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Determination of an Optimal Retry Time 
in Multiple-Module Computing Systems 

Chao-Ju Hou and Kang G. Shin 

Abstract-The 'optimal' (in some sense) amount of time used for (or 
the optimal number of times) retrying an instruction upon detection of 
an error in a computing system is usually determined under the 
assumption that the system is composed of a single module, within 
which all fault activities are confined until some module-replacement 
action is taken. However, a computing system is usually composed of 
at least three modules, namely, CPU, memory, and I/O, and the 
execution of an instruction often requires the cooperation of two or 
more modules. It is thus more realistic to consider the fault activities in 
multiple-module systems. 

In this paper, we first relax the single-module assumption and 
model the fault activities in a multiple-module system as a Markov 
process. We apply the randomization method to decompose the 
continuous-time Markov chain into a discrete-time Markov chain 
subordinated to a Poisson process. Using this decomposition, we can 
derive several interesting measures, such as 1) the conditional 
probability of successful retry given a retry period and the fact that a 
non-permanent fault has occurred, 2) the mean time-to-system 
recovery, and 3) the distribution of the time until which all modules in 
the system enter a fault-free state. All the measures derived are used 
to determine, along with the parameters characterizing fault activities 
and costs of recovery techniques, a) whether or not retry should be 
used as a first-step recovery means upon detection of an error, and b) 
the best retry period or number of retries that satisfies a given 
criterion, e.g., a specific probability of successful retry. 

Index Terms-Fault-tolerance, error recovery, instruction retry, 
Markov models. randomization. 

1 INTRODUCTION 
VARIOUS recovery techniques have been proposed to handle dif-  
ferent types of fault: permanent, intermittent, and fransient. Perma- 
nent faults are solid/hard failures and persist forever, which re- 
sult mainly from component aging or breakage. Transient faults 
are caused mainly by temporary changes in environmental, elec- 
trical, or mechanical conditions. They may be active for an unpre- 
dictable period of time and die out. Intermittent faults are usually 
the results of manufacturing defects such as loose connections or 
bonds. They cycle between active and inactive states, also in an 
unpredictable manner. Since no single recovery technique is 
known to be effective against possible faults, we must usually 
use a combination of several recovery techniques. 

Recovery techniques are classified into instruction retry, 
program rollback, program reload and restart, and module 
replacement [l], [2], [3]. Whenever an error is detected, instruc- 
tion retry is applied and the latest unsuccessful instruction is re- 
peated. If this retry is not successful, one can employ program 
rollback and/or program reload and restart. If all these recovery 
techniques fail, one has to resort to system diagnosis and recon- 
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figuration, i.e., identify and remove the faulty module and resume 
the process execution on a new fault-free processor. Since instruction 
retry requires little additional hardware and software and thus 
smaller program completion and recovery overheads as compared 
to the other recovery techniques, it is usually used as a first-step 
recovery means. However, an instruction retry will be successful 
0 d y  if the following two conditions are satisfied: 

C1. The system failed during the execution of the latest uncom- 
pleted instruction. This condition can be satisfied if errors 
are detected upon their occurrence by some signal-level 
detection mechanism [l], i.e., zero error latency. 

C2. The existing fault disappears during the time of retry or 
retry period, i.e., the retry period should be long enough 
(by perhaps retrying the same instruction more than once)4 
so that the fault dies out within this period. 

We assume in this paper that C1 can be achieved by employing 
on-line detection mechanisms with high coverage. That is, an error 
is confined to a module where the fault causing that error had 
occurred and the affected process can be restored to integrity. One 
consequence of C1 is that the damage caused by the fault is recov- 
erable by restoring the process to some prior fault-free state and 
all data needed to retry the instruction are available. C2 is impossi- 
ble in case of permanent faults. Fortunately, only less than lo%, 
and perhaps as few as 2%, of errors are known to bel caused by 
permanent faults 141, [2], and retry for a nonpermanent fault is 
likely to succeed if a retry period is selected properly. The retry 
period should be chosen to maximize the benefit that results from 
retrying for nonpermanent faults and to alleviate the loss that re- 
sults from retrying for permanent faults. 

