
374 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO 3, MARCH 1996

Determination of an Optimal Retry Time
in Multiple-Module Computing Systems

Chao-Ju Hou and Kang G. Shin

Abstract-The 'optimal' (in some sense) amount of time used for (or
the optimal number of times) retrying an instruction upon detection of
an error in a computing system is usually determined under the
assumption that the system is composed of a single module, within
which all fault activities are confined until some module-replacement
action is taken. However, a computing system is usually composed of
at least three modules, namely, CPU, memory, and I/O, and the
execution of an instruction often requires the cooperation of two or
more modules. It is thus more realistic to consider the fault activities in
multiple-module systems.

In this paper, we first relax the single-module assumption and
model the fault activities in a multiple-module system as a Markov
process. We apply the randomization method to decompose the
continuous-time Markov chain into a discrete-time Markov chain
subordinated to a Poisson process. Using this decomposition, we can
derive several interesting measures, such as 1) the conditional
probability of successful retry given a retry period and the fact that a
non-permanent fault has occurred, 2) the mean time-to-system
recovery, and 3) the distribution of the time until which all modules in
the system enter a fault-free state. All the measures derived are used
to determine, along with the parameters characterizing fault activities
and costs of recovery techniques, a) whether or not retry should be
used as a first-step recovery means upon detection of an error, and b)
the best retry period or number of retries that satisfies a given
criterion, e.g., a specific probability of successful retry.

Index Terms-Fault-tolerance, error recovery, instruction retry,
Markov models. randomization.

1 INTRODUCTION
VARIOUS recovery techniques have been proposed to handle dif-
ferent types of fault: permanent, intermittent, and fransient. Perma-
nent faults are solid/hard failures and persist forever, which re-
sult mainly from component aging or breakage. Transient faults
are caused mainly by temporary changes in environmental, elec-
trical, or mechanical conditions. They may be active for an unpre-
dictable period of time and die out. Intermittent faults are usually
the results of manufacturing defects such as loose connections or
bonds. They cycle between active and inactive states, also in an
unpredictable manner. Since no single recovery technique is
known to be effective against possible faults, we must usually
use a combination of several recovery techniques.

Recovery techniques are classified into instruction retry,
program rollback, program reload and restart, and module
replacement [l], [2], [3]. Whenever an error is detected, instruc-
tion retry is applied and the latest unsuccessful instruction is re-
peated. If this retry is not successful, one can employ program
rollback and/or program reload and restart. If all these recovery
techniques fail, one has to resort to system diagnosis and recon-

* C.-1. Hou is with the Dept. of Electrical and Computer Engineering, Uni-
versity of Wisconsin, Madison, W153706.
E-mail: jhou@ece.wisc.edu.

* K. G. Shin is with the Real-Time Computing Laboratory, Dept. of Electrical
Engineering and Computer Science, University of Michigan, Ann Arbor,
MI 48109. E-mail: kgshin@eecs.umich.edu.

Manuscript received Aug. 11,1992; revised Dec. 29,1994.
A part of this paper appeared in IEEE Second Int'l Symp. on Uncertainty
Modeling and Analysis, April 1993, p p . 294-301.
For information on obtaining reprints of this article, please send e-mail to:
transactions@computer.org, and reference IEEECS Log Number C95134.

figuration, i.e., identify and remove the faulty module and resume
the process execution on a new fault-free processor. Since instruction
retry requires little additional hardware and software and thus
smaller program completion and recovery overheads as compared
to the other recovery techniques, it is usually used as a first-step
recovery means. However, an instruction retry will be successful
0 d y if the following two conditions are satisfied:

C1. The system failed during the execution of the latest uncom-
pleted instruction. This condition can be satisfied if errors
are detected upon their occurrence by some signal-level
detection mechanism [l], i.e., zero error latency.

C2. The existing fault disappears during the time of retry or
retry period, i.e., the retry period should be long enough
(by perhaps retrying the same instruction more than once)4
so that the fault dies out within this period.

