
IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 11, NOVEMBER 1996 1217 

Design and Analysis of an Optimal Instruction- 
Retry Policy for TMR Controller Computers 

Hagbae Kim, Member, /€E€, and Kang G. Shin, Fellow, /€E€ 

Abstract-An instruction-retry policy is proposed to enhance the fault-tolerance of triple modular redundant (TMR) controller 
computers by adding time redundancy to them. A TMR failure is said to occur if a TMR system fails to establish a majority among its 
modules’ outputs due to multiple faulty modules or a faulty voter. Either multiple consecutive TMR failures the active period of which 
exceeds a certain time limit or the exhaustion of spares as a result of frequent system reconfigurations may result in failure to meet 
the timing constraints of one or more tasks, called the dynamic failure, during a given mission. An optimal instruction-retry period is 
derived by minimizing the probability of dynamic failure upon detection of either a masked (by the TMR) error or a TMR failure. We 
also derive the minimum number of spares needed to keep below the pre-specified level the probability of dynamic failure for a 
given mission by using the derived optimal retry period. 

Index Terms-Real-time control systems, controller computer, internal and external faults, common-cause faults, TMR failures and 
masked errors, retry, reconfiguration, dynamic failure, hard deadlines. 

1 INTRODUCTION 
digital computer in the feedback loop of a real-time A control system reads sensors and operator’s input, and 

calculates control/output commands for actuators and dis- 
play devices. The controller computer of a critical real-time 
control system such as a nuclear reactor and aircraft should 
be equipped with one or more fault-tolerance mechanisms to 
meet its stringent reliability requirement. The reliability of a 
controller computer depends on both the timeliness and cor- 
rectness of its computation results. Thus, the timing con- 
straint or the deadline imposed by the controlled process- 
called the control system deadline-is a key to the design of a 
controller computer, for which one must determine the type 
and degree of fault-tolerance. 

Using the control system deadline’ information obtained 
from the controlled process [13], we propose in this paper 
an optimal recovery policy to enhance system reliability by 
adding time redundancy to controller computers equipped 
with a minimum degree of spatial redundancy. Specifically, 
instruction retry is used ”optimally” (in the sense of mini- 
mizing a certain cost) for triple modular redundant (TMR) 
controller computers. 

A TMR system is a typical example of static redundancy 
which can tolerate one faulty module without any delay [31, 
[51, [61, 1151, [16]. The TMR system can tolerate even multi- 
ple faults, if they occur sequentially with a relatively long 
inter-occurrence interval, by using appropriate detection, 

1 The control system deadline is usually a mndom variable because of its 
dependence on the control system state which is a random variable 

- H .  Kim is with the Depavtment of Electvical Engineeving, Yonsei Univev- 
sity, 134 Shinchon-Dong, Sudaemoon-Ku, Seoul 120-749, Korea. 

Electrical Engineering and Computer Sciences, the University of Michigan, 
Ann Arbor, M I  48109-2122. E-mail: kgshin@eecs.umich.edu. 

K.G. Shin is with the Real-Tzme Computing Laboratory, Department of 

Manuscript received June 1994; revised Nov. 10,1995. 
Fov information on obtaining reprints of this article, please send e-mail to: 
transcom@computer.org, and reference IEEECS Log Number C96157. 

identification, and replacement of a faulty module (whose 
error was ”masked”) before a new fault occurs to another 
module within the TMR. Detect-diagnosereconfigure is a 
conventional recovery policy for handling multiple faults in 
TMR systems [51, [151. Alternatively, the system can also 
recover from the masked error induced by a transient fault 
by retrying the failed operation a fixed number of times on 
the same hardware [3]. Note that these two policies can 
tolerate only a subset of multiple faults. That is, TMR fail- 
ures-failure to establish a majority of module outputs due 
to multiple faulty modules or a faulty voter-caused by 
coincident /common-cause faults require a different recov- 
ery method. Note that a harsh environment with electro- 
magnetic interferences (EMI), such as lightning, high- 
intensity radiated fields (HIRF), or nuclear electromagnetic 
pulses (NEMP), may cause (near) coincident faults in all 
modules. 

A TMR system uses a minimum degree of spatial re- 
dundancy to mask one faulty module (in general, 2n + 1 
modules needed to mask up to n faulty module outputs), 
and more than 90% of field failures are reported to be 
caused by transient faults [ l l] .  Most TMR failures can thus 
be recovered by 

1) using the capability of a TMR system that can mask 
one (permanent/transient) faulty module, and 

2) retrying instructions on the same redundant hard- 
ware in case of a TMR failure resulting from addi- 
tional transient fault(s). 

This may reduce the hardware cost by avoiding the pre- 
mature retirement of modules with transient faults, and 
reduce the time overhead of recovery and the probability of 
dynamic failure resulting from spares exhaustion as well as 
control system deadline misses. Note that system recon- 
figuration is more time-consuming than a simple retry [7]. 
Reconfiguration and (cold) restart generally consist of 

0018-9340196505.00 01996 IEEE 

mailto:kgshin@eecs.umich.edu
mailto:transcom@computer.org


IEEE TRANSACTIONS ON COMPUTERS, VOL 45, NO. 11, NOVEMBER 1996 

switching power and bus connections, 
running built-in-test (BIT) on the spare module, 
loading programs and data, 
initializing the software (even when warm spares are 
used, thus unneeding 1 and 2, this is still time- 
consuming), and 
there are only a limited number of spares available 
during each mission. 

As the simplest form of time redundancy, instruction 
retry has been proposed and analyzed by several research- 
ers. The authors of [2] specified the retry period a priori in 
an ad hoc manner. The retry period was also derived by 
minimizing an average task-oriented measure (mean exe- 
cution time per instruction) [8], or mean task-completion 
time by using a Bayesian decision approach [91 or the 
maximum likelihood principle [lo], under the assumption 
that an infinite number of spares are available. The retry 
periods derived in these papers were intended for use in 
simplex systems. 

