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3 CONCLUSION 
In this paper, we analyzed the harvest rate of reconfigurable mul- 
tipipeline processor arrays. We showed that the ”shifting” or 
”fault stealing” phenomenon during reconfiguration can be de- 
scribed as the maximum weighted chains in a poset with random 
weights, and we used a combinatorial argument to give a bound 
on the size of the maximum weighted chain. Our method is the 
first purely analytical approach to analyzing reconfiguration of 
linear arrays. We propose as an open problem to find the exact 
value of h(m, n). 
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Abstract-This paper addresses two important issues associated with 
load sharing (LS) in hypercube-connected multicomputers: 1) ordering 
fault-free nodes as preferred receivers of “overflow” tasks for each 
overloaded node and 2) developing an LS mechanism to handle node 
failures. Nodes are arranged into preferred lists of receivers of overflow 
tasks in such a way that each node will be selected as the Mh 
preferred node of one and only one other node [l]. Such lists are 
proven to allow the overflow tasks to be evenly distributed throughout 
the entire system. However, the occurrence of node failures will 
destroy the original structure of a preferred list if the failed nodes are 
simply dropped from the list, thus forcing some nodes to be selected as 
the Mh preferred node of more than one other node. We propose three 
algorithms to modify the preferred list such that its original features can 
be retained regardless of the number of faulty nodes in the system. It is 
shown that the number of adjustments or the communication overhead 
of these algorithms is minimal. Using the modified preferred lists, we 
also proposed a simple mechanism to tolerate node failures. Each 
node is equipped with a backup queue which stores and updates the 
information on the tasks arrