)

Fig. 4. Extensions to admission control procedure. (a) Important sys-
tem parameters; (b) CPU processing and link transmission overlap.

624 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 10, OCTOBER 1997

Consider a message of size 0 bytes that has 1 0
6p

packets, with (1p � 1) packets of size 6�and the last packet

of size 6 last = (0 mod 6) if (0 mod 6) � 0, else 6 last = 6.

Thus, the link transmission time is /x(6) for all but the last

packet and /x(6
last) for the last packet. Protocol processing

cost for the first packet is &p
st1 , while subsequent fragments

each incur a lower cost &p. &p
st1 includes the fixed cost of

obtaining the message for processing, timestamp overhead,
and the cost of preparing the first packet, which is higher
because our fragmentation protocol traverses a slower path
for messages larger than 6 bytes. Both &p

st1 and &p include

the cost of network-level encapsulation.
The worst-case message service time 7s is given by:

7
& / & & & /

& & / 6 &
s

p
st

x
m

l
m

pr p x

p
m

l
m

x
last

pr

S

� � � �

� � �

%
&
K

'K

1 if ()

() otherwise

where / 1 / 6 / 6x
m

p x x
last

 � �() () ()1 is the total link

transmission time for the message, & 1 &l
m

p l is the total

link scheduling overhead for the message, & &
1

3pr csp
p

�

()
1

is the total cost of preemption during the processing of the
message (&csp = &cm + &sw), and & & 1 &p

m
p

st
p p � �

1 1() is

the total protocol processing cost for the message. If &p <

/x(6), there is at least the cost of processing the first packet.
Since link transmission time dominates the time to process
subsequent packets (see Fig. 4bi)), message service time is
determined by the link transmission time for the message
and the total link scheduling and preemption overheads
incurred. If &p � /x(6) (Fig. 4bii)), however, message service
time corresponds to the total protocol processing time for
the message plus the time to transmit the last packet, in
addition to the total link scheduling and preemption over-
heads.

The worst-case CPU wait time due to a lower-priority
handler is given by

7 &
&

/ 6
& & &w

cpu
b

st b
st

x
l cm sw �

�

"

#

#
#

� �
1

1

() ,

where &b
st1 is the worst-case processing time for a block of up

to 3 packets and is given by &b
st1 = &p

st1 + (max(1p, 3) � 1) &p.

During this time &b
st1 , up to

&

/ 6
b

st

x

1

()
�

"

#
packets could complete

transmission. Due to nonpreemptive packet transmission, the
worst-case link wait time is simply 7 / 6w

link
x () . Thus, the

total message wait time is 7 7 7w w
cpu

w
link

 � .

3.3 Determination of 3, 6, and /x

3 and 6 determine the granularity at which the CPU and
link, respectively, are multiplexed between channels; the
choice of these parameters therefore determines channel
admissibility at the host [5].

Packets between Preemptions. Selection of 3 is gov-
erned by the architectural characteristics of the host CPU,
as captured by the parameters listed in Fig. 4a. For a given
message (and packet) size, small values of 3 imply a higher
number of preemptions, increasing the total overhead in-
curred and reducing the CPU bandwidth available to chan-
nel handlers; this in turn reduces channel admissibility.
Large values of 3, on the other hand, increase the temporal
granularity at which the CPU is multiplexed between chan-
nel handlers and hence the window of nonpreemptibility.
This may also reduce the number of channels admitted for
service. For a given host architecture, 3 can be selected
such that channel admissibility is maximized while deliv-
ering reasonable data transfer throughput.

Packet Size. 6 can be selected either using end-to-end
transport protocol performance or host/adapter design char-
acteristics. End-to-end protocol performance has been used
to determine packet size in IP and IP-over-ATM networks for
optimum TCP performance. However, since data transfer on
real-time channels is unidirectional and unreliable, end-to-
end protocol performance may not be the best guide for se-
lection of 6. A particular choice for 6 determines the number
of packets constituting a message, and hence total CPU and
link bandwidth required to process and transmit it. In gen-
eral, the latency and throughput characteristics of the adapter
as a function of packet size can be used to pick a packet size
that minimizes /x (see below) while delivering reasonable
data transfer throughput. However, the value chosen for 6
must be less than the MTU of the attached network. Note
that in channels spanning heterogeneous networks, 6 can be
different at each hop, as long as the cost of additional frag-
mentation within the network is accounted for when deter-
mining end-to-end delays.

Packet Transmission Time. For a typical network
adapter, the transmission time for a packet of size s, /x(s),
depends primarily on the overhead of initiating transmis-
sion and the time to transfer the packet to the adapter and
on the link. The latter is a function of the packet size and
the data transfer bandwidth available between host and
adapter memories. The data transfer bandwidth itself is
determined by host/adapter design features such as pipe-
lining, on-board queueing on the adapter, and the raw link
bandwidth. If &x is the overhead to initiate transmission on

an adapter feeding a link of bandwidth %l bytes/sec, /x(s)

can be approximated as /x(s) = &x + s
l xmin(,)% %

, where %x is

the data transfer bandwidth available to/from host mem-
ory. %x is determined by factors such as the mode (direct
memory access (DMA) or programmed IO) and efficiency
of data transfer, and the degree to which the adapter pipe-
lines packet transmissions. &x includes the cost of setting up
DMA transfer operations, if any. Our experience with
adapter design and the implications for packet transmission
time are highlighted in [26].

4 PROTOTYPE IMPLEMENTATION

We have implemented proposed architecture using a com-
munication executive derived from x-kernel (v3.1) [6] that

MEHRA ET AL.: STRUCTURING COMMUNICATION SOFTWARE FOR QUALITY-OF-SERVICE GUARANTEES 625

exercises complete control over a 25 MHz Motorola 68040
CPU. Accordingly, CPU bandwidth is consumed only by
communication-related activities, facilitating admission
control and resource management for real-time channels.1

x-kernel (v3.1) employs a process-per-message protocol-
processing model and a priority-based nonpreemptive
scheduler with 32 priority levels; the CPU is allocated to the
highest-priority runnable thread, while scheduling within a
priority level is FIFO.

4.1 Architectural Configuration
Real-time communication is accomplished via a connec-
tion-oriented protocol stack in the communication execu-
tive (see Fig. 5a). The API exports routines for real-time
channel establishment, channel teardown, and data trans-
fer (see Table 1); it also supports routines for best-effort
data transfer (not shown here). Network transport for sig-
naling is provided by a (resource reservation) protocol lay-
ered on top of a remote procedure call (RPC) protocol de-
rived from x-kernels CHAN protocol. Network transport
for data is provided by a fragmentation (FRAG) protocol,
which packetizes large messages so that communication
resources can be multiplexed between channels on a
packet-by-packet basis. The FRAG transport protocol is a
modified, unreliable version of x-kernels BLAST protocol
with timeout and data retransmission operations disabled.
The protocol stack also provides protocols for clock syn-
chronization and network layer encapsulation. The network
layer protocol is connection-oriented and provides net-
work-level encapsulation for data transport across a point-
to-point communication network. The link access layer
provides support for link scheduling and includes the net-
work device driver.

Our choice of protocols was based on the perceived re-
quirements for guaranteed-QoS communication. An alter-
native approach would be to utilize the TCP/IP suite of
protocols used on the Internet. Most TCP/IP stacks do not
provide a sequenced, unreliable message transport protocol
that supports fragmentation. TCP is a reliable byte-stream

1. Implementation of the reception-side architecture is a slight variation
of the transmission-side architecture.

protocol while UDP does not fragment outbound messages
or support message sequencing. Thus, while TCP is suitable
for transporting best-effort traffic, it is not suitable for guar-
anteed-QoS communication. Further, IP is a connectionless
protocol and would require either modifications to make it
connection-oriented or mechanisms to classify packets.
Note that the proposed architecture does not preclude em-
ploying TCP to transport best-effort traffic, but this would
require IP as the network layer. More details on the proto-
col stack are provided in [26].