We assume in this paper that C1 can be achieved by employing
on-line detection mechanisms with high coverage. That is, an error
is confined to a module where the fault causing that error had
occurred and the affected process can be restored to integrity. One
consequence of C1 is that the damage caused by the fault is recov-
erable by restoring the process to some prior fault-free state and
all data needed to retry the instruction are available. C2 is impossi-
ble in case of permanent faults. Fortunately, only less than lo%,
and perhaps as few as 2%, of errors are known to bel caused by
permanent faults 141, [2], and retry for a nonpermanent fault is
likely to succeed if a retry period is selected properly. The retry
period should be chosen to maximize the benefit that results from
retrying for nonpermanent faults and to alleviate the loss that re-
sults from retrying for permanent faults.

The design and analysis of various recovery procedures has
been addressed by numerous researchers. They characterize either
the process of executing instructions [2], [3] or the process of fault
activities [5] on a single-module system as a Markov process or a
renewal process. The maximum likelihood principle and/,or Baye-
sian decision theory are then applied to determine optimal values
of design parameters. The retry period (or, equivalently, the num-
ber of times an uncompleted instruction is retried) is either speci-
fied a priori in an ad hoc manner [3], or determined by minimiz-
ing some average tusk-oriented measure, eg., mean execution time
per instruction 121, mean task-completion time [6] , [7], and/or
some average objective penalty function [5].

In contrast to the above approaches, we determine the optimal
retry period by constructing a continuous-time Markov chain
which characterizes fault activities in a multiple-module system.
Using the randomization method [SI, [9], we then derive: '

1) the probability of successful retry, P,(t), given a retry period
t and a fault has occurred;

2) the mean timetesystem recovery, E(L(t)), defmed as the
mean value of the time at which a retry with the maximum
retry period of t stops because either all faults became machve
(and thus the retry succeeded) or the retry period expired;

3) the distribution of the time until which all faults, if oc-
curred, become inactive in the system (or equivalently, the
time until the corresponding Markov chain to enter a fault-
free state), P(T,, < t)

Based on these quanbties and the parameters charactenzmg fault ac-
tivities (eg, failure rate, the probabhty of a fault being permanent,
transient, or intermittent, and the distnbuhon of fault active/benign
duration), we can determine.

1. Since it is easy to convert a retry period to the number of retries,
the term "retry period" will be used throughout the paper.

001 8-9340/96$05.00 0 1 996 IEEE

mailto:jhou@ece.wisc.edu
mailto:kgshin@eecs.umich.edu
mailto:transactions@computer.org

IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 3, MARCH 1996 375

1) whether or not retry should be used before applying a different

2) the minimum retry period that achieves a given probability

Another point that differentiates our work from others is that
we relax the commonly-used assumption that all fault activities
are confined to a single modiile until some module-replacement
action is taken. Note that a computing system is composed of at
least three modules (i.e., CPU, memory, and I/O), and execution
of an instruction usually requires the cooperation of multiple
modules. We must therefore consider fault activities in multiple
modules. C h the other hand, not every instruction being retried
use all modules in the system. Using a tagging method de-
scribed in Section 2.2, we can flexibly tailor the continuous-time
Markov chain to accommodate different cases in which the in-
struction being retried uses only a subset of the modules in the
system. To the best of our kriowledge, this is the first to relax
the single-module assumption in determining the retry period
and model fault activities in a multiple-module system.

The rest of the paper is organized as follows. Section 2 describes
the fault model used, the assumptions made, the continuous-time
Markov chain that characterizce the fault model, and the quantities
to be derived. In Section 3, we analytically derive the optimal retry
period usirig the quantities derived in Section 2. We conclude this
paper with Section 4.

recovery technique, and

of successful retry.

2 FAULT MODEL AND PARAMETERS OF INTEREST

We first describe the fault model of a multiple-module system.
Then, we characterize the fault model with an embedded continuous-
time Markov chain under the assumption that at most one fault
exists in each module at any inoment. Finally, we discuss how to
extend the model to the (more general but rare) case that multiple
faults are possible on a single module. Although all the concepts
and expressions are derived for an arbitrary number of modules,
we confine our illustrative examples to the case of three modules
for the clarity of presentation.