The design and analysis of various recovery procedures has 
been addressed by numerous researchers. They characterize either 
the process of executing instructions [2], [3] or the process of fault 
activities [5] on a single-module system as a Markov process or a 
renewal process. The maximum likelihood principle and/,or Baye- 
sian decision theory are then applied to determine optimal values 
of design parameters. The retry period (or, equivalently, the num- 
ber of times an uncompleted instruction is retried) is either speci- 
fied a priori in an ad hoc manner [3], or determined by minimiz- 
ing some average tusk-oriented measure, eg., mean execution time 
per instruction 121, mean task-completion time [6] ,  [7], and/or 
some average objective penalty function [5]. 

In contrast to the above approaches, we determine the optimal 
retry period by constructing a continuous-time Markov chain 
which characterizes fault activities in a multiple-module system. 
Using the randomization method [SI, [9], we then derive: ' 

1) the probability of successful retry, P,(t), given a retry period 
t and a fault has occurred; 

2) the mean timetesystem recovery, E(L(t)), defmed as the 
mean value of the time at which a retry with the maximum 
retry period of t stops because either all faults became machve 
(and thus the retry succeeded) or the retry period expired; 

3) the distribution of the time until which all faults, if  oc- 
curred, become inactive in the system (or equivalently, the 
time until the corresponding Markov chain to enter a fault- 
free state), P(T,, < t )  

Based on these quanbties and the parameters charactenzmg fault ac- 
tivities (eg, failure rate, the probabhty of a fault being permanent, 
transient, or intermittent, and the distnbuhon of fault active/benign 
duration), we can determine. 

1. Since it is easy to convert a retry period to the number of retries, 
the term "retry period" will be used throughout the paper. 
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1) whether or not retry should be used before applying a different 

2) the minimum retry period that achieves a given probability 

Another point that differentiates our work from others is that 
we relax the commonly-used assumption that all fault activities 
are confined to a single modiile until some module-replacement 
action is taken. Note that a computing system is composed of at 
least three modules (i.e., CPU, memory, and I/O), and execution 
of an instruction usually requires the cooperation of multiple 
modules. We must therefore consider fault activities in multiple 
modules. C h  the other hand, not every instruction being retried 
use all modules in the system. Using a tagging method de- 
scribed in Section 2.2, we can flexibly tailor the continuous-time 
Markov chain to accommodate different cases in which the in- 
struction being retried uses only a subset of the modules in the 
system. To the best of our kriowledge, this is the first to relax 
the single-module assumption in determining the retry period 
and model fault activities in a multiple-module system. 

The rest of the paper is organized as follows. Section 2 describes 
the fault model used, the assumptions made, the continuous-time 
Markov chain that characterizce the fault model, and the quantities 
to be derived. In Section 3, we analytically derive the optimal retry 
period usirig the quantities derived in Section 2. We conclude this 
paper with Section 4. 

recovery technique, and 

of successful retry. 

2 FAULT MODEL AND PARAMETERS OF INTEREST 

We first describe the fault model of a multiple-module system. 
Then, we characterize the fault model with an embedded continuous- 
time Markov chain under the assumption that at most one fault 
exists in each module at any inoment. Finally, we discuss how to 
extend the model to the (more general but rare) case that multiple 
faults are possible on a single module. Although all the concepts 
and expressions are derived for an arbitrary number of modules, 
we confine our illustrative examples to the case of three modules 
for the clarity of presentation. 

2.1 Fault Model 
We assume that faults arrive at the ith module according to a time- 
invariant Poisson process with rate A,. We also assume that transient, 
intermittent, and permanent faults occur with probability p t f ,  plf, p d ,  
respectively, and their occurrences are independent of one another. 
(Note that ptf  + pq  + pd = 1.0.) Consequently, transient, intermittent, 
and permanent faults occur at exponential rate Apq Ap? and Apfl 
respectively. If a permanent fault occurs, it remains persistent in the 
system until the component coritaining the fault is replaced. If a tran- 
sient fault ixcurs, it disappears after an active duration, where the 
active duration is exponentially distnbuted with rate 3. If an intermit- 
tent fault a:curs, it may become benign after an active duration, and 
then reappear after a benign duration, where the active and benign 
time are exponentially distributed with rate y and v, respectively. That 
is, an intermittent fault cycles between active and benign states. 