TABLE 1
ROUTINES CONSTITUTING THE REAL-TIME CHANNEL API

Routines Invoked By Function Performed
rtc_init receiving task create local queue to messages
rtc_create sending task create real-time channel with given

parameters to remote end point
(queue); return channel ID

rtc_send sending task send message on the specified real-
time channel

rtc_recv receiving task receive message from real-time
message queue

rtc_close sending task close specified real-time channel

4.2 Realizing a QoS-Sensitive Architecture
Process-per-Channel Model. On successful establishment, a
channel is allocated a channel handler, space for its message
and packet queues, and the message and packet queue
semaphores. If work-conserving protocol processing is de-
sired, a channel proxy is also allocated to the channel. A
channel handler is an x-kernel process (which provides its
thread of control) with additional attributes such as the type
of channel (best-effort or real-time), flags encoding the state
of the handler, its execution priority or deadline, and an event
identifier corresponding to the most recent x-kernel timer
event registered by the handler. In order to suspend execution
until a message is current, a handler utilizes x-kernels timer
event facility and an event semaphore, which is signaled when
the timer expires. A channel proxy is also an x-kernel process
with an execution priority or deadline. The states of all estab-
lished channels are maintained in a linked list that is updated
during channel signaling.

(a) (b)

Fig. 5. Implementation environment. (a) real-time communication protocol stack (x-kernel); (b) layered EDF CPU scheduler.

626 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 10, OCTOBER 1997

We extended x-kernels process management and sema-
phore routines to support handler creation, termination, and
synchronization with events such as message insertions and
availability of packet buffers after packet transmissions. Each
packet of a message must inherit the transmission deadline
assigned to the message. We modified the BLAST protocol
and message manipulation routines in x-kernel to associate
the message deadline with each packet. Each outgoing packet
carries a global channel identifier, allowing efficient packet
demultiplexing at a receiving node.

CPU Scheduling. Two policies are available for sched-
uling channel handlers on the CPU: 1) multi-class EDF
scheduling and 2) fixed-priority scheduling with 32 priority
levels. The following discussion applies to 1). Three distinct
run queues are maintained for channel handlers, one for
each of the three classes mentioned in Section 3.1, similar to
the link packet queues. Q1 is a priority queue implemented
as a heap ordered by handler deadline while Q2 is imple-
mented as a FIFO queue. Q3, utilized only when the proto-
col processing is work-conserving, is a priority queue im-
plemented as a heap ordered by the logical arrival time of
the message being processed by the handler. Channel
proxies are also realized as x-kernel threads and are as-
signed to Q3. Since Q3 has the lowest priority, proxies do
not interfere with the execution of channel handlers.

The multiclass EDF scheduler is layered above the x-
kernel scheduler, as illustrated in Fig. 5b. When a channel
handler or proxy is selected for execution from the EDF
run queues, the associated x-kernel process is inserted
into a designated x-kernel priority level for CPU alloca-
tion by the x-kernel scheduler. To realize this design, we
modified x-kernels context switch, semaphore, and process
management routines appropriately. For example, a context
switch between channel handlers involves enqueuing the
currently-active handler in the EDF run queues and picking
another runnable handler, before invoking the normal x-
kernelcode to switch process contexts. To support coopera-
tive preemption, we added new routines to check the EDF
and x-kernel run queues for waiting higher-priority han-
dlers or native x-kernel processes, respectively, and yield
the CPU accordingly.

Link Scheduling. The implementation can be config-
ured such that link scheduling is performed:

Option 1: via a function call in the currently executing han-
dler’s context or in interrupt context,

Option 2: by a dedicated process/thread, or

Option 3: by a new thread created after each packet trans-
mission.

As demonstrated in [5], option 1 gives the best performance
in terms of throughput and sensitivity of channel admissi-
bility to 3 and 6; accordingly, we focus on option 1 in the
discussion below.

The organization of link packet queues is similar to that
of handler run queues, except that Q3 is used for early
packets when protocol processing is work-conserving. After
inserting a packet into the appropriate link packet queue,
channel handlers invoke the scheduler directly as a func-
tion call. If the link is busy, i.e., a packet transmission is in
progress, the function returns immediately and the handler

continues execution. If the link is idle, the processing
shown in Fig. 6 is performed. Scheduler processing is re-
peated when the network adapter indicates completion of
packet transmission or the wakeup event for early packets
expires. Additional packets can be kept outstanding on the
network adapter as long as packet transmission time is
bounded and predictable.

1) Mark the link as busy.
2) Examine Q3; transfer (via pointer manipulations)

all packets that are current to Q1.

3) Transmit packet at head(Q1) if Q1 nonempty, else
transmit packet at head(Q2).

4) If Q1 and Q2 are both empty, and packet at
head(Q3) is not current, mark the link as idle,
and register wakeup event with x-kernel for the
time head(Q3) becomes current.

Fig. 6. Processing done by the link scheduler.

Per-Channel Traffic Enforcement. A channel’s message
queue semaphore is initialized to Bmax; messages overflow-
ing the message queue are dropped. The packet queue
semaphore is initialized to Bmax ¹ 1pkts, the maximum num-
ber of outstanding packets permitted on a channel. Upon
completion of packet transmission, the corresponding
channel’s packet queue semaphore is signaled to indicate
availability of packet buffers and enable execution of a
blocked handler. If the overflow is due to a violation in
Mmax, the priority (or deadline) of the handler is degraded
in proportion to the extra packets in its payload, so that
further consumption of CPU bandwidth does not affect
other well-behaved channels. Table 2a summarizes the
policies and options available in the implementation.

4.3 System Parameterization
Table 2b lists system parameter settings for our implemen-
tation. Selection of 3 and 6 is based on the tradeoff between
available resource capacity and channel admissibility [5].
To use the model of packet transmission time presented in
Section 3.3, &x and %x must be determined for a given net-
work adapter and host architecture. This in turn involves
experimentally determining the latency-throughput char-
acteristics of the adapter. Using our implementation, a
parameterization of the networking hardware available to
us revealed significant performance-related deficiencies
such as poor data transfer throughput and high, unpredict-
able packet transmission time [26]. Since these deficiences
were due to adapter design, they severely limited our abil-
ity to demonstrate the capabilities of our architecture and
implementation. Given our primary focus on unidirectional
data transfer, it suffices to ensure that transmission of a
packet of size s takes /x(s) time units. This can be achieved
by emulating the behavior of a network adapter such that
/x(s) time units are consumed for each packet being trans-
mitted. We have implemented such a device emulator, re-
ferred to as the null device, that can be configured to emu-
late any desired packet transmission time.

MEHRA ET AL.: STRUCTURING COMMUNICATION SOFTWARE FOR QUALITY-OF-SERVICE GUARANTEES 627

TABLE 2
POLICIES AND SYSTEM PARAMETERS IN THE CURRENT

IMPLEMENTATION (A) AVAILABLE POLICIES;
(B) SYSTEM PARAMETERS

Category Available Policies
Protocol processing model Process-per-channel

Work-conserving | nonwork-conserving
CPU scheduling fixed-priority with 32 priority levels

multiclass earliest-deadline-first
Handler execution cooperative preemption with configurable

number of packets between preemptions
Link scheduling multiclass EDF (options 1, 2, and 3)
Overload protection block handler, decay handler deadline, en-

forst Imin, drop overflow messages

(a)

Symbol Value Unit

&sw
xk 20 Psec

&sw
edf 55 Psec

&cm 90 Psec

&p
st1 420 Psec

&p 170 Psec

&l 160 Psec

3 4 packets
6 4096 bytes

/x(6) 245 Psec

(b)

The device emulator is a thread that, once signaled,
tracks time by consuming CPU resources for /x(s) time
units before signaling completion of packet transmission.
This emulator is implemented on a separate processor that
is connected via a backplane system bus to the processor
implementing the communication subsystem (the host
processor). Upon expiration of /x(s) time units (i.e., com-
pletion of packet transmission) the emulator issues an inter-
rupt to the host processor, similar to the mechanism em-
ployed in typical network adapters. We have used the
emulator to study a variety of tradeoffs, most importantly
the effects of the relationship between CPU and link proc-
essing bandwidth, in the context of QoS-sensitive protocol
processing [5]. We experimentally determined &x to be < 40
Ps. For the experiments, we select min(%l, %x) to correspond
to a link (and data transfer) speed of 50 ns per byte. This
corresponds to an effective packet transmission bandwidth
(for 4 kbyte packets) of 16 Mbyte/s.