2.1 Fault Model
We assume that faults arrive at the ith module according to a time-
invariant Poisson process with rate A,. We also assume that transient,
intermittent, and permanent faults occur with probability p t f , plf, p d ,
respectively, and their occurrences are independent of one another.
(Note that ptf + pq + pd = 1.0.) Consequently, transient, intermittent,
and permanent faults occur at exponential rate Apq Ap? and Apfl
respectively. If a permanent fault occurs, it remains persistent in the
system until the component coritaining the fault is replaced. If a tran-
sient fault ixcurs, it disappears after an active duration, where the
active duration is exponentially distnbuted with rate 3. If an intermit-
tent fault a:curs, it may become benign after an active duration, and
then reappear after a benign duration, where the active and benign
time are exponentially distributed with rate y and v, respectively. That
is, an intermittent fault cycles between active and benign states.

Because instruction retry is effective only if an error is detected
upon its occurrence (otherwise it is impossible to determine which
instruction to retry), we assurne that errors are detected immedi-
ately upon their occurrence by, for example, signal-level detection
mechanisms [l]. Also, faults occurred in one module are assumed
not to affect other modules, i.e., fault occurrences in different
modules are statistically indlspendent. This assumption results
from the fact that faults are usually the malfunction of hardware
components, and are independent of one another [4], [l], [7].

2.2 Construction of a Continuous-Time Markov Chain
Under the assumptions of fault behavior in Section 2.1 and the
assumption that there is at most one fault in each module at any
time: we model a multimodule system with a continuous-time
Markov chain. The state space S consists of state vectors of the
form (sl, sp, ..., s,,), where n is the number of modules in the sys-
tem, and s, E {-2, - L O , 1,2) represents the state of the ith module
with the following interpretation:

1) -2 represents the permanent-fault (PF) state, i.e., there exists

2) -1 represents the transient-fault (TF) state, i.e., there exists a

3) 0 represents the no-fault (NF) state, i.e., no fault exists in the

4) 1 represents the intermittent-fault (IF) state, i.e., there exists

5) 2 represents the benign-fault (BF) state, i.e., an intermittent

For example, the state vector (1, 2, 0) indicates that there exists an
active intermittent fault in the first module (CPU), a benign inter-
mittent fault in the second module (memory), and no fault in the
third module (I/O).

The Markov model isflexible in the sense that it allows for a va-
riety of fault pattems. For example, if only transient and intermit-
tent faults are possible, s, E [-1, 0, 1,2], for 1 < i < n, and I S I = 4". Also,
the model allows for a situation where different sets of faults may
occur to different modules. For example, if only transient, tran-
sient, intermittent faults could occur in the first, second, third
module, respectively, in a three-module system, then s1 E IO, -

Recall that instruction retry will succeed only if all the faults in
the set of modules the retried instruction uses have disappeared,
or became inactive, during the retry period t . For the clarity of
presentation, we assume that every instruction retried uses all the
modules in the system.6 That is, a retry will succeed only if the
system has moved to a state vector none of whose components are
1, -1, or -2 during the period t. Based on this observation, we
divide S into Failed Set (FS) and Successful Set (SS), where FS =

[(sl, sp, ..., s,,): 3isuch that s, = 1, -1, or, -2}, and SS = [(sl, s2, ..., s,,): s, # 1,
-1, and, -2, Vi}. For example, in the case of a three-module system, if
both transient and intermittent faults are possible, we have SS = [(0, 0,

all the other 56 states belong to F S . It is straightforward to extend
the above discussion to the case when the instruction being retried
does not use all modules. If each instruction is tagged (perhaps at
compile time) with the modules it will use, then the continuous-
time Markov chain describing fault activities can be tailored to
remove the coordinate(s) corresponding to the unused module(s).
For example, in the three-module example system, if the instruc-
tion being retried uses only the first module, the state space for the
Markov chain reduces to Fig. 1, because the fault activities on sec-
ond and third modules are irrelevant to the fact whether or not the
retry is successful.

a permanent fault in the module.

transient fault in the module.

module.

an active intermittent fault in the module.

fault has become inactive in the module.

11, s2 E (0, -11, s3 E (0,L 21.

