
Resource Management for Real-Time Communication:
Making Theory Meet Practice

Ashish Mehra, Atri Indiresan and Mang G. Shin

Real-time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, Michigan 48 109-2122

{ashish,atri, kgshin} @ eecs.umich.edu

Abstract

This paper focuses on bridging the gap between theory
and practice in the management of host CPU and link re-
sources for real-time communication. Using our implemen-
tation of real-time channels, a paradigm for real-time com-
munication in packet-switched networks, we illustrate the
tradeoff between resource capacity and channel admissi-
bility, which determines the number and type of real-time
channels that can be accepted for service and the perfor-
mance delivered to best-effort trajjic. We demonstrate that
this tradeoff is affected signijicantly by the choice of imple-
mentation paradigms and the grain at which CPU and link
resources are multiplexed amongst active channels. To ac-
count f o r this effect, we extend the admission controlproce-
dure for real-time channels originally proposed using ideal-
ized resource models. Our results show that practical con-
siderations signijicantly reduce channel admissibility com-
pared to idealized resource models. Furthel; the optimum
choice of multiplexing grain depends on several factors such
as resource preemption overheads, the relationship between
CPU and link bandwidth, and the interaction between link
bandwidth allocation and CPU bandwidth allocation.

I. Introduction

The advent of high-speed networks has generated an in-
creasing demand for a new class of distributed applica-
tions that require certain quality-of-service (QoS) guaran-
tees from the underlying network. QoS guarantees may be
specified in terms of several parameters such as end-to-end
delay, delay jitter, and bandwidth delivered on each active
connection; additional requirements regarding packet loss

The work reported in this paper was supported in part by the National Sci-
ence Foundation under grant MIF-9203895 and the Office of Naval Re-
search under grants N00014-94-1-0229. .

and in-order delivery can also be specified. Examples of
such applications include distributed multimedia applica-
tions (e.g., video conferencing, video-on-demand) and dis-
tributed real-time command/controI systems. To support
these applications, both the communication subsystem in
end hosts and the network must be designed to provide QoS
guarantees on individual connections.

Given appropriate support within the network, host com-
munication resources must be managed in a QoS-sensitive
fashion, i.e., according to the relative importance of the con-
nections requesting service. For a sending host,' communi-
cation resources include CPU bandwidth for protocol pro-
cessing and link bandwidth for packet transmissions, as-
suming sufficient availability of buffer space. QoS-sensitive
management of communication resources necessitates ad-
mission control and resource scheduling policies to ensure
that each connection obtains at least its required QoS. These
resource management policies are typically formulated us-
ing idealized models of the resources being managed. For
example, it may be assumed that a given resource is im-
mediately preemptible or the cost of preemption is negligi-
ble. More importantly, it may be assumed that a required
set of resources can be accessed, and hence allocated, inde-
pendent of one another. However, the above assumptions
can be violated when implementing resource management
policies, since the performance characteristics of the hard-
ware and software components employed can deviate sig-
nificantly from those of the idealized resource models.

In this paper, we focus on bridging the gap between the-
ory and practice in the management of host CPU and link
resources for real-time communication. For this purpose we
utilize real-time channels, a paradigm for real-time commu-
nication in packet-switched networks 1121, similar to other
proposals for guaranteed-QoS connections [2]. Using our
implementation of real-time channels [161, we illustrate the
tradeoff between useful resource capacity, which is the pro-

' The issues involved in resource management at the receiving host are
similar, but beyond the scope of this paper.

0-8186-7448-2/96 $05.00 0 1996 IEEE
130

http://eecs.umich.edu

portion of the raw resource capacity that can be utilized ef-
fectively, and channel admissibility. In the context of real-
time channels, useful resource capacity determines the num-
ber and type of real-time channels accepted for service and
the performance delivered to best-effort traffic.

A channel requires a portion of the available CPU band-
width to process each generated message and packetize it.
Similarly, it requires a portion of the available link band-
width to transmit each packet on the link. Since these two
resources typically differ in their performance characteris-
tics, they present different tradeoffs for resource manage-
ment. We demonstrate that these tradeoffs are affected sig-
nificantly by the choice of implementation paradigms and
the (temporal) grain at which CPU and link resources are
multiplexed amongst active channels. To account for this
effect, we extend the admission control procedure for real-
time channels originally proposed using idealized resource
models. Our results show that, compared to idealized re-
source models, practical considerations significantly reduce
channel admissibility. Further, the optimum choice of the
multiplexing grain depends on several factors such as re-
source preemption overheads, the relationship between CPU
and link bandwidth, and the interaction between CPU band-
width allocation and link bandwidth allocation.

The rest of the paper is organized as follows. Section 2
provides a brief description of guaranteed-QoS communica-
tion using real-time channels. Section 3 discusses the issues
involved in managing CPU and link bandwidth for QoS-
sensitive protocol processing and packet transmissions, re-
spectively. The modifications required in the admission con-
trol procedure to manage CPU and link bandwidth simul-
taneously are presented in Section 4. Section 5 studies the
tradeoff between useful resource capacity and channel ad-
missibility. Our work is contrasted with related work in Sec-
tion 6. Finally, Section 7 concludes the paper.