Because instruction retry is effective only if an error is detected 
upon its occurrence (otherwise it is impossible to determine which 
instruction to retry), we assurne that errors are detected immedi- 
ately upon their occurrence by, for example, signal-level detection 
mechanisms [l]. Also, faults occurred in one module are assumed 
not to affect other modules, i.e., fault occurrences in different 
modules are statistically indlspendent. This assumption results 
from the fact that faults are usually the malfunction of hardware 
components, and are independent of one another [4], [l], [7]. 

2.2 Construction of a Continuous-Time Markov Chain 
Under the assumptions of fault behavior in Section 2.1 and the 
assumption that there is at most one fault in each module at any 
time: we model a multimodule system with a continuous-time 
Markov chain. The state space S consists of state vectors of the 
form (sl, sp, ..., s,,), where n is the number of modules in the sys- 
tem, and s, E {-2, - L O ,  1,2) represents the state of the ith module 
with the following interpretation: 

1) -2 represents the permanent-fault (PF) state, i.e., there exists 

2) -1 represents the transient-fault (TF) state, i.e., there exists a 

3) 0 represents the no-fault (NF) state, i.e., no fault exists in the 

4) 1 represents the intermittent-fault (IF) state, i.e., there exists 

5) 2 represents the benign-fault (BF) state, i.e., an intermittent 

For example, the state vector (1, 2, 0) indicates that there exists an 
active intermittent fault in the first module (CPU), a benign inter- 
mittent fault in the second module (memory), and no fault in the 
third module (I/O). 

The Markov model isflexible in the sense that it allows for a va- 
riety of fault pattems. For example, if only transient and intermit- 
tent faults are possible, s, E [-1, 0, 1,2], for 1 < i < n, and I S I = 4". Also, 
the model allows for a situation where different sets of faults may 
occur to different modules. For example, if only transient, tran- 
sient, intermittent faults could occur in the first, second, third 
module, respectively, in a three-module system, then s1 E IO, - 

Recall that instruction retry will succeed only if all the faults in 
the set of modules the retried instruction uses have disappeared, 
or became inactive, during the retry period t .  For the clarity of 
presentation, we assume that every instruction retried uses all the 
modules in the system.6 That is, a retry will succeed only if the 
system has moved to a state vector none of whose components are 
1, -1, or -2 during the period t. Based on this observation, we 
divide S into Failed Set (FS) and Successful Set (SS), where FS = 

[(sl, sp, ..., s,,): 3isuch that s, = 1, -1, or, -2}, and SS = [(sl, s2, ..., s,,): s, # 1, 
-1, and, -2, Vi}. For example, in the case of a three-module system, if 
both transient and intermittent faults are possible, we have SS = [(0, 0, 

all the other 56 states belong to F S .  It is straightforward to extend 
the above discussion to the case when the instruction being retried 
does not use all modules. If each instruction is tagged (perhaps at 
compile time) with the modules it will use, then the continuous- 
time Markov chain describing fault activities can be tailored to 
remove the coordinate(s) corresponding to the unused module(s). 
For example, in the three-module example system, if the instruc- 
tion being retried uses only the first module, the state space for the 
Markov chain reduces to Fig. 1, because the fault activities on sec- 
ond and third modules are irrelevant to the fact whether or not the 
retry is successful. 

a permanent fault in the module. 

transient fault in the module. 

module. 

an active intermittent fault in the module. 

fault has become inactive in the module. 

11, s2 E (0, -11, s3 E (0,L 21. 

01, (O,O, 21, (0,2,0), (2,0, 01, (0,2, 21, ( & O r  21, (2,2,0), (2,2, 211, and 

2. This assumption results from the fact that the inter-arrival time of 
faults is usually much larger than any other fault-related durations. 
We will discuss in Section 2.3 how to relax the last assumption. 

3. As discussed below, this assumption can be relaxed by tagging 
each instruction with the modules it will use. 
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Due to the assumption that faults occur independently among 
modules, state transitions along the m e  coordinate exhibit the same 
behavior, and describe fault activities in the assodated module. For 
example, the state transition between (0, 0,O) and (1,0,0) is the same as 
those between (0, s2, s3) and (1, s2, s3), V, s2, s3 E {-2, -1,O, 1,2], because 
they all describe the fault activity from NF to IF in the first module 
(while the second/third module may be in different fault states). 
Moreover, state transitions along one coordinate are virtually the Same 
as those along another coordinate except that fault activi- 
ties/transitions correspond to a different module, and perhaps, have 
mfferent rates along different coordinates. Consequently, it suffices to 
characterize the state evolution of the system by a onedimensional 
state-transition diagram shown in Fig. 1. 

