
572 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 5, MAY 1996

ion Time
Tasks in Distribu

Jong Kim, Member, /€E€, and Kang G. Shin, Fellow, /€E€

Abstract-Task-execution times are one of the most important parameters in scheduling tasks. Most scheduling algorithms are
based on the assumption that either worst-case task-execution times are known to the scheduler or no information on execution
times is available at all. While scheduling tasks based on worst-case execution times can guarantee to meet their timing
requirements, it may lead to severe under-utilization of CPUs because worst-case execution times could be one or two orders of
magnitude larger than the corresponding actual values. Scheduling tasks based on the execution time distribution (instead of worst-
case execution timvs) is known to improve system utilization significantly.

In this paper, wb propose a model to predict task execution times in a distributed system. The model considers several factors
which affect the execution time of each task. These factors are classified into two groups: intrinsic and extrinsic. The intrinsic factors
control the flow within a task, while the extrinsic factors include communication and synchronization delays between tasks. By
simplifying the extrinsic factors, we represent a distributed system with a simple queuing model. The proposed queuing model
consists of two stations: one for computation and the other for communication and synchronization. Information on system utilization
can be obtained by converting this queuing model to a Markov chain. The execution time of a task is then derived from the
information on system utilization in the form of average and distribution. The model is extended to describe the effects of multiple
tasks assigned to a single processing node. The utility of the model is demonstrated with an example.

Index Terms-Task-execution time, distributed systems, queuing analysis, communication and synchronization delays.

OST scheduling algorithms known to date are based
on the assumption that either worst-case task-

execution times are known to the scheduler or information
on task execution times is not available at all. However, it is
usually difficult to estimate the worst-case execution time
of a task and one must be cautious in estimating worst-case
execution times. For example, over-estimation of the execu-
tion time of a task will prevent the scheduling of other tasks
even if they are schedulable, whereas under-estimation will
result in unbalanced system utilization or risk missing task
deadlines. Hence, it is desirable to estimate task execution
times as accurately as possible.

Due to their potential for high performance and fault tol-
erance, distributed systems are attractive for various applica-
tions. High performance is achievable by exploiting the in-
herent parallelism among tasks with the multiple processors
in a distributed system. A task is divided into subtasks, ex-
pressing the parallelism within the task. Subtasks are as-
signed to different processors and communicate and/or syn-
chronize with each other to achieve a common goal. Fault
tolerance can be achieved in a distributed system by using its
multiplicity of components as natural redundancy. A distrib-
uted system can be characterized by two components: tasks

0 7. Kim is with the Department of Compute? Science, Pokang University of
Science and Technology, Pohang 790-784, Korea.
E-mail: jkim@postech.nc.kv.

Science, University of Michigan, Ann Arbor, Ml48109-2122.
E-mnil: kgskin~eecs.umick.edu.

* K.G. Shin is with the Department of Electrical EngiMeering and Computer

Manuscript received May 16,1992; revised Sept. 23,1994.
For information on obtaininX reprints of this article, please send e-mail to:
tuai?sconz@computer.org, nnd reference IEEECS Log Number C96023.

and inter-task communications.
The execution time of a task depends on many factors

which can be classified into two groups: intrinsic and extrin-
sic. The intrinsic factors control the flow within a task. Ex-
ample intrinsic factors include precedence relations and
condition parameters that determine loops and branches
within a task. The extrinsic factors, on the other hand, con-
trol interactions among tasks. Examples of extrinsic factors
include resource contention, communication, and synchro-
nization delays. Although many researchers considered the
effects of intrinsic factors on the task-execution time [l], [2],
[31, [41, [5l, [61, [71, only the authors of 181 addressed extrin-
sic factors.

The analytic model proposed by Chu and Sit [8] consid-
ers the effects of intrinsic factors such as loops, branches,
and the precedence relation among subtasks as well as the
effects of extrinsic factors such as resource contention. They
used a Timed Petri-Net to model resource Contention and a
queuing model to derive the execution time of a task. The
final result was given in the form of the mean and variance
of task-execution time. This work offered a means of in-
cluding an extrinsic factor in the estimation of task-
execution time. However, it is difficult to use for large sys-
tems since the number of states needed to represent re-

source contention is (” : ”) where n is the number of tasks

and z, is the number of resources to be contended for.
Moreover, this model did not consider the effects of other
extrinsic factors such as interprocessor communication,
synchronization, and multitasking. Note also that resource
contention is rather rare in loosely-coupled systems.

