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Abstract-Task-execution times are one of the most important parameters in scheduling tasks. Most scheduling algorithms are 
based on the assumption that either worst-case task-execution times are known to the scheduler or no information on execution 
times is available at all. While scheduling tasks based on worst-case execution times can guarantee to meet their timing 
requirements, it may lead to severe under-utilization of CPUs because worst-case execution times could be one or two orders of 
magnitude larger than the corresponding actual values. Scheduling tasks based on the execution time distribution (instead of worst- 
case execution timvs) is known to improve system utilization significantly. 

In this paper, wb propose a model to predict task execution times in a distributed system. The model considers several factors 
which affect the execution time of each task. These factors are classified into two groups: intrinsic and extrinsic. The intrinsic factors 
control the flow within a task, while the extrinsic factors include communication and synchronization delays between tasks. By 
simplifying the extrinsic factors, we represent a distributed system with a simple queuing model. The proposed queuing model 
consists of two stations: one for computation and the other for communication and synchronization. Information on system utilization 
can be obtained by converting this queuing model to a Markov chain. The execution time of a task is then derived from the 
information on system utilization in the form of average and distribution. The model is extended to describe the effects of multiple 
tasks assigned to a single processing node. The utility of the model is demonstrated with an example. 

Index Terms-Task-execution time, distributed systems, queuing analysis, communication and synchronization delays. 

OST scheduling algorithms known to date are based 
on the assumption that either worst-case task- 

execution times are known to the scheduler or information 
on task execution times is not available at all. However, it is 
usually difficult to estimate the worst-case execution time 
of a task and one must be cautious in estimating worst-case 
execution times. For example, over-estimation of the execu- 
tion time of a task will prevent the scheduling of other tasks 
even if they are schedulable, whereas under-estimation will 
result in unbalanced system utilization or risk missing task 
deadlines. Hence, it is desirable to estimate task execution 
times as accurately as possible. 

Due to their potential for high performance and fault tol- 
erance, distributed systems are attractive for various applica- 
tions. High performance is achievable by exploiting the in- 
herent parallelism among tasks with the multiple processors 
in a distributed system. A task is divided into subtasks, ex- 
pressing the parallelism within the task. Subtasks are as- 
signed to different processors and communicate and/or syn- 
chronize with each other to achieve a common goal. Fault 
tolerance can be achieved in a distributed system by using its 
multiplicity of components as natural redundancy. A distrib- 
uted system can be characterized by two components: tasks 
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and inter-task communications. 
The execution time of a task depends on many factors 

which can be classified into two groups: intrinsic and extrin- 
sic. The intrinsic factors control the flow within a task. Ex- 
ample intrinsic factors include precedence relations and 
condition parameters that determine loops and branches 
within a task. The extrinsic factors, on the other hand, con- 
trol interactions among tasks. Examples of extrinsic factors 
include resource contention, communication, and synchro- 
nization delays. Although many researchers considered the 
effects of intrinsic factors on the task-execution time [l], [2], 
[31, [41, [5l, [61, [71, only the authors of 181 addressed extrin- 
sic factors. 

The analytic model proposed by Chu and Sit [8] consid- 
ers the effects of intrinsic factors such as loops, branches, 
and the precedence relation among subtasks as well as the 
effects of extrinsic factors such as resource contention. They 
used a Timed Petri-Net to model resource Contention and a 
queuing model to derive the execution time of a task. The 
final result was given in the form of the mean and variance 
of task-execution time. This work offered a means of in- 
cluding an extrinsic factor in the estimation of task- 
execution time. However, it is difficult to use for large sys- 
tems since the number of states needed to represent re- 