In contrast to the above cited approaches, we derive in this 
paper the optimal retry period, rapt, of a TMR controller com- 
puter by minimizing the probability of missing control system 
deadlines or dynamic failure upon detection of a masked error 
or a TMR failure. A retry will terminate if it becomes success- 
ful or the retry period expires, whichever occurs first. (Since 
the time required for repeated execution of an instruction can- 
not be cascaded into a single continuous duration, a retry pe- 
riod should be discrete, i.e., we define the "retry period as a 
number of retry attempts throughout the discussion to follow.) 
If retry during a given period cannot recover the system from 
a TMR failure, the system will be reconfigured. Clearly, 
whether or not retry is successful depends upon the retry pe- 
riod as well as the error latency defined as the time interval 
from the occurrence of an error to its detection. The retry pe- 
riod should be large enough for the transient fault(s) inducing 
the detected error/failure to die away. Retry becomes unsuc- 
cessful when retry is used for permanent fault(s), and/or 
when the error latency is so large that more part of the pro- 
gram (in addition to the retried instruction) was contaminated. 
This may in turn increase the recovery time. We assume the 
use of a detection scheme with high (but not necessarily per- 
fect) coverage for both masked errors and TMR failures as 
required by a usual retry policy. For example, any error in a 
module can be caught by using a simple disagreement detec- 
tor [12], [17]. One can ultimately adopt a detection scheme like 
a Totally Self Checking Circuit (TSCC) in [4], which has the 
capability of detecting a masked error as well as a TMR failure 
and is both self-testing and fault-secure. 

The probability of dynamic failure, Pdy,, depends on the 
mission lifetime, the number of s ares, the control system 
deadline, and the retry period r. We calculate Pdyn as a 
function of these parameters and derive rapt by minimizing 
Pdyn in each case of masked error or TMR failure. Using the 
optimal retry period, we also determine the minimum 
number of spares needed to attain the largest acceptable 
Pdyn for a given mission. 

This paper is organized as follows. Section 2 describes 
the characteristics of a real-time control system, the basic 

? 

2 .  Y = 0 means system reconfiguration without retry. 

assumptions used, and the required property and structure 
of a detection scheme adopted. In Section 3, we numerically 
derive the optimal retry period by minimizing Pdyn in both 
cases of TMR failure and masked error. The effects of the 
number of available spares on Pdyn are also analyzed there. 
Section 4 presents representative numerical examples. The 
paper concludes with Section 5. 

2 NOTATION, ASSUMPTIONS, AND MODELS 
A real-time control system executes missions between 
maintenances, and usually no repair is assumed during a 
single mission. System diagnosis and the subsequent repair, 
if needed, are performed during a maintenance period be- 
tween missions. As shown in Fig. l, a mission lifetime gen- 
erally consists of many task periods during each of which a 
sequence of instructions are executed to generate a control 
command or display output. During a mission, a dynamic 
failure is said to occur due to several consecutive TMR fail- 
ures whose total period exceeds a limit, called the control 
system deadline-the maximum delay in the feedback loop 
the controlled process can tolerate without losing system 
stability or leaving its allowed state space 1131. This delay 
could be as long as the time of executing several consecu- 
tive tasks or task invocations. Using the control system 
deadline, one can derive the deadline of each task. 

Fig. 1. Time index of a mission lifetime: x, = x:, x, 

The main computational load of a controller computer 
consists of a set of periodic tasks that are executed repeti- 
tively, each time with a different input. A dynamic failure 
may occur due to either missing the control system3 or ex- 
hausting spares as a result of frequent system reconfigura- 
tions. Note that the latter may occur because there are only 
a limited number of spares aboard, depending on the 
weigh, volume, cost, MTTF of each spare, and the given 
mission. To study the effects of retry /reconfiguration on 
the probability of dynamic failure, we need to introduce the 
following variables: 

0 X,: The lifetime of a mission consisting of m compu- 
tational tasks. 

e X,: The execution time of the ith task of the mission, 

i.e., X, = c r l X , .  X = % is the average execution 

time of a task in the mission, or it is the execution 
time of a single task invocation if the mission consists 
of m invocations of a periodic task. 

3 That is, missing the update of the control command for a period longer 
than the deadline due to consecutive TMR failures or generating incorrect 
execution results for several tasks. 



KIM AND SHIN: DESIGN AND ANALYSIS OF AN OPTIMAL INSTRUCTION-RETRY POLICY FOR TMR CONTROLLER COMPUTERS 1219 

Ax: The inter-voting interval such that X = KAx, where 
K is the number of times (intermediate) computation 
results are voted on during the average execution 
time, X, of a task or a task invocation. 
N: The number of spares available during a single 
mission. 
D: The control system deadline characterized by a 
probability density function f D ( f ) .  
Y = [re, u,): The maximum retry period allowed for a 
masked error (re) or a TMR failure (v i ) .  

Throughout the paper, we will class@ faults to be extemal or 
i n f m l ,  depending on whether their causes are inside or outside 
the system. Intemal (system component) faults reside inside the 
system inducing errors, while external faults are caused by envi- 
ronmental interferences. One can observe that external faults are 
likely to be transient because adverse environmental conditions 
are generally temporary /transient and environmental disrup- 
tions result in functional error modes without actually damag- 
ing system components [l]. A harsh environment resulting from 
lightning, HIRF, or NEMP is likely to cause coincident or 
‘common mode’ faults/errors. In other words, external faults 
are likely to result in multiple nonpermanent fault modules, 
which wiU in turn cause TMR failures. 