Similar to the model described in Section 2.2, state transi- 
tions along the ith coordinate are associated with the state 
evolution in the ith module, and can be uncoupled with state 
transitions along other coordinates under the assumption that 
faults occur independently among modules Consequently, the 
state evolution in the system can be characterized by the state 
transition diagram that describes fault activities in one mod- 
ule, as shown in Fig. 2 (where only transitions around 
s, = sI,s;sisi are shown). Note that the number of allowable 

states for one module (i.e., along one coordinate) is now ( K  + 1)4 
(instead of 5 ) .  The transition rates are derived in a straight- 
forward manner as in Fig. 1 For example, the transition from 
s;, si, si, s i  to s i  si (si-1) (sk + 1) occurs when an active in- 

- 

a,. P, xi P i f  Y termittent fault in the ith module becomes benign and is thus 
with rate s$,. 

Markov process (X(t), t > 0) on the state space 
The system under consideration can then be described as a 

s = {(si, s2, ..., 5.): 3 = s~ si si, si, o I s; I K ,  j = 0,1, 2, 3 1 _ -  
‘i 

t pF I 
W 

Fig. 1. One-dimensional state transition diagram. 

The system state evolution can be described as a Markov process 
(X(t) ,  t t 0) on the state space S = {(sl, s2, ..., sn): si E {-2, -1,O, 1,2}, n E N 
is the number of modules]. Using the randomization technique sum- 
marized in the Appendix, we can decompose { X ( t ) ,  t > 0) into a 
discrete-time Markov chain, {Yn, n = 0, 1, ...), embedded in a 
Poisson process, [N(t) ,  t 2 0) with rate 

where each term in (2.1) is the transition rate of some state (sl, s2, ..., sn). 

2.3 Extension to the Multiple-Fault Case 
The Markov model described in Section 2.2 can be extended to the 
more general case in which multiple faults may occur in a single 
module. The state space S now consists of state vectors 

where n is the number of modules in the system, and sl, s2,. . . , s 

s, describes the state of the ith module and is a three-tuple 
L-  2) 

- 

where S ; , S ~ , S ~ ,  and s i  are the number of permanent faults, tran- 

sient faults, active intermittent faults, and benign intermittent 
faults, in the ith module, respectively. We assume that 
0 5 si I K ,  j = 0, 1, 2, 3, where K is a sufficiently large number so 

that the quantities of interest derived from the model that uses K, 
and those derived from the model that uses K + 1 are within a 
specific error of tolerance.’ 

4. According to our simulation results, the value of K needs not be 

to which randomization can be applied to obtain a discrete-time 
Markov chain, {Yn, n = 0, 1,2, ...}, and a Poisson process, {N(t) ,  t 2 01, 
with rate 

where 6, (A,  + s:z, +sip, +sku,), as shown in Fig. 2, is the transibon 

rate of state (sl, s2, ..., sn). 

Fig. 2. “One dimensional” state diagram for the case which allows 
multiple faults on a single module. 0 I sI I K, j=O,1,2,3. Only tran- 

sitions around s, =SA s: s: s: are shown. Transitions are applicable only 

when the corresponding states exist. 
- 

large, because the fault occurrence rate, A,, is usually several orders 
smaller than the other rates, and thus, the probability that multiple 
faults exist is usually negligible. 
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The set of failed states, FS, and the set of successful states, SS, 
can be identified as 

FS = [(SI. s2, . .. , s,,): 3i such tliat s~ + si + si # 01, 
and SS = ((sl, s2, ..., sn): sb + I;: + si = 0, Vi]. 

- -  

-- - 

2.4 Parameters to be Derived 
Specifically, we want to derive: 

P,,(t): the probability that retry succeeds given that the retry 
period is t and a fault has occurred. Using this information, we 
can determine the retry period for a specified probability of 
successful retry. 

E(L(t)): the mean timeto-system recovery. Specifically, let Y E (0, m) 

be the time for the system to first enter a state that belongs to SS, 
and let L(t) = min(t, Y) be the timetesystem recovery given a 
maximum retry period t, i.e., the time at which the retry stops 
because either all the faults have disappeared/become inactive 
(i.e., Y < t ,  and a successful retry results) or the retry period 
expired (Le., Y t t ) .  Obviously, if p p , >  0, then E(L(t)) = t (i.e., retry 
will never succeed). When i + m (Le., retry an instruction for- 
ever), E(L(t)) represents the imean time for the system to enter a 

state E SS for the first time. Note that lim, + E(L(t)) = m if p p f >  0. 

