
On Data Logging in Real-Time Process Control Systems *

Jinho Kim

Dept. of Computer Science
Kangwon National University

Chooncheon, KOREA 200-701

Abstract
Real-time process control systems require hard real-

time d a t a logging tasks t o access all of the data sam-
pled from plants and monitoring tasks to analyze the
status o f the plants. This paper presents an integrated
scheduling scheme for hard real-time d a t a logging tasks
and soft real-time monitoring tasks, both types of
which require disk I/Os. Conventional disk scheduling
policies like Shortest-Seek- Time-First (SSTF), SCAN,
and C-SCAN, reorder disk 1/0 requests to minimize
the disk head’s seek time, thus making it very dificult
t o guarantee the timely completion of the tasks requir-
ing disk I/Os. Our scheduling scheme provides timeli-
ness guarantees b y serializing all disk 1/0 requests of
these tasks based on their priorities. Because it doesn’t
require any special-purpose real-time disk scheduling
algorithm, the proposed scheme can be implemented on
t o p of general-purpose operating systems like UNIX.

1 Introduction
Real-time monitoring and control applications such

as manufacturing automation, distributed process
cont.ro1 (DCS), power plant control, and network man-
agement, need to access the data sampled from plants
and maint,ain t,he log of the data in disk files. The data
log is a history of plants’ state, and can be used for
analyzing the trend of certain subsystems, controlling
the activities of plants (e.g., quality control), generat-
ing reports, etc.[7, 131. The overall archit,ecture of a
real-time monitoring and control system is shown in
Figure 1.

As shown in this figure, real-time monitoring and
control systems have three major types of tasks: sen-
sor reading, data logging, and monitoring. Sensor

*The work reported in this paper was supported in part by
the Office of Naval Researchunder grant N00014-92-3-1080, and
by the NSF under grants DDM-9313222 and IRI-9504412 and
by the LG Yonam Foundation of Korea.

Kang G. Shin

Real-Time Computing Laboratory
Dept. of EECS

University of Michigan
Ann Arbor, Michigan 48109

reading tasks acquire the current state of equipment
or sensors at fixed intervals and store them in their
own main-memory buffers. In order to monitor and
control the plants effectively, these tasks have to ob-
tain the plants’ status within their sampling interval.
The sampled data will be sent to data logging tasks
and monitoring tasks.

Data logging tasks store the data acquired by sensor
reading tasks in disk files, which maintain the entire
history of the data. These tasks must save all of the
sampled data in disk files before the buffer of sensor
reading tasks runs out. Therefore, data logging must
meet the hard deadline imposed by the buffer size and
the sampling rate of each sensor reading task.

Monitoring tasks receive the current status of
plants from sensor reading tasks and display it on
a graphical terminal. They also access some of the
logged data stored in disk files and will present their
statistical trend or generate some reports. The statis-
tics and reports will be used to analyze and control the
plant activities. The monitoring tasks will be invoked
by plant operators and their deadlines are usually not
so “hard”. Thus, we assume that these tasks are ape-
riodic and soft real-time.

Several approaches to scheduling both periodic
hard real-time tasks and soft aperiodic real-time tasks
have been proposed in the literature [a , 3, 4, 8, 9, 111.
Based on the Rate Monotonic (RM) scheduling al-
gorithm [5], Deferrable Server (DS) [3], Priority Ex-
change (PE) [3], Extended Priority Exchange (EPE)
[8], and Slack Stealing ($3) [4] algorithms have been
proposed to schedule aperiodic tasks while meeting
the deadline of all periodic tasks. In order to enhance
processor utilization, the authors of [9] extended these
algorithms to the EDF-based algorithms called Dy-
namic Priority Exchange (DPE) server, Total Band-
width Server(TBS), and EDL server [l]. Shin and

Reservation-Based al-
gorithm that maximizes the probability of meeting
Chang [12] proposed a so-called /

320
0-8186-7626-4/96 $5.00 0 1996 IEEE

shand mmow CPU4 CPU1 - CPU3 Graphic Terminal

D l SensorsIActuators -
t

data logging monitoring

tasks tasks

Disk

\

Figure 1 : Overall archit,ect,ure of real-time monitoring
and control systems.