2. Real-Time Channels

A real-time channel is a simplex, fixed-route, virtual con-
nection between a source and destination host, with se-
quenced messages and associated performance guarantees
on message delivery. The data flow on real-time channels is
unidirectional, from source to sink via intermediate nodes,
with successive messages delivered in the order they were
generated. Corrupted, delayed, or lost data is of little value;
with a continuous flow of time-sensitive data, there is not
sufficient time to recover from errors. Data transfer on real-
time channels has unreliable-datagram semantics, i.e., oc-
curs without acknowledgements and retransmissions.

2.1. Traffic Generation and QoS

Traffic generation on real-time channels is based on a lin-
ear boundedarrivalprocess [7, 11 characterized by three pa-
rameters: maximum message size (S,,, bytes), maximum
message rate (R,,, messagedsecond), and maximum burst
size (B,,, messages). The notion of logical arrival time is

used to enforce a minimum separation Imin between mes-
sages on the same real-time channel. This ensures that a
channel does not use more resources than it reserved at the
expense of other channels’ QoS guarantees. The QoS on a
real-time channel is specified as the desired deterministic,
worst-case bound on the end-to-end delay experienced by a
message. See [121 for more details.

2.2. Resource Management

As with other proposals for guaranteed-QoS communica-
tion [2] , there are two related aspects to resource manage-
ment for real-time channels: admission control and (run-
time) scheduling. Admission control for real-time channels
is provided by Algorithm D-order [12], which uses fixed-
priority scheduling for computing the worst-case delay ex-
perienced by a channel at a link. When a channel is to be
established at a link, the worst-case response time for a mes-
sage (when the message completes transmission on the link)
on this channel is estimated based on non-preemptive fixed-
priority scheduling of packet transmissions. The total re-
sponse time, which is the sum of the response times over all
the links on the route of the channel, is checked against the
maximum permissible message delay and the channel can
be established only if the latter is greater. Contrary to the
approach for admission control, run-time link scheduling is
governed by a variation of the multi-class earliest-deadline-
first policy [12]. The overheads and effectiveness of link
scheduling in our implementation are discussed in [16].

The above approach only accounts for management of
link bandwidth at the host. As discussed in Section 3, it can-
not be applied directly to CPU bandwidth management.

2.3. Implementation

We have implemented a QoS-sensitive communication sub-
system architecture featuring real-time channels [161. Our
implementation employs a communication executive de-
rived from 2-kernel 3.1 1111 exercising complete control
over a Motorola 68040 CPU.
QoS-Sensitive CPU and Link Scheduling: The imple-
mentation provides a process-per-channel model of proto-
col processing adapted from the process-per-message model
provided by x-kernel. In this model, a unique handler
is associated with each channel to perform protocol pro-
cessing for all messages generated on the channel. Chan-
nel handlers are scheduled for execution using a multi-
class earliest-deadline-first (EDF) scheduler layered above
the z-kernel scheduler (which provides fixed-priority non-
preemptive scheduling with 32 priority levels). Since all
channel handlers execute within a single (kernel) address
space, the preemption model employed for handler execu-
tion is that of cooperative preemption. That is, the cur-
rently executing handler yields the CPU to a waiting higher-
priority handler after processing up to a certain (config-
urable) number of packets (the preemption granularity). Be-
sides bounding CPU access latency, this allows us to study

13 1

the influence of preemption granularity and overheads on
channel admissibility.

In order to support real-time communication, network
adapters must provide a bounded, predictable transmission
time for a packet of a given size. Since network adapters are
typically best-effort in nature, their design is optimized for
throughput and may be unsuitable for real-time communica-
tion, even with a bounded and predictable packet transmis-
sion time. Even when explicit support for real-time com-
munication is provided, on-board buffer space limitations
may necessitate staging of outgoing traffic in host memory,
for subsequent transfer to the adapter. To support real-time
communication on these adapters, link scheduling must be
provided in software on the host processor. In our imple-
mentation, packets created by channel handlers are sched-
uled for transmission by a non-preemptive multi-class EDF
link scheduler. See [16] for more details of the protocol
stack and the real-time channel implementation.
Null Network Device: In order to explore the effects of the
relationship between CPU and link bandwidth, we have im-
plemented a device emulator, referred to as the null device,
that can be configured to emulate any desired packet trans-
mission time C,. C, is the minimum time that must elapse
between successive packet transmissions on the link. Thus,
it suffices to ensure that successive packet transmissions can
be invoked every C, time units apart. This can be achieved
by emulating the behavior of a network adapter such that C,
time units are consumed for each packet being transmitted.

The device emulator is simply a thread that, once sig-
nalled, tracks time by consuming CPU resources for C, time
units before signalling completion of packet transmission.
This emulator is implemented on a separate processor that is
connected via a backplane system bus to the processor im-
plementing the communication subsystem (the host proces-
sor). Upon expiry of C, time units (completion of packet
transmission), the emulator issues an interrupt to the host
processor, similar to the mechanism employed in typical
network adapters. While the emulator allows us to study a
variety of tradeoffs, including the effects of the relationship
between CPU and link bandwidth, it is not completely ac-
curate since no packet data is actually transferred from host
memory. However, this does not invalidate the trends ob-
served and performance comparisons reported here.

3. Managing CPU and Link Bandwidth

As mentioned earlier, Algorithm D-order [121 computes
the worst-case response time for a message. This response
time has two components: the time spent waiting for re-
sources and the time spent consuming resources. At the
host, the time spent consuming resources is equal to the mes-
sage service time, the time required to process and transmit
all the packets constituting the message. To calculate the
time spent waiting for resources, one must consider the pre-
emption model used €or resource access.

The real-time channel model presented in [121 accounts
for non-preemptive packet transmissions, but assumes an

ideal preemption model for CPU access, i.e., the CPU can be
allocated to a waiting higher-priority handler immediately at
no extra cost. Under this assumption, message service time
is determined solely by the CPU processing bandwidth re-
quired to packetize the message, and the link bandwidth re-
quired to transmit all the packets. The time spent waiting
for resources is calculated by accounting for resource usage
by messages from all higher-priority channels, and the one-
packet delay (due to non-preemptive packet transmission) in
obtaining the link. However, as explained below, implemen-
tation issues necessitate extensions to the model to account
for implementation overheads and constraints.

3.1. Implementation Issues

Several implementation issues impact resource manage-
ment policies. These include handler execution require-
ments, implementation of link scheduling, and the relation-
ship between CPU and link bandwidth.
Handler Execution: Preemption of an executing pro-
cesslthread comes with a significant cost due to context
switch and cache miss penalty. Preemption effectively in-
creases the CPU usage attributed to a channel, which in turn
reduces the CPU processing bandwidth available for real-
time channels; immediate preemption is thus too expensive.
It is desirable to limit the number of times a handler is forced
to preempt the CPU in the course of processing a message.
At the other extreme, non-preemptive execution of handlers
implies that the CPU can be reallocated to a waiting han-
dler only after processing an entire message. This results
in a coarser (temporal) grain of channel multiplexing on the
CPU and makes admission control less effective. More im-
portantly, admission control must consider the largest pos-
sible message size across all real-time and best-effort chan-
nels; maximum message size for best-effort traffic may not
even be known a priori. An intermediate solution is to pre-
empt the CPU only at specific preemption points, if needed.
Since message processing involves packetization, the CPU
can be preempted after processing every packet. The impor-
tant parameter here is the number of packets processed be-
tween preemption points, which determines the (temporal)
grain at which the CPU can be multiplexed between chan-
nels. Admission control must account for the extra delay
in obtaining the CPU which may be currently allocated to
a lower-priority handler.

In the absence of per-byte copying overheads, the total
CPU time required to process a message is directly propor-
tional to the number of packets constituting the message.
Clearly, assuming that the communication subsystem does
not copy message data unnecessarily (true for our imple-
mentation), the CPU processing time will be minimum if
a single packet constituted the entire message, i.e., if the
packet size was the same as the message size. However,
as explained below, the total time required to transmit a
packet on the link is determined primarily by the size of
the packet, although initiation of transmission involves non-
zero per-packet overhead. If the set of channels requesting
service have identical traffic specifications, and hence the

132

same maximum message size, then single-packet messages
maximize channel admissibility. However, under a hetero-
geneous mix of real-time channels (with large and small
messages), a large packet size would significantly reduce the
admissibility for channels with messages smaller than the
chosen packet size. Packet size, therefore, also plays a sig-
nificant role in determining channel admissibility.
Implementation of Link Scheduling: An assumption of-
ten made when formulating resource management policies
for communication is that CPU and link bandwidth can
be independently allocated to a channel. This assumption
may get violated in an implementation depending on the
paradigm used to implement link scheduling. We consider
three options for implementing link scheduling in software:

0 1

0 2

0 3

Packets are scheduled for transmission either in the con-
text of the currently executing channel handler (via a
function call) or in interrupt context after each packet
transmission.
Packets are scheduled for transmission by a dedicated
process that executes at the highest priority and is sig-
nalled via semaphore operations.
Packets are scheduled for transmission either in the con-
text of the currently executing channel handler or in
the context of a new thread that is fired up after every
packet transmission.

0 1 and 0 2 differ significantly in the implications for CPU
and link bandwidth allocation, since with 0 2 the link sched-
uler must also be scheduled for execution on the CPU. Since
0 3 presents tradeoffs similar to 02, we focus on 0 1 and 0 2
in the discussion below.

Selecting a packet for transmission incurs some overhead
in addition to that of initiating transmission on the link. Ad-
ditional overhead may be involved if the link scheduler must
transfer packets between link packet queues [16]. In 01,
the scheduler is frequently invoked from the interrupt ser-
vice routine (ISR) announcing completion of packet trans-
mission. Since the scheduling overhead involved can be
substantial in the worst case, it is undesirable to incur this
penalty in the ISR, since this prolongs the duration for which
network interrupts are disabled. If the host is also receiving
data from the network, there is now a greater likelihood of
losing incoming data.