source contention is (” : ”) where n is the number of tasks 

and z, is the number of resources to be contended for. 
Moreover, this model did not consider the effects of other 
extrinsic factors such as interprocessor communication, 
synchronization, and multitasking. Note also that resource 
contention is rather rare in loosely-coupled systems. 
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In this paper, we propose a new model by taking into ac- 
count the effects of both intrinsic and extrinsic factors on 
task-execution times. A task (algorithm) consists of a num- 
ber of subtasks in the model, each of which is in turn com- 
posed of several executable modules. The intrinsic factors 
determine the structure of the data dependency graph of 
the task and affect the execution time of a module and the 
number of modules in each subtask. The structure of a 
subtask is represented by the number of modules in it and 
the service demands of each module. The extrinsic factors, 
on the other hand, affect the delay between imodules. The 
extrinsic factors considered here are interprocessor com- 
munication delays, synchronization delays, and multitask- 
ing. (Note that multitasking is another form of resource 
contention for processors (Crus).) In the proposed model, 
we consider two possible subtask assignments to a proc- 
essing node. The first is single assignment under which at 
most one subtask is assigned to a processing node. The 
other is multiple assignment under which more than one 
subtask can be assigned to a single node. The model ana- 
lyzes the average of task-execution time (service time) and 
its distribution. The resulting service time includes the ac- 
tual execution time of modules plus intermodiile communi- 
cation and synchronization delays. 

The paper is organized as follows: Section 2 describes 
the operational principles of the distributed system under 
consideration. The structures of task and subtask, and the 
communication mechanism are discussed there. Based on 
these principles, the models of single and multiple assign- 
ments are given in Section 3. The distribution of execution 
times is derived in Section 4. The utility of the model is 
demonstrated with an example in Section 5. The last section 
summarizes our contributions. 

2 OPERATIONAL PRINCIPLES 
2.1 Task Structure 
A task consists of several subtasks which communicate 
with one another to achieve a common goal. !Since the par- 
allelism supported by distributed systems would be mostly 
medium-grain to coarse-grain, each subtask has almost the 
same lifetime as that of the task itself. A subtask is com- 
posed of a collection of modules each of which consists of a 
sequence of instructions. Modules do not communicate nor 
synchronize with others during their execution, but 
subtasks communicate/synchronize with eaclh other at the 
beginning or end of a module’s execution. Fig. 1 shows a 
generic task structure. A subtask may initiate some com- 
munication after a module completes its execution. Simi- 
larly, a subtask may have to wait for some message(s) be- 
fore starting the execution of a new module. The actual 
communication pattern depends on the data-dependency 
between modules and their implementation on a specific 
architecture. 

There are two possible ways of assigning subtasks to 
processing nodes. The first is a multitasking or multipro- 
gramming (MP) environment, in which more than one 
subtask can be assigned to a single processing node. Al- 
though multitasking is efficient in utilizing resources, it 
could delay the execution of a task because of resource 

Fig. 1. A generic model for parallel execution of a task 

(CPU) contention. The second is the nonmultitasking 
(NMP) environment where at most one subtask is assigned 
to each processing node. We will analyze both MP and 
NMP cases. 

2.2 Communication Structure 
There are two types of communication primitives in paral- 
lel computation 191: blocking and nonblocking. Upon issuing 
a blocking primitive, a subtask must block and wait until it 
receives an acknowledgment or requested information from 
its communicating partner. An example of a blocking 
communication primitive is QUERY-READ. A subtask 
using this primitive sends a message to another subtask for 
information. The sender subtask cannot proceed further 
until the receiver subtask replies back to the sender. The 
communication primitives used by the receiver are READ 
and REPLY. The receiver gets a message with READ, pre- 
pares the requested information, and returns it to the 
sender with REPLY. The replying subtask does not have to 
wait until the reply reaches the sender, i.e., it is nonblock- 
ing. Another example of this type of primitive is nonblock- 
ing SENT). As soon as a subtask sends a message to another 
subtask, the sender can resume its execution without wait- 
ing for a reply. When a subtask reaches the point where it 
needs information from the other task, the subtask issues 
RECEIVE The subtask which needs information must wait 
until it gets the needed information. Hence, RECEIVE is 
always blocking. In this paper, we shall treat both types of 
communication primitives under the assumption that the 
probabilii y distribution associated with the use of these 
primitive; in each task are known in advance. This as- 
sumption is not unreasonable in view of the fact that the 
behaviors of tasks are tested and simulated extensively be- 
fore putting them into actual use. 