mailto:tuai?sconz@computer.org

KIM AND SHIN: EXECUTION TIME ANALYSIS OF COMMUNICATING TASKS IN DISTRIBUTED SYSTEMS 573

In this paper, we propose a new model by taking into ac-
count the effects of both intrinsic and extrinsic factors on
task-execution times. A task (algorithm) consists of a num-
ber of subtasks in the model, each of which is in turn com-
posed of several executable modules. The intrinsic factors
determine the structure of the data dependency graph of
the task and affect the execution time of a module and the
number of modules in each subtask. The structure of a
subtask is represented by the number of modules in it and
the service demands of each module. The extrinsic factors,
on the other hand, affect the delay between imodules. The
extrinsic factors considered here are interprocessor com-
munication delays, synchronization delays, and multitask-
ing. (Note that multitasking is another form of resource
contention for processors (Crus).) In the proposed model,
we consider two possible subtask assignments to a proc-
essing node. The first is single assignment under which at
most one subtask is assigned to a processing node. The
other is multiple assignment under which more than one
subtask can be assigned to a single node. The model ana-
lyzes the average of task-execution time (service time) and
its distribution. The resulting service time includes the ac-
tual execution time of modules plus intermodiile communi-
cation and synchronization delays.

The paper is organized as follows: Section 2 describes
the operational principles of the distributed system under
consideration. The structures of task and subtask, and the
communication mechanism are discussed there. Based on
these principles, the models of single and multiple assign-
ments are given in Section 3. The distribution of execution
times is derived in Section 4. The utility of the model is
demonstrated with an example in Section 5. The last section
summarizes our contributions.

2 OPERATIONAL PRINCIPLES
2.1 Task Structure
A task consists of several subtasks which communicate
with one another to achieve a common goal. !Since the par-
allelism supported by distributed systems would be mostly
medium-grain to coarse-grain, each subtask has almost the
same lifetime as that of the task itself. A subtask is com-
posed of a collection of modules each of which consists of a
sequence of instructions. Modules do not communicate nor
synchronize with others during their execution, but
subtasks communicate/synchronize with eaclh other at the
beginning or end of a module’s execution. Fig. 1 shows a
generic task structure. A subtask may initiate some com-
munication after a module completes its execution. Simi-
larly, a subtask may have to wait for some message(s) be-
fore starting the execution of a new module. The actual
communication pattern depends on the data-dependency
between modules and their implementation on a specific
architecture.

There are two possible ways of assigning subtasks to
processing nodes. The first is a multitasking or multipro-
gramming (MP) environment, in which more than one
subtask can be assigned to a single processing node. Al-
though multitasking is efficient in utilizing resources, it
could delay the execution of a task because of resource

Fig. 1. A generic model for parallel execution of a task

(CPU) contention. The second is the nonmultitasking
(NMP) environment where at most one subtask is assigned
to each processing node. We will analyze both MP and
NMP cases.

2.2 Communication Structure
There are two types of communication primitives in paral-
lel computation 191: blocking and nonblocking. Upon issuing
a blocking primitive, a subtask must block and wait until it
receives an acknowledgment or requested information from
its communicating partner. An example of a blocking
communication primitive is QUERY-READ. A subtask
using this primitive sends a message to another subtask for
information. The sender subtask cannot proceed further
until the receiver subtask replies back to the sender. The
communication primitives used by the receiver are READ
and REPLY. The receiver gets a message with READ, pre-
pares the requested information, and returns it to the
sender with REPLY. The replying subtask does not have to
wait until the reply reaches the sender, i.e., it is nonblock-
ing. Another example of this type of primitive is nonblock-
ing SENT). As soon as a subtask sends a message to another
subtask, the sender can resume its execution without wait-
ing for a reply. When a subtask reaches the point where it
needs information from the other task, the subtask issues
RECEIVE The subtask which needs information must wait
until it gets the needed information. Hence, RECEIVE is
always blocking. In this paper, we shall treat both types of
communication primitives under the assumption that the
probabilii y distribution associated with the use of these
primitive; in each task are known in advance. This as-
sumption is not unreasonable in view of the fact that the
behaviors of tasks are tested and simulated extensively be-
fore putting them into actual use.

The ccimmunication delay depends on the system con-
figuration, and the distributions of destination and message
length. It is difficult to estimate the communication delay
without considering the interconnection network and the
routing ailgorithm used. The result for one environment
could be drastically different from that for another envi-
ronment. For example, circuit and packet switching meth-
ods will yield quite different communication delays even
under the same system load. One cannot apply the result of
circuit switching to the analysis of the system using packet
switching. Similar disparities can be found in the synchro-
nization (delay. Two communicating subtasks will be syn-
chronized at the point of each blocking communication.