02 , on the other hand, does not suffer from this problem;
since scheduler processing is scheduled for execution, it is
performed outside thc ISR. In addition to keeping the ISR
short, this paradigm also has some software structuring ben-
efits such as a relatively cleaner implementation. However,
because the link scheduler is itself scheduled for execution
on the CPU, there i s now an additional overhead of a con-
text switch and the accompanying (instruction) cache miss
penalty for each packet transmission. More importantly, al-
location of CPU and link bandwidth is closely coupled in
02. This coupling can potentially lower the utilization of the
link and, as demonstrated in Section 5, significantly reduces
channel admissibility while making it unpredictable.
Relationship Between CPU and Link Ba~dw~dth: A con-
servative estimate of message service time can be obtained

by adding the total CPU processing time and the total link
transmission time. However, this ignores the overlap be-
tween CPU processing and link transmission of packets con-
stituting the same message. The extent of this overlap de-
pends largely on the relationship between the CPU and link
bandwidth, i.e., on the relative speed of the two. To improve
channel admissibility, message service time must be calcu-
lated to account for this overlap. The extent of the over-
lap also depends on the implementation option used for link
scheduling. While 01 allows link utilization to be kept rela-
tively high, 0 2 can cause the link to idle even when there are
packets available for transmission. From another perspec-
tive, 0 2 forces link scheduling to be non-work-conserving
while 01 allows for work-conserving packet transmissions.

While admission control can utilize the overlap between
CPU processing and link transmission of packets belonging
to a message, it cannot do so for the potential overlap be-
tween CPU processing and link transmission of packets be-
longing to diferent messages. Since message arrivals serve
as system renewal points, no a priori assumptions can be
made about the presence of messages in the system.
Determination of L,: As mentioned earlier, the packet
transmission time L,(s) for a packet of size s measures the
delay between initiation and completion of packet transmis-
sion on the network adapter. It determines the minimum
time between successive packet transmission invocations by
the link scheduler. For a typical network adapter, this de-
lay depends primarily on two aspects, namely, the overhead
of initiating transmission and the time to transfer the packet
to the adapter and on the link. The latter is a function of
the packet size and the data transfer bandwidth available be-
tween the host memory and the adapter. If C, is the over-
head to initiate transmission on an adapter feeding a link of
bandwidth B, byteshecond, then the transmission time of a
packet (of size s) can be approximated as

Lx(s) = c, + S

min(Br, B,) ’
where B, is the data transfer bandwidth available tolfrom
host memory. B, is determined by a variety of factors such
as the mode (direct memory access (DMA) or programmed
IO) and efficiency of data transfer and the degree to which
the adapter pipelines packet transmissions. C, includes the
cost of setting up DMA transfer operations, if any. Note
that with non-preemptive packet transmissions on the link,
L,(S) is also the delay experienced by a waiting highest-
priority packet to commence transmission, where S is the
maximum packet size.

To use this model of packet transmission time, C, and B,
must be determined for a given network adapter and host
architecture. This involves experimentally determining the
latency-throughput characteristics of the adapter. Since we
want to explore the effects of the relationship between CPU
and link bandwidth, we select min(Br, U,) to conform to a
desired link (and data transfer) speed, measured in nanosec-
onds (ns) required to transfer one byte. On the null de-
vice, C, is determined by the granularity of time-keeping
and overhead of communication with the host processor; the
measured value of C, is M 40 ps.

-1 2000 , I I I I I I - I

e.- . - . -
.C

.. . - .Qc’rn---o 01: MessageSize=4KB
El‘ x-x 01: Message Size = 16KB

0 - . -0 01:MessageSize=60KB

I I I I I I I
1 2 3 4 5 6 7 8

5500

Packets between preemptions

(a) Packets between preemptions (LS = Ons)

n o 02: LS = loons

4 6 8 12
Packet size (KB)

(b) Packet size and link speed (PBP = 1)

Figure 1. Throughput as a function of packets between preemptions, packet size and link speed

3.2. Performance Implications

To illustrate the performance implications of some of the
above-mentioned issues, we ran several experiments us-
ing our real-time channel implementation to measure sys-
tem throughput (kilobytes(KB)/second) as a function of pa-
rameters such as the number of packets processed between
preemption points, the packet size, and link speed. For
a given CPU processing power, varying the speed of the
link allows us to explore the relationship between CPU
and link bandwidth. In the experiments reported here, four
best-effort channels were created and messages generated
on these channels continuously; each experimental run in-
volved transmission of over 25,000 packets. Multiple runs
produced consistently repeatable results. The results re-
ported are representative in that similar trends were obtained
with more channels and other parameter settings. An exper-
imental parameterization of our implementation yielded the
values listed in Table 1.

Figure l(a) shows system throughput (useful resource ca-
pacity) as a function of the number of packets processed be-
tween preemption points (PBP) for several message sizes.
The packet size is fixed at 4 KJ3 and the link speed (LS)
is set at 0 ns per byte, i.e., the link is “fast” relative to the
CPU. For 01, changing PBP has no effect when the mes-
sage size is 4 KB; this is expected for single-packet mes-
sages. As message size increases, so do the number of pack-
ets and throughput increases until PBP equals the number of
packets in the message. After this point PBP has no effect on
throughput. As can be seen, for large messages an increase
in PBP improves throughput significantly and consistently.