aperiodic task deadlines while guaranteeing all pe-
riodic deadlines. All of these algorithms require a
priori knowledge of the worst-case execution time of
each task. However, this knowledge is difficult to ob-
tain in practice, because under the current multipro-
gramming environment, it is very difficult to deter-
mine the worst-case response time of each disk 1/0
request. When a task requests to write a disk block,
it sends a disk 1/0 request to the disk controller. The
disk controller processes disk 1/0 requests from dif-
ferent tasks with its own scheduling algorithm such as
First-Come-First-Serve (FCFS), Shortest-Seek-Time-
First (SSTF), SCAN, and C-SCAN [6, 10, 141. All of
the disk scheduling algorithms except FCFS reorder
the sequence of disk 1/0 requests to minimize the seek
time of the disk head. A higher-priority task cannot
precede the disk 1/0 requests which have already been
issued by lower-priority tasks, and hence must wait
until these disk 1/0 requests are served completely.
This, in turn, makes it difficult to guarantee the timely
completion of those tasks requiring disk I/Os such as
data logging. It is also unrealistic to use a special disk
scheduling algorithm which provides real-t,ime guar-
antees for disk 1/0 requests, because it requires modi-
fication of the kernel of an operating system to imple-
ment the special disk scheduling algorithm.

The primary goal of this paper is to develop an in-
tegrated scheduling algorithm for hard real-time data
logging tasks and soft real-time monitoring tasks, both
of which require disk I/Os. The algorithm is designed
on top of existing disk scheduling algorithms. Our
basic idea is to serialize all disk 1/0 requests. Only

Gnphic Terminal

Figure 2: System architecture of data logging.

one disk 1/0 request at a time can be sent to the
disk controller. Thus, we can eliminate the effects of
disk scheduling for the disk 1/0 request. To achieve
this, the data logging tasks are scheduled with a non-
preemptive rate monotonic policy. A data logging
task, therefore, accesses the disk exclusively until it
finishes the access completely, while blocking other
disk 1/0 requests. All disk 1/0 requests of soft real-
time monitoring tasks are scheduled in the time in-
tervals left unused by data logging tasks. The moni-
toring tasks without accessing the disk run with lower
priority than data logging tasks. These tasks will run
on the CPU when data logging tasks access the disk
in order to increase the CPU utilization. They will
be preempted by the data logging tasks whenever the
data logging tasks need the CPU, so they won’t de-
lay the execution of the data logging tasks. Since the
proposed scheme doesn’t assume any special real-time
disk scheduling algorithm, it can be implemented on
top of general-purpose operating systems like UNIX.

2 Problem Definition

2.1 System Architecture for Data Log-
ging

As shown in Figure 2, we assume t,hat a data log-
ging system is built on a shared-memory multiproces-
sor. In order to support timeliness, sensor reading
tasks run on dedicated CPU boards and store sensor
values into their own buffers in shared memory. The
sensor reading tasks can be scheduled with the tra-
ditional rate monotonic algorithm [5]. The data log-
ging and sensor reading tasks run on different CPUs.
These tasks should copy the buffers into the disk be-
fore buffers get overrun. The monitoring tasks execute
on the same CPU boards as the data logging tasks, ac-
cess the logged data, and display them on t,he graphic
terminal as shown in Figure 2.

321

2.2 Problem Formulation

Let n be the number of sensor reading tasks, SRI ,
SR2, . . . , SR,. Each SRi reads the values of ext*ernal
objects (e.g., sensors) and stores them in its own buffer
B; in shared memory. Each buffer has the limit,ed size
(the size of Bi is denoted as I Bi I) and is used as a
circular queue.

SRi accesses a finite set of objects Oi = { oi,1, 0; ,2 ,

..., oi,p }. We assume that Oa n Oj = 4, for any i , j
where i, j 5 n, i # j.

The value of each object oi,j is represented wit,h its
own size in byt.es (for example, 4 bytes for an integer
number, 8 bytes for a double precision real number,
and so on). We denote the size of oi,j as I oi,j I. In
general, each object, oi, j , is sampled periodically, with
period p i , j . The size of the history of an object oi,j is
a function of time and is defined as:

where t is the time measured from the system stmart.
The total size of all object histories is:

Using I B, I and the sampling rate of objects, we
can calculate the time, PBF,, to fill B, as: PBF, =I
B, I / I hist (SR, , t) I. Unless we dump a portion
of B, within the period PBF,, B, will get overrun.
Therefore, data logging (DL) tasks have to save some
portion (actually one half, in order to keep running
SR tasks concurrently during the other half) of each
buffer in the disk before its deadline (= PBF,/2).

Next, we define the worst-case delay in copying the
entire B, into the disk. The worst-case delay in ac-
cessing one disk block is tbloelclo = Smax + L + L* I
block I / I track 1 , where Smax is the max seek time,
L is the time of one revolution of the disk, 1 block I is
the length of a disk block, and I truck I is the length
of a disk track. The maximum delay in copying B,’s
content into the disk is:

where CPUmax is the maximum CPU processing time
to save Bi in the disk, including context switching
overhead and main-memory access delay.

While sensor reading t>asks are invoked periodically,
monitoring tasks are requested aperiodically and dy-
namically by plant. operat.ors (or other users). Graphic
presentation is, in general, less important than data
acquisition. Thus, we assume that monitoring tasks
are soft real-time (and aperiodic). A set, M , of mon-
itoring tasks are divided into two categories: short-
t,erm monitoring tasks M, = { ms,l, ms,2, ..., ms,p }
and and long-term monit,oring tasks MI = { m l , ~ , m1,2,

..., ml,q }. Each short-term monitoring task, ms,i, is
assumed to access the currents stat.us (or the recent.
short-term hist,ory) of object,s in main-memory buffers,
so it doesn’t require any disk access. On the other
hand, each long-term monit.oring task, ml,i, needs to
access a long history of objects stored in the disk and
analyze their statistical t,rends.

3 The Proposed Scheduling Scheme
This section describes an integrated algorithm to

schedule data logging and monitoring tasks. The algo-
rit,hm classifies tasks into three types and uses different
scheduling policies for data logging tasks, short-term
monitoring tasks, and long-t.erm monitoring tasks.
The algorithm schedules tasks to achieve two goals:
(1) the data logging tasks must save al l of the data
sampled from sensors in the disk without any data
loss; (2) the number of the monitoring tasks missing
their deadlines should be minimized.

3.1 Scheduling Data Logging Tasks

As shown in Figure 2 , t,he sampled data of (ext,er-
nal) objects are stored first, in buffers. Each buffer,
Bi, is associated wit.h two parameters: PBFi, TBS, ,
where PBFi is the same as defined before and TBSi
is the maximum delay in copying Bi into the disk. If
we keep all log of dat,a sampled from external objects,
some portion of Bi should be saved into the disk peri-
odically before PBF; and t,hen vacated for new sam-
pled dat,a. (Actually, we should save one half of Bi
in order to run the sensor reading tasks concurrently
with the saving of the buffer content int,o the disk.
PBFi/2 is the time to fill one half of Bi.)

If t.he data logging tasks are scheduled with t,he
rate monot,onic scheduling algorithm, we can guaran-
tee that one half of each buffer is saved within their
deadline, PBFiI2. Their schedulability condition can
then be expressed as follows:

TBS1/2 TBS2/2 TBSn /2
PBFn/2 PBFl/2 i- PBF2/2 + . . .+

322

TBSl TBS2 +. . .+- T BSn
PBF,

before accessing the disk, and release the lock after
accessing the disk. With this lock, while a long-term
monitoring task is accessing the disk, no other task
can access the disk.

+- PBFi PBF2
- -

5 n (211" - I) .