01, (O,O, 21, (0,2,0), (2,0, 01, (0,2, 21, (& O r 21, (2,2,0), (2,2, 211, and

2. This assumption results from the fact that the inter-arrival time of
faults is usually much larger than any other fault-related durations.
We will discuss in Section 2.3 how to relax the last assumption.

3. As discussed below, this assumption can be relaxed by tagging
each instruction with the modules it will use.

376 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 3, MARCH 1996

Due to the assumption that faults occur independently among
modules, state transitions along the m e coordinate exhibit the same
behavior, and describe fault activities in the assodated module. For
example, the state transition between (0, 0,O) and (1,0,0) is the same as
those between (0, s2, s3) and (1, s2, s3), V, s2, s3 E {-2, -1,O, 1,2], because
they all describe the fault activity from NF to IF in the first module
(while the second/third module may be in different fault states).
Moreover, state transitions along one coordinate are virtually the Same
as those along another coordinate except that fault activi-
ties/transitions correspond to a different module, and perhaps, have
mfferent rates along different coordinates. Consequently, it suffices to
characterize the state evolution of the system by a onedimensional
state-transition diagram shown in Fig. 1.

Similar to the model described in Section 2.2, state transi-
tions along the ith coordinate are associated with the state
evolution in the ith module, and can be uncoupled with state
transitions along other coordinates under the assumption that
faults occur independently among modules Consequently, the
state evolution in the system can be characterized by the state
transition diagram that describes fault activities in one mod-
ule, as shown in Fig. 2 (where only transitions around
s, = sI,s;sisi are shown). Note that the number of allowable

states for one module (i.e., along one coordinate) is now (K + 1)4
(instead of 5) . The transition rates are derived in a straight-
forward manner as in Fig. 1 For example, the transition from
s;, si, si, s i to s i si (si-1) (sk + 1) occurs when an active in-

-

a,. P, xi P i f Y termittent fault in the ith module becomes benign and is thus
with rate s$,.

Markov process (X(t), t > 0) on the state space
The system under consideration can then be described as a

s = {(si, s2, ..., 5.): 3 = s~ si si, si, o I s; I K , j = 0,1, 2, 3 1 _ -
‘i

t pF I
W

Fig. 1. One-dimensional state transition diagram.

The system state evolution can be described as a Markov process
(X(t) , t t 0) on the state space S = {(sl, s2, ..., sn): si E {-2, -1,O, 1,2}, n E N
is the number of modules]. Using the randomization technique sum-
marized in the Appendix, we can decompose { X (t) , t > 0) into a
discrete-time Markov chain, {Yn, n = 0, 1, ...), embedded in a
Poisson process, [N(t) , t 2 0) with rate

where each term in (2.1) is the transition rate of some state (sl, s2, ..., sn).

2.3 Extension to the Multiple-Fault Case
The Markov model described in Section 2.2 can be extended to the
more general case in which multiple faults may occur in a single
module. The state space S now consists of state vectors

where n is the number of modules in the system, and sl, s2,. . . , s

s, describes the state of the ith module and is a three-tuple
L- 2)

-

where S ; , S ~ , S ~ , and s i are the number of permanent faults, tran-

sient faults, active intermittent faults, and benign intermittent
faults, in the ith module, respectively. We assume that
0 5 si I K , j = 0, 1, 2, 3, where K is a sufficiently large number so

that the quantities of interest derived from the model that uses K,
and those derived from the model that uses K + 1 are within a
specific error of tolerance.’

4. According to our simulation results, the value of K needs not be

to which randomization can be applied to obtain a discrete-time
Markov chain, {Yn, n = 0, 1,2, ...}, and a Poisson process, {N(t) , t 2 01,
with rate

where 6, (A, + s:z, +sip, +sku,), as shown in Fig. 2, is the transibon

rate of state (sl, s2, ..., sn).

Fig. 2. “One dimensional” state diagram for the case which allows
multiple faults on a single module. 0 I sI I K, j=O,1,2,3. Only tran-

sitions around s, =SA s: s: s: are shown. Transitions are applicable only

when the corresponding states exist.
-

large, because the fault occurrence rate, A,, is usually several orders
smaller than the other rates, and thus, the probability that multiple
faults exist is usually negligible.