Note that using the device emulator is not completely
accurate since no packet data is actually transferred from
host memory. If packet data were transferred from host
memory via DMA, there would be additional contention
for the system bus and main memory, resulting in some-
what higher packet processing time and cache miss penal-
ties upon resumption of execution after preemption. This
would result in optimistic estimates of the message service
and wait times, and hence channel admissibility. However,
a performance degradation of this nature would affect all
real-time channels and best-effort traffic more or less
equally, for option 1 as well as option 2.

Therefore, while the absolute performance observed may
not be entirely accurate, the observed trends and perform-
ance comparisons reported here continue to be valid. Also, it

may be possible to extend the message service time com-
putation to accurately account for the potential perturba-
tion caused by the DMA transfers via careful analysis [27].
We note that at least two other efforts have employed such
artificial sources and sinks of data, namely, the virtual net-
work device in [28] that resides on a separate processor,
and the “in-memory” network device used in [29].

5 EXPERIMENTAL EVALUATION

We evaluate the efficacy of the proposed architecture in iso-
lating real-time channels from each other and from best-effort
traffic. The evaluation is conducted for a subset of the policies
listed in Table 2, under varying degrees of traffic load and
traffic specification violations. In particular, we evaluate the
process-per-channel model with nonwork-conserving multi-
class EDF CPU scheduling and nonwork-conserving multi-
class EDF link scheduling using option 1 (Section 4.2). Over-
load protection for packet queue overflows is provided via
blocking of channel handlers; messages overflowing the mes-
sage queues are dropped. The parameter settings given in
Table 2b are used for the evaluation.

5.1 Methodology and Metrics
Using the null device, the performance of the proposed ar-
chitecture is compared with and without features such as
cooperative preemption and traffic enforcement. We choose a
workload that stresses the resources on our platform, and is
shown in Table 3. Similar results were obtained for other
workloads, including a large number of channels with a wide
variety of deadlines and traffic specifications. Message size is
fixed at 60 kbyte; experiments with other message sizes re-
veal that our architecture is insensitive to message size.
However, if we relax any of the constraints of our architec-
ture, larger messages tend to introduce greater QoS viola-
tions. Three real-time channels are established (channel es-
tablishment here is strictly local) with different traffic specifi-
cations. Channels 0 and 1 are bursty while channel 2 is peri-
odic in nature. Best-effort traffic is realized as channel 3, with
a variable load depending on the experiment, and has similar
semantics as the real-time traffic, i.e., it is unreliable with no
retransmissions under packet loss.

TABLE 3
WORKLOAD USED FOR THE EVALUATION

Traffic specification

Channel Type
Mmax

(KB)
Bmax

(messages)
Rmax

(KB/s
Imin

(ms)
Deadline

(ms)

0 real-time
(RT)

60 12 1,200 50 40

1 real-time
(Rt)

60 8 2,000 30 25

2 real-time
(RT)

60 1 2,000 30 30

3 best-effort
(BE)

60 10 variable – –

Messages on each real-time channel are generated by an
x-kernel process, running at the highest priority, as speci-
fied by a linear bounded arrival process with bursts of up
to Bmax messages. Violations in the specified rate (Rmax) are
realized by generating messages at rates that are multiples of

628 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 10, OCTOBER 1997

Rmax. The best-effort traffic generating process is similar, but
runs at a priority lower than that of the real-time generating
processes and higher than the x-kernel priority assigned to
channel handlers. Each experiment’s duration corresponds to
the transmission of 32K packets; the first 2K and last 2K
packets are ignored so that the evaluation is based on steady-
state behavior. All the results are obtained after averaging
over multiple runs; different runs consistently gave similar
results, and hence low standard deviation.

Our evaluation focuses on the efficacy of the proposed
architecture and the need for cooperative preemption. All
the experiments reported here have traffic enforcement and
deadline-based CPU and link scheduling enabled. We use
the following metrics measuring per-channel performance.
Throughput refers to the service received by each real-time
channel and best-effort traffic. It is calculated by counting
the number of packets successfully transmitted within the
experiment duration. Message laxity is the difference be-
tween the transmission deadline of a real-time message and
the actual time that it completes transmission. Deadline
misses measures the number of real-time packets missing
deadlines. Recall all packets of a message inherit the dead-
line of the message. Deadline misses are detected by
checking the actual transmission time of a real-time packet
against its deadline. Finally, Packet drops measures the
number of packets dropped for both real-time and best-
effort traffic. Deadline misses and packet drops account for
the QoS violations on individual channels.

5.2 Efficacy of the Proposed Architecture
Fig. 7 depicts the efficacy of the proposed architecture in
maintaining QoS guarantees when all channels honor their
traffic specifications. Fig. 7a plots the throughput received
by each real-time channel and best-effort traffic as a func-
tion of (offered) best-effort load. Several conclusions can be
drawn from the observed trends. First, all real-time chan-
nels receive their desired level of throughput; since no
packets were dropped (not shown here) or late (Fig. 7b), the
QoS requirements of all real-time channels are met. Increase
in offered best-effort load has no effect on the service re-
ceived by real-time channels. Second, the service received
by best-effort traffic continues to increase linearly until the
system capacity is exceeded. That is, real-time traffic (early
as well as current) does not deny service to best-effort traf-
fic. Third, even under extreme overload conditions, best-
effort throughput saturates and declines slightly due to
packet drops. However, performance of real-time traffic is
not affected.

Fig. 7b plots the message laxity for real-time traffic, also
as a function of offered best-effort load. As can be seen, no
messages miss their deadlines, since minimum laxity is
nonnegative for all channels. In addition, the mean laxity
for real-time messages is largely unaffected by an increase
in best-effort load, regardless of whether the channel is
bursty or not.

Fig. 8 demonstrates the same behavior even in the pres-
ence of traffic specification violations by real-time channels.
Channel 0 generates messages at a rate faster than specified
while best-effort traffic is fixed at < 1,900 kbytes/s In Fig.
8a, not only do well-behaved real-time channels and best-

effort traffic continue to receive their expected service,
channel 0 also receives only its expected service. The laxity
behavior is similar to that shown in Fig. 7b. No real-time
packets miss deadlines, including those of channel 0. How-
ever, as can be from Fig. 8b, channel 0 overflows its mes-
sage queue and drops excess messages. None of the other
real-time channels or best-effort traffic incur any packet
drops.

5.3 Need for Cooperative Preemption
The preceding results demonstrate that the features pro-
vided in the architecture are sufficient to maintain QoS
guarantees. The following results demonstrate that these
features are also necessary.