574 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 5, MAY 1996

Due to the difference in their service demands and execu-
tion speed, two subtasks will reach a communicating point
at different times. Well-designed parallel algorithms will
reduce the synchronization delay by distributing an equal
amount of computation to all communicating subtasks. We
assume that the synchronization delay is an independent
factor affecting the task execution time.

When a task (algorithm) is represented by a task graph, the
subtask that terminates last (takes maximum time) is called
the critical subtask. So, the execution time of the critical
subtask for a given task becomes the actual task-execution
time-the time needed to complete the task after assigning
all its subtasks to processing nodes. (We do not consider
migration of subtasks during their execution.) It is assumed
that the critical subtask consists of M modules and the exe-
cution time of each module is exponentially distributed with
an average demand S, measured in basic time units or CPU
cycles. (M is a random variable determined by the executing
environmental factors. In this section, we assume that this is a
fixed value for now but we will generalize it in Section 5.)
The total service demands of the critical subtask in the ab-
sence of communication and synchronization delays is M . S.

During the execution of a task, it will be in one of two
states: active and semi-active. The active state represents the
case when a processing node is busy executing a module.
Since a module is defined as a sequence of instructions and
does not communicate with others during its execution’,
only the active-state subtask requires services from the
processing node. When the execution of a module is com-
pleted, either the subtask to which this module belongs
may send a message to other subtask(s1, or it waits formes-
sage(s) from others, or both. The waiting state is called the
semi-active state.

Fig. 2a shows the model for a processing node in a non-
multitasking (NMP) environment, where only one subtask
can reside on each processor. Upon completion of module
execution in the active state, the corresponding subtask may
join the active state again with probability XP? This transi-
tion-shown in Fig. 2a as an arrow to the active state from
the outgoing message path-represents the situation in
which a subtask sends message(s) to other subtask(s) after
completing the execution of a module and the node starts
the execution of a new module. In such a case, the subtask
does not wait for messages from other nodes. The non-
blocking SEND achieves this type of transition.

In case a subtask needs data from other subtasks after
making such requests, the branching probability becomes
Pi (1 - x) as shown in the figure with an arrow to the semi-
active state from the outgoing message path. The blocking
primitive QUERY-READ or SEND-RECEIVE achieves
this type of transition.

When a subtask needs data from other subtasks, it takes
the incoming message path and waits in the semi-active state
with the transition probability (1 - PJ. The blocking primi-
tive RECEIVE achieves this type of transition. Branching

If this does not hold, it is not difficult to re-decompose a subtask so as
to satisfy this condition.

, locoming Mcisagcr

1-x Outgoing Mcssages , Incoming Messages ,
Pf

P
Ontgoing Mcsragu 1-X

Fig. 2. Task execution model.

probabilities, Pf and x, are assumed to be given as input
parameters to the model. These parameters can be deter-
mined from the nature of the parallel algorithm under con-
sideration.

In a multitasking (MP) environment, there is a queue at
each processing node to hold the ready tasks waiting for
service. Each of the ready tasks will receive services based
on the first-come-first-served (FCFS) principle. Note, how-
ever, that there is no queue for subtasks waiting for mes-
sages. We assumed that there are infinite servers for
subtasks in the semi-active state, since subtasks are moved to
the processing node as soon as they receive messages re-
gardless of their arrival time at the semi-active state. This
situation is shown in Fig. 2b.

3.1 NMP Model
The module execution rate in the active state is given by
le = +, Since the transition from the active state to the active
state implies the generation of messages which are sent to
other tasks, the message generation rate of a task is propor-
tional to the service demand of the task as:

1
f S a = P .--.u, (3.1)

where U is the node utilization. This message generation
rate information can be used to determine the communica-
tion delay. The transition from the semi-active state to the
active state depends on both synchronization and commu-
nication delays. Since modules may have different starting
times and service demands, two communicating modules
may have different finishing times. This difference is in fact
the synchronization delay. It is in general very difficult to
analyze the synchronization delay [lo] and the detailed
analysis of it is beyond the scope of this paper (such an
analysis deserves to be a separate paper). Instead of devel-
oping an analytic method, we measure this parameter from
the corresponding task in a real/simulated environment. For
simplicity, let ,us be the rate of synchronization delay which is

KIM AND SHIN: EXECUTION TIME ANALYSIS OF COMMUNICATING TASKS IN DISTRIBUTED SYSTEMS 575

independent and exponentially distributed. Similarly, we
assume that the average delay of a message is given and the
communication delay is exponentially distributed. The sum-
mation of both synchronization and communication delays
gives the time spent by a task in the semi-active state.