Under the existing disk scheduling algorit,hms, t,he
disk 1 / 0 requests of a higher-priority task can't pre- 3.3 Scheduling Short-Term Monitoring
empt, the other low-priorit,y disk 1 / 0 requests which Tasks
have already been issued. Thus, we employ a non-
preempt,ive rat,e-monotonic algorithm so as to prevent,
any lower-priority task from interfering with the ex-
ecution of higher-priority tasks. This algorit,hm will
guarant,ee that the disk 1/0 requests of data logging
tasks be sent, t,o t,he disk, one at, a tsime. The maximum
delay in copying one half of Bi's cont.ent. into the disk
is:

3.2 Scheduling Long-Term Monitoring
Tasks

Long-term monit,oring t,asks will access t,he hist.ory
of 0bject.s st.ored in the disk to analyze the trend of
plant achivities or generat.e reports. The disk I/Os of
these t,asks shouldn't. compromise t.he deadline guar-
antees of data logging tasks. When a disk 1/0 is is-
sued by one (say M1,i) of long-term monitoring tasks
just before a data logging task (DLj) st$art,s, under the
exist,ing disk scheduling algorithms such as SCAN or
SSTF, DLj's disk 1 / 0 must wait. until t.he disk 1/0 of
M1,j is completed. Thus, DLj may miss its deadline.

In order to avoid any deadline miss, we have chosen
to schedule the disk 1/0 requests of long-term mon-
itoring tasks within the time int,erval left unused by
data logging tasks. To implement, t.his scheduling al-
gorithm, we need to calculate t,he time int,erval left
unused by every dat.a logging task. By using this un-
used time interval, we define the disk available (D A)
time at, a given time t as :

w if t is in the unused interval and the
next* data logging task starts at, w + t , { 0 if t is not in the unused interval.

DA(t) =

DA(t) represents the disk available interval at, t,ime t
unt,il the next, data logging task &arts.

The disk 1 / 0 requests of long-t,erm monitoring
tasks can be scheduled if t.heir maximum execut.ion
time is less than, or equal t,o, DA(t) at. t.ime t . In
order to serialize the execution of long-term monitor-
ing t.asks, we use an exclusive lock for t,he disk. Ev-
ery long-term monitoring task should acquire the lock

We assume that short-term monitoring tasks access
the current data (or the most recent history) of objects
stored in main memory buffers. Short-term monitor-
ing tasks will be invoked aperiodically by plant oper-
ators and use the CPU without accessing the disk.

When data logging tasks or long-term monitoring
tasks access the disk, they don't use the CPU. Disk
1 / 0 time is generally much longer than CPU process-
ing time. If we schedule short-term monitoring tasks
while the other tasks are accessing the disk, the uti-
lization of CPU will improve. We assign lower prior-
ity to short-term monitoring tasks than data logging
tasks and long-term monitoring tasks. Upon comple-
tion of a data logging task's access to the disk, it will
preempt the short-term monitoring task and will con-
tinue its execution. So, short-term monitoring tasks
will not delay the execution of data logging tasks and
long-term monitoring tasks.

4 Analysis and Discussion

We proposed a scheduling algorithm for hard real-
time tasks requiring disk I/Os under general operating
systems and exist,ing disk scheduling algorithms. The
proposed scheme specializes disk 1 / 0 requests in or-
der to preserve the deadline guarantees of disk 1/0
request,s. Thus, t,he scheme may suffer from low uti-
lization of disk bandwidth, and each disk 1/0 will re-
quire a long seek time.

Several disk scheduling algorithms have been stmud-
ied to enhance the performance.of disk I/Os, and their
performance has been evaluated extensively [6, lo].
Typical disk scheduling algorithms are first-come-first-
serve (FCFS), shortest-seek-time-first (SSTF), and
SCAN. These algorithms except FCFS hold disk 1/0
requests in the disk queue and reorder the sequence of
disk 1 / 0 requests t.0 minimize the seek time. The pre-
vious studies have shown t,hem bo achieve high disk
bandwidt-h utilization and low response time. How-
ever, they considered neither a real-t,ime environment.
nor real-time data logging. We will compare the ex-
isting disk scheduling algorithms wit.h the proposed
scheme in the context of hard real-time and data log-
ging applications. We adapt the disk model and the
parameters used in [lo] to analyze the performance of

323

Figure 3: Average response time of disk 1 / 0 requests.

disk scheduling algorithms. Table 1 summarizes the
parameters of the disk model.

cylinders/disk
tracks/cylinder
sectors/track
minimum seek time
maximum seek time
average rotational latency

130ms i 12.5ms

Table 1: Parameters of the disk model.