IEEE TRANSACTIONS ON COMPUTIIRS, VOL. 45, NO. 3, MARCH 1996 377

The set of failed states, FS, and the set of successful states, SS,
can be identified as

FS = [(SI. s2, . .. , s,,): 3i such tliat s~ + si + si # 01,
and SS = ((sl, s2, ..., sn): sb + I;: + si = 0, Vi].

- -

-- -

2.4 Parameters to be Derived
Specifically, we want to derive:

P,,(t): the probability that retry succeeds given that the retry
period is t and a fault has occurred. Using this information, we
can determine the retry period for a specified probability of
successful retry.

E(L(t)): the mean timeto-system recovery. Specifically, let Y E (0, m)

be the time for the system to first enter a state that belongs to SS,
and let L(t) = min(t, Y) be the timetesystem recovery given a
maximum retry period t, i.e., the time at which the retry stops
because either all the faults have disappeared/become inactive
(i.e., Y < t , and a successful retry results) or the retry period
expired (Le., Y t t) . Obviously, if p p , > 0, then E(L(t)) = t (i.e., retry
will never succeed). When i + m (Le., retry an instruction for-
ever), E(L(t)) represents the imean time for the system to enter a

state E SS for the first time. Note that lim, + E(L(t)) = m if p p f > 0.

P(Tss 5 t): the distribution of the first SS-passage time. Specifi-
cally, let T,, be the first time the system enters a state that belongs
to SS, i.e., T,, = min(t: X (t) ~i SS]. With this probability distribu-
tion, we can compute the mean SSpassage time, E[Tss]. The defi-

nitions and interpretations of P,(t), Tss, and L(t) lead to the fol-

lowing relations: 1) P&) = P(Tss 5 t), and 2) E(Tss) = lim, +

E(L(t)), both of which will be used to verify the correctness of our
derivation.

3 DERIVATION

3.1 Probability of Successful Retry
Let p(n, k), 0 5 k 5 n + 1, denotie the probability that the underlying
discrete-time Markov chain (obtained after randomization) visits k
fault states (Le., states in F S) given n state changes. For example, p(n,
n + 1) is the probability that the underlying Markov chain always
stays in fault states during these n state changes. Consequently, the
probability that a retry of period t fails, 1 - P,(t), is the probability
that the underlying Markov chain always stays in fault In Section 2,
we modeled the fault evolutiori as a continuous-time Markov chain
[X(t) , t t 0) on a finite state space S, where S can be decomposed into
two mutually-exclusive subsets, F S and SS. Also, to derive parame-
ters of interest, the constructed Markov chain [X(t), t 2 0) is decom-
posed by the randomization technique into a discrete-time Markov
chaic {Y,:, n = 0, 1, ...) subordinated to a Poisson process (N(t), t 2 0).
states regardless of the number of state changes in [O, t] , i.e.,

1 - P, (t) =
-

p(n, n+ 1) . ~ (n state changes in timet)
"=O - - e-^'(At)"

= C p (n , n + l) . ~ (~ (t) = n) = C p (n , n + ~) .n!,
"=O fl=O

where A is the rate of the underlying Poisson process obtained
after randomization, and is given in (2.1). The error resulting from
the truncation of the infinite sum in (3.1) can be easily bounded.

Specifically, let R, denote the error resulting from truncating (3.1)
to m steps, then

m can be evaluated a priori for a given error tolerance.
Now, the remaining task is to calculate p(n, k) . Let p(n, k, a,) be

the probability that the underlying Markov chain visits fault states
k times out of n steps and let a, be the state visited after the last
transition. Then, we have

where Pji is the transition probability from state aj to state ai in the
underlying discrete-time Markov chain {Ya, n = 0, 1, ...I (A.l in the
Appendix). The initial conditions are given by

where q(0) = q5,(0) is the transient probability of the Markov chain
being in state u, at time 0, and p(0, 0, a,) = 0. Note that whenever an
instruction is retried, the system must be in a fault state, i.e., k in
p(n, k, a,) must be t 1, thus p(0, 0, a,) = 0, Va,. Finally, by the law of

total probabilities,p(n, k) = C,=l p(n, k , a,).