P(Tss 5 t): the distribution of the first SS-passage time. Specifi- 
cally, let T,, be the first time the system enters a state that belongs 
to SS, i.e., T,, = min(t: X ( t )  ~i SS]. With this probability distribu- 
tion, we can compute the mean SSpassage time, E[Tss]. The defi- 

nitions and interpretations of P,(t), Tss, and L(t)  lead to the fol- 

lowing relations: 1) P&) = P(Tss 5 t), and 2) E(Tss) = lim, + 

E(L(t)), both of which will be used to verify the correctness of our 
derivation. 

3 DERIVATION 

3.1 Probability of Successful Retry 
Let p(n, k), 0 5 k 5 n + 1, denotie the probability that the underlying 
discrete-time Markov chain (obtained after randomization) visits k 
fault states (Le., states in F S )  given n state changes. For example, p(n, 
n + 1) is the probability that the underlying Markov chain always 
stays in fault states during these n state changes. Consequently, the 
probability that a retry of period t fails, 1 - P,(t), is the probability 
that the underlying Markov chain always stays in fault In Section 2, 
we modeled the fault evolutiori as a continuous-time Markov chain 
[X( t ) ,  t t 0) on a finite state space S, where S can be decomposed into 
two mutually-exclusive subsets, F S  and SS. Also, to derive parame- 
ters of interest, the constructed Markov chain [X(t), t 2 0)  is decom- 
posed by the randomization technique into a discrete-time Markov 
chaic {Y,:, n = 0, 1, ... ) subordinated to a Poisson process (N(t), t 2 0). 
states regardless of the number of state changes in [O, t] ,  i.e., 

1 - P, ( t )  = 
- 

p(n, n+ 1) . ~ ( n  state changes in timet) 
"=O - - e-^'(At)" 

= C p ( n , n + l ) . ~ ( ~ ( t ) = n )  = C p ( n , n + ~ )  .n!, 
"=O fl=O 

where A is the rate of the underlying Poisson process obtained 
after randomization, and is given in (2.1). The error resulting from 
the truncation of the infinite sum in (3.1) can be easily bounded. 

Specifically, let R, denote the error resulting from truncating (3.1) 
to m steps, then 

m can be evaluated a priori for a given error tolerance. 
Now, the remaining task is to calculate p(n, k) .  Let p(n, k, a,) be 

the probability that the underlying Markov chain visits fault states 
k times out of n steps and let a, be the state visited after the last 
transition. Then, we have 

where Pji is the transition probability from state aj to state ai in the 
underlying discrete-time Markov chain {Ya, n = 0, 1, ...I (A.l in the 
Appendix). The initial conditions are given by 

where q(0)  = q5,(0) is the transient probability of the Markov chain 
being in state u, at time 0, and p(0, 0, a,) = 0. Note that whenever an 
instruction is retried, the system must be in a fault state, i.e., k in 
p(n, k, a,) must be t 1, thus p(0, 0, a,) = 0, Va,. Finally, by the law of 

total probabilities,p(n, k )  = C,=l p(n, k ,  a,). 

3.2 Mean Time-to-System Recovery 
Recall that Y is defined in Section 2 as the time the system first 
enters a state E SS and L(t)  = min(t, Y) is defined as the timeto- 
system recovery given that the retry period is t. Analytically, 

IS1 

As t -+ m, E[L(t)] becomes the mean time for the system to enter a 
state E SS, and can be used to indicate whether or not retry should 
be used for a particular system configuration, Le., 

(3.3) 

3.3 Distribution of First SS-Passage Time 

Recall that T,, is defined as the time the system first enters a 
state E SS, i.e., T,, = min{t: X ( t )  E SS). Randomization can be 
used to compute the distribution of T,, as follows: we define 

an associated process [XSs(t), t 2 0) on the state space F S  U (SJ, 

where Sa is the absorbing state formed by collapsing all states 
in SS into it. The corresponding generator matrix Qss can be 
expressed as 
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qss;z. I = %,I fori, j G SS, 

qss;i,s, = Cl,ssql,l forie SS, 

qssrSa l  j = 0 for all j. 
Note that the transition intensibes of (Xss( t ) ,  t 2 0} are identical to 
( X ( t ) ,  t 2 0) except that there does not exist any transition out of Sa 
(or equivalently, all states in SS). Consequently, we have 