3.2 MP Model
The difference between MP and NMP modlels lies in the
queue placed at each processing node. Upon execution of
one of its modules, a subtask either sends a message or re-
ceives a message or both. After sending a message, the
subtask joins the queue with probability of xPf The node
processor selects the next subtask from the queue based on
the FCFS principle. A subtask which waits for an incoming
message($ from another subtask(s) moves to the semi-
active state with probability of (1 - xP$. The semi-active
state behaves as an infinite server since a subtask task
moves immediately from the semi-active state to processor
queue upon receiving the message it is waiting for.

4 MODEL ANALYSES
4.1 NMP Model
We present the combined communication and synchroni-
zation delay, which is hypo-exponential in nature, as two
stages of exponential distribution functions. The first stage
represents the synchronization delay (exponentially dis-
tributed with rate ,us). The second stage represents the
communication delay (exponentially distributed with rate
paus). Fig. 3 shows the Markov chain for the NMP model.
The arrow that originates from the Active state and returns
to the same state, with transition rate xPf 5, represents non-
blocking outgoing messages. Existence of the arrow does
not affect the Markov chain of Fig. 3 [ll]. The semi-l and
semi-2 jointly specify the probability of semi-active state.
Solving this three-state Markov chain, we get

(4.1)

4.2 MP Model
Fig. 4 is the Markov state diagram when the degree of mul-
tiprogramming is K. The two-stage delay is represented as
states semi-1 and semi-2 in Fig. 3, and as a single (semi-
active) state in Fig. 4 for clarity. The transition rate to an
active state is also given as p. But, we use two semi-active
states as shown in Fig. 3 when solving the model. The K
active (Active-1 to Active-K) states in Fig. 4 represent the
number of subtasks at the processor queue. Whenever a
subtask moves from active1 state to the semi-active state
with rate (1 - xPf)A,, the number of subtasks at the proces-
sor is decremented by one. On the other hand, the transi-
tion from the semi-active state to active-1 state increments
the number of subtasks at the processor by one. This rate is
shown a:+ p for all states. The transition rate from active4
state, 1 <I i 5 K, to itself is given by (~ 2 2) . Note that the
semi-active state is equivalent to active0 state representing
the case of no subtask at the processor queue.

c B B

Fig. 4. A Markov model for the MP environment

The model presented in Fig. 4 is the same as the classic
M/M/l /K finite storage queueing model. But, as discussed
in the previous paragraph, each state represents two im-
plied sub-states, semi-1 and semi-2. When the Markov
chain of Fig. 4 is fully presented, it is extremely difficult, if
not impossible, to get closed-form expressions for the
above state probabilities. But this Markov chain can be
solved by using a numerical package like HARP [121. The
utilization of a node is then

K
LI = P(active i) .

1=1

The average percentage of the time that subtask i occupies
the processor is U / K . Hence, the exact expression for the
mean task execution time is given as

(4.3)

Fig. 3. A Markovian model for the NMP environment.

The active state represents that a node is busy executing
a module and hence gives information on node utilization.
Recall that the execution time of the critical subtask was
assumed to be M . S if there is no delay between the execu-
tion of modules. Since the utilization of a node is calculated
as P(act), the exact expression for the mean execution time
of the critical subtask is given as

5 DISTRIBUTIONS OF DELAYS AND EXECUTION TIMES
5.1 Delay Distributions
In this section, we will analyze the distribution of the total
communication and synchronization delay. The communi-
cation delay depends on message length, network struc-
ture, ancl traffic density. Let C and H be the random vari-
ables that represent the communication and synchroniza-

576 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 5, MAY 1996

tion delays, respectively, and are both exponentially dis-
tributed (for tractability). Recall that the average communi-
cation and synchronization delays are 1 /pavg and 1 /&, re-
spectively. The combined communication and synchroni-
zation delay is hypo-exponentially distributed since it is the
sum of two exponentially distributed variables [ll]. Let
Pr[C 5 t] be the probability that a message is delivered to
the destination in time t , then this distribution is given as

Pr[C 5 t] = 1 - exp(-tu,,). (5.1)

Likewise, the distribution of N is given as

Pr[H I t] = 1 - exp(-tpJ. (5.2)

We need a probability density function to compute the
distribution of total delay. Since the probability density
function of total delay is the convolution of density func-
tions of all random variables, we must find the individual
density functions first. The derivatives of distribution func-
tions of C and Hare

fc = PrlC = tl = pav8 exp(-tpnu,,)
(5.3)

Taking the Laplace transforms of the above equations, we get

fH = Pr[H = t] = p, exp(-f,uj).