3.2 Mean Time-to-System Recovery
Recall that Y is defined in Section 2 as the time the system first
enters a state E SS and L(t) = min(t, Y) is defined as the timeto-
system recovery given that the retry period is t. Analytically,

IS1

As t -+ m, E[L(t)] becomes the mean time for the system to enter a
state E SS, and can be used to indicate whether or not retry should
be used for a particular system configuration, Le.,

(3.3)

3.3 Distribution of First SS-Passage Time

Recall that T,, is defined as the time the system first enters a
state E SS, i.e., T,, = min{t: X (t) E SS). Randomization can be
used to compute the distribution of T,, as follows: we define

an associated process [XSs(t), t 2 0) on the state space F S U (SJ,

where Sa is the absorbing state formed by collapsing all states
in SS into it. The corresponding generator matrix Qss can be
expressed as

378 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 3, MARCH 1996

qss;z. I = %,I fori, j G SS,

qss;i,s, = Cl,ssql,l forie SS,

qssrSa l j = 0 for all j.
Note that the transition intensibes of (Xss(t) , t 2 0} are identical to
(X (t) , t 2 0) except that there does not exist any transition out of Sa
(or equivalently, all states in SS). Consequently, we have

P(Tss I t) = P(Xss (t) = SJ. (3.4)

That is, the distribution of the time until the system first enters a
state in SS (the left-hand side of (3.4)) is equivalent to computing a
transient state probability for the Markov process, Xss(t), where all
states in SS are lumped into Sa, and has the generator matrix Qss
(the right-hand side of (3.4)). Using the randomization technique, we
have ((A.4) in the Appendix).

where ~,~,~,(n) can be computed from nss (n) = nSs (n - l), P,,,

and P,, is the transition probability matrix and can be computed
from Qss by the same approach as in (A.1) in the Appendix.

3.4 Determination of Retry Period
The significance of the quanhhes derived above lies in that they
can be used to determine.

1) whether or not to apply instruction retry as a first-step re-
covery means, and

2) the smallest retry period that achieves a specified probability
of successful retry.

Specifically, let C,(t) and C, denote the cost function of instruction
retry given the retry period t and the cost function of applying
other time-redundancy recovery techniques (e.g., program roll-
back, program reload and restart),' respectively, and let Prq de-
note the required probability of successful retry (which is given as
a design parameter). Obviously, C,(f) is a monotonically non-
decreasing function of f.

The first question can be answered as follows. If there does not
exist any t > 0 such that Ci(t) + (1 - Prs(t)) . C, 5 C,, or, in a
simpler form,

then retry should not be applied, where 1 - P,(t) is the probability
that retry fails given a retry period t. That is, if for every t the cost
of retrying for the period t as the first-step recovery means is
greater than the cost of not applying instruction retry, then retry
should not be applied at all. The second question can be answered
by finding the smallest t that satisfies both (3.6) and

4 CONCLUSION
We proposed in this paper a continuous-time Markov model to

5 . C, would be dependent on the retry period t if the assumption C1
does not hold. That is, if errors cannot be detected upon their occur-
rence, the latest checkpoint used in program rollback might have been
contaminated by error propagation, and the program may be forced to
roll back to an earlier checkpoint, resulting in a higher cost.

characterize the fault activities in a multiple-module computing
system. The randomization technique is then applied to this
model to derive several quantities of interest, i.e., the probability
of successful retry given a retry period, the mean end-of-retry
time, and the distribution of time for the system to enter a fault-
free state for the first time. These quantities can be used to deter-
mine whether or not instruction retry should be applied as a first-
step recovery means with respect to fault characteristics and re-
covery costs, and the smallest retry period that achieves a pre-
specified success probability.

Our analysis is valid as long as errors are detected upon their
occurrence. I f there is a nonzero latency between error occurrence
and detection due to imperfect coverage of detecbon mechanisms
(Le., not meeting condition C1 in Section l), it may be difficult to
identify the faulty module because of possible error propagation
[lo]. Moreover, if the executing task is contaminated before an
error is detected, retry cannot succeed in recovering the system
even if the fault disappeared (e.g., the data cannot be restored).
This problem is worthy of further investigation, and will be
reported in a forthcoming paper.