In Fig. 9a, protocol processing for best-effort traffic is
nonpreemptive. Even though best-effort traffic is processed
at a lower priority than real-time traffic, once the best-effort
handler obtains the CPU, it continues to process messages
from the message queue regardless of any waiting real-time
handlers. That is, CPU scheduling is QoS-insensitive. As
can be seen, this introduces a significant number of dead-
line misses and packet drops, even at low best-effort loads.
The deadline misses and packet drops increase with best-
effort load until the system capacity is reached. At this
point, all excess best-effort traffic is dropped, while the
drops and misses for real-time channels decline. The be-
havior is largely unpredictable, in that different real-time
channels are affected differently, and depends on the mix of
channels. Further, this behavior is exacerbated by an in-
crease in the amount of buffer space allocated to best-effort
traffic; the best-effort handler now runs longer before
blocking due to buffer overflow, thereby increasing the
window of nonpreemptibility.

Fig. 9b shows the effect of processing real-time messages
with preemption only at message boundaries. In addition,
early handlers are allowed to execute in a work-conserving
fashion but at a priority higher than best-effort traffic. Note
that all real-time traffic is still being shaped since logical
arrival time is enforced. As before, we observe significant
deadline misses and packet drops for all real-time channels.
In this case, best-effort throughput also declines due to
early real-time traffic having higher processing priority.
This behavior worsens when the window of nonpreempti-
bility is increased by draining the message queue each time
a handler executes.

5.4 Discussion
The above results demonstrate the need for cooperative
preemption, in addition to traffic enforcement and CPU
scheduling, for access to the CPU. While CPU and link
scheduling were always enabled, CPU access by real-time
channels was also shaped due to traffic enforcement. If traf-
fic was not shaped, one would observe significantly worse
real-time and best-effort performance due to nonconfor-
mant traffic. We also note that a fully-preemptive kernel is
likely to have larger, unpredictable costs for context
switches and cache misses. This is because preemption due
to unrelated, even lower priority, activities can occur fre-
quently and at arbitrary instants.

MEHRA ET AL.: STRUCTURING COMMUNICATION SOFTWARE FOR QUALITY-OF-SERVICE GUARANTEES 629

(a) (b)

Fig. 7. Maintenance of QoS guarantees when traffic specifications are honored. (a) throughput; (b) message laxity.

(a) (b)

Fig. 8. Maintenance of QoS guarantees under violation of Rmax. (a) throughput; (b) number of packets dropped.

(a) (b)

Fig. 9. Violation of QoS guarantees with cooperative preemption disabled. (a) nonpreemptive best-effort processing; (b) nonpreemptive
real-time processing.

630 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 10, OCTOBER 1997

Not only does this result in loss of CPU capacity to un-
necessary context switches, it also increases the likelihood
of disturbing the footprint in the cache [30], unless the
cache is suitably partitioned [31]. This is particularly true
for preemption caused by external events such as network
interrupts. One can account for the cache miss penalty due
to preemption via careful schedulability analysis [32], but
frequent preemption still degrades available CPU capacity,
as also observed in [33]. Moreover, an important implica-
tion of arbitrary preemption for the proposed architecture
is that a handler may get preempted just before initiating
transmission, even though it had finished preparing a
packet for transmission, thus idling the link. Cooperative
preemption, on the other hand, provides greater control
over preemption points, which in turn improves utilization
of resources that may be used concurrently. With coopera-
tive preemption, a handler can initiate transmission on the
link before yielding to any higher priority activity.

6 RELATED WORK

This paper (an earlier version appeared in [34]) deals with
runtime communication resource management for provi-
sion of QoS guarantees at end hosts. The proposed QoS-
sensitive architecture and admission control extensions for
sending as well as receiving hosts have been fully imple-
mented in the ARMADA guaranteed-QoS communication
service [10]. While we have focused on host communication
subsystem design to implement real-time channels, our
implementation methodology is applicable to other pro-
posals for providing QoS guarantees in packet-switched
networks, a survey of which can be found in [1], [2]. A
number of proposed host and network QoS architectures
are compared and contrasted in [35]. Below we highlight
related work most relevant to our present work.

Network and Protocol Support for QoS on the Internet.
Similar issues are being examined for provision of inte-
grated services on the Internet [36], [37]. Several classes of
service are being considered, including guaranteed service
(similar to our work) which provides guaranteed delay [38],
predictive service [39], and controlled load [40], the latter
two having more relaxed QoS requirements. The expected
QoS requirements of applications and issues involved in
sharing link bandwidth across multiple classes of traffic are
explored in [41], [42]. Much support being provided on the
Internet is geared towards multicast communication, in
contrast with our work on unicast real-time channels. The
signaling required to set up reservations for application
flows can be provided by RSVP [43], which initiates reser-
vation setup at the receiver, or ST-II [44], which initiates
reservation setup at the sender; RSVP, in particular, pro-
vides special provisions for multicast communication. We
note that our proposed architecture is applicable to unicast
as well as multicast sessions, for both sender-initiated and
receiver-initiated signaling.

The issues involved in providing QoS support in IP-
over-ATM networks are also being explored [45], [46]. The
Tenet real-time protocol suite [47] is an implementation of
real-time communication on wide-area networks (WANs),
but it did not consider incorporation of protocol processing

overheads into the network-level resource management
policies. In particular, it has not addressed the problem of
QoS-sensitive protocol processing inside hosts. Further,
they do not consider incorporation of implementation con-
straints and overheads, and simultaneous management of
CPU and link bandwidth for transmission and reception.

End Host Architectures for QoS. A number of projects have
focused on developing appropriate end host architectures
capable of supporting QoS guarantees. The OMEGA [48] end
point architecture provides support for end-to-end QoS
guarantees. In this architecture, application QoS require-
ments are translated to network QoS requirements by the
QoS Broker [49], which negotiates for the necessary host and
network resources. The OMEGA approach assumes appro-
priate support from the network subsystem for provision of
transport-to-transport layer guarantees, and hence can utilize
the architecture and mechanisms proposed in this paper.
QoS-A [50] is a layered architecture focusing on provision of
QoS within the communication subsystem and the network.
It provides features such as end-to-end admission control,
resource reservation, QoS translation between layers, and
QoS monitoring and maintenance. QoS-A specifies a func-
tionally rich and general architecture supporting networked
multimedia applications. Practical realization of QoS-A,
however, would necessitate architectural mechanisms and
extensions similar in flavor to the ones demonstrated in this
paper. We note that these mechanisms, while developed for
provision of deterministic QoS guarantees, can also be util-
ized to realize QoS adaptive communication subsystems [51].

An RSVP-based QoS architecture supporting integrated
services in TCP/IP protocol stacks, running on legacy (e.g.,
Token Ring and Ethernet) LAN interfaces as well as high-
speed ATM networks, is described in [52]. A native-mode
ATM transport layer has been designed and implemented
in [53]. The design of a QoS-controlled communications
system for ATM networks is described in [54]. However,
implementation overheads and constraints are not incorpo-
rated in the resource management policies. Moreover, no
performance impact of supporting QoS in communication
is reported.

Real-time upcalls (RTUs) [55] are a mechanism to sched-
ule protocol processing for networked multimedia applica-
tions via an extended version of the rate monotonic (RM)
scheduling policy [23]. Similar to our approach, delayed
preemption is adopted to reduce the number of context
switches. Our approach differs from RTUs in that we use a
thread-based execution model for protocol processing,
schedule threads via a modified earliest-deadline-first
(EDF) policy [23], and extend resource management poli-
cies within the communication subsystem to account for a
number of important implementation overheads and con-
straints. Similar to our approach, rate-based flow control of
multimedia streams via kernel-based communication
threads is also proposed in [56]. In contrast to our notion of
per-connection threads, however, a coarser notion of per-
process kernel threads is adopted. This scheme does not
seem suitable for an application with multiple QoS connec-
tions, each with different QoS requirements and traffic
characteristics. Mechanisms for scheduling multiple com-
munication threads, and the issues involved in reception

MEHRA ET AL.: STRUCTURING COMMUNICATION SOFTWARE FOR QUALITY-OF-SERVICE GUARANTEES 631

side processing, are not considered. More importantly, the
architecture outlined in [56] does not consider provision of
signaling and resource management services within the
communication subsystem.