The Laplace transform of probability density function for
the total delay is the direct multiplication of individually
transformed functions. Let T be the random variable repre-
senting the total delay, then

- Ps P a u g
-

s + Ps s + Pavg

The probability density function fr can then be found by
taking the inverse Laplace transform as

By integrating fT, one can find the total delay to be hypo-
exponentially distributed.

We have analyzed thus far both the communication and
synchronization delays when each of these delays is expo-
nentially distributed. This analysis, however, can be ap-
plied to any distribution of communication and synchroni-
zation delays as long as their Laplace transforms exist.

5.2 Execution Time Distribution
We will derive the distribution of task-execution time un-
der the following assumptions.

Al. The probability distribution of the number of modules
is known and represented as Pr[M = m] where M is a
random variable representing the number of modules
in the critical subtask.

A2. The execution time of each module is independent and
identically distributed

A1 does not impose any problem in practice, since pro-
grams are usually tested and simulated extensively before
putting them in use. Moreover, an algorithm (program)
would be inefficient if environmental factors are not con-
sidered during its design stage. Since the communication
between subtasks depends on the environmental factors,
the number of modules also depends on these factors. Envi-
ronmental factors are usually known during the planning
period and thus A1 is not unreasonable. A2 is needed for
tractability and can be justified as follows. The execution
time of each module is a function of its environment. For
example, let us consider conditional branches and loops
inside of a module, which are determined by the module’s
environmental conditions. These conditions are in turn de-
termined by the module’s input and working data. Some of
the working data are exchanged among subtasks, and sub-
sequently affect module-execution times. This situation
implies that modules have no strict ’logical’ relation among
them. On the other hand, a task is partitioned into subtasks
and modules either by a programmer or by a compiler [13].
To increase execution efficiency (by reducing the synchro-
nization delay), an equal load distribution to modules is
preferred, thus making module-execution times identically
distributed.

As defined in Section 3, let S be the random variable rep-
resenting the execution time of a module. When S is expo-
nentially distributed with rate & the probability density
function of module-execution time becomes:

fs = le exp(-tle). (5.6)

If the critical subtask is composed of m modules, then the
probability density function (pdfl of its execution time
without considering the inter-module delays is

r , i m

(5.7)

where f E represents the density function of the total execu-
tion time of the critical subtask without considering the
inter-module delays. By taking the inverse Laplace trans-
form, we can get the probability density functionf,:

exp(-t’le). (5.8) (m - l)!
By integrating fE, one can get the probability distribution of total
execution time. Let this distribution be Pr[E 5 t I M = m]. To
reflect the inter-module delays into the total execution time, one
can apply (4.2) or (4.3) to the final distribution. Then Pr[t,,,I t I
M = m] = Pr[E 5 f . U / K I M = m]. Since we know the distribu-
tion of the number of modules in the critical subtask (Pr[M =
m]), the final distribution of execution time is

t”-l
j E (t) = a; ~.

The first part of (5.9) (Pr[t,,,,S t I M = m]) represents the dis-
tribution of task execution time when the number of modules
is fixed. The second part of (5.9) (Pr[M = m]) represents the
distribution of number of modules in the critical task.

KIM AND SHIN EXECUTION TIME ANALYSIS OF COMMUNICATING TASKS IN DISTRIBUTEE SYSTEMS

-

577

6 RESULTS AND DISCUSSION
To demonstrate the utility and power of the proposed
model, we applied the model to a parallel algorithm which
has potential use in many applications. The :,elected algo-
rithm is a solution to the 0/1 knapsack problem which is
known to be NP-complete. To comprehend the potential
use of the knapsack problem for applications, let us con-
sider the problem of assigning a fixed number of resources
to multiple objects (e.g., modules or subtasks) in time. Let
us assume that each object requires a different number of
resources and yields a reward if it has the required re-
sources. Each resource, however, can be assigned only to a
single object. Under this setting, we want to find an as-
signment within a deadline which gives the maximum re-
ward. This is one instance of the 0/1 knapsack problem.

A parallelized solution to this problem was reported in
[141. The task-flow of this parallelized algorithm is given in
Fig. 5 . In this algorithm, n, c, and p denote the number of
data elements, the size of knapsack, and the number of
processes, respectively. Each process is assumed to be as-
signed to a processor, so that the terms "process" and
"processor" are used interchangeably. The critical subtask
in this example is the task that includes the top module in
Fig. 5. The total number of modules in the critical subtask is
M = 3 log p + 1 and the overall computation time of this
algorithm without considering intercommunications is
M . S = (c . n / p + c(c + 1)(1 - 1/2p)) . tunli, where tunlt repre-
sents the time to execute a block of instructions which are
common to all modules. The total communication time for
this algorithm is (M + 2c log p) . d,,,,, where d,,,, is the time
needed to send one block of data/information to a corre-
sponding task. In this example, the main (critical) subtask
always has the largest piece of computation which is di-
vided into modules. Hence, modules in the main subtask
finish last among all communicating modules, so the main
subtask does not suffer any synchronization delay even
though others do. The communication pattern used in this
example is SEND-RECEIVE after executing a module.
Hence, x = 0 and P - 1.