The ccimmunication delay depends on the system con- 
figuration, and the distributions of destination and message 
length. It is difficult to estimate the communication delay 
without considering the interconnection network and the 
routing ailgorithm used. The result for one environment 
could be drastically different from that for another envi- 
ronment. For example, circuit and packet switching meth- 
ods will yield quite different communication delays even 
under the same system load. One cannot apply the result of 
circuit switching to the analysis of the system using packet 
switching. Similar disparities can be found in the synchro- 
nization (delay. Two communicating subtasks will be syn- 
chronized at the point of each blocking communication. 
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Due to the difference in their service demands and execu- 
tion speed, two subtasks will reach a communicating point 
at different times. Well-designed parallel algorithms will 
reduce the synchronization delay by distributing an equal 
amount of computation to all communicating subtasks. We 
assume that the synchronization delay is an independent 
factor affecting the task execution time. 

When a task (algorithm) is represented by a task graph, the 
subtask that terminates last (takes maximum time) is called 
the critical subtask. So, the execution time of the critical 
subtask for a given task becomes the actual task-execution 
time-the time needed to complete the task after assigning 
all its subtasks to processing nodes. (We do not consider 
migration of subtasks during their execution.) It is assumed 
that the critical subtask consists of M modules and the exe- 
cution time of each module is exponentially distributed with 
an average demand S, measured in basic time units or CPU 
cycles. (M is a random variable determined by the executing 
environmental factors. In this section, we assume that this is a 
fixed value for now but we will generalize it in Section 5.) 
The total service demands of the critical subtask in the ab- 
sence of communication and synchronization delays is M . S. 

During the execution of a task, it will be in one of two 
states: active and semi-active. The active state represents the 
case when a processing node is busy executing a module. 
Since a module is defined as a sequence of instructions and 
does not communicate with others during its execution’, 
only the active-state subtask requires services from the 
processing node. When the execution of a module is com- 
pleted, either the subtask to which this module belongs 
may send a message to other subtask(s1, or it waits formes- 
sage(s) from others, or both. The waiting state is called the 
semi-active state. 

Fig. 2a shows the model for a processing node in a non- 
multitasking (NMP) environment, where only one subtask 
can reside on each processor. Upon completion of module 
execution in the active state, the corresponding subtask may 
join the active state again with probability XP? This transi- 
tion-shown in Fig. 2a as an arrow to the active state from 
the outgoing message path-represents the situation in 
which a subtask sends message(s) to other subtask(s) after 
completing the execution of a module and the node starts 
the execution of a new module. In such a case, the subtask 
does not wait for messages from other nodes. The non- 
blocking SEND achieves this type of transition. 

In case a subtask needs data from other subtasks after 
making such requests, the branching probability becomes 
Pi (1 - x) as shown in the figure with an arrow to the semi- 
active state from the outgoing message path. The blocking 
primitive QUERY-READ or SEND-RECEIVE achieves 
this type of transition. 

When a subtask needs data from other subtasks, it takes 
the incoming message path and waits in the semi-active state 
with the transition probability (1 - PJ. The blocking primi- 
tive RECEIVE achieves this type of transition. Branching 

If this does not hold, it is not difficult to re-decompose a subtask so as 
to satisfy this condition. 

, locoming Mcisagcr 

1-x Outgoing Mcssages , Incoming Messages , 
Pf 

P 
Ontgoing Mcsragu 1-X 

Fig. 2. Task execution model. 

probabilities, Pf and x, are assumed to be given as input 
parameters to the model. These parameters can be deter- 
mined from the nature of the parallel algorithm under con- 
sideration. 

In a multitasking (MP) environment, there is a queue at 
each processing node to hold the ready tasks waiting for 
service. Each of the ready tasks will receive services based 
on the first-come-first-served (FCFS) principle. Note, how- 
ever, that there is no queue for subtasks waiting for mes- 
sages. We assumed that there are infinite servers for 
subtasks in the semi-active state, since subtasks are moved to 
the processing node as soon as they receive messages re- 
gardless of their arrival time at the semi-active state. This 
situation is shown in Fig. 2b. 