We assume that all faults arrive according to time- 
invariant Poisson processes with rate & (Al,) for permanent 
(nonpermanent) internal faults such that the total internal 
fault arrival rate 4 = Arp + A,,, and rate AeP (A,,) for perma- 
nent (nonpermanent) external faults such that the total ex- 
ternal fault arrival rate A, = Aep + &. The active duration of a 
nonpermanent internal (external) fault is assumed to be 
exponentially distributed with mean (*I. We also as- 

sume occurrences of infevnal faults in one module to be in- 
dependent of those in other modules. 

As mentioned earlier, retry could be effective only if the 
corresponding masked error/TMR failure is detected upon 
its occurrence. To achieve immediate and accurate detec- 
tion of such errors/failures, we employ a special detection 
scheme like a Totally Self Checking Circuit (TSCC) [41, 
which detects the existence of a masked error and/or a 
TMR failure and is both self-testing and fault-secure. The 
TSCC provides two output indications distinguishing a 
masked error (and/or a fault in the error checking circuit) 
from a TMR failure (an output-information error generating 
a stop signal). However, it may not detect the incorrect out- 
put(s) before the completion of one instruction, thus mak- 
ing retry inapplicable. If a more complicated recovery op- 
eration such as rollback with checkpoints is applied to 
complement retry, an error/failure detected late can also be 
recovered by using only time redundancy, i.e., a nonzero 
error latency is allowed. However, in our approach to using 
retry or reconfiguration, any error/failure detected late is 
assumed to be recovered only through reconfiguration. 

Let c, and ct be the detection coverages of a masked error 
and a TMR failure, respectively. Then, the probability that 
the detection scheme detects late (or misses) a masked error 
(or TMR failure) is (1 - ce) (or (1 - c,)). There are two cases 
in which the detection scheme may fail to find a masked 
error/TMR failure: 

1) a short-lived fault inducing the masked error/TMR 
failure disappears after contaminating one or more 
tasks, 

2) a permanent or long-lived transient fault keeps gen- 
erating incorrect outputs to lead to a dynamic failure. 

Although an undetected permanent or long-lived transient 
fault can cause serious damages, the probability of not cap- 
turing such a long-lived fault is so small as to be ignored be- 
cause consecutive instructions with incorrect results are 
likely to be detected before the control system deadline 
which is usually larger than the execution time of one or 
more tasks. Furthermore, the probability of missing a short- 
lived fault, which may not induce any error, is not negligible, 
but its effect is not significant to independent periodic tasks. 
Thus, we will only deal with late detection of errors/failures 
due to an imperfect detection scheme while assuming that 
long-active faults are detected eventually. 

3 OPTIMAL RETRY POLICY 
In our model of a TMR system, the key variables in deter- 
mining the optimal retry period vOpt are the mission lifetime 
X, = mX, the number of spares N, and the control system 
deadline D. 

When a masked error/TMR failure is detected, there are 
several state-transition scenarios as shown in Fig. 2. Sup- 
pose a masked error/TMR failure occurs during XI. If retry 
is chosen to recover from this error/failure ( Iye  = I, = l), it 

may terminate when the fault that had caused the er- 
ror/failure disappears (a successful retry), or the retry pe- 
riod expires (an unsuccessful retry), whichever occurs first. 
In the case of a TMR failure, a successful retry results when 
the system is in one of two possible states: fault-free state 
due to disappearance of all existing (nonpermanent) faults 
and one masked-euuor state due to the existence of one still- 
active faulty module. A successful retry for a masked error 
moves the controller computer to fault-free state. Unsuc- 
cessful retries may lead to a dynamic failure in case of a 
TMR failure, or may trigger a system reconfiguration in 
both cases of masked error and TMR failure. Note that retry 
for a masked error is performed only on the faulty module 
while retaining the execution results from the other two 
healthy modules. The occurrence of a new fault in another 
module before the disappearance of the current fault or 
initiation of a system reconfiguration will result in a TMR 
failure. The system may be reconfigured immediately with- 
out retry ( I r ,  = I ,  = 0 )  or after an unsuccessful retry. If no 

spares are available, or N = 0 for a masked error and N < 3 
for a TMR failure, a dynamic failure occurs. System recon- 
figuration increases the probability of exhausting spares 
during the remaining mission even if it could prevent an 
immediate dynamic failure. When the control system dead- 
line is tight, system reconfiguration may also lead to a dy- 
namic failure due to its setup and restart delays, during 
which another TMR failure may occur. 

4 

4. Mainly due to missing a control system deadline. 



1220 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 11, NOVEMBER 1996 

Fig. 2. A system state diagram. In case of a masked error (a): el = 
recovery by retry, e2 = recovery by immediate reconfiguration ( I  = 0) 

or after unsuccessful retry ( I  = I) ,  e3 = a TMR failure due to occur- 

rence of another faulty module during retry, e4 = spares exhaustion 
during reconfiguration or missing the control system deadline. In case 
of a TMR failure (to): fl = restoration to a fault-free state by retry, t2 = 
recovery by reconfiguration, t3 = restoration to one masked-error state 
by retry, f4 =the same as e4. 

re 

re 

All of the above phenomena are captured in the Markov- 
chain of Fig. 3, each state of which is distinguished by the 
number of spares available. In this model, the probabilities pEs  
and pT account for replacing the faulty module($ that had 
caused a masked error and a TMR failure, respectively, and 
pmh represents the probability of dynamic failure due to miss- 
ing the control system deadline during the execution of a task. 
These probabilities determine the probability of dynamic fail- 
ure over the mission lifetime. They all depend upon whether 
retry is used or not (represented by a pair of indicator func- 
tions ( Iye  , I ,  ) ) and how long retry lasts (i.e., values of (re, YJ) ,  or 
how many times the failed instruction is retried. 

P,h 

Fig. 3. A modified Markov-chain model based on the number of spares 
upon occurrence of masked errors or TMR failures: 
po = 1 - pEs - pTs - pmh, p ( ) = probability of reconfiguration 

due to a masked error (TMR failure), Pmh = probability of dynamic fail- 
ure due to missing the control system deadline. 