To find the relation between tunlt and d,,,,,, we assumed
that system utilization decreases to 75% of one processor
utilization when we use two processors for the NMP case.
The actual decrease is implementation-dependent and can
be measured from the actual system. From these parame-
ters, we computed average execution times using (4.2) and
(4.3) for all possible numbers of processes when n = 300 and
c = 30, and the computed results are plotted nn Fig. 6. The
vertical axis represents a total execution time divided by the
execution time when a job is executed in a single processor.
The figure is represented in percentile. The solid line repre-
sents execution times for the NMP case and the dotted line
represents the MI' assignment with K = 2. As .was expected
in [14], the execution time decreases until it reaches the
saturation point and increases again as we increase the
number of processes involved in computation. The reason
for this is that the communication time overhead becomes a
dominant factor as there is only a small gain in the speed of
computation.

f:

Fig. 5. Task graph of 0/1 knapsack parallel algorithm.

-i \---
2 0 1 I , I 1-

0 1 2 3 4 5 6

fog p @ = Number of processors)

Fig. 6. Execution time comparison for different nurnber of processes.

The density function of execution time for the knapsack
problem i:; plotted in Fig. 7 . In this experiment, we assumed
that the task is divided into eight parallel subtasks. The
average service demand of a module is 20 milliseconds
when tun,t is assumed 101 microseconds in addition to the
conditions used in Fig. 6. The average service demand is
computed using the relations: M = 3 log p + 1 and M . S =
(c . n / p + c(c + 1)(1 - 1/2p)) tunif. This algorithm has a fixed
number of modules for each subtask since it depends on the
number of subtasks. The execution time of algorithm is a
function of the number of data elements. Hence, we modi-
fied (5.9) to reflect the distribution of data elements. The
modified equation is

mnx

Pr[tComp I i] = Pr[tcomp < t 1 n = k] . Pr[n = k] .
k=min

578 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 5, MAY 1996

We used a uniform distribution of n in the interval [200,
5001. The dotted line in this figure represents the probabil-
ity density function of single module execution time. The
solid line represents the probability density function of the
total execution time of the critical subtask with the commu-
nication delay included.

We also plotted the probability density function of exe-
cution time for the MI' case. We assumed that tasks are di-
vided into eight subtasks and two subtasks are assigned to
a single processing node. The figure indicates that the MP
case takes more time to complete tasks than the NMP case,
due mainly to resource (CPU) contention.

_ _ _ _ _ _ _ _ I Module execution timefxl00)
Task execution time(xl000)

0 300 600 900 1200 1500
Execution time in milliseconds

Fig. 7. The pdf of task execution time for 0/1 knapsack problem

1 .o

0.9

0.8

0.7

0.6

1

*- Simulation --
I A Analysis

M=840, S=50, H=10
C=25. X=1.0

Fig. 8. Utilization versus P?.

To show the relation between system utilization and pa-
rameter Pf, we generated a random task and compared the
result with the analytical result. Fig. 8 shows the variation
of node utilization as a function of Pi for both single (NMI')
and multitasking (K = 2) cases. As Pf increases, the node
utilization increases. This means that the critical subtask
only sends messages to other subtasks. The solid line shows
the analytical results and the dotted line shows the simula-
tion results. Fig. 9 represents the variation of execution time
as a function of Pf for both NMP and MP execution models.
For both figures, the number of modules M in the critical
subtask is assumed to be 840, 50 units of average service
demand of module (S), 10 units of synchronization delay
(H), and 25 units of average communication delay (C). As
expected with higher Pi, the node is busy most of the time,
and thus, does not have a significant semi-active state de-
lay. Note that the actual parameterization of M, s, Pv and ,us
is algorithm dependent. Here, we used arbitrary values to
demonstrate how to apply the proposed model to the analy-
sis of task behavior with given actual parameter values.

1
0 . 5 : 3 I . I . 8 . I . I

0.0 0.2 0.4 0.6 0.8 1 .o
Prob. of branching

K=2)

e

x10000

C- Simulation -- - Analysis
7

M=840, S=50, H=10
C=25, X=1.0

6

5

4 : . , . , . , ~, . '
0.0 0.2 0.4 0.6 0.8 1 .o

Prob. of branching

Fig. 9. Execution time versus f f .