P(Tss I t )  = P(Xss ( t )  = SJ. (3.4) 

That is, the distribution of the time until the system first enters a 
state in SS (the left-hand side of (3.4)) is equivalent to computing a 
transient state probability for the Markov process, Xss(t), where all 
states in SS are lumped into Sa, and has the generator matrix Qss 
(the right-hand side of (3.4)). Using the randomization technique, we 
have ((A.4) in the Appendix). 

where ~,~,~,(n) can be computed from nss (n) = nSs (n - l), P,,, 

and P,, is the transition probability matrix and can be computed 
from Qss by the same approach as in (A.1) in the Appendix. 

3.4 Determination of Retry Period 
The significance of the quanhhes derived above lies in that they 
can be used to determine. 

1) whether or not to apply instruction retry as a first-step re- 
covery means, and 

2) the smallest retry period that achieves a specified probability 
of successful retry. 

Specifically, let C,(t) and C, denote the cost function of instruction 
retry given the retry period t and the cost function of applying 
other time-redundancy recovery techniques (e.g., program roll- 
back, program reload and restart),' respectively, and let Prq de- 
note the required probability of successful retry (which is given as 
a design parameter). Obviously, C,(f) is a monotonically non- 
decreasing function of f. 

The first question can be answered as follows. If there does not 
exist any t > 0 such that Ci(t) + (1 - Prs(t)) . C, 5 C,, or, in a 
simpler form, 

then retry should not be applied, where 1 - P,(t) is the probability 
that retry fails given a retry period t. That is, if for every t the cost 
of retrying for the period t as the first-step recovery means is 
greater than the cost of not applying instruction retry, then retry 
should not be applied at all. The second question can be answered 
by finding the smallest t that satisfies both (3.6) and 

4 CONCLUSION 
We proposed in this paper a continuous-time Markov model to 

5 .  C, would be dependent on the retry period t if the assumption C1 
does not hold. That is, if errors cannot be detected upon their occur- 
rence, the latest checkpoint used in program rollback might have been 
contaminated by error propagation, and the program may be forced to 
roll back to an earlier checkpoint, resulting in a higher cost. 

characterize the fault activities in a multiple-module computing 
system. The randomization technique is then applied to this 
model to derive several quantities of interest, i.e., the probability 
of successful retry given a retry period, the mean end-of-retry 
time, and the distribution of time for the system to enter a fault- 
free state for the first time. These quantities can be used to deter- 
mine whether or not instruction retry should be applied as a first- 
step recovery means with respect to fault characteristics and re- 
covery costs, and the smallest retry period that achieves a pre- 
specified success probability. 

Our analysis is valid as long as errors are detected upon their 
occurrence. I f  there is a nonzero latency between error occurrence 
and detection due to imperfect coverage of detecbon mechanisms 
(Le., not meeting condition C1 in Section l), it may be difficult to 
identify the faulty module because of possible error propagation 
[lo]. Moreover, if the executing task is contaminated before an 
error is detected, retry cannot succeed in recovering the system 
even if the fault disappeared (e.g., the data cannot be restored). 
This problem is worthy of further investigation, and will be 
reported in a forthcoming paper. 

APPENDiX 
Randomization [SI, [9], [11] is commonly used as a computational 
method to compute transient probabilities of Markov processes 
with finite state spaces. The main idea of this technique is to trans- 
form the Markov process into a Markov chain subordinated to a 
Poisson process as explained below. 

Consider a Markov process ( X ( t ) ,  t t 0} on a finite state space 
S = {0, 1, ..., N}. The generator matrix, Q = (q  , 0 < i, j I N), of the 
Markov process has the following property: 

q,, - q, = - ~ l , , q , l ,  where q, is the transition rate from state i 

to state j, and q, = 

'I 

q, is the rate of leaving state z. 
le1 

Let A be any value such that A 2 q,, Vz At some instant, if the 
process is in state i, then it leaves state i at rate ql, but this is 
equivalent to assuming that transitions occur at rate A, but only 
the fraction q,/A of them are real (in the sense that the process 
really leaves state i and enters some other state and hence real 
transitions occur at rate 41). and the remaining fractionl-% are 
fictitious transitions which keep the process in state z. That is, any 
Markov process can be thought of as being a process which 
spends an exponential amount of time with rate A in state z and 
then transitions to state j with a probability 