E* PT* 

P d y n ( Y ,  m, X ,  N, D) is obtained simply by adding the 
probability of exhausting spares Pes(r, m, X, N) and the prob- 
ability of missing the control system deadline Pm&, m, X, D) 
during the mission lifetime X, = mX, i.e., 

Pdyn(Y, m, N, D, XI = m, N, X) + Pmh(y ,  m, D, XI. (3.1) 

N spares can withstand j and k reconfigurations resulting 
from TMR failures and masked errors during m invocations 
of tasks, respectively, such that 3j + k I N. Thus, 

(3.2) 
where p E  ( u , X )  ( p , ( y , X ) )  is the probability of reconfigura- 
tion due to a masked error (TMR failure) during the aver- 
age task-execution time X with a retry period Y = { y e ,  Y J .  

Suppose that in (3.2) of a multinomial function, m B 1, 
p,, + p,, < 1, but mp, and mpES remain constant, say 
mprs = a, and mp,$ = a2.  Then, (3.2) can be approximated 

as k a j a i ( 1 -  a, - a2)m-i-k, where m(m - 1) ... (m - j - k + 1) 

= m , if  m is allowed to become large enough and if j and k 
are fixed. Hence, as m+ 00, pTs + pEa + 0, and j + k < m, we 
obtain 

k+l . 

Thus, in situations where the multinomial law applies with 
m + 1, pT, + pE8 < 1, but mp,$ = a, and mp, = a2 are finite 
constants, we can use the following approximation for (3.2): 

Equation (3.2) is based on the assumption of at most one 
masked error or TMR failure during X, which is reasonable 
because masked errors and TMR failures occur very rarely. 
Pmh(y, m, D, X) is also derived from the probability, pmh(y, X, D), 
of missing the control system deadline D during X when 
retry is applied for a period Y .  For the successful completion 
of a mission, every task/invocation must not miss its dead- 
line, which is represented by n:", 11 - p m h ( ~ ,  X, 011. Thus, 

Pmh(r, m, X, D )  is computed as: 

= mpmh(y, X, D),  if pmh 1. (3.3) 

We now analyze quantitatively the effects of retries for 
masked errors and TMR failures on Pdyn separately, and 
then combine the two results to derive YOpt.  

3.1 Reconfiguration without Retry (I, = I ,  = 0) 

This is the usual recovery method for masked errors and 
TMR failures without using time redundancy, Le., Y ,  = yt = 0. 
The diagnosed faulty module is replaced with a healthy 
spare. In case of a TMR failure, all three modules are 
switched out due to the considerable time overhead of 
identifying (diagnosing) faulty modules, and the current 
task is re-executed with the reloaded data as shown in Fig. 1. 

pE (X) and p, ( X )  in this case are equal to the probabili- 

ties of a masked error pE(X) and a TMR failure pT(X) ,  re- 
spectively. Since masked errors are also recovered through 
reconfiguration (or retry in the following methods) with 
high detection coverage e ,  a TMR failure is assumed to occur 



KIM AND SHIN: DESIGN AND ANALYSIS OF AN OPTIMAL INSTRUCTION-RETRY POLICY FOR TMR CONTROLLER COMPUTERS 1221 

due mainly to (near) coincident faults occurring within an no longer equal to p E ( X )  and p,(X). pE,  decreases with re, 
inter-voting interval, rather than sequentially occurring because most masked errors are induced by nonpermanent faults. Let p,(X)  and p, (X)  be the probabilities of TMR 

faults and because a simple retry is likely to recover from 
failures caused by external and internal faults, respectively. them (only if they are detected before the completion of an 
Then, p ,  ( X )  is equal to 1 - Laex, which is the probability of instruction that is to be retried). However, pTs increases 

occurrence of an external fault during X ,  because external with re due to the increased probability of a TMR failure 
are assumed to coincident during the retry period, Le., a TMR failure may be induced 

p ,  is Obtained by using the probabil- by faults occurring sequentially during the retry for a 
ity of coincident internal faults in two or three modules in K 
inter-voting intervals during x, that is: 

p,(X)  = 1 - [l- 3(1- e-a iAxr  + 2(1- e-aibr)3] 

masked error as well as by coincident faults. 
Let R,dp"(r,) and R,l"C(r,) be the coefficients indicating, re- 

spectively, the decrease of masked errors and the increase 
of TMR failures after retrying for masked errors. Then, 

K 

)e-(az+ae)re 
I 2a,n (1 - e-4J'](1 - &re 

Since TMR failures caused by external and internal faults are 

pT, and pT,  (')I but ' 

p E ( X )  is the probability of occurrence of an internal fault in 
only one module during X ,  which is calculated as: 

not exclusive to each other, pr (X)  is not the direct sum of A, 
PT, (') + PT, (') - PT, (')h where the first term represents the effect of an unsuccessful 

retry and the second term represents a second fault occur- 
rence after successful retry on the first fault occurrence. 

p E ( X )  = 3(1- e-aix) - 3(1- e-aix]* + (1 - e?Ix)3 - pT (X) 
3 ~ (  1 - e - A h ) e - z a 2 A ~  

Let X, be the actual time required to complete the compu- 

tation corresponding to X? and fx, and fD are the pdfs of X, 

\ .  / 

and the control system deadline D, respectively. Usingf, * 

a n d f ~ ,  we can obtain pmh(x, D )  as the probability that x, > D: 

P m h W  D )  = p j&" (X)FD(YP dY. 