3.1 NMP Model 
The module execution rate in the active state is given by 
le = +, Since the transition from the active state to the active 
state implies the generation of messages which are sent to 
other tasks, the message generation rate of a task is propor- 
tional to the service demand of the task as: 

1 
f S  a = P  .--.u, (3.1) 

where U is the node utilization. This message generation 
rate information can be used to determine the communica- 
tion delay. The transition from the semi-active state to the 
active state depends on both synchronization and commu- 
nication delays. Since modules may have different starting 
times and service demands, two communicating modules 
may have different finishing times. This difference is in fact 
the synchronization delay. It is in general very difficult to 
analyze the synchronization delay [lo] and the detailed 
analysis of it is beyond the scope of this paper (such an 
analysis deserves to be a separate paper). Instead of devel- 
oping an analytic method, we measure this parameter from 
the corresponding task in a real/simulated environment. For 
simplicity, let ,us be the rate of synchronization delay which is 
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independent and exponentially distributed. Similarly, we 
assume that the average delay of a message is given and the 
communication delay is exponentially distributed. The sum- 
mation of both synchronization and communication delays 
gives the time spent by a task in the semi-active state. 

3.2 MP Model 
The difference between MP and NMP modlels lies in the 
queue placed at each processing node. Upon execution of 
one of its modules, a subtask either sends a message or re- 
ceives a message or both. After sending a message, the 
subtask joins the queue with probability of xPf The node 
processor selects the next subtask from the queue based on 
the FCFS principle. A subtask which waits for an incoming 
message($ from another subtask(s) moves to the semi- 
active state with probability of (1 - xP$. The semi-active 
state behaves as an infinite server since a subtask task 
moves immediately from the semi-active state to processor 
queue upon receiving the message it is waiting for. 

4 MODEL ANALYSES 
4.1 NMP Model 
We present the combined communication and synchroni- 
zation delay, which is hypo-exponential in nature, as two 
stages of exponential distribution functions. The first stage 
represents the synchronization delay (exponentially dis- 
tributed with rate ,us). The second stage represents the 
communication delay (exponentially distributed with rate 
paus). Fig. 3 shows the Markov chain for the NMP model. 
The arrow that originates from the Active state and returns 
to the same state, with transition rate xPf 5, represents non- 
blocking outgoing messages. Existence of the arrow does 
not affect the Markov chain of Fig. 3 [ll]. The semi-l and 
semi-2 jointly specify the probability of semi-active state. 
Solving this three-state Markov chain, we get 

(4.1) 

4.2 MP Model 
Fig. 4 is the Markov state diagram when the degree of mul- 
tiprogramming is K. The two-stage delay is represented as 
states semi-1 and semi-2 in Fig. 3, and as a single (semi- 
active) state in Fig. 4 for clarity. The transition rate to an 
active state is also given as p. But, we use two semi-active 
states as shown in Fig. 3 when solving the model. The K 
active (Active-1 to Active-K) states in Fig. 4 represent the 
number of subtasks at the processor queue. Whenever a 
subtask moves from active1 state to the semi-active state 
with rate (1 - xPf)A,, the number of subtasks at the proces- 
sor is decremented by one. On the other hand, the transi- 
tion from the semi-active state to active-1 state increments 
the number of subtasks at the processor by one. This rate is 
shown a:+ p for all states. The transition rate from active4 
state, 1 <I i 5 K, to itself is given by ( ~ 2 2 ) .  Note that the 
semi-active state is equivalent to active0 state representing 
the case of no subtask at the processor queue. 

c B B 

Fig. 4. A Markov model for the MP environment 

The model presented in Fig. 4 is the same as the classic 
M/M/l  /K finite storage queueing model. But, as discussed 
in the previous paragraph, each state represents two im- 
plied sub-states, semi-1 and semi-2. When the Markov 
chain of Fig. 4 is fully presented, it is extremely difficult, if 
not impossible, to get closed-form expressions for the 
above state probabilities. But this Markov chain can be 
solved by using a numerical package like HARP [121. The 
utilization of a node is then 

K 
LI = P(active i) . 

1=1 

The average percentage of the time that subtask i occupies 
the processor is U / K .  Hence, the exact expression for the 
mean task execution time is given as 

(4.3) 

Fig. 3. A Markovian model for the NMP environment. 