0 2 reveals the same behavior as 0 1 for small- to
medium-sized messages. However, for large messages
throughput rises initially as PBP increases. Subsequently,
throughput starts falling sharply, in a non-linear fashion.

The decline in throughput is due to increasingly poor uti-
lization of the link bandwidth and a corresponding increase
in the time to transmit all the packets belonging to the mes-
sage. The oscillations in throughput are due to subtle in-
teractions between the CPU preemption window and link
transmission, as investigated in Section 4.

Figure l(b) shows the measured system throughput as a
function of packet size and link speed. Three values of link
speed are considered: 0 ns per byte (fast link), 50 ns per
byte (medium-speed link), and 100 ns per byte (slow link).
For each link speed, we fix PBP at 1 and message size at 32
KB; packet size is varied from 2-12 KB.

Consider system throughput for 01 . For a given packet
size (i.e., fixed CPU processing time), an increase in link
speed results in higher throughput for 01 and 02, with 01
outperforming 02. For a given link speed, throughput in-
creases with packet size since the CPU processing time re-
duces due to a reduction in the number of packets consti-
tuting the message. An increase in packet size from 8 KB
to 10 KB does not change the number of packets and the
throughputremains unchanged. As the link becomes slower,
however, there is a saturation in the achieved throughput due
to the link tending to become a bottleneck. After a certain
packet size, for a given link speed, link transmission time
exceeds the protocol processing time; thus any gains from
a higher PBP cease to matter and the two curves converge.
From Figure l(b), this occurs at a packet size of 8 IU3 for
link speed of 50 ns per byte and at 4 KB for link speed of
100 ns per byte.

Consider system throughput for 02. The trends are sim-
ilar to those observed when the link is either very fast (CPU
is the bottleneck) or vcry slow (link is the bottleneck) since
CPU and link processing overlap almost completely. For a
medium speed link (CPU and link bandwidths are more bal-
anced), however, throughput behavior is more non-linear.

134

Subtle interactions between CPU preemption window and
link lransmission time cause the link to idle until the next
preemption point. This explains the drop in throughput at
a packet size of 6 KB. Subsequently, throughput climbs be-
cause link utilization improves and CPU requirements con-
tinue to decrease. This effect is analyzed in Section 4. P

S
Cc,(S) 4. Worst-case Service and Wait Times

packets between preemption points 4

transmit time for uacket size S

_ _ _ _ ~ _ _ _ _
maximum packet size 4KE

245 us

For a channel requesting admission, D-order can compute
the worst-case message response time (the system time re-
quirement in [121) by accounting for three components:

e worst-case waiting time (lW) due to lower-priority han-

o worst-case service time for the message (Z),
worst-case waiting time due to message arrivals on all

We show below how 7, and I, can be estimated to account
for the implementation-related issues highlighted above;
qhP can then be recomputed using I,.

Suppose the CPU is reallocated to a waiting handler,
if needed, every P packets; that is, up to P packets are
processed between successive preemption points. Further,
(see Table 1) suppose that the maximum packet size is S,
context switch overhead between handlers is Csw (this in-
cludes scheduling overhead to select a handler for execu-
tion), cache miss penalty due to a context switch is Ccmr
and packet transmission time is &(S) for packet size S.
Per-packet protocol processing cost is Cp and per-packet
(link) scheduling overhead of selecting a packet and initiat-
ing transmission is Cl.

dlers or packets,

existing higher-priority channels (Ithp).

4.1. Estimating Service Time

Consider a message of size M bytes, i.e., Np = [Yl pack-
ets, with (N, - 1) packets of size S and the last packet of size
Slas t = (M mod S) i f (M mod S) # 0, else Slast = S.
Thus, link transmission time is C,(S) for all but the last
packet and Lz(S'asi) for the last packet. Protocol process-
ing cost for the first packet is CiSt while subsequent frag-
ments each incur a lower cost C,. Ckst includes the fixed
cost of obtaining the message for processing, the cost of a
timestamp, and the cost of preparing the first packet.2 Both
Cjs' and C, include the cost of network-level encapsulation.
We estimate I, for 0 1 and 0 2 separately. The reader is re-
ferred to [17] for explanations (omitted here due to space
constraints) of the following derivations.
Option 01: Given the system parameters listed in Table 1,
the worst-case service time for 01 is given by

Cis' + Cr + Cy + Cpr

Cp" + C r + Cz(S las t) + Cpr
if Cp < &(S)
otherwise 7 y = {

where ,Cp = (Np - 1)C,(S) + Cm(Slas t) is the total
link transmission time for the message, CyZ = NpC, is

*Our fragmentation protocol traverses a slower path for messageslarger
than S bytes; the first packet thus has a higher processing cost.

first-packet CPU processing cost
per-packet CPU processing cost
per-uacket link scheduling cost