, 
where the first term represents an unsuccessful retry 
(occurrences of fault in any healthy module) and the second 
term represents a successful retry (occurrences of fault in 
two or three modules). Then, using R$(re),  R,mC(re), c ,  

p E ( X ) ,  and pT(X) ,  we can obtain pE,  (re, X )  and pT, (re, X )  as: The set of samples of X ,  is obtained as: 

x, E { X , ( X + f ) + X ,  2 ( X + t , ) + X ,  3 ( X + t r ) + X ,  ...I, 
PT, (5 .  x )  = P T ( X )  + ceR:nC(re)p,(X). (3.4) 

ioT,&,, X ,  D )  is derived in the Same way as before except for 
the change of fi, , Le., substituting pT, (re ,  X )  for p T ( X )  since 
the probability of a TMR failure is changed: 

where t, is the resetting time and X is the mean occurrence 
time of a TMR failure, which was derived in [141. Since X, 
has discrete values, the probability mass function (pmf, of 
X ,  is: 

fi, = Prob[X, = k(X  + t Y )  + XI = p ; ( X ) ( l -  p T ( X ) ) .  

Note that f D  is given a priori from experimental data or the 
$, = Prob[X,  = k ( X  + t r )  + X ]  

analysis of controlled processes [ 131. Consequently, = p;*(re,x)(l -pTc(re ,X)) ,  0 5 k 5 O0. 

3.3 Retry for TMR Failures (I, = 0, I, = 1) 

This is the opposite to the previous policy, that is, retry of a 

masked error calls for an immediate reconfiguration. Obvi- 
ously, PT decreases with yt, because most TMR failures are 
also recovered by a simple retry during which non-permanent 
faults are likely to disappear. Even if retry is successful, there 
may still exist a faulty module. Those masked-error states 
transit-ed from TMR 

e period ut is initiated upon detection of a TMR failure, and a 3.2 Retry for Masked Errors (I, = 1, I ,  = 0) 

ln this case, retry of a period is initiated upon detection of 
a masked error, and reconfiguration is the only recovery 
mechanism for TMR faihres. Thus, PE, ( x )  and PT, ( x )  are 

5.  Because of the time overhead of  retry and/or reconfiguration for errors during a increase pEb 

during the execution of a mission segment, X, IS usually larger than X. 



1222 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 11, NOVEMBER 1996 

Let p, denote the conditional probability of i faulty 
modules and j permanent-fault modules given a TMR fail- 
ure (i.e./ i < 2), which is computed as: 

2 B  2'nl'p B 
p 2 0 = [ % ]  A + B + C ' P 2 1 = -  1; A + B + C '  

'en A 
p30 = n, A + B + C +[%I A +: + C 

P31 = ~ A + B + C ' P32 = 7 A + B + C 

P33 = 7 A + B + C 

where A = 1 - e-aex and 

3':n';p c 3'& c 

', A 
a: 

C 
A + B + C ' 

3 

B 3 ~ ( 1 -  e-',*X)2e-'G*r (C = ~ ( 1 -  e-'eh)') 

are the probabilities of occurrences of external faults and 
near-coincident internal faults inducing two (three) faulty 
modules during X. Let R:(rt) and R?(rl) be the coeffi- 
cients indicating, respectively, the increase of masked errors 
and the decrease of TMR failures after retrying for TMR 
failures. R?(Y,) is obtained by computing the probability 
that only one faulty module remains in each case of p,, and 

is derived from the cases of more than two perma- 
nent or long-lived transient faults, thus 

Rr(u , )  = p21(1 - e-aiQrf + p31 1 - e-aia'f]2 

+ 2pz0(l- e-xzort je-hzait + 3p,,cz(1 - e-'zoYt j 'e-amyt, 

x ~ ( Y ~ )  = p33 + p32 + p,, + p21e-aJf + p3,(2e-"~'t - e-2a~~yf] 

+ P20 + P'o{Cee-"o + cl(3e-2'>"A - 

where 

Using these coefficients, we obtain p E ,  (ui, X) and prs (ut, X) as: 

P E S  (Ti. x) = P d X )  + C*~?(Yt)Pr(X) I 

PT,(Yt'X) = (1 - C t ) P T ( X )  + CtRP""(Yt)PT(X). (3.5) 

Now, a dynamic failure may occur due mainly to unsuc- 
cessful retries if the control system deadline, D, is tight. The 
controller computer may fail to generate a correct control 
command within D units of time due to TMR failures after 
repeating/retrying the execution of an instruction. Thus, 
the derivation of p,,+(rt, X, D )  is different from that of the 

previous two cases. By approximating the mean end-of- 
retry period with 2 in case of a successful retry, the sam- 

ples of X, are: 

1 

2(X + t, + Yt) + x, ".I. 

X, = k ( X  + t, + rt) + x + 

The pmf of X, is then: 

, o 5 k 5 00, 6 E (0, I} 

= Pp"X)(I - p,(u,))k(l- Pr(Xljl-sl'i(~*)6, (3.6) 

where St (0, 1) indicates that the mission segment corre- 
sponding to X is completed because of a successful retry 
upon detection of a TMR failure or because of no TMR fail- 
ure, while repeating the execution of the mission segment k 
times with k reconfigurations. pS(rt)  of (3.6) represents the 
probability of successful retry, which is computed by con- 
sidering all cases of no more than one faulty module re- 
maining after retrying in each case of p,: 

Consequently, 

3.4 Retry for Both Cases (Ir = 1 ,  I ,  = 1) 

Finally, we present a retry policy for both cases of TMR 
failure and masked error with retry periods Yt and re, re- 
spectively. To show a significant decrease in the frequency 
of reconfigurations, p E ,  (Y, X) and pr, (Y, X) are also derived 
by using all the coefficients indicating the increase and/or 
decrease of masked errors and TMR failures, i.e., in the 
same way of deriving (3.4) and (3.5): 

= (PE(X) + ctRr(ut)PT(x)]{l - ce + CeR?(Yc)}f 

pr , (y ,X)  = {pT(X) + ce( l  - Ct)R:"'(ye)pE(X)}{l - ct + C ~ R P ( Y ~ ) } ,  (3.7) 

which are obtained by considering both the effects of retry for 
masked errors (R,"" (re) and R Y  (ye)) and the effects of retry for 
TMR failures ( R ~ ( Y ~ )  and Rp""(r,)). The derivation of pmh(r, X, 
D) is similar to the previous case because both cases use retry 
for a TMR failure. The only difference from (3.6) is the change 
of p T ( X  to pro in f' , where pro is the increased probability of 
TMR failures after retrying for masked errors: 

R, = P:;"ix)(1- Ps(Yt))L(l - PTo(X))'-"s(Yt)6. (3.8) 

where 

Pro = F?m + C,R?(G)P,(X). 