Figure 3 shows the average response time of disk
1 / 0 requests over average queue length (denoted as
L) under the assumption of the uniform distribution of
disk sectors. The proposed scheme checks the schedu-
lability of tasks in advance and accepts only these
tasks which can be finished in time. If we don’t con-
sider this admission control, the proposed scheme pro-
cesses disk 1/0 requests in the same way as FCFS. As
shown in this figure, the proposed scheme (and FCFS)
has better performance than (or equal to) SSTF and
SCAN when the average queue length 5 3. The longer
queue length, the worse performance t.he proposed
scheme has than SSTF and SCAN. In hard real-time
systems, usually, there aren’t many tasks to be acti-
vated simultaneously, so we don’t expect the average
queue length to be so large in real-time systems.

I[I I I I I I I I I I I I I , I I 1
0
0 5 10 15 20 ZI 30 35 40 45 54 55 69 65 70 75 80 85 90 95 103

Ratio of Appsnd-only (L = 20)

Figure 4: Average response time of disk 1/0 requests
over the ratio of append-only.

Data logging tasks store the sampled data in se-
quential files, thus producing append-only operations.
Append operations will access the same disk cylin-
der or adjacent cylinder of tshe previous disk 1 / 0 re-
quest. The ratio of append-only operations will there-
fore affect the performance of disk scheduling algo-
rithms. Figure 4 shows the average response time of
SSTF, SCAN, and the proposed scheme over the ra-
tio of append-only operations. If the rat.io is higher
than 35%, SSTF and SCAN will have the same re-
sponse time, meaning that the disk driver will process
dominantly append-only operations under SSTF and
SCAN. At the same time, the other t,ype of disk 1 /0
requests can hardly be selected for service, and thus,
the possibility of missing their deadline would be high.
If every operation is append-only, all of disk schedul-
ing algorithms have the same performance. At a high
ratio of append-only operations, the proposed scheme
would have a similar utilization of disk bandwidth to
SCAN and SSTF.

Figure 5 shows the average response time of SCAN
for four different mean queue lengths over the ratio of
append-only operations. If the mean queue length gets
smaller, the performance of the proposed scheme will
get. closer to that of SCAN. In process monitoring sys-
tems, data logging activities are more dominant than
long-term monitoring activities such as report gener-
ation, quality control, etc.

324

Figure 5 : Average response t,ime of SCAN with various
mean queue lengths.

5 Conclusion

In this paper, we have looked into the prob-
lem of scheduling tasks in real-time process monitor-
ing/control systems, which require disk I/Os. Specif-
ically, we proposed an integrated scheme for schedul-
ing hard periodic real-time data logging tasks and soft
aperiodic real-time monitoring tasks. All of the ex-
isting disk scheduling algorithms such as SCAN, C-
SCAN, or SSTF, reorder disk 1/0 requests to min-
imize the disk seek time. Hence, application tasks
can’t cont,rol t,he sequence of processing their disk 1/0
request,s, thereby making it difficult to guarantee the
deadline of a task requiring disk I/Os.

The basic idea of t-he proposed scheme is to seri-
alize the disk 1/0 request,s from data logging tasks
which are periodic and hard real-time. These requests
are scheduled using a non-preemptive rate monot,onic
policy. The disk 1/0 requests of monitoring tasks are
scheduled during the time int.erva1s left unused by the
data logging tasks. Monitoring tasks must check if
their disk 1/0 requests can be finished before a data
logging bask starts, because a monitoring t*ask’s disk
1/0 is not preempted once it is allowed t,o st.art. In
order t.0 enhance the CPU utilization, the monitoring
tasks without disk I/Os (i.e, short-term monitoring
tasks) are scheduled concurrently with the disk ac-
cesses by data logging tasks (or long-term monitoring
tasks). The short-term monitoring tasks are assigned

lower priorities than data logging tasks or long-term
monitoring tasks. They will be preempted as soon as
a data logging task needs to be executed on the CPU
(e.g., after a disk I/O).