420 p s
170 ,us
160 us

Table 1. Important system parameters

the total link scheduling overhead for the message, C p r =
(N+)Cesp is the total cost of preemption during the pro-
cessing of the message (&, = C,, + C,,), and C r =
Cis' + (Np - 1)C, is the total protocol processing cost for the
message. Protocol processing and link transmission overIap
in 0 1 is illustratedin Figure 2(01:(i) and Ol:(ii)).
Option 0 2 : Calculation of the worst-case service time for
0 2 is done similarly; however, we must now consider the
processing of blocks of packets with each block comprising
no more than P packets. The number of blocks in a message
withMP packets is given by Nb = LN+J + 1. The protocol
processing cost for the first block is given by Ctst = C i S t +
(max(Np, P) - l)Cpl while the cost of processing the last
block of packets is given by

if (A(, mod P) = 0
= { cb (Np mod P)Cp + Ccsp otherwise

where cb = PC, + Cesp is the cost of processing the other
blocks, if any. The worst-case service time is given by

To"= { 7 B otherwise
7 A + 7$2JPU if cb < C,(S)

where 'TA = Ctst + Cp + Cy and
7 w 0 2 , c ~ u - C l s t

- p + (P - 1)CP + ccsp + c;,
with C; = CI + CcSp. I B is given by

TA ifNb = 1
I B = { 7," + 1;6" otherwise

where 7," = ciSt + (Nb - 2)Cb + max(Cpstl ic,(S)) and
%' = (Np - Nb)C,(s) + &(Slast) + c r . Protocol pro-
cessing and link transmission overlap in 0 2 is illustrated in
Figure 2(02:(i) and 02:(ii)).

4.2. Estimating Wait Time

To compute the total message wait time, we first consider the
time spent waiting for a lower-priority handler to relinquish
the CPU, followed by the time spent waiting for the link.
Option 01: The worst-case CPU time for a block of packets
i s Cis ' , during which up to packets could complete
transmission. Thus, the worst-case CPU wait time is

135

01: (i)Cb < C,(S) 02: (i) c b < C,(S)

01: (ii)Cb 2 C,(S) 0 2 (ii)Cb 2 C,(S)

First block processing time 1 Packet transmission time

Other blocks processing time 0 Link scheduling time

Figure 2. Protocol processing and link transmission overlap in 01 and 0 2

Due to non-preemptive packet transmission, the worst-case
link wait time is simply 7 $ l , l e n k = C,(S), and TZ1 =

2: The worst-case CPU wait time equals the time
to process up to P packets on a lower-priority channel fol-
lowed by a context switch to the link scheduler, followed by
another context switch to the waiting handler. Thus,

7woLcPu + ?;f l , lznL

Our implementation provides admission control based on
thc above estirnatcs o f service and wait times. While
these estimates are geared towards real-time guarantees,
and therefore are necessarily conservative, it is insightful to
compare the throughput predicted by these estimates and the
best-cffsrt throughput measured using the real-time chan-
nel implementation. For this purpose, we parameterized the
communication subsystem, including the protocol stack, ex-
tensively to determine the system parameter values listed i n
Tablc 1. We validated the implementation as a function of
packet size, for different values o f link speed; the main re-
sults are summarized below. See [17] for more details.

Predicted throughput tracks measured throughput well
for both (31 and 0 2 . However, for 01 with medium link
spccds, the predicted and measured throughputs divcrgc sig-
nificantly; we attribute this to overly conservative estimates
of Cgw and CCm. The estimates are necessarily conserva-
tive in accounting for worst-case times which, though neces-
sary for real-timc traffic, may be relatively small on average.
These validation experiments reveal certain shortcomings in
determining the system parameter values listed in Table 1:
part of the discrepancy stems from the unpredictability in-
troduced by caches. More refined experiments are necessary
to select accurate values for e,, C,, and C,, .

5. Channel Admissibility

In this section, we demonstrate that the tradeoff between re-
source capacity and channel admissibiIity is influenced sig-
nificantly 'cy P, the number of packets between preemp-
tions, and S , the packet size. As expected, the mechanism
employed to implement link scheduling and the relationship
between CPU and link bandwidth also have a profound ef-
fect on channel admissibility. We studied channel admis-
sibility for 0 1 and 0 2 for a range of link speeds, message
sizes, rates and deadlines. In the following, we present and
compare the results for a link speed of 50 ns per byte, mes-
sage size of 32 KB, and message inter-arrival of 100 ms. We
admit as many channels as possible withdeadlineof 100 ms.

5.1. Channel Admissibility in

From Figure 3, channel admissibility in 01 rises with both
P and S due to the accompanying reduction in proiocol
processing cost and work-conserving packet transmissions.
As P rises (Figure 3(a)), protocol processing costs decline,
resulting in a small increase in channel admissibility. As
P continues to rise, the marginal benefits in protocol pro-
cessing costs decline. Due to an increase in the window of
non-preemptibility, channel admissibility either saturates or
shows a small decline. Figure 3(b) shows that increasing
S increases channel admissibility substantially, since the re-
duction in the required CPU bandwidth more than compen-
sates for the increase in the non-preemptibility window.