APPENDiX
Randomization [SI, [9], [11] is commonly used as a computational
method to compute transient probabilities of Markov processes
with finite state spaces. The main idea of this technique is to trans-
form the Markov process into a Markov chain subordinated to a
Poisson process as explained below.

Consider a Markov process (X (t) , t t 0} on a finite state space
S = {0, 1, ..., N}. The generator matrix, Q = (q , 0 < i, j I N), of the
Markov process has the following property:

q,, - q, = - ~ l , , q , l , where q, is the transition rate from state i

to state j, and q, =

'I

q, is the rate of leaving state z.
le1

Let A be any value such that A 2 q,, Vz At some instant, if the
process is in state i, then it leaves state i at rate ql, but this is
equivalent to assuming that transitions occur at rate A, but only
the fraction q,/A of them are real (in the sense that the process
really leaves state i and enters some other state and hence real
transitions occur at rate 41). and the remaining fractionl-% are
fictitious transitions which keep the process in state z. That is, any
Markov process can be thought of as being a process which
spends an exponential amount of time with rate A in state z and
then transitions to state j with a probability

or in matrix form, P = Q/A + I . Consequently, there exists two
component processes in a Markov process: a discrete-time Markov
chain {Yn, n = 0, 1, ...) on S with transition matrix P = Q/A + I ,
and a Poisson process {N(t), t t 01 with rate A . Moreover, {Yn, n = 0,
1, ...} and {N(t), t 2 0} are independent of each other, and the proc-
ess (YN(t), f t 01 has the same finite dimensional distribution as
(and is thus probabilistically identical to) the original Markov
process.

This decomposition not only gives a physical interpretation of
Markov processes, but also facilitates the computation of transient
probabilities of a Markov process. Specifically, let the transient
probabilities of the Markov process be T(t) = P (X (t) = i), and n(t)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 3, MARCH 1996 379

= (E&), ri(t), $(t), ..., q,(t)). Then, conditioning on the number of Self-checking Comparator with One
Periodic Output occurrences of the Poisson process in [0, t] , and using the law of

total probability, we have

n , (t) = P (X (t) = i) = P(Y,(~, =i)=
w and S. Tarnick C P(Y,(~, = i(N(t) == n) . P (N (t) = n)

n=O

= CP(Y, = i).--,

S. Kundu, E.S. Sogomonyan, M. Goessel,

Abstract-In this paper we propose a new self-checking comparator

checker or as an equality checker. Two different input patterns are
w with one periodic output. The comparator can be used as a two-rail

(~ . 2)
e-"'(At)"

n=O n! sufficient to detect all the faults considered.

where p (y , = i) @,(n) is the probability of the Markov chain being

in state i at the nth step. Let @(n) = (@l(n), @*(n), ...), then (A.2) can

Index Terms-Two-rail checker, eqUality checker, self-checking
circuit, single periodic output.

be rewritten as +

Since n(0) = @(0), and Q(n) == @(0)Pn, where P is the transition
matrix of the discrete-time Markov chain, (A.l), and (A.3) can be
rewritten as

ACKNOWLEDGMENTS

The work reported in this paper was supported in part by the Office
of Naval Research under Grant NOOO14-91-J-1115 and by NASA
under Grant NAG-1220. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the funding agencies.

REFERENCES
K.G. Shin and Y.-H. Lee, "Error detection process-Model, design,
and its impact on computer performance," IEEE Trans. Computers,
vol. 33, no. 6, pp. 529-540, June 1984.
I. Koren, Z. Koren, and Y.H. Su, "Analysis of a class of recovery
procedures," lEEE Trans. Computers, vol. 35, no. 8, pp. 703-710,
Aug. 1986.
M. Berg and I. Koren, "On switching policies for modular redun-
dancy fault-tolerant computing systems," IEEE Trans. Computers,
vol. 36, no. 9, pp. 1,052-1,002, Sept. 1987.
D.P. Siewiorek and R.S. Swarz, The Theory and Practice of Reliable
System Design. Digital Press, 1982.
A.M. Saleh and J.H. Patel, "Transient-fault analysis for retry
techniques," lEEE Trans. &!eltabiliW, vol. 37, no. 3, pp. 323-330, * *

