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Abstract 
Real-time process control systems require hard real- 

time d a t a  logging tasks t o  access all of the data sam- 
pled  from plants and monitoring tasks to analyze the 
status o f  the plants. This paper presents an integrated 
scheduling scheme for hard real-time d a t a  logging tasks 
and soft real-time monitoring tasks, both types of 
which require disk I/Os. Conventional disk scheduling 
policies like Shortest-Seek- Time-First (SSTF), SCAN, 
and C-SCAN, reorder disk 1/0 requests to minimize 
the disk head’s seek time, thus making it very dificult 
t o  guarantee the timely completion of the tasks requir- 
ing disk I/Os. Our scheduling scheme provides timeli- 
ness guarantees b y  serializing all disk 1/0 requests of 
these tasks based on their priorities. Because it doesn’t 
require any special-purpose real-time disk scheduling 
algorithm, the proposed scheme can be implemented on 
t o p  of general-purpose operating systems like UNIX. 

1 Introduction 
Real-time monitoring and control applications such 

as manufacturing automation, distributed process 
cont.ro1 (DCS), power plant control, and network man- 
agement, need to  access the data sampled from plants 
and maint,ain t,he log of the data in disk files. The data 
log is a history of plants’ state, and can be used for 
analyzing the trend of certain subsystems, controlling 
the activities of plants (e.g., quality control), generat- 
ing reports, etc.[7, 131. The overall archit,ecture of a 
real-time monitoring and control system is shown in 
Figure 1. 

As shown in this figure, real-time monitoring and 
control systems have three major types of tasks: sen- 
sor reading, data logging, and monitoring. Sensor 
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reading tasks acquire the current state of equipment 
or sensors at fixed intervals and store them in their 
own main-memory buffers. In order to monitor and 
control the plants effectively, these tasks have to  ob- 
tain the plants’ status within their sampling interval. 
The sampled data will be sent to  data logging tasks 
and monitoring tasks. 

Data logging tasks store the data acquired by sensor 
reading tasks in disk files, which maintain the entire 
history of the data. These tasks must save all of the 
sampled data in disk files before the buffer of sensor 
reading tasks runs out. Therefore, data logging must 
meet the hard deadline imposed by the buffer size and 
the sampling rate of each sensor reading task. 

Monitoring tasks receive the current status of 
plants from sensor reading tasks and display it on 
a graphical terminal. They also access some of the 
logged data stored in disk files and will present their 
statistical trend or generate some reports. The statis- 
tics and reports will be used to  analyze and control the 
plant activities. The monitoring tasks will be invoked 
by plant operators and their deadlines are usually not 
so “hard”. Thus, we assume that these tasks are ape- 
riodic and soft real-time. 

Several approaches to scheduling both periodic 
hard real-time tasks and soft aperiodic real-time tasks 
have been proposed in the literature [a ,  3, 4, 8, 9, 111. 
Based on the Rate Monotonic (RM) scheduling al- 
gorithm [5], Deferrable Server (DS) [3], Priority Ex- 
change (PE) [3], Extended Priority Exchange (EPE) 
[8], and Slack Stealing ($3) [4] algorithms have been 
proposed to  schedule aperiodic tasks while meeting 
the deadline of all periodic tasks. In order to  enhance 
processor utilization, the authors of [9] extended these 
algorithms to  the EDF-based algorithms called Dy- 
namic Priority Exchange (DPE) server, Total Band- 
width Server(TBS), and EDL server [l]. Shin and 

Reservation-Based al- 
gorithm that maximizes the probability of meeting 
Chang [12] proposed a so-called / 
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Figure 1 : Overall archit,ect,ure of real-time monitoring 
and control systems. 

aperiodic task deadlines while guaranteeing all pe- 
riodic deadlines. All of these algorithms require a 
priori knowledge of the worst-case execution time of 
each task. However, this knowledge is difficult to  ob- 
tain in practice, because under the current multipro- 
gramming environment, it is very difficult to  deter- 
mine the worst-case response time of each disk 1/0 
request. When a task requests to write a disk block, 
it sends a disk 1/0 request to the disk controller. The 
disk controller processes disk 1/0 requests from dif- 
ferent tasks with its own scheduling algorithm such as 
First-Come-First-Serve (FCFS), Shortest-Seek-Time- 
First (SSTF), SCAN, and C-SCAN [6, 10, 141. All of 
the disk scheduling algorithms except FCFS reorder 
the sequence of disk 1/0 requests to  minimize the seek 
time of the disk head. A higher-priority task cannot 
precede the disk 1/0 requests which have already been 
issued by lower-priority tasks, and hence must wait 
until these disk 1/0 requests are served completely. 
This, in turn, makes it difficult to guarantee the timely 
completion of those tasks requiring disk I/Os such as 
data logging. It is also unrealistic to use a special disk 
scheduling algorithm which provides real-t,ime guar- 
antees for disk 1/0 requests, because it requires modi- 
fication of the kernel of an operating system to imple- 
ment the special disk scheduling algorithm. 

The primary goal of this paper is to develop an in- 
tegrated scheduling algorithm for hard real-time data 
logging tasks and soft real-time monitoring tasks, both 
of which require disk I/Os. The algorithm is designed 
on top of existing disk scheduling algorithms. Our 
basic idea is to  serialize all disk 1/0 requests. Only 
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Figure 2: System architecture of data logging. 

one disk 1/0 request at a time can be sent to the 
disk controller. Thus, we can eliminate the effects of 
disk scheduling for the disk 1/0 request. To achieve 
this, the data logging tasks are scheduled with a non- 
preemptive rate monotonic policy. A data logging 
task, therefore, accesses the disk exclusively until it 
finishes the access completely, while blocking other 
disk 1/0 requests. All disk 1/0 requests of soft real- 
time monitoring tasks are scheduled in the time in- 
tervals left unused by data logging tasks. The moni- 
toring tasks without accessing the disk run with lower 
priority than data logging tasks. These tasks will run 
on the CPU when data logging tasks access the disk 
in order to  increase the CPU utilization. They will 
be preempted by the data logging tasks whenever the 
data logging tasks need the CPU, so they won’t de- 
lay the execution of the data logging tasks. Since the 
proposed scheme doesn’t assume any special real-time 
disk scheduling algorithm, it can be implemented on 
top of general-purpose operating systems like UNIX. 

2 Problem Definition 

2.1 System Architecture for Data Log- 
ging 

As shown in Figure 2, we assume t,hat a data log- 
ging system is built on a shared-memory multiproces- 
sor. In order to  support timeliness, sensor reading 
tasks run on dedicated CPU boards and store sensor 
values into their own buffers in shared memory. The 
sensor reading tasks can be scheduled with the tra- 
ditional rate monotonic algorithm [5]. The data log- 
ging and sensor reading tasks run on different CPUs. 
These tasks should copy the buffers into the disk be- 
fore buffers get overrun. The monitoring tasks execute 
on the same CPU boards as the data logging tasks, ac- 
cess the logged data, and display them on t,he graphic 
terminal as shown in Figure 2. 
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2.2 Problem Formulation 

Let n be the number of sensor reading tasks, SRI ,  
SR2, . . . , SR,. Each SRi reads the values of ext*ernal 
objects (e.g., sensors) and stores them in its own buffer 
B; in shared memory. Each buffer has the limit,ed size 
(the size of Bi is denoted as I Bi I) and is used as a 
circular queue. 

SRi accesses a finite set of objects Oi = { oi,1, 0; ,2 ,  

..., oi,p }. We assume that Oa n Oj = 4,  for any i , j  
where i, j 5 n,  i # j. 

The value of each object oi,j is represented wit,h its 
own size in byt.es (for example, 4 bytes for an integer 
number, 8 bytes for a double precision real number, 
and so on). We denote the size of oi,j as I oi,j I. In 
general, each object, oi, j ,  is sampled periodically, with 
period p i , j .  The size of the history of an object oi,j is 
a function of time and is defined as: 

where t is the time measured from the system stmart. 
The total size of all object histories is: 

Using I B, I and the sampling rate of objects, we 
can calculate the time, PBF,,  to  fill B, as: PBF, =I 
B, I / I hist (SR, , t )  I. Unless we dump a portion 
of B, within the period PBF,, B, will get overrun. 
Therefore, data logging (DL) tasks have to  save some 
portion (actually one half, in order to  keep running 
SR tasks concurrently during the other half) of each 
buffer in the disk before its deadline (= PBF,/2). 