We also evaluated the disk 1/0 performance of the
proposed scheme over t,he existing disk scheduling al-
gorithms (SSTF, SCAN, and FCFS) in the cont.ext
of process monit,oring systems. The proposed scheme
may suffer from low utilizat>ion of disk bandwidth, but.
it doesn’t require any real-time sensitive disk schedul-
ing algorithm and hence, can be used to implement a
real-time monitoring and control system on a general-
purpose operating syst,em like UNIX. Moreover, in
process monitoring syst.ems, disk 1/0 requests are
dominated by “append-only” data logging activities.
The higher the ratio of append-only operations, the
closer to SSTF and SCAN the disk bandwidth uti-
lization of t,he scheme becomes. The performance of
the proposed scheme depends on t,he nat.ure of appli-
cations (i.e., the ratio of t,he append-only operations).
We are currently evaluating the proposed scheme for
real data logging applications.

References

H. Chetto and M. Chetto, “Some Results of the
Earliest Deadline Scheduling Algorithm,” IEEE
Trans. on Software Engineering, ~01.15, no.10,
pp.1261-1269, October 1989.

K. Jeffay, “Scheduling Sporadic Tasks with Shared
Resources in Hard Real-Time Systems” , Proc.
Real-Time Systems Symposium, pp.89-99, 1992.

3 . P. Lehoczky, L. Sha, and J . K. Strosnider, (‘En-
hanced Aperiodic Responsiveness in Hard Real-
Time environment.^," Proc. Real- Time Systems
Symposium, pp. 261-270, 1987.

J . P. Lehoczky and S. R. Thuel, “An Opt,imal
Algorithm for Scheduling Soft-Aperiodic Tasks in
Fixed-Priorit,y Preemptive Systems,” Proc. Real-
Time Systems Symposium, pp. 110-123, 1992.

C. L. Liu and J . W. Layland, “Scheduling Al-
gorithms for Mult,iprogramming in a Hard-Real-
Time Environment,” Journal of the ACM, vol. 20,
no. 1, pp. 46-61, 1973.

M. Seltzer, P. Chen, and J . Ousterhout, “Disk
Scheduling Revisited,” Proc. USENIX Winter
1990, pp. 313-323, 1990.

H . Shimakawa et al., “Acquisition and Service of
Temporal Data for Real-Time Plant. Monitoring,”

325

Proc. Real- Tzme Systems Symposium, pp. 112-
118, 1993.

[8] 3. Sprunt, J . Lehoczky, and L. Sha, “Exploiting
Unused Periodic Time for Aperiodic Service Us-
ing The Extended Priority Exchange Algorithm,”
Proc. Real-Tzme Systems Symposzum, pp. 251-
258, 1988.

[9] M. Spuri and G. C. Buttazzo, “Efficient Aperi-
odic Service Under Earliest Deadline Scheduling,”
Proc. Real-Tame Systems Symposzum, pp. 2-11,
1994.

[lo] T. Teorey and T. Pinkerton, “A Comparative
Analysis of Disk Scheduling Policies,” Communz-
cataons of the ACM, vol. 15, no. 3, pp. 177-184,
1972.

[ll] S. R. Thuel and J . P. Lehoczky, “Algorithms for
Scheduling Hard Aperiodic Tasks in Fixed-Priority
Systems Using Slack Stealing,” Proc. Real- Tzme
Systems Symposaum, pp.22-33, 1994.

[12] K. G. Shin and Y.-C. Chang, “A Reservation-
Based Algorithm for Scheduling Both Periodic
and Aperiodic Real-Time Tasks,” IEEE Trans. on
Computers, vol. 44, no. 12, pp. 1405-1419, Decem-
ber 1995.

[13] D. D. Val and A. Vina, (‘Applying RMA to
improve a high-speed, real time data acquisition
system”, Proc. Real- Tzme Systems Symposzum,
pp.159-164, 1994.

[14] N . Wilhelm, “An anomaly in disk scheduling: a
comparison of FCFS and SSTF seek scheduling us-
ing an empirical model for disk accesses”, Com-
munzcatzons of the ACM, vol. 19, no. 1, pp.13-17,
1976.

326