The active state represents that a node is busy executing 
a module and hence gives information on node utilization. 
Recall that the execution time of the critical subtask was 
assumed to be M . S if there is no delay between the execu- 
tion of modules. Since the utilization of a node is calculated 
as P(act), the exact expression for the mean execution time 
of the critical subtask is given as 

5 DISTRIBUTIONS OF DELAYS AND EXECUTION TIMES 
5.1 Delay Distributions 
In this section, we will analyze the distribution of the total 
communication and synchronization delay. The communi- 
cation delay depends on message length, network struc- 
ture, ancl traffic density. Let C and H be the random vari- 
ables that represent the communication and synchroniza- 
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tion delays, respectively, and are both exponentially dis- 
tributed (for tractability). Recall that the average communi- 
cation and synchronization delays are 1 /pavg and 1 /&, re- 
spectively. The combined communication and synchroni- 
zation delay is hypo-exponentially distributed since it is the 
sum of two exponentially distributed variables [ll]. Let 
Pr[C 5 t] be the probability that a message is delivered to 
the destination in time t ,  then this distribution is given as 

Pr[C 5 t ]  = 1 - exp(-tu,,). (5.1) 

Likewise, the distribution of N is given as 

Pr[H I t ]  = 1 - exp(-tpJ. (5.2) 

We need a probability density function to compute the 
distribution of total delay. Since the probability density 
function of total delay is the convolution of density func- 
tions of all random variables, we must find the individual 
density functions first. The derivatives of distribution func- 
tions of C and Hare 

fc = PrlC = tl = pav8 exp(-tpnu,,) 
(5.3) 

Taking the Laplace transforms of the above equations, we get 

fH = Pr[H = t ]  = p, exp(-f,uj). 

The Laplace transform of probability density function for 
the total delay is the direct multiplication of individually 
transformed functions. Let T be the random variable repre- 
senting the total delay, then 

- Ps P a u g  
- 

s + Ps s + Pavg 

The probability density function fr can then be found by 
taking the inverse Laplace transform as 

By integrating fT, one can find the total delay to be hypo- 
exponentially distributed. 

We have analyzed thus far both the communication and 
synchronization delays when each of these delays is expo- 
nentially distributed. This analysis, however, can be ap- 
plied to any distribution of communication and synchroni- 
zation delays as long as their Laplace transforms exist. 

5.2 Execution Time Distribution 
We will derive the distribution of task-execution time un- 
der the following assumptions. 

Al.  The probability distribution of the number of modules 
is known and represented as Pr[M = m] where M is a 
random variable representing the number of modules 
in the critical subtask. 

A2. The execution time of each module is independent and 
identically distributed 

A1 does not impose any problem in practice, since pro- 
grams are usually tested and simulated extensively before 
putting them in use. Moreover, an algorithm (program) 
would be inefficient if environmental factors are not con- 
sidered during its design stage. Since the communication 
between subtasks depends on the environmental factors, 
the number of modules also depends on these factors. Envi- 
ronmental factors are usually known during the planning 
period and thus A1 is not unreasonable. A2 is needed for 
tractability and can be justified as follows. The execution 
time of each module is a function of its environment. For 
example, let us consider conditional branches and loops 
inside of a module, which are determined by the module’s 
environmental conditions. These conditions are in turn de- 
termined by the module’s input and working data. Some of 
the working data are exchanged among subtasks, and sub- 
sequently affect module-execution times. This situation 
implies that modules have no strict ’logical’ relation among 
them. On the other hand, a task is partitioned into subtasks 
and modules either by a programmer or by a compiler [13]. 
To increase execution efficiency (by reducing the synchro- 
nization delay), an equal load distribution to modules is 
preferred, thus making module-execution times identically 
distributed. 

As defined in Section 3, let S be the random variable rep- 
resenting the execution time of a module. When S is expo- 
nentially distributed with rate & the probability density 
function of module-execution time becomes: 

fs = le exp(-tle). (5.6) 

If the critical subtask is composed of m modules, then the 
probability density function (pdfl of its execution time 
without considering the inter-module delays is 

r , i m  

(5.7) 

where f E  represents the density function of the total execu- 
tion time of the critical subtask without considering the 
inter-module delays. By taking the inverse Laplace trans- 
form, we can get the probability density functionf,: 

exp(-t’le). (5.8) (m - l)! 
By integrating fE, one can get the probability distribution of total 
execution time. Let this distribution be Pr[E 5 t I M = m]. To 
reflect the inter-module delays into the total execution time, one 
can apply (4.2) or (4.3) to the final distribution. Then Pr[t,,,I t I 
M = m] = Pr[E 5 f . U / K  I M = m]. Since we know the distribu- 
tion of the number of modules in the critical subtask (Pr[M = 
m]), the final distribution of execution time is 

t”-l 
j E ( t )  = a; ~. 