Communication Subsystem Design and Performance Optimiza-
tion. Several recent efforts have focused on optimizing the
performance of the data transfer path in TCP/IP protocol
stacks, via improvement of protocol processing latency [57],
[58], [59], and user-level handling of network data [14], [15],
[16], [60], [61] to increase throughput via data copy minimi-
zation. Several researchers have studied the issues affecting
the design and performance of network adapters [8], [16],
[62] and communication subsystems in general [24], [63]. All
of these efforts are geared towards traditional best-effort traf-
fic with the primary goal of increasing data transfer through-
put. These efforts are complementary to our work, which
focuses on provision of QoS guarantees for communication.

Handling of Incoming Traffic. Proper provisioning of QoS
guarantees requires appropriate handling of incoming traf-
fic at a receiving host. While a number of recent efforts have
focused on efficient packet classification [64], [65], [66], at-
tention has also been given to the problem of receive live-
lock [8]. Receive livelock is a phenomenon in which, under
network input overload, a host or router is swamped with
processing and discarding arriving packets to the extent
that the effective throughput of the system falls to zero.
While techniques for receive livelock elimination are de-
scribed in [67], an approach to preventing receive livelock,
Lazy Receiver Processing (LRP), is presented in [68]. In
LRP, an incoming packet is classified and enqueued, but
not processed, until the application receives the data. While
this works well for best-effort traffic, appropriate OS sup-
port is still needed to ensure the application is scheduled to
run in a QoS-sensitive fashion. Furthermore, since received
packets may not be processed immediately on arrival, LRP
cannot exploit the overlap between protocol processing and
packet arrival. More importantly, architectural support
similar to the one presented in this paper is needed to mul-
tiplex resources across multiple connections originating
from the same application.

Our approach also utilizes early demultiplexing and
channel-specific queueing of incoming packets. However,
packet processing and message reassembly is performed in
a QoS-sensitive fashion via EDF scheduling of channel
handlers, as and when communication capacity is made
available. Demultiplexing incoming packets early and ab-
sorbing bursts in distinct per-connection queues is an at-
tractive way to prevent receive livelock, an observation also
made in the context of paths (see below) in Scout [69]. Cou-
pled with the admission control extensions developed in
[7], our architectural approach facilitates provision of QoS
guarantees while preventing receive livelock.

“Paths” through the Communication Subsystem. The Path
abstraction realized in Open Software Foundation’s CORDS
framework [70] greatly facilitates development of real-time
communication services for distributed applications, as
demonstrated with the ARMADA guaranteed-QoS com-
munication service that we have developed [10]. Using this
abstraction, unique paths can be defined through the com-
munication subsystem, and path-specific allocation per-

formed for resources such as packet buffers, input packet
queues, and input shepherd threads. Similarly, the Scout
operating system proposes the use of explicit paths as an
important abstraction in operating system design to im-
prove performance [69]. However, while paths in [70] are
envisioned primarily as a static, relatively coarse-grain
mechanism, paths in [69] are not allocated communication
resources and assigned deadlines or priorities via admis-
sion control. Our QoS-sensitive communication subsystem
architecture for sending and receiving hosts effectively de-
fines, and associated QoS guarantees with, unique paths
through the communication subsystem.

Modeling of Real-Time Operating Systems. Since the analysis
presented in Section 3.2 is geared towards the real-time
communication needs of distributed systems, it compliments
recent efforts to bridge the gap between the theory and prac-
tice for real-time systems [33], [71], [72], [73]. The implica-
tions of priority inversion due to nonpreemptible critical sec-
tions was studied in [74]; however, preemption costs (context
switches and cache misses) and the resulting degradation in
useful resource capacity were not considered.

OS Support for QoS-Sensitive Computation and Communica-
tion. The need for scheduling protocol processing at priority
levels consistent with those of the communicating applica-
tion was highlighted in [75] and some implementation
strategies demonstrated in [76]. More recently, processor
capacity reserves in Real-Time Mach [11] have been com-
bined with user-level protocol processing [14] for predict-
able protocol processing inside hosts [12]. Unlike our ap-
proach, the approach outlined in [12] does not derive the
protocol processing priority from a connection’s QoS and
traffic specifications, nor does it exploit the overlap be-
tween protocol processing and link transmission/reception.
Moreover, only a single communication library thread is
associated with an application; data arriving on multiple
connections associated with the application are all proc-
essed by this thread. While this realizes per-application QoS
guarantees, it does not facilitate provision of per-connection
QoS guarantees.

Several scheduling algorithms for integrated scheduling
of multimedia soft real-time computation and traditional
hard real-time tasks on a multiprocessor multimedia server
are proposed and evaluated in [77]. Operating system sup-
port for multimedia communication also is explored in [78],
where the focus is on provision of preemption points and
EDF scheduling in the kernel, and in [79], which also fo-
cuses on the scheduling architecture. However, no support
is provided for traffic enforcement or decoupling of proto-
col processing priority from application priority. Several
QoS-sensitive CPU scheduling policies have been proposed
recently [17], [18], [19]. These schemes do not provide sup-
port for QoS guarantees on communication-related CPU
processing, although our architecture can be integrated
with these policies for application-level QoS.

7 CONCLUSIONS AND FUTURE WORK

We have proposed and evaluated a QoS-sensitive commu-
nication subsystem architecture for end hosts that supports
guaranteed-QoS connections. The architecture provides

632 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 10, OCTOBER 1997

various services for managing communication resources,
such as admission control, traffic enforcement, buffer man-
agement, and CPU and link scheduling. Using our imple-
mentation of real-time channels, we demonstrated the effi-
cacy with which the architecture maintains per-channel
QoS guarantees and delivers reasonable performance to
best-effort traffic. While we demonstrated the need for spe-
cific features and policies in the architecture for a relatively
lightweight stack, such support will be even more impor-
tant if computationally intensive services such as coding,
compression, or checksums are added to the protocol stack.
The usefulness of these features also depends on the rela-
tionship between CPU and link bandwidths.

Our work assumes that the network adapter (i.e., the
underlying network) does not provide any explicit support
for QoS guarantees, other than providing a bounded and
predictable packet transmission time. This assumption is
valid for a large class of networks prevalent today, such as
FDDI and switch-based networks. Thus, link scheduling is
realized in software, requiring lower layers of the protocol
stack to be cognizant of the delay-bandwidth characteristics
of the network. A software-based implementation also en-
ables experimentation with a variety of link sharing poli-
cies, especially if multiple service classes are supported. For
example, alternative approaches such as setting aside a
certain minimum CPU and link bandwidth for best-effort
traffic can be explored. The architecture can also be ex-
tended to networks providing explicit support for QoS
guarantees, such as ATM. However, the communication
software may need to track adapter buffer usage in order to
schedule the transfer of outgoing packets to the adapter.

The architectural framework and methodology adopted
in this paper is applicable to other host platforms as well.
This requires that the host communication subsystem be
parameterized accurately to capture overheads and proc-
essing costs that comprise the abstraction of the underlying
communication subsystem. While we have implemented
the architecture on an x-kernel platform, the architecture
and the implementation do not utilize any features specific
to this platform. We argue that the underlying resource
management policies can be supported on any operating
system platform and communication subsystem.

We are extending this work in several directions. We have
extended the null device into a sophisticated network device
emulator providing link bandwidth management [80], to
explore issues involved when interfacing to adapters with
support for QoS guarantees. For true end-to-end QoS guar-
antees, scheduling of channel handlers must be integrated
with application scheduling. We have extended and reim-
plemented the proposed architecture in OSF Mach MK, a
microkernel-based operating system, using OSF’s x-kernel
framework [70]. This platform is being used to explore issues
in integration of the proposed architecture with applications
and OSF Mach. We are also exploring the issues involved in
implementing statistical real-time channels, as opposed to the
deterministic real-time channel implementation described in
this paper. Statistical QoS guarantees can potentially be use-
ful to a large class of distributed multimedia applications.
Finally, we have extended this architecture to shared-
memory multiprocessor multimedia servers [81].