or in matrix form, P = Q/A + I .  Consequently, there exists two 
component processes in a Markov process: a discrete-time Markov 
chain {Yn, n = 0, 1, ...) on S with transition matrix P = Q/A + I ,  
and a Poisson process {N(t), t t 01 with rate A . Moreover, {Yn, n = 0, 
1, ...} and {N(t), t 2 0} are independent of each other, and the proc- 
ess (YN(t), f t 01 has the same finite dimensional distribution as 
(and is thus probabilistically identical to) the original Markov 
process. 

This decomposition not only gives a physical interpretation of 
Markov processes, but also facilitates the computation of transient 
probabilities of a Markov process. Specifically, let the transient 
probabilities of the Markov process be T(t)  = P ( X ( t )  = i), and n(t) 
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= (E&), ri(t), $(t), ..., q,(t)). Then, conditioning on the number of Self-checking Comparator with One 
Periodic Output occurrences of the Poisson process in [0, t] ,  and using the law of 

total probability, we have 

n , ( t ) = P ( X ( t ) = i )  = P(Y,(~, =i)= 
w and S. Tarnick C P(Y,(~, = i(N(t) == n ) . P ( N ( t )  = n)  

n=O 

= CP(Y, = i).--, 

S. Kundu, E.S. Sogomonyan, M. Goessel, 

Abstract-In this paper we propose a new self-checking comparator 

checker or as an equality checker. Two different input patterns are 
w with one periodic output. The comparator can be used as a two-rail 

( ~ . 2 )  
e-"'(At)" 

n=O n!  sufficient to detect all the faults considered. 

where p ( y ,  = i) @,(n) is the probability of the Markov chain being 

in state i at the nth step. Let @(n) = (@l(n), @*(n), ...), then (A.2) can 

Index Terms-Two-rail checker, eqUality checker, self-checking 
circuit, single periodic output. 

be rewritten as + 

Since n(0) = @(0), and Q(n) == @(0)Pn, where P is the transition 
matrix of the discrete-time Markov chain, (A.l), and (A.3) can be 
rewritten as 
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1 INTRODUCTION 
THE first self-checking comparator (two-rail checker) was pro- 
posed in [l]. The detection of all single stuck-at-0/1 faults is pos- 
sible if all possible correct input code words actually occur as in- 
puts of the comparator. If the comparator is a part of a large cir- 
cuit this is usually impossible to guarantee. In [Z], it is proposed to 
include additional delay elements into one half of the input lines 
of the comparator. The additional delay elements allow all possi- 
ble input code words to actually occur as inputs of the comparator 
itself with some delay as long as no input line is constant. Aside 
from the additional hardware costs, a considerable time delay 
may occur for larger word lengths before an error is detected. 

In another approach to solve this problem, an additional BIST 
structure is recommended in [3]. In a special test mode, additional 
test inputs are periodically generated by an additional test input 
generator (TIG). In this approach, the hardware costs are relatively 
high and some faults may only be detected in test mode after a 
relatively large time has elapsed. 

None of the known comparators can be used as two-rail check- 
ers or equality checkers with a single rail output. 

2 NEW COMPARATOR 
Fig. 1 shows the general structure of the proposed comparator, 
which is an improvement of the comparator presented in [4]. One 
of the inputs of every XOR-gate Ali ,  i =l, ...,a, of the first level is 
connected to a periodically changing input signal XO , XO E {o, I}. 
As long as the comparator is not faulty and as long we have 
XI 1 1  = x. ( X[ = ~ i ) , i  = 1, ... ,n,  for the inputs the outputs of the XOR- 
gates A2i of the second level are yi =& (xo), and the inputs of 
the special CMOS-gate G are either 11 ... 1 or 00 ... 0. A design for 
this gate G at switch level is shown in Fig. 2. For 
y1 =y2  = * . . = Y ,  =% (xo), we have Z=Xo (20) and Y = ~ o  
(XO). Thus, the output y of the comparator is the periodically 
changing signal To (% ). The transistors are not used as bidirec- 
tional devices; therefore, the gate G can have a large fan-in. An- 
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