The first part of (5.9) (Pr[t,,,,S t I M = m]) represents the dis- 
tribution of task execution time when the number of modules 
is fixed. The second part of (5.9) (Pr[M = m]) represents the 
distribution of number of modules in the critical task. 
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6 RESULTS AND DISCUSSION 
To demonstrate the utility and power of the proposed 
model, we applied the model to a parallel algorithm which 
has potential use in many applications. The :,elected algo- 
rithm is a solution to the 0/1 knapsack problem which is 
known to be NP-complete. To comprehend the potential 
use of the knapsack problem for applications, let us con- 
sider the problem of assigning a fixed number of resources 
to multiple objects (e.g., modules or subtasks) in time. Let 
us assume that each object requires a different number of 
resources and yields a reward if it has the required re- 
sources. Each resource, however, can be assigned only to a 
single object. Under this setting, we want to find an as- 
signment within a deadline which gives the maximum re- 
ward. This is one instance of the 0/1 knapsack problem. 

A parallelized solution to this problem was reported in 
[141. The task-flow of this parallelized algorithm is given in 
Fig. 5 .  In this algorithm, n, c, and p denote the number of 
data elements, the size of knapsack, and the number of 
processes, respectively. Each process is assumed to be as- 
signed to a processor, so that the terms "process" and 
"processor" are used interchangeably. The critical subtask 
in this example is the task that includes the top module in 
Fig. 5. The total number of modules in the critical subtask is 
M = 3 log p + 1 and the overall computation time of this 
algorithm without considering intercommunications is 
M . S = (c . n / p  + c(c + 1)(1 - 1/2p)) . tunli, where tunlt repre- 
sents the time to execute a block of instructions which are 
common to all modules. The total communication time for 
this algorithm is (M + 2c log p )  . d,,,,, where d,,,, is the time 
needed to send one block of data/information to a corre- 
sponding task. In this example, the main (critical) subtask 
always has the largest piece of computation which is di- 
vided into modules. Hence, modules in the main subtask 
finish last among all communicating modules, so the main 
subtask does not suffer any synchronization delay even 
though others do. The communication pattern used in this 
example is SEND-RECEIVE after executing a module. 
Hence, x = 0 and P - 1. 

To find the relation between tunlt and d,,,,,, we assumed 
that system utilization decreases to 75% of one processor 
utilization when we use two processors for the NMP case. 
The actual decrease is implementation-dependent and can 
be measured from the actual system. From these parame- 
ters, we computed average execution times using (4.2) and 
(4.3) for all possible numbers of processes when n = 300 and 
c = 30, and the computed results are plotted nn Fig. 6. The 
vertical axis represents a total execution time divided by the 
execution time when a job is executed in a single processor. 
The figure is represented in percentile. The solid line repre- 
sents execution times for the NMP case and the dotted line 
represents the MI' assignment with K = 2. As .was expected 
in [14], the execution time decreases until it reaches the 
saturation point and increases again as we increase the 
number of processes involved in computation. The reason 
for this is that the communication time overhead becomes a 
dominant factor as there is only a small gain in the speed of 
computation. 

f: 

Fig. 5. Task graph of 0/1 knapsack parallel algorithm. 

-i \--- 
2 0 1  I , I 1- 

0 1 2 3 4 5 6 

fog p @ = Number of processors) 

Fig. 6. Execution time comparison for different nurnber of processes. 

The density function of execution time for the knapsack 
problem i:; plotted in Fig. 7 .  In this experiment, we assumed 
that the task is divided into eight parallel subtasks. The 
average service demand of a module is 20 milliseconds 
when tun,t is assumed 101 microseconds in addition to the 
conditions used in Fig. 6. The average service demand is 
computed using the relations: M = 3 log p + 1 and M . S = 
(c . n / p  + c(c + 1)(1 - 1/2p)) tunif. This algorithm has a fixed 
number of modules for each subtask since it depends on the 
number of subtasks. The execution time of algorithm is a 
function of the number of data elements. Hence, we modi- 
fied (5.9) to reflect the distribution of data elements. The 
modified equation is 

mnx 

Pr[tComp I i] = Pr[tcomp < t 1 n = k ]  . Pr[n = k ] .  
k=min 
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We used a uniform distribution of n in the interval [200, 
5001. The dotted line in this figure represents the probabil- 
ity density function of single module execution time. The 
solid line represents the probability density function of the 
total execution time of the critical subtask with the commu- 
nication delay included. 