7 CONCLUSION
In this paper, we proposed a model to estimate the execu-
tion times of communicating tasks in distributed systems.
We classified all factors affecting the execution time of a
task into two groups: intrinsic and extrinsic. The effects of
intrinsic factors are reflected into a task model, in which a
task is represented with subtasks and modules. It was as-
sumed that the execution time of a task is the same as its
critical subtask which finishes last within the task. Tasks are
characterized by the service demand of each module, the
number of modules in the critical subtask, and the branch-
ing probabilities for communication (Pf, x). This characteri-
zation depends solely on intrinsic factors. On the other
hand, the effects of extrinsic factors are reflected into com-
munication and synchronization delays. For example, the
effects of the interconnection network and the routing algo-
rithm are reflected into the communication delay parame-
ter. The environmental difference between processing
nodes is reflected into the synchronization delay. These two
delays are explicitly specified to show their effects on the
execution time. By simplifying all factors, we represented a
distributed system with a simple queuing model of two
stations: one for computation and the other for communi-
cation and synchronization delays. Information on system
utilization is obtained by converting this queuing model to
a Markov chain. The execution time of a task is derived
from the information on system utilization. The analysis

KIM AND SHIN: EXECUTION TIME ANALYSIS OF COMMUNICATING TASKS IN DISTRIBUTED SYSTEMS 579

results are given in two forms: average and distribution.
The distribution of task execution times is desired for the
analvsis of other imDortant measures such as dvnamic fail-

[I41 J. Lee, E. Shragowitz, and S. Sahni, ”A Hypercube Algorithm for
the 0/1 Knapsack Problem,” PYOC. 1987 ICPP, pp. 699-706, Aug.
1987.

, I

ure. Several examples are also presented to show the effec-
tiveness of the model.

The main difference between the proposed model and
previous results reported in the literature lies in the inclu-
sion of extrinsic factors such as communication and syn-
chronization delays in the proposed model. The proposed
model can be used for any distributed systrm since the
model includes the abstracted effects of intrinsiic and extrin-
sic factors. The task structure depends on the nature of a
parallel
chitecture. Similarly, communication and synchronization

Jong Kim received the BS degree in electronic
engineering from Hanyang University, Seoul,
Korea, in 1981, the MS degree in computer
science from the Korea Advanced Institute of
Science and Technology, Seoul, Korea, in 1983,
and the PhD degree in clsmputer engineering
from Pennsylvania State University in 1991.

Since 1992, he has been an assistant pro-
fessor in the Department of Computer Science
and Engineering, Pohang LJniversity of Science
and Technology, Pohang, Korea From 1991 to

1992, he was a research fellow in the Real-Time Computing Labora-
tory of the Department of Electrical Engineering arid Computer Science
at the Universitv of Michiaan. He was a research assistant in the ECE

and its imp1ementation On a ’pecific

delays are affected by the interconnection structure and the
routing algorithm. As long as we can transform all factors
which affect the execution task time into task structure pa-
rameters and communication delays, we can derive the
execution time distribution using the proposed model.

ACKNOWLEDGMENTS
The work reported in this paper was supported in part by
the US. National Science Foundation under Grant MIP-
9203895 and by the US. Office of Naval Research under
Grant N000-94-1-0229. Any opinions, findings, and conclu-
sions or recommendations expressed in this paper are those
of the authors and do not necessarily reflect the view of the
funding agencies.

REFERENCES
[I] M.H. Woodbury and K.G. Shin, “Evaluation of the Probability of

Dynamic Failure and Processor Utilization for Real-Time Sys-
tems,” Pvoc Ninth Real-Time System Symp., pp. 222.231, Dec. 1988.
M.H. Woodbury, ”Analysis of the Execution Time of Real-Time
Tasks,“ Proc. Seventh Real-Time System Symp., pp. 89-96, Dec. 1986.
V. Haase, ”Real-Time Behavior of Programs,” I E E E Trans. Softzuare
Eng., vol. 7, pp. 494-501, Sept. 1981.
W. Chu and K.K. Leung, ”Task Response Time Model and Its
Applications for Real-Time Distributed Processing Systems,”
Proc. Fifth Real-Time System Symp., pp. 225-236, Dec. 1984.
C.Y. Park and A.C. Shaw, “Experiments with a Program Timing
Tool Based on Source-Level Timing Schema,” Computer, pp. 48-57,
1991.
A. Stoyenko, ”A Real-Time Language with a Schedulability Ana-
lyzer,” Doctoral dissertation CSRI-206, Univ. of Toronto, Dec.
1987.
K.B. Kenny and K.J. Lin, “Measuring and Analyzing the Perform-
ance of Real-Time Programs,” I E E E Software, vol. 13, no. 5, pp. 41-
49, Sept. 1991.
W. Chu and C.M. Sit, ”Estimating Task Response Time with
Contentions for Real-Time Distributed Systems,” Proc. Ninth Reul-
Time System Symp., pp. 272-281, Dec. 1988.
D. Peng and K.G. Shin, ”Modeling of Concurrent Task Execution
in a Distributed System for Real-Time Control,” I E E E Trans. Com-
puters, vol. 36, no. 4, pp. 500-516, Apr. 1987.