ACKNOWLEDGMENT

The work reported in this paper was supported in part by
the National Science Foundation under Grant No. MIP-
9203895 and the Office of Naval Research under Grant
N00014-94-1-0229. Any opinions, findings, and conclusions
or recommendations expressed in this paper are those of
the authors and do not necessarily reflect the views of NSF
or ONR. This work was performed while A. Mehra and A.
Indiresan were with the Real-Time Computing Laboratory
in the Department of Electrical Engineering and Computer
Science at the University of Michigan at Ann Arbor.

REFERENCES

[1] C.M. Aras, J.F. Kurose, D.S. Reeves, and H. Schulzrinne,” “Real-
Time Communication in Packet-Switched Networks,” Proc.. IEEE,
vol. 82, no. 1, pp. 122-139, Jan. 1994.

[2] H. Zhang, “Service Disciplines For Guaranteed Performance
Service in Packet-Switching Networks,” Proc.. IEEE, vol. 83, no.
10, Oct. 1995.

[3] D. Ferrari and D.C. Verma, “A Scheme for Real-Time Channel
Establishment in Wide-Area Networks,” IEEE J. Selected Areas in
Comm., vol. 8, no. 3, pp. 368-379, Apr. 1990.

[4] D.D. Kandlur, K.G. Shin, and D. Ferrari, “Real-Time Communi-
cation in Multi-Hop Networks,” IEEE Trans. Parallel and Distrib-
uted Systems, vol. 5, no. 10, pp. 1,044-1,056, Oct. 1994.

[5] A. Mehra, A. Indiresan, and K. Shin, “Resource Management for
Real-Time Communication: Making Theory Meet Practice,” Proc.
Second Real-Time Technology and Applications Symp., pp. 130-138,
June 1996.

[6] N.C. Hutchinson and L.L. Peterson, “The x-Kernel: An Architec-
ture for Implementing Network Protocols,” IEEE Trans. Software
Eng., vol. 17, no. 1, pp. 1-13, Jan. 1991.

[7] A. Mehra, A. Indiresan, and K. Shin, “Resource Management for
Real-Time Communication: Making Theory Meet Practice,” in
submission to IEEE Trans. Networking, June 1997.

[8] K.K. Ramakrishnan, “Performance Considerations in Designing
Network Interfaces,” IEEE J. Selected Areas in Comm., vol. 11, no. 2,
pp. 203-219, Feb. 1993.

[9] ARMADA: A Real-Time Middleware Architecture for Distributed
Applications. http://www.eecs.umich.edu/RTCL/armada/.

[10] A. Mehra, A. Shaikh, T. Abdelzaher, Z. Wang, and K. Shin,
“Realizing Guaranteed-QoS Communication Services on a Micro-
Kernel Operating System, Aug. 1997.

[11] C.W. Mercer, S. Savage, and H. Tokuda, “Processor Capacity
Reserves for Multimedia Operating Systems,” Proc.. IEEE Int’l
Conf. Multimedia Computng and Systems, May 1994.

[12] C. Lee, K. Yoshida, C. Mercer, and R. Rajkumar, “Predictable
Communication Protocol Processing in Real-Time Mach,” Proc..
Second Real-Time Technology and Applications Symp., June 1996.

[13] D.D. Clark and D.L. Tennenhouse, “Architectural Considerations
for a new Generation of Communication Protocols,” Proc.. ACM
SIGCOMM, pp. 200-208, Sept. 1990.

[14] C. Maeda and B.N. Bershad, “Protocol Service Decomposition for
High-Performance Networking,” Proc. ACM Symp. Operating Sys-
tems Principles, pp. 244-255, Dec. 1993.

[15] C.A. Thekkath, T.D. Nguyen, E. Moy, and E. Lazowska,
“Implementing Network Protocols at User Level,” Proc. ACM
SIGCOMM, pp. 64-73, San Francisco, Oct. 1993.

[16] P. Druschel, L.L. Peterson, and B.S. Davie, “Experiences with a
High-Speed Network Adaptor: A Software Perspective,” Proc.
ACM SIGCOMM, pp. 2-13, London, Aug. 1994.

[17] C. Waldspurger, “Lottery and Stride Scheduling: Flexible Propor-
tional-Share Resource Management,” PhD thesis, Technical Re-
port, MIT/LCS/TR-667, Laboratory for Computer Science, MIT,
Sept. 1995.

[18] I. Stoica, H. Abdel-Wahab, K. Jeffay, S.K. Baruah, J.E. Gehrke, and
C.G. Plaxton, “A Proportional Share Resource Allocation Algo-
rithm for Real-Time Time-Shared Systems,” Proc. 17th Real-Time
Systems Symp., pp. 288-299, Dec. 1996.

MEHRA ET AL.: STRUCTURING COMMUNICATION SOFTWARE FOR QUALITY-OF-SERVICE GUARANTEES 633

[19] P. Goyal, X. Guo, and H.M. Vin, “A Hierarchical CPU Scheduler for
Multimedia Operating Systems,” Proc. Second OSDI Symp., pp. 107-
121, Oct. 1996.

[20] A. Mehra, Z. Wang, and K. Shin, “Self-Parameterizing Protocol
Stacks for Guaranteed Quality of Service,” Aug. 1997.

[21] R.L. Cruz, “A Calculus for Network Delay and a Note on Topolo-
gies of Interconnection Networks,” PhD thesis, Univ. of Illinois at
Urbana-Champaign, July 1995. available as Technical Report
UILU-Eng-87-2246.

[22] D.P. Anderson, S.Y. Tzou, R. Wahbe, R. Govindan, and M. An-
drews, “Support for Continuous Media in the DASH System,”
Proc.. Int’l Conf. Distributed Computing Systems, pp. 54-61, 1990.

[23] C. Liu and J. Layland, “Scheduling Algorithms for Multiprogram-
ming in Hard Real-Time Environment,” J. ACM, vol. 1, no. 20, pp.
46-61, Jan. 1973.

[24] D.C. Schmidt and T. Suda, “Transport System Architecture Serv-
ice for High-Performance Communications Systems,” IEEE J. Se-
lected Areas in Comm., vol. 11, no. 4, pp. 489-506, May 1993.

[25] J. Liebeherr, D.E. Wrege, and D. Ferrari, “Exact Admission Con-
trol for Networks with a Bounded Delay Service,” IEEE/ACM
Trans. Networking, vol. 4, no. 6, pp. 885-901, Dec. 1996.

[26] A. Indiresan, A. Mehra, and K. Shin, “Design Tradeoffs in Imple-
menting Real-Time Channels on Bus-Based Multiprocessor
Hosts,” Technical Report CSE-TR-238-95, Univ. of Michigan, Apr.
1995.

[27] T.-Y. Huang, J.W. Liu, and D. Hull, “A Method for Bounding the
Effect of DMA I/O Interference on Program Execution Time,”
Proc.. 17th Real-Time Systems Symp. pp. 275-285, Dec. 1996.

[28] M. Bjorkman and P. Gunningberg, “Locking Effects in Multiproc-
essor Implementations of Protocols,” Proc.. ACM SIGCOMM, pp.
74-83, Sept. 1993.

[29] E.M. Nahum, D.J. Yates, J.F. Kurose, and D. Towsley, “Performance
Issues in Parallelized Network Protocols,” Proc.. USENIX Symp. Op-
erating Systems Design and Implementation, pp. 125-137, Nov. 1994.

[30] J. Mogul and A. Borg, “The Effect of Context Switches on Cache
Performance,” Proc.. Int’l Conf Architectural Support for Program-
ming Languages and Operating Systems, pp. 75-85, Apr. 1991.