We also plotted the probability density function of exe- 
cution time for the MI' case. We assumed that tasks are di- 
vided into eight subtasks and two subtasks are assigned to 
a single processing node. The figure indicates that the MP 
case takes more time to complete tasks than the NMP case, 
due mainly to resource (CPU) contention. 
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Task execution time(xl000) 
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Fig. 7. The pdf of task execution time for 0/1 knapsack problem 

1 .o 

0.9 

0.8 

0.7 

0.6 

1 

*- Simulation -- 
I A Analysis 

M=840, S=50, H=10 
C=25. X=1.0 

Fig. 8. Utilization versus P?. 

To show the relation between system utilization and pa- 
rameter Pf, we generated a random task and compared the 
result with the analytical result. Fig. 8 shows the variation 
of node utilization as a function of Pi for both single (NMI') 
and multitasking (K = 2) cases. As Pf increases, the node 
utilization increases. This means that the critical subtask 
only sends messages to other subtasks. The solid line shows 
the analytical results and the dotted line shows the simula- 
tion results. Fig. 9 represents the variation of execution time 
as a function of Pf for both NMP and MP execution models. 
For both figures, the number of modules M in the critical 
subtask is assumed to be 840, 50 units of average service 
demand of module (S), 10 units of synchronization delay 
(H), and 25 units of average communication delay (C). As 
expected with higher Pi, the node is busy most of the time, 
and thus, does not have a significant semi-active state de- 
lay. Note that the actual parameterization of M, s, Pv and ,us 
is algorithm dependent. Here, we used arbitrary values to 
demonstrate how to apply the proposed model to the analy- 
sis of task behavior with given actual parameter values. 
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Fig. 9. Execution time versus f f .  

7 CONCLUSION 
In this paper, we proposed a model to estimate the execu- 
tion times of communicating tasks in distributed systems. 
We classified all factors affecting the execution time of a 
task into two groups: intrinsic and extrinsic. The effects of 
intrinsic factors are reflected into a task model, in which a 
task is represented with subtasks and modules. It was as- 
sumed that the execution time of a task is the same as its 
critical subtask which finishes last within the task. Tasks are 
characterized by the service demand of each module, the 
number of modules in the critical subtask, and the branch- 
ing probabilities for communication (Pf, x). This characteri- 
zation depends solely on intrinsic factors. On the other 
hand, the effects of extrinsic factors are reflected into com- 
munication and synchronization delays. For example, the 
effects of the interconnection network and the routing algo- 
rithm are reflected into the communication delay parame- 
ter. The environmental difference between processing 
nodes is reflected into the synchronization delay. These two 
delays are explicitly specified to show their effects on the 
execution time. By simplifying all factors, we represented a 
distributed system with a simple queuing model of two 
stations: one for computation and the other for communi- 
cation and synchronization delays. Information on system 
utilization is obtained by converting this queuing model to 
a Markov chain. The execution time of a task is derived 
from the information on system utilization. The analysis 
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results are given in two forms: average and distribution. 
The distribution of task execution times is desired for the 
analvsis of other imDortant measures such as dvnamic fail- 

[I41 J. Lee, E. Shragowitz, and S. Sahni, ”A Hypercube Algorithm for 
the 0/1 Knapsack Problem,” PYOC. 1987 ICPP, pp. 699-706, Aug. 
1987. 

, I 

ure. Several examples are also presented to show the effec- 
tiveness of the model. 

The main difference between the proposed model and 
previous results reported in the literature lies in the inclu- 
sion of extrinsic factors such as communication and syn- 
chronization delays in the proposed model. The proposed 
model can be used for any distributed systrm since the 
model includes the abstracted effects of intrinsiic and extrin- 
sic factors. The task structure depends on the nature of a 
parallel 
chitecture. Similarly, communication and synchronization 
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delays are affected by the interconnection structure and the 
routing algorithm. As long as we can transform all factors 
which affect the execution task time into task structure pa- 
rameters and communication delays, we can derive the 
execution time distribution using the proposed model. 
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