Next, we define the worst-case delay in copying the 
entire B, into the disk. The worst-case delay in ac- 
cessing one disk block is tbloelclo = Smax + L + L* I 
block I / I track 1 ,  where Smax is the max seek time, 
L is the time of one revolution of the disk, 1 block I is 
the length of a disk block, and I truck I is the length 
of a disk track. The maximum delay in copying B,’s 
content into the disk is: 

where CPUmax is the maximum CPU processing time 
to  save Bi in the disk, including context switching 
overhead and main-memory access delay. 

While sensor reading t>asks are invoked periodically, 
monitoring tasks are requested aperiodically and dy- 
namically by plant. operat.ors (or other users). Graphic 
presentation is, in general, less important than data 
acquisition. Thus, we assume that monitoring tasks 
are soft real-time (and aperiodic). A set, M ,  of mon- 
itoring tasks are divided into two categories: short- 
t,erm monitoring tasks M, = { ms,l, ms,2, ..., ms,p } 
and and long-term monit,oring tasks MI = { m l , ~ ,  m1,2, 

..., ml,q }. Each short-term monitoring task, ms,i, is 
assumed to  access the currents stat.us (or the recent. 
short-term hist,ory) of object,s in main-memory buffers, 
so it doesn’t require any disk access. On the other 
hand, each long-term monit.oring task, ml,i, needs to  
access a long history of objects stored in the disk and 
analyze their statistical t,rends. 

3 The Proposed Scheduling Scheme 
This section describes an integrated algorithm to 

schedule data logging and monitoring tasks. The algo- 
rit,hm classifies tasks into three types and uses different 
scheduling policies for data logging tasks, short-term 
monitoring tasks, and long-t.erm monitoring tasks. 
The algorithm schedules tasks to  achieve two goals: 
(1) the data logging tasks must save al l  of the data 
sampled from sensors in the disk without any data 
loss; ( 2 )  the number of the monitoring tasks missing 
their deadlines should be minimized. 

3.1 Scheduling Data Logging Tasks 

As shown in Figure 2 ,  t,he sampled data of (ext,er- 
nal) objects are stored first, in buffers. Each buffer, 
Bi,  is associated wit.h two parameters: PBFi, TBS, ,  
where PBFi is the same as defined before and TBSi  
is the maximum delay in copying Bi into the disk. If 
we keep all log of dat,a sampled from external objects, 
some portion of Bi should be saved into the disk peri- 
odically before PBF; and t,hen vacated for new sam- 
pled dat,a. (Actually, we should save one half of Bi 
in order to  run the sensor reading tasks concurrently 
with the saving of the buffer content int,o the disk. 
PBFi/2 is the time to  fill one half of Bi.) 

If t.he data logging tasks are scheduled with t,he 
rate monot,onic scheduling algorithm, we can guaran- 
tee that one half of each buffer is saved within their 
deadline, PBFiI2. Their schedulability condition can 
then be expressed as follows: 

TBS1/2 TBS2/2 TBSn /2  
PBFn/2 PBFl/2 i- PBF2/2 + . . .+  
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TBSl  TBS2 +. . .+-  T BSn 
PBF, 

before accessing the disk, and release the lock after 
accessing the disk. With this lock, while a long-term 
monitoring task is accessing the disk, no other task 
can access the disk. 

+- PBFi PBF2 
- - 

5 n (211" - I) . 

Under the existing disk scheduling algorit,hms, t,he 
disk 1 / 0  requests of a higher-priority task can't pre- 3.3 Scheduling Short-Term Monitoring 
empt, the other low-priorit,y disk 1 / 0  requests which Tasks 
have already been issued. Thus, we employ a non- 
preempt,ive rat,e-monotonic algorithm so as to  prevent, 
any lower-priority task from interfering with the ex- 
ecution of higher-priority tasks. This algorit,hm will 
guarant,ee that the disk 1/0 requests of data logging 
tasks be sent, t,o t,he disk, one at, a tsime. The maximum 
delay in copying one half of Bi's cont.ent. into the disk 
is: 

3.2 Scheduling Long-Term Monitoring 
Tasks 

Long-term monit,oring t,asks will access t,he hist.ory 
of 0bject.s st.ored in the disk to  analyze the trend of 
plant achivities or generat.e reports. The disk I/Os of 
these t,asks shouldn't. compromise t.he deadline guar- 
antees of data logging tasks. When a disk 1/0 is is- 
sued by one (say M1,i) of long-term monitoring tasks 
just before a data logging task (DLj )  st$art,s, under the 
exist,ing disk scheduling algorithms such as SCAN or 
SSTF, DLj's disk 1 / 0  must wait. until t.he disk 1/0 of 
M1,j is completed. Thus, DLj may miss its deadline. 