KIM AND SHIN: DESIGN AND ANALYSIS OF AN OPTIMAL INSTRUCTION-RETRY POLICY FOR TMR CONTROLLER COMPUTERS 

3.5 Optimal Retry Period and Minimum Number of 
Spares 

Using the derived pE, (re, X), pT, (rt, X), and pmh(r, X, D),  one 

can compute P, and P,, from (3.2) and (3.31, which are in 

turn used to calculate Pdyn with (3.1). Now, uOpt = {ueOpt, Y ~ ~ ~ ~ }  

is determined by minimizing the derived Pdyn with respect 
to r, and rt. (There always exist reopt and rtopt that minimize 
Pdyn over a closed interval, 0 5 u,, rt 5 D - X.) The derivation 
of rOpt involves the following three steps: 

Step 1: Compute reopt from the case of I ,  = 1 and I,,, = 0 

Step 2: Compute rtopt from the case of I ,  = 1 and I = 1 by 

Step 3: Calculate Pdyn(Y = 0) and compare it with PdYn(r,*, rt*). 

If P ( r  = 0) 5 Pdyn(re*, rt*), then rOpt = 0 else rapt = {r, , rt 1 . 

Steps 1 and 2 to minimize P,,, with respect to re and rt sepa- 
rately are reasonable because the frequency (thus, effects on 
Pdyn) of masked errors is significantly larger than that of 
TMR failures. Step 3 is taken to choose a better recovery 
policy between reconfiguration and retry (with the derived 
retry period). 

When the maximum acceptable probability of dynamic 
failure is given as p,m,d,., the minimum number of spares, 

N,,,, can be computed by using the derived optimal retry 
period. Obviously, Pdyn decreases with N when other vari- 
ables are fixed. We can derive the relation between Pdy, and 
N iteratively by increasing N from a certain initial value No. 
From this relation N,,, is determined using pTHx. The deri- 

vation of N,,, is described in pseudo-code, where No is 
simply determined by using the case of I ,  = 0 and I ,  = 0 : 

\*Recursive method to derive N,,,*\ 
\* A = acceptable error in the upper bound of pZ,* *\ 

\* PROB-DUN-10: program to compute Pdy, for Ire = 0, 

\* PROB-DYN-20: program to compute P&,, using rapt for 

No : =K 

while (p;,' - A 5 Pdyn S p;,') 

and let it be re*. 

yt 

using re* and let it be rt* . 

* *  
dYn 

I ,  = O."\ 

I ,  = 1, I = I.*\ 
yt 

\* K: arbitrary number *\ 
Pdyn := PROB-DYN-I(No) 

if (Pdyn 2 py) then 

else No := No - 1 

Yn 

N,:=N,+l 

end-while 

while (pg,' 2 Pdyn S pcnx + A) 
Pdyn := PROB_DYN_2(No) 

if (Pdyn 5 p;,') then 
N : = N - 1  

else N := N + 1 
end-while 
return Nmin := N 

4 NUMERICAL EXAMPLES 
In this section, we present numerical examples of r,,,, and 
N,,, under a certain condition of fault occurrences. A brief 
performance analysis of several retry policies is also pre- 
sented using numerical values of p&. All variables have 
the same time unit and thus are listed without any specific 
unit. Specifically, the basic (time) unit is defined as a task 
period (X = 1) for convenience, Le., the mission lifetime is 
simply represented by m. The control system deadline is 
specified by a distribution function F,(d) = (uniformly 
distributed) for 2 5 d < 4, the result of which can be ex- 
tended to any other model of the control system deadline. 
In the numerical results below, we used the resetting time 
t, = 0.1 and the number of spares N = 10. (These numbers 
are chosen somewhat arbitrarily, but their choice would not 
change the conclusion we draw.) Fault occurrences are also 
governed by the following set of fault parameters: 

a eP = 5 x IO-', a,, = m6, aLp = 2 x 

The examples of Pdyn of the four retry policies in Section 3 
are shown in Figs. 4, 5, and 6, while varying the mission 
lifetime m. A simple-minded retry period (Y, = rt = 0.02) is 
used to demonstrate the effects of retrying for TMR failures 
and masked errors. Retrying for TMR failures significantly 
reduces Pdyn over the whole range of mission lifetime when 
the detection coverages are perfect (ce, ct = 1). When the mis- 
sion is short, retrying for masked errors may increase Pdy,; 

this is demonstrated by comparing Pdyns of ( I ,  : I ,  = (0 : 0)  
and (1 : O ) ,  or (0 : 1) and (1 : 11, when m = 1,000 or 10,000. In 
case of short missions, a dynamic failure is likely to occur 
due to missing a control system deadline, rather than ex- 
hausting spares. Retrying for masked errors clearly in- 
creases the probability of TMR failures (thus the probability 
of missing a control system deadline), and decreasing the 
probability of exhausting spares is not effective in reducing 
Pdyn for short missions. However, retrying for masked er- 
rors also decreases Pdy, as the mission lifetime increases. 

When the detection coverages are not perfect (ce, ct < 1) 
the relative advantage of retry gets diminished; one can see 
this by comparing Fig. 4 with Fig. 5 or Fig. 6. Since the retry 
periods are generally by far smaller than a control system 
deadline, the retry policy retains its superiority to recon- 
figuration even if the detection coverages are not perfect, 
i.e., the time spent on an unsuccessful retry does not signifi- 
cantly affect the probability of missing control system 
deadlines. 