1101 R. Nelson, D. Towsley, and A.N. Tantawi, ”Performance Analysis
of Parallel Processing Systems,” IEEE T~ans . Software Exg., vol. 14,
pp. 532-539, Apr. 1988.

[l l] K.S. Trivedi, Probability and Statistics with Reliability, Queuing, and
Computer Science Applicntions. Englewood Cliffs, N.J.: Prentice
Hall, 1982.

I121 J.B. Dugan, R. Geist, and K.S. Trivedi, ”The Hybrid Automated
Reliability Predictor,” AIAA J . Guidance, Control, and Dynamics,
vol. 9, no. 3, pp. 319-331,1986,

1131 V. Sarkar, Partitioning and Scheduling Parallel Pvogrums for Multi-
processors. Cambridge, Mass.: MIT Press, 1989.

[2]

[31

141

[5]

[6]

[71

[8]

[91

department of Pennsylvania State University from 1987 to 1990 From
1983 to 1986, he was a system engineer in the Korea Securities Com-
puter Corporation, Seoul, Korea His major areas of interest are fault-
tolerant computing, performance evaluation, and parallel and distrib-
uted compuiing

Kang G. Shin received the BS degree in elec-
tronics engineering from Seoul National Univer-
sity, Seoul, Korea, in 1970, and both the MS and
PhD degrees in electrical engineering from
Cornell University, Ithaca, New York, in 1976
and 1978, respectively HE’ is a professor and
the director of the Real-Time Computing Labo-
ratory, Department of Electiical Engineering and
Computer Science, the University of Michigan,
Ann Arbor, Michigan

He has authoredkoauthored more than 400
technical papers (more than 150 of these in archival journals) and
numerous book chapters in the areas of distributlsd real-time comput-
ing and control, fault-tolerant computing, computer architecture, robot-
ics and automation, and intelligent manufacturing He is currently writ-
ing (jointly with C M Krishna) a textbook Real-Tme Systems which is
scheduled to be published by McGraw Hill in 1996. In 1987, he re-
ceived the Outstanding IEEE Transactions on Automatic Control Paper
Award for a paper on robot trajectory planning In 1989, he also re-
ceived the Research Excellence Award from the University of Michi-
gan In 1985, he founded the Real-Time Computing Laboratory, where
he and his colleagues are currently building a 19-node hexagonal
mesh multicomputer, called HARTS, and middleware services for dis-
tributed real-time fault-tolerant applications

Dr Shin has also been applying the basic research results of real-
time computing to multimedia systems, intelligent transportation sys-
tems, and manufacturing applications ranging from the control of ro-
bots and machine tools to the development of open architectures for
manufacturing equipment and processes

From 1978 to 1982, he was a member of the faculty of Rensselaer
Polytechnic Institute, Troy, New York He has held visiting positions at
the U S Airiorce Flight Dynamics Laboratory, AT&T Bell Laboratories,
Computer Science Division within the Department of Electrical Engi-
neering and Computer Science at the University of California at Ber-
keley, International Computer Science Institute, Berkeley, California,
IBM T J Watsori Research Center, and Software Ihgineering Institute
He also chaired the Computer Science and Engineering Division,
EECS Department, the University of Michigan for three years begin-
ning in January 1991

Dr Shin is an IEEE fellow, was the program chairman of the 1986
IEEE Real-Time Systems Symposium (RTSS), the general chairman of
the 1987 RTSS, the guest editor of the 1987 Auigust special issue of
/€€E Transactmns on Computers on real-time systems, a program co-
chair for the 1992 International Conference on Parallel Processing, and
served numerous technical program committees He also chaired the
IEEE Technical Committee on Real-Time Systems during 1991-93,
was a distinguished visitor of the Computer Society of the IEEE, an
editor of lEEE Transacf/ons on Parallel and D/str/buted Computmg, and
an area editor of the /nfernat/ona/ Journal of T,rrre-Cr/f/ca/ Compuflng
Systems