In order to avoid any deadline miss, we have chosen 
to schedule the disk 1/0 requests of long-term mon- 
itoring tasks within the time int,erval left unused by 
data logging tasks. To implement, t.his scheduling al- 
gorithm, we need to  calculate t,he time int,erval left 
unused by every dat.a logging task. By using this un- 
used time interval, we define the disk available ( D A )  
time at, a given time t as : 

w if t is in the unused interval and the 
next* data logging task starts at, w + t ,  { 0 if t is not in the unused interval. 

DA(t)  = 

DA(t)  represents the disk available interval at, t,ime t 
unt,il the next, data logging task &arts. 

The disk 1 / 0  requests of long-t,erm monitoring 
tasks can be scheduled if t.heir maximum execut.ion 
time is less than, or equal t,o, DA(t)  at. t.ime t .  In 
order to serialize the execution of long-term monitor- 
ing t.asks, we use an exclusive lock for t,he disk. Ev- 
ery long-term monitoring task should acquire the lock 

We assume that short-term monitoring tasks access 
the current data (or the most recent history) of objects 
stored in main memory buffers. Short-term monitor- 
ing tasks will be invoked aperiodically by plant oper- 
ators and use the CPU without accessing the disk. 

When data logging tasks or long-term monitoring 
tasks access the disk, they don't use the CPU. Disk 
1 / 0  time is generally much longer than CPU process- 
ing time. If we schedule short-term monitoring tasks 
while the other tasks are accessing the disk, the uti- 
lization of CPU will improve. We assign lower prior- 
ity to short-term monitoring tasks than data logging 
tasks and long-term monitoring tasks. Upon comple- 
tion of a data logging task's access to  the disk, it will 
preempt the short-term monitoring task and will con- 
tinue its execution. So, short-term monitoring tasks 
will not delay the execution of data logging tasks and 
long-term monitoring tasks. 

4 Analysis and Discussion 

We proposed a scheduling algorithm for hard real- 
time tasks requiring disk I/Os under general operating 
systems and exist,ing disk scheduling algorithms. The 
proposed scheme specializes disk 1 / 0  requests in or- 
der to  preserve the deadline guarantees of disk 1/0 
request,s. Thus, t,he scheme may suffer from low uti- 
lization of disk bandwidth, and each disk 1/0 will re- 
quire a long seek time. 

Several disk scheduling algorithms have been stmud- 
ied to  enhance the performance.of disk I/Os, and their 
performance has been evaluated extensively [6, lo]. 
Typical disk scheduling algorithms are first-come-first- 
serve (FCFS), shortest-seek-time-first (SSTF), and 
SCAN. These algorithms except FCFS hold disk 1/0 
requests in the disk queue and reorder the sequence of 
disk 1 / 0  requests t.0 minimize the seek time. The pre- 
vious studies have shown t,hem bo achieve high disk 
bandwidt-h utilization and low response time. How- 
ever, they considered neither a real-t,ime environment. 
nor real-time data logging. We will compare the ex- 
isting disk scheduling algorithms wit.h the proposed 
scheme in the context of hard real-time and data log- 
ging applications. We adapt the disk model and the 
parameters used in [lo] to analyze the performance of 
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Figure 3: Average response time of disk 1 / 0  requests. 

disk scheduling algorithms. Table 1 summarizes the 
parameters of the disk model. 

cylinders/disk 
tracks/cylinder 
sectors/track 
minimum seek time 
maximum seek time 
average rotational latency 

130ms i 12.5ms 

Table 1: Parameters of the disk model. 

Figure 3 shows the average response time of disk 
1 / 0  requests over average queue length (denoted as 
L) under the assumption of the uniform distribution of 
disk sectors. The proposed scheme checks the schedu- 
lability of tasks in advance and accepts only these 
tasks which can be finished in time. If we don’t con- 
sider this admission control, the proposed scheme pro- 
cesses disk 1/0 requests in the same way as FCFS. As 
shown in this figure, the proposed scheme (and FCFS) 
has better performance than (or equal to) SSTF and 
SCAN when the average queue length 5 3. The longer 
queue length, the worse performance t.he proposed 
scheme has than SSTF and SCAN. In hard real-time 
systems, usually, there aren’t many tasks to  be acti- 
vated simultaneously, so we don’t expect the average 
queue length to  be so large in real-time systems. 

I[ I I I I I I I I I I I I I , I I 1 
0 
0 5 10 15 20 ZI 30 35 40 45 54 55 69 65 70 75 80 85 90 95 103 

Ratio of Appsnd-only (L = 20) 

Figure 4: Average response time of disk 1/0 requests 
over the ratio of append-only. 

Data logging tasks store the sampled data in se- 
quential files, thus producing append-only operations. 
Append operations will access the same disk cylin- 
der or adjacent cylinder of tshe previous disk 1 / 0  re- 
quest. The ratio of append-only operations will there- 
fore affect the performance of disk scheduling algo- 
rithms. Figure 4 shows the average response time of 
SSTF, SCAN, and the proposed scheme over the ra- 
tio of append-only operations. If the rat.io is higher 
than 35%, SSTF and SCAN will have the same re- 
sponse time, meaning that the disk driver will process 
dominantly append-only operations under SSTF and 
SCAN. At the same time, the other t,ype of disk 1 /0  
requests can hardly be selected for service, and thus, 
the possibility of missing their deadline would be high. 
If every operation is append-only, all of disk schedul- 
ing algorithms have the same performance. At a high 
ratio of append-only operations, the proposed scheme 
would have a similar utilization of disk bandwidth to 
SCAN and SSTF. 

Figure 5 shows the average response time of SCAN 
for four different mean queue lengths over the ratio of 
append-only operations. If the mean queue length gets 
smaller, the performance of the proposed scheme will 
get. closer to  that of SCAN. In process monitoring sys- 
tems, data logging activities are more dominant than 
long-term monitoring activities such as report gener- 
ation, quality control, etc. 
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Figure 5 :  Average response t,ime of SCAN with various 
mean queue lengths. 

5 Conclusion 

In this paper, we have looked into the prob- 
lem of scheduling tasks in real-time process monitor- 
ing/control systems, which require disk I/Os. Specif- 
ically, we proposed an integrated scheme for schedul- 
ing hard periodic real-time data logging tasks and soft 
aperiodic real-time monitoring tasks. All of the ex- 
isting disk scheduling algorithms such as SCAN, C- 
SCAN, or SSTF, reorder disk 1/0 requests to  min- 
imize the disk seek time. Hence, application tasks 
can’t cont,rol t,he sequence of processing their disk 1/0 
request,s, thereby making it difficult to guarantee the 
deadline of a task requiring disk I/Os. 

The basic idea of t-he proposed scheme is to  seri- 
alize the disk 1/0 request,s from data logging tasks 
which are periodic and hard real-time. These requests 
are scheduled using a non-preemptive rate monot,onic 
policy. The disk 1/0 requests of monitoring tasks are 
scheduled during the time int.erva1s left unused by the 
data logging tasks. Monitoring tasks must check if 
their disk 1/0 requests can be finished before a data 
logging bask starts, because a monitoring t*ask’s disk 
1/0 is not preempted once it is allowed t,o st.art. In 
order t.0 enhance the CPU utilization, the monitoring 
tasks without disk I/Os (i.e, short-term monitoring 
tasks) are scheduled concurrently with the disk ac- 
cesses by data logging tasks (or long-term monitoring 
tasks). The short-term monitoring tasks are assigned 

lower priorities than data logging tasks or long-term 
monitoring tasks. They will be preempted as soon as 
a data logging task needs to be executed on the CPU 
(e.g., after a disk I/O). 

We also evaluated the disk 1/0 performance of the 
proposed scheme over t,he existing disk scheduling al- 
gorithms (SSTF, SCAN, and FCFS) in the cont.ext 
of process monit,oring systems. The proposed scheme 
may suffer from low utilizat>ion of disk bandwidth, but. 
it doesn’t require any real-time sensitive disk schedul- 
ing algorithm and hence, can be used to  implement a 
real-time monitoring and control system on a general- 
purpose operating syst,em like UNIX. Moreover, in 
process monitoring syst.ems, disk 1/0 requests are 
dominated by “append-only” data logging activities. 
The higher the ratio of append-only operations, the 
closer to  SSTF and SCAN the disk bandwidth uti- 
lization of t,he scheme becomes. The performance of 
the proposed scheme depends on t,he nat.ure of appli- 
cations (i.e., the ratio of t,he append-only operations). 
We are currently evaluating the proposed scheme for 
real data logging applications. 
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