[31] J. Liedtke, H. Hartrig, and M. Hohmuth, “OS-Controlled Cache
Predictability for Real-Time Systems,” Proc. Real-Time Technology
and Applications Symp., pp. 213-223, June 1997.

[32] C.-G. Lee, J. Hahn, Y.-M. Seo, S.L. Min, R. Ha, S. Hong, C.Y. Park,
M. Lee, and C.S. Kim, “Analysis of Cache-Related Preemption
Delay in Fixed-Priority Preemptive Scheduling,” Proc. 17th Real-
Time Systems Symp., pp. 264-274, Dec. 1996.

[33] R. Gopalakrishnan and G.M. Parulkar, “Bringing Real-Time
Scheduling Theory and Practice Closer for Multimedia Comput-
ing,” Proc.. ACM SIGMETRICS, pp. 1-12, May 1996.

[34] A. Mehra, A. Indiresan, and K. Shin, “Structuring Communica-
tion Software for Quality of Service Guarantees,” Proc.. 17th Real-
Time Systems Symp., pp. 144-154, Dec. 1996.

[35] A.T. Campbell, C. Aurrecoechea, and L. Hauw, “A Review of QoS
Architectures,” Multimedia Systems J., 1996.

[36] D.D. Clark, S. Shenker, and L. Zhang, “Supporting Real-Time
Applications in an Integrated Services Packet Network: Archi-
tecture and Mechanism, Proc.. ACM SIGCOMM, pp. 14-26, Aug.
1992.

[37] R. Braden, D. Clark, and S. Shenker, “Integrated Services in the
Internet Architecture: An Overview,” Request for Comments RFC
1963, Xerox PARC, July 1994.

[38] S. Shenker, C. Partridge, and R. Guerin, “Specification of Guar-
anteed Quality of Service,” Request for Comments RFC 2212, Sept.
1997.

[39] S. Jamin, P. Danzig, S. Shenker, and L. Zhang, “A Measurement-
Based Admission Control Algorithm for Integrated Services
Packet Networks,” Proc. ACM SIGCOMM, pp. 2-13, Aug. 1995.

[40] J. Wroclawski, “Specification of Controlled-Load Network Ele-
ment Service, “ Request for Comments RFC 2211, Sept. 1997.

[41] S. Shenker, D. Clark, andL. Zhang, “A Scheduling Service Model
and a Scheduling Architecture for an Integrated Services Packet
Network,” Working Paper, Xerox PARC, Aug. 1993.

[42] S. Floyd and V. Jacobson, “Link-Sharing and Resource Manage-
ment Models for Packet Networks,” IEEE/ACM Trans. Networking,
vol. 3, no. 4, Aug. 1995.

[43] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala,
“RSVP: A New Resource Reservation Protocol,” IEEE Network,
pp. 8-18, Sept. 1993.

[44] L. Delgrossi and L. Berger, “Internet Stream Protocol Version
2(ST-2) protocol specification—version ST2+,” Request for Com-
ments RFC 1819, ST2 Working Group, Aug. 1995.

[45] M. Borden, E. Crawley, B. Davie, and S. Batsell, “Integration of
Real-Time Services in an IP-ATM Network Architecture,” Request
for Comments RFC 1821, Bay Networks, Bellcore, NRL, Aug.
1995.

[46] M. Perez, F. Liaw, A. Mankin, E. Hoffman, D. Grossman, and A.
Malis, “ATM Signaling Support for IP Over ATM,” Request for
Comments RFC 1755, ISI, Fore, MotoralCodex, Ascom Timeplex,
Feb. 1995.

[47] A. Banerjea, D. Ferrari, B. Mah, M. Moran, D.C. Verma, and H.
Zhang, “The Tenet Real-time Protocol Suite: Design, Implemen-
tation, and Experiences,” IEEE/ACM Trans. Networking, vol. 4, no.
1, pp. 1-11, Feb. 1996.

[48] K. Nahrstedt and J.M. Smith, “Design, Implementation and Expe-
riences of the OMEGA End-Point Architecture,” IEEE J. Selected
Areas in Comm., vol. 14, no. 7, pp. 1,263-1,279, Sept. 1996.

[49] K. Nahrstedt and J.M. Smith, “The QoS Broker,” IEEE Multimedia,
vol. 2, no. 1, pp. 53-67, Spring 1995.

[50] A.T. Campbell, G. Coulson, and D. Hutchison, “A Quality of
Service Architecture,” Computer Comm. Rev., Apr. 1994.

[51] A.T. Campbell and G. Coulson, “QoS Adaptive Transports: De-
livering Scalable Media to the Desktop,” IEEE Network, pp. 18-27,
Mar./Apr. 1997.

[52] T. Barzilai, D. Kandlur, A. Mehra, D. Saha, and S. Wise, “Design
and Implementation of an RSVP-Based Quality of Service Archi-
tecture for Integrated Services Internet,” Proc. Int’l Conf. Distrib-
uted Computing Systems, May 1997.

[53] R. Ahuja, S. Keshav, and H. Saran, “Design, Implementation, and
Performance of a Native Mode ATM Transport Layer,” Proc. IEEE
INFOCOM, pp. 206-214, Mar. 1996.

[54] G. Coulson, A. Campbell, P. Robin, G.S. Blair, M. Papathomous,
and D. Shepherd, “The Design of a QoS-Controlled ATM-Based
Communications System in Chorus,” IEEE J. Seleted Areas in
Comm., vol. 13, no. 4, pp. 686-699, May 1995.

[55] R. Gopalakrishnan and G.M. Parulkar, “A Real-Time Upcall Fa-
cility for Protocol Processing with QoS Quarantees,” Proc. ACM
Symp. Operating Systems Principles, p. 231, Dec. 1995.

[56] D.K.Y. Yau and S.S. Lam, “An Architecture Towards Efficient OS
Suport for Distributed Multimedia,” Proc. Multimedia Computing
and Networking (MMCN ’96), Jan. 1996.

[57] D. Mosberger, L.L. Peterson, P.G. Bridges, and S. O’Malley,
“Analysis of Techniques to Improve Protocol Processing La-
tency,” Proc. ACM SIGCOMM, pp. 73-84, Oct. 1996.

[58] T. Blackwell, “Speeding Up Protocols for Small Messages,” Proc
ACM SIGCOMM, pp. 85-95, Oct. 1996.

[59] R. van Renesse, “Masking the Overhead of Protocol Layering,”
Proc. ACM SIGCOMM, pp. 96-104, Oct. 1996.

[60] A. Edwards, G. Watson, J. Lumley, D. Banks, C. Clamvokis, and
C. Dalton, “User-Space Protocols Deliver High Performance to
Applications on a Low-Cost Gb/s LAN, Proc. ACM SIGCOMM,
pp. 14-24, London, Aug. 1994.

[61] V. Buch, T. von Eicken, A. Basu, and W. Vogels, “U-Net: A User-
Level Network Interface for Parallel and Distribued Computing,”
Proc. ACM Symp. Operating Systems Principles, pp. 40-53, Dec.
1995.

[62] P.A. Steenkiste, “A Systematic Approach to Host Interface Design
for High-Speed Networks, Computer, pp. 47-57, Mar. 1994.

[63] P. Druschel, M.B. Abbott, M. Pagels, and L.L. Peterson, “Network
Subsystem Design: A Case for an Integrated Data Path, IEEE Net-
work, pp. 8-17, July 1993.

[64] M. Uyhara, B.N. Bershad, C. Maeda, and J.E.B. Moss, “Efficient
Packet Demultiplexing for Multiple Endpoints and Large Mes-
sages,” Proc. Winter USENIX, 1994.

[65] M.L. Bailey, B. Gopal, M.A. Pagels, L.L. Peterson, and P. Sarkar,
“PATHFINDER: A Pattern-Based Packet Classifier,” Proc ACM
SIGCOMM, pp. 115-123, London, Aug. 1994.

[66] D. Engler and M.F. Kaashoek, “DPF: Fast, Flexible Message De-
multiplexing Using Dynamic Code Generation, Proc. ACM SIG-
COMM, pp. 53-59, Oct. 1996.

[67] J. Mogul and K.K. Ramakrishnan, “Eliminating Receive Livelock
in an Interrupt-Driven Kernel” Winter USENIX Conf. Jan. 1996.

[68] P. Drushel and G. Banga, “Lazy Receiver Processing (LRP): A
Network Subsystem Architecture for Service Systems,” Proc. Sec-
ond OSDI Symp., pp. 261-175, Oct. 1996.

634 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 10, OCTOBER 1997

[69] D. Mosberger and L.L. Peterson, “Making Paths Explicit in the
Scout Operating System,” Proc USENIX Symp. Operating Systems
Design and Implementation, pp. 153-167, Oct. 1996.

[70] F. Travostino, E. Menze, and F. Reynolds, “Paths: Programming
with System Resources in Support of Real-Time Distributed Ap-
plications,” Proc. IEEE Workshop on Object-Oriented Real-Time De-
pendable Systems, Feb. 1996.

[71] D. Katcher, H. Arakawa, and J.K. Strosnider, “Engineering and
Analysis of Fixed Priority Schedulers,” IEEE Trans. Software Eng.,
vol. 19, no. 9, pp. 920-934, Sept. 1993.

[72] A. Burns, K. Tindell, and A. Wellings, “Effective Analysis for
Engineering Real-Time Fixed Priority Scheduler,” IEEE Trans.
Software Eng. vol. 21, no. 5, pp. 475-480, May 1995.

[73] K.A. Kettler, D.I. Katcher, and J.K. Strosnider, “A Modeling
Methdology for Real-Time/Multimedia Operating Systems,”
Proc. Real-Time Technology and Applications Symp., pp. 15-26, May
1995.

[74] C.W. Mercer and H. Tokuda, “Preemptibility in Real-Time Oper-
ating Systems,” Proc. Real-Time Systems Symp., Dec. 1992.

[75] D.P. Anderson, L. Delgrossi, and R.G. Herrtwicyh, “Structure and
Scheduling in Real-Time Protocol Implementations,” Technical
Report TR-90-021, Int’l Computer Science Inst., Berkeley, Calif.,
June 1990.

[76] R. Govindan and D.P. Anderson, “Scheduling and IPC Mecha-
nisms for Continuous Media,” Proc. ACM Symp. Operating Systems
Principles, pp. 68-80, 1991.

[77] H. Kaneko, J.A. Stankovic, S. Sen, and K. Ramamritham,
“Integrated Scheduling of Multimedia and Hard Real-Time
Tasks,” Proc. 17th Real-Time Systems Symp. pp. 206-217, Dec. 1996.

[78] O. Hagsand and P. Sjodin, “Workstation Support for Real-Time
Multimedia Communication,” Winter USENIX Conf. second edi-
tion, pp. 133-142, Jan. 1994.

[79] C. Vogt, R.G. Herrtwich, and R. Nagarajan, “HeiRAT: The Hei-
delberg Resource Administration Technique Design Philosophy
and Goals,” Research Report 43.9213, IBM Research Division, IBM
European Netrworking Center, Heidelberg, Germany, 1992.

[80] A. Indiresan, A. Mehra, and K. Shin, “The END: An Emulated
Network Device for Evaluating Adapter Design,” Proc. Third Int’l
Workshop on Performability Modeling of Computer and Communica-
tion Systems (PMCCS3), pp. 90-94, Sept. 1996.

[81] A. Mehra and K. Shin, “QoS-Sensitive Protocol Processing in
Shared-Memory Multiprocessor Multimedia Servers,” Proc. Third
IEEE Workshop on Architecture and Implementation of High-
Performance Communication Subsystems, pp. 163-169, Aug. 1995.

Ashish Mehra received the BTech (bachelor of
technology) degree in electrical engineering from
the Indian Institute of Technology, Kanpur, India
in 1989, and the MSE and PhD degrees in com-
puter science and engineering from the Univer-
sity of Michigan in 1992 and 1997, respectively.
He is now a research staff member in the Net-
work Control and Architecture Group at the IBM
Thomas J. Watson Research Center, Hawthorne
New York. His primary research interests are in
operating system and networking support for

application quality of service requirements, Internet-based network
computing, various aspects of code mobility and security, high-speed
networking, and performance evaluation. He is a member of the IEEE
and the IEEE Computer Society.

Atri Indiresan received the BTech (bachelor of
technology) degree from the Indian Institute of
Technology, Chennai (formerly, Madras), India,
in 1987, and his MSE and PhD degrees from the
University of Michigan, in 1992 and 1997, re-
spectively, all in computer science and engi-
neering. He is now a software engineer in the
Core Networking Division at Cisco Systems in
San Jose, California. His primary research inter-
ests are in high-speed networking, operating
system and network support for quality-of-

service, and hardware-software codesign for high-performance net-
working. He is a member of the IEEE Computer Society.

Kang G. Shin received the BS degree in elec-
tronics engineering from Seoul National Univer-
sity, Seoul, Korea in 1970, and his MS and PhD
degrees in electrical engineering from Cornell
University, Ithaca, New York in 1976 and 1978,
respectively. He is professor and director at the
Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, Michigan. He
has authored/coauthored almost 400 technical
papers (about 150 of these in archival journals)

and numerous book chapters in the areas of distributed real-time com-
puting and control, fault-tolerant computing, computer architecture,
robotics and automation, and intelligent manufacturing. He has co-
authored (jointly with C.M. Krishna) a textbook Real-Time Systems,
(McGraw Hill, 1997). In 1987, he received the Outstanding IEEE
Transactions on Automatic Control Paper Award for a paper on robot
trajectory planning. In 1989, he received the Research Excellence
Award from the University of Michigan. In 1985, he founded the Real-
Time Computing Laboratory, where he and his colleagues are investi-
gating various issues related to real-time and fault-tolerant computing.
He has also been applying the basic research results of real-time com-
puting to multimedia systems, intelligent transportation systems, and
manufacturing applications ranging from the control of robots and ma-
chine tools to the development of open architectures for manufacturing
equipment and processes. (The latter is being pursued as a key thrust
area of the newly established National Science Foundation Engineer-
ing Research Center on Reconfigurable Machining Systems.)

From 1978 to 1982 Dr. Shin was on the faculty of Rensselaer Poly-
technic Institute, Troy, New York. He has held visiting positions at the
U.S. Air Force Flight Dynamics Laboratory, AT&T Bell Laboratories,
Computer Science Division within the Department of Electrical Engi-
neering and Computer Science at the University of California at Ber-
keley, and at the International Computer Science Institute, Berkeley,
California, IBM Thomas J. Watson Research Center, and the Software
Engineering Institute at Carnegie Mellon University. He was chair at
the Computer Science and Engineering Division, EECS Department,
University of Michigan for three years beginning in January 1991.

He is an IEEE fellow; a member of the IEEE Computer Society; was
the program chair of the 1986 IEEE Real-Time Systems Symposium
(RTSS); the general chair of the 1987 RTSS, the guest editor of the
1987 August special issue of IEEE Transactions on Computers on
Real-Time Systems, a program co-chair for the 1992 International
Conference on Parallel Processing, and has served on numerous
technical program committees. He chaired the IEEE Technical Com-
mittee on Real-Time Systems in 1991-1993, was a distinguished visitor
of the IEEE Computer Society, an editor of IEEE Transactions on Par-
allel and Distributed Computing, and an area editor of International
Journal of Time-Critical Computing Systems.