The above results might suggest that arbitrary-sized
packets, i.e., sending each message as a single packet, are
desirable to maximize channel admissibility. While this is
true if all channels carry same-sized messages, the same can-
not be said for channels with smaller (single-packet) mes-
sages. Increasing P and S arbitrarily only serves to increase
the window of non-preemptibility with no reduction in CPU
requirements for small messages. Large values of P and S
lower admissibility for channels with small messages, espe-
cially those with tight deadlines. Selection o f P and S there-
fore depends on system parameters as well as the targetted
mix of communication traffic.

136

rI- - -U 01: Packet Size = 4KB
m 01: Packet Size = 8KB
0---0 01: PacketSize=lZKB
0 - - - 0 02: Packet Size = 4KB
x x 02: Packet Size = 8KB
n - - - U 02: Packet Size = 12KB

o t i ; : : : ; :
Packets between preemptions

35

30

25

20

15

10

0 .- ..U 01: PBP = 1
x 01: PBP = 4
0-----0 Ql:PBP=8

5

'2 4 6 8 10 12 14 16
Packet size (KB)

(a) Effect of P (b) Effect of S

Figure 3. Effect of P and S on ch nnel admissibility in 0 1 and 0 2

5.2. Channel Admissibility in 8 2

In contrast to 01, channel admissibility when using 0 2 to
schedule packets is significantly lower and the behavior is
highly non-linear. This is explained easily using our pre-
emption model. Consider the effect of? on channel admis-
sibility (Figure 3(a)) for 8 K13 packets. With the given link
speed and P = 1, link transmission time is greater than
protocol processing time for a block of packets. The model
in Figure 2(02:(i)) applies, making the channel susceptible
to long idle periods (Section 4). For P = 2, the lransmis-
sion time for a packet remains unchanged, but the process-
ing time for a preemption block increases, making it more
than the link transmission time. This results in the scenario
in Figure 2(02:(ii)), in which the worst-case transmission
time is reduced substantially, thereby increasing channel ad-
missibility.

As P increases further, the nature of overlap between
CPU processing and link transmission remains unchanged.
Channel admissibility either remains unchanged or de-
clines slightly due to an increase in the window of non-
preemptibility. This transition occurs for all but the smallest
packet sizes. In general, the larger the packet, the greater the
P that causes a change in the nature of overlap, namely, from
packet transmission time being slower to it being faster than
the processing time for the longest block of packets.

Figure 3 (b) presents the same information as a function
of S. As packet size increases, there is an initial increase
in admissibility due to reduced protocol processing load. At
a certain value of S, link transmission time becomes larger
than block processing time, changing the scenario from that
in Figure 2(02:(ii)) to that in Figure 2(02:(i)). Further in-
crease in packet sizc slowly increases channel admissibility
due to reduced CPU bandwidth requirements. As seen from

Figure 3, the best operating point for 0 2 depends critically
on system parameters. Since a change in channel character-
istics will significantly change channel admissibility, a sys-
tem parameterized and optimized for a particular workload
is unlikely to perform well under a heterogeneous workload.

Using a model of ideal resources, i.e., with no CPU
preemption cost and an immediately preemptible CPU, we
found M 40% improvement in channel admissibility over
and above 0 1 with P = 1. Thus, it is necessary to ac-
count for non-ideal characteristics (context switch overhead,
cache miss penalty) of real systems.

6. Related Work

This paper extends the policies proposed in [12], focus-
ing on CPU and link bandwidth management for admission
control. We have implemented a QoS-sensitive architec-
ture [16] that provides admission control and run-time sup-
port for real-time channels using the proposed extensions.

Our implementation methodology and analysis is appli-
cable to other proposals for guaranteed real-time communi-
cation in packet-switched networks, a survey of which can
be found in [2]. Similar issues are being explored for provi-
sion of integrated services on thehternet [6,4,8]. The Tenet
protocol suite [3] is an advanced implementation of real-
time communication on wide-area networks; however, they
have not considered incorporation of protocol processing
overheads into network-level resource management poli-
cies. In particular, they do not address the problem of mak-
ing protocol processing inside the host QoS-sensitive.

The gap between theory and practice for real-time sys-
tems has received significant attention in recent years [13,
5 , 141. Our work is complimentary to these efforts in that
we focus QIP communication needs of distributed real-time

137

systems. Scheduling of protocol processing at priority lev-
els consistent with those o f the communicating application
was considered in [SI. More recently, processor capacity re-
serves in KT-Mach [181 have been combined with user-level
protocol processing [151 to make protocol processing inside
hosts predictable [191. Operating system support for multi-
media communication is explored in [IO] and [201. In [lo]
the focus is o n provision of preemption points and earliest-
deadline-first scheduling in the kernel. Similarly, the focus
of [20] is on the scheduling architecture.

onclnsion and Future Work

In this paper, we focused on management of host commu-
nication resources for real-time communication. In partic-
ular, we identified the issues involved in extending and im-
plementing resource management policies originally formu-
lated using idealized resource models. Using our real-time
channel implementation, w e extended the admission control
procedure to account for protocol processing and implemen-
tation overheads, for two implementation paradigms realiz-
ing link scheduling. The extensions were validated against
measured performance o f the implementation and used to
study the implications for channel admissibility.