1224 

m(X lo3) 1 10 50 100 150 250 300 400 

6 7 9 10 12 13 14 15 - " i n  

IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 11 ~ NOVEMBER 1996 

0 001 

0 0001 

l e  - 05 

l e  ~ 06 

l e  - 07 

l e  - 08 

l e  - 09 

l e  - 10 

l e  - 11 

Pdyn 

TABLE 1 
OPTIMAL RETRY PERIODS rapt= {r i ,  rt} WHEN x= 1: 

I) K= 5,000 INSTRUCTIONS/TASK, 11) m = 10,000 TASKS/MISSION 

TABLE 2 
NUMERICAL EXAMPLES OF Nmin vs m 

I I I I i 
0 50 100 150 200 250 

mission lifetime, m( x io3) 

0.001 

0.0001 

l e  ~ 05 

l e  - 06 

l e  - 07 

l e  ~ 08 

l e  - 09 

Pdyn 

l e  - 10 

l e  ~ 11 

4 

l e  - 12 1 1 1 1 1 1 
0 50 100 150 200 250 

mission lifetime, m( x io3)  

Fig. 4. Probabilities of dynamic failure (pdyns) of Several retry policies Fig, 6, pdYns of Several retry policies ( /  : / ): ce= ct= 0.7, 
'e 't 

( / r e  : /'! ): c, = Ct = 1 . 

Several examples of rapt are shown in Table 1 while vary- 
ling the mission lifetime m and the task/invocation period K. 
The invocation period is measured by the number of voting 
times for intermediate computation results ( K )  and the inter- 
voting interval (Ax), as defined in Section 2. Those values are 
derived by the method proposed in Section 3, i.e., yi is de- 
rived first and yt computed by using the derived yi. Case (i) 
uses the same task period ( K  = 5,000) which is equal to one 
time unit (Le., X = l), while Case (ii) takes the same mission 
lifetime (m = 10,000). Both cases use the same values of fault 
parameters, the number of spares, the resetting time, and the 
control system deadlines as given earlier. Although the ab- 
solute values of rapt (rapt x K) change a little with m and K, the 
relative values of yopt with respect to a task period ( X )  changes 
significantly with K. One can observe that the mission life- 
time does not affect the optimal retry period as much as the 
task period under the same condition. 

N,,, is given in Table 2 for various mission lifetimes with 

0.00: 

0.0001 

l e  - 05 

l e  - 06 

l e  - 07 

l e  - 08 

l e  - 09 

l e  - 10 

l e  - 11 

I e - 1 2 T  

P d y n  

1 
250 

I I I I 

0 50 100 150 200 
mission lifetime, m( x io3)  

Fig. 5. pdyns of several retry policies ( / r e  : I ,  ): c, = ct= 0.9. 
a required level of Pdyn = lO-'/mission. Although other pa- 
rameters affect the values of N,,,, N,,, heavily depends 
upon m. Pdyn decreases with an increase of N ,  but there is a 



KIM AND SHIN: DESIGN AND ANALYSIS OF AN OPTIMAL INSTRUCTION-RETRY POLICY FOR TMR CONTROLLER COMPUTERS 1225 

lower bound of I'dyn because the minimum value of the 
probability of missing a control system deadline cannot be 
decreased beyond a certain value only by increasing N. 

5 CONCLUSION 
In this paper, we have analyzed the effects of retry policies 
for TMR failures and masked errors on the probability of 
dynamic failure. We have also proposed a method to derive 
the optimal retry periods for both TMR failures and masked 
errors by minimizing the probability of dynamic failure. 
For this purpose, we adopted a detection scheme with high 
coverages of TMR failures as well as masked errors. The 
proposed instruction-retry policy outperforms reconfigura- 
tion even with low detection coverage, as shown in Fig. 6. 

Although the TMR structure can mask only one mani- 
fested faulty module, the occurrence of fault($ in another 
module or coincident faults in multiple modules can lead to 
a TMR failure. Our retry policy reduces effectively the fre- 
quency of TMR failures by recovering from masked errone- 
ous module(s), and it also recovers from a TMR failure as a 
result of coincident faults by considering the control system 
deadlines and the number of spares. Our analysis also in- 
cludes the relation between the number of spares and the 
probability of dynamic failure, which is a key factor in de- 
termining the minimum number of spares so as to satisfy 
the required level of the probability of dynamic failure at 
minimum cost for a given mission. 

ACKNOWLEDGMENTS 
The work reported was supported in part by the U.S. Office 
of Naval Research under Grant N00014-91-J-1115 and by 
NASA under Grant NAG-1-1120. Any opinions, finding, 
and conclusions or recommendations expressed in this pa- 
per are those of the authors and do not necessarily reflect 
the view of the funding agencies. 

REFERENCES 
[l] C.M. Belcastro, "Laboratory Test Methodology for Evaluating the 

Effects of Electromagnetic Disturbances on Fault-Tolerant Control 
Systems," NASA TM-101665, Nov. 1989. 
M. Berg and I Koren, "On Switching Policies for Modular Re- 
dundancy Fault-Tolerant Computing Systems," IEEE Trans. Com- 
puters, vol. 36, no. 9, pp. 1,052-1,062, Sept. 1987. 
P.K. Chande, A.K. Ramani, and P.C. Sharma, "Modular TMR 
Multiprocessor System," IEEE Trans. Industrial Electronics, vol. 36, 
no. 1, pp. 34-41, Feb. 1989. 
N. Gaitanis, "The Design of Totally Self-checking TMR Fault- 
Tolerant Systems," IEEE Trans. Computeus, vol. 37, no. 11, pp. 1,450- 

[2] 

[31 

[41 _ _  
1,454, No;. 1988. 
A.L. HoDkins Tr., T.B. Smith 111, and T.H. Lala, "FFTMP-A Highly 151 . .  

Reliable Fault-Tolerant Multiprocessor for Aircraft," Proc. IEEE, 
vol. 66, no. 10, pp. 1,221-1,239, Oct. 1978. 
M. Kameyama and T. Higuchi, "Design of Dependent-Failure- 
Tolerant Microcomputer System Using Triple-Modular Redun- 
dancy," IEEE Trans. Computers, vol. 29, no. 2, pp. 202-205, Feb 1960. 
H. Kim and K.G. Shin, "On Reconfiguration Latency in Fault- 
Tolerant Systems," Proc. IEEE 1995 Aerospace Applications Conf., 
pp. 287-301, Snowmass at Aspen, Colo., Feb. 1995. 
I. Koren and Z. Koren, "Analysis of a Class of Recovery Proce- 
dures," IEEE Trans. Computers, vol. 35, no. 8, pp. 703-712, Aug. 1986. 
Y.H. Lee and K.G. Shin, "Optimal Design and Use of Retry in Fault- 
Tolerant Computing Systems," J .  ACM, vol. 35, pp. 45-69, Jan. 1988. 

[61 

[71 

[81 

[91 

[lo] T.-H. Lin and K.G. Shin, "An Optimal Retry Policy Based on Fault 
Classification," IEEE Trans. Computers, vol. 43, no. 9, pp. 1,014- 
1,025, Sept. 1994. 

[ll] S.R. McConnel, D.P. Siewiorek, and M.M. Tsao, "The Measure- 
ment and Analysis of Transient Errors in Digital Computer Sys- 
tems," Digest of Papers, FTCS-9, pp. 67-70, June 1979. 

[12] C.V. Ramamoorthy and Y.-W. Han, "Reliability Analysis of Sys- 
tems with Concurrent Error Detection," IEEE Trans. Computers, 
vol. 24, no. 9, pp. 868-878, Sept. 1975. 

[13] K.G. Shin and H. Kim, "Derivation and Application of Hard 
Deadlines for Real-Time Control Systems," IEEE Trans. Systems, 
Man, and Cybernetics, vol. 22, no. 6, pp. 1,403-1,413, Nov./Dec. 1992. 

[14] K.G. Shin and H. Kim, "A Time Redundancy Approach to TMR 
Failures Using Fault-State Likelihoods," IEEE Trans. Computers, vol. 43, 
no. 10, pp. l,lS1-1,16'2, Oct. 1994. 

[151 D.P. Siewiorek, V. Kini, and H. Mashburn, "A Case Study of 
C.mmp, Cm*, and C.vmp: Part I-Experiences with Fault Tolerance 
in Multiprocessor Systems," Proc. IEEE, vol. 66, no. 10, pp. 1,178- 
1,199, Oct. 1978. 

[16] J.F. Wakerly, "Microcomputer Reliability Improvement Using 
Triple-Modular Redundancy," IEEE Trans. Computers, vol. 64, no. 6, 
pp. 889-895, June 1976. 

1171 X.-Y. Zhuo and S.-L. Li, "A New Design Method of Voter in Fault- 
Tolerant Redundancy Multiple-Module Multi-Microcomputer Sys- 
tem," Digest of Papers FTCS-13, pp. 472-475, June 1983. 

Hagbae Kim (S'90-M'94) received the BS de- 
gree from in electronics engineering from Seoul 
National University, Seoul, Korea, in 1988, and 
the MS and PhD degrees in electrical engineer- 
ing and computer science from the University of 
Michigan, Ann Arbor, in 1990 and 1994, respec- 
tively. 

Currently, he is an assistant professor of 
electrical engineering at Yonsei University, 
Seoul, Korea. He was a National Research 
Council (NRC) resident research associate at 

NASA Langley Research Center, Hampton, Virginia, from 1994 to 
1996, where he participated in the Highly Intensity Radiation Field 
(HIRF) project assessing the effects of ElectroMagnetic Interference 
(EMI) on digital controller computers. His current research interests 
include real-time control systems, automation of manufacturing sys- 
tems, fault-tolerant computing, reliability modeling, and probability and 
stochastic processes. 

Kang G. Shin received the BS degree in elec- 
tronics engineering from Seoul National Univer- 
sity, Seoul, Korea in 1970, and both the MS and 
PhD degrees in electrical engineering from 
Cornell University, Ithaca, New York, in 1976 
and 1978, respectively. Dr. Shin is a professor 
and director of the Real-Time Computing Labo- 
ratory, Department of Electrical Engineering and 
Computer Science, the University of Michigan, 

He has authored or coauthored more than 
360 technical papers (about 150 of these in archival journals) and nu- 
merous book chapters in the areas of distributed real-time computing 
and control, fault-tolerant computing, computer architecture, robotics 
and automation, and intelligent manufacturing. He has written (jointly 
with C.M. Krishna) a textbook, Real-Time Sysrems, which is scheduled 
to be published by McGraw-Hill in 1996. In 1985, he founded the Real- 
Time Computing Laboratory, where he and his colleagues are investi- 
gating various issues related to real-time and fault-tolerant computing. 

Dr. Shin has also been applying the basic research results of real- 
time computing to multimedia systems, intelligent transportation sys- 
tems, and manufacturing applications ranging from the control of ro- 
bots and machine tools to the development of open architectures for 
manufacturing equipment and processes. (The latter is being pursued 
as a key thrust area of the newly-established NSF Engineering Re- 
search Center on Reconfigurable Machining Systems.) 

He is an IEEE fellow and chaired the IEEE Technical Committee on 
Real-Time Systems during 1991-1993, was a distinguished visitor of 
the Computer Society of the IEEE, an editor of /€E€ Transactions on 
Parallel and Distributed Computing, and an area editor of the Interna- 
tional Journal of Time-Critical Computing Systems. 

~ Ann Arbor. 