Aug. 1588.
Y.-H. Lee and K.G. Shin, "ODtimal desim and use of retrv in

I 1 "
fault-tolerant computer systems," J. ACM, vol. 35, no. 1, pp. 45-
69, Jan. 1988.
T.-H. Lin and K.G. Shin, "An optimal retry policy based on fault
classification," IEEE Trans. Computers, vol. 43, no. 9, pp. 1,014-
1,025, Sept. 1994.
W.K. Grassman, "Transient solutions in Markovian queueing
systems," Computers and Operations Research, vol. 4, pp. 47-53,
1977.
D. Gross and D.R. Miller, "The randomization technique as a
modeling tool and solution procedure for transient markov
process&," Operations Reseuch,-vol. 32, no. 2, Mar.-Apr. 1984.

[lo] K. 6. Shin and T.-H. Liri, "Modeling error propagation in a
multi-module computing system," IEEE Trans. Computers, vol.
37, no. 9, pp. 1,053-1,066, Slept. 1988.

[l l] 8. Melamed and M. Yadin, "Randomization procedures in the
computation of cumulative-time distributions over discrete state
Markov processes," Operations Research., vol. 32, no. 4, pp. 926-944,
July-Aug. 1984.

1 INTRODUCTION
THE first self-checking comparator (two-rail checker) was pro-
posed in [l]. The detection of all single stuck-at-0/1 faults is pos-
sible if all possible correct input code words actually occur as in-
puts of the comparator. If the comparator is a part of a large cir-
cuit this is usually impossible to guarantee. In [Z], it is proposed to
include additional delay elements into one half of the input lines
of the comparator. The additional delay elements allow all possi-
ble input code words to actually occur as inputs of the comparator
itself with some delay as long as no input line is constant. Aside
from the additional hardware costs, a considerable time delay
may occur for larger word lengths before an error is detected.

In another approach to solve this problem, an additional BIST
structure is recommended in [3]. In a special test mode, additional
test inputs are periodically generated by an additional test input
generator (TIG). In this approach, the hardware costs are relatively
high and some faults may only be detected in test mode after a
relatively large time has elapsed.

None of the known comparators can be used as two-rail check-
ers or equality checkers with a single rail output.

2 NEW COMPARATOR
Fig. 1 shows the general structure of the proposed comparator,
which is an improvement of the comparator presented in [4]. One
of the inputs of every XOR-gate Ali , i =l, ...,a, of the first level is
connected to a periodically changing input signal XO , XO E {o, I}.
As long as the comparator is not faulty and as long we have
XI 1 1 = x. (X[= ~ i) , i = 1, ... ,n, for the inputs the outputs of the XOR-
gates A2i of the second level are yi =& (xo), and the inputs of
the special CMOS-gate G are either 11 ... 1 or 00 ... 0. A design for
this gate G at switch level is shown in Fig. 2. For
y1 =y2 = * . . = Y , =% (xo), we have Z=Xo (20) and Y = ~ o
(XO). Thus, the output y of the comparator is the periodically
changing signal To (%). The transistors are not used as bidirec-
tional devices; therefore, the gate G can have a large fan-in. An-

* S. Kundu is with IBM T.J. Watson Research Center, Yorktown Heights,

E . S . Sogomonyan is with the lnstitute of Control Sciences, Russian Acad-

0 M . Goessel and S. Tarnick are with the Max Planck Society, Fault-

NY 10598,USA. E-mail: kunduQwatson.ibm.com.

emy of Sciences, 117806 Moscow, Russia.

Tolerant Computing Group, University of Potsdam, Potsdam 14415 Ger-
many.
E-mail: mgoessel%pag-infiuni-potsdam.de.

Manuswipt received Jan. 27,1994.
For information on obtaining reprints of this article, please send e-mail to:
transactionsQcomputer.org, and reference IEEECS Log Number C95124.

0018-9340/96$05.00 01996 IEEE

http://kunduQwatson.ibm.com
http://mgoessel%pag-infiuni-potsdam.de
http://transactionsQcomputer.org