The issues of simultaneous management of CPU and link
bandwidth for real-time communication are of wide-ranging
interest. Our present work is applicable to other proposals
for real-time communication and QoS guarantees [2]. The
proposed extensions are general and applicable to other host
and network architectures. While w e only considered man-
agement of communication resources, the present work can
be extcnded to incorporate application scheduling as well.
Our analysis is directly applicable if a portion of the host
processing capacity can be reserved for communication-
related activities [l8, 191.

As part of future work, we plan to conduct more exten-
sive validation of the proposed extensions. This would in-
volve relaxing some of the fairly-conservative assumptions
about worst-case scenarios without compromising real-time
guarantees. Lastly, we plan to extend the null device into a
more sophisticated network device emulator.

eferences

[l] D. P. Anderson, S. Y. Tzou, R. Wahbe, R. Govindan, and
M. Andrews. Support for continuous media in the DASH
system. In Proc. Int’l Con$ on Distributed Computing Sys-
tems, pages 54-61,1990.

[2] C. M. Aras, J. E Kurose, D. S. Reeves, and H. Schuizrinne.
Real-time communication in packet-switched networks
Proceedings of the IEEE, 82(1): 122-139, January 1994.

[3] A. Banerjea, D. Ferrari, B. Mah, M. Moran, D. C. Verma,
and H. Zhang. The Tenet real-time protocol suite: Design,
implementation, and experiences. Technical Report TR-
94-059, International Computer Science Institute, Berkeley,
CA, November 1994.

[41 R. Braden, D. Clark, and S. Shenker. Integrated services in
the Intemet architecture: An overview. Request for Com-
ments RFC 1633, July 1994. Xerox PARC.

[5] A. Bums, K. Tindell, and A. Wellings. Effectice analysis for
engineering real-time fixed priority schedulers. IEEE Trans.
Software Engineering, 21 (5):475480, May 1995.

[61 D. D. Clark, S. Shenker, and L. Zhang. Supporting real-time
applications in an integrated services packet network: Archi-
tecture and mechanism. In Proc. ofACM SIGCOMM, pages
14-26,August 1992.

[7] R. L. Cruz. A Calculus for Network Delay and a Note on
Topologies of Interconnection Networks. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign, July 1987. available as
technical report UILU-ENG-87-2246.

[8] S. Floyd and V. Jacobson. Link-sharing and resource man-
agement models for packet networks. IEEE/ACM Trans.
Networking, 3(4), August 1995.

191 R. Govindan and D. P. Anderson. Scheduling and IPC mech-
anisms for continuous media. In Proc. ACM Symp. on Oper-
ating Systems Principles, pages 68-80, 199 1.

[lo] 0. Hagsand and P. Sjodin. Workstation support for real-time
multimedia communication. In Winter USENIX Conference,
pages 133-142, January 1994. Second Edition.

11 J N. C. Hutchinson and L. L. Peterson. The x-Kernel: An ar-
chitecture for implementing network protocols. IEEE Trans.
Software Engineering, l7(1):1-13, January 1991.

121 D. D. Kandlur, K. 6. Shin, and D. Ferrari. Real-time com-
munication in multi-hop networks. IEEE Trans. on Parallel
and Distributed Systems, 5(10):1044-1056, October 1994.

131 D. Katcher, H. Arakawa, and J. K. Strosnider. Engineering
and analysis of fixed priority schedulers. IEEE Trans. Soft-
ware Engineering, 19(9):920-934, Sept. 1993.

[I41 K. A. Kettler, D. I. Katcher, and J. K. Strosnider. A modeling
methodology for real-time/multimedia operating systems. In
Proc. of the Real-Time Technology and Applications Sympo-
sium, pages 15-26, May 1995.

[15] C. Maeda and B. N. Bershad. Protocol service decomposi-
tion for high-performance networking. In Proc. ACM Symp.
on Operating Systems Principles, pages 244-255, December
1993.

[16] A. Mehra, A. Indiresan, and K. Shin. Design and evaluation
of a QoS-sensitive communication subsystem architecture.
Technical Report CSE-TR-280-96, University of Michigan,
January 1996.

[17] A. Mehra, A. Indiresan, and K. Shin. Resource management
for real-time communication: Making theory meet practice.
Technical Report CSE-TR-281-96, University of Michigan,
January 1996.

[181 C. W. Mercer, S. Savage, and H. Tokuda. Processor capacity
reserves for multimedia operating systems. In Proceedings
of the IEEE International Conference on Multimedia Com-
puting and Systems, May 1994.

[19] C. W. Mercer, J. Zelenka, and R. Rajkumar. On predictable
operating system protocol processing. Technical Report
CMU-(2-94- 165, Camegie Mellon University, May 1994.

[20] C. Vogt, R. G. Herrtwich, and R. Nagarajan. HeiRAT: The
Heidelberg resource administration technique design philos-
ophy and goals. Research Report 43.9213, IBM European
Networking Center, Heidelberg, Germany, 1992.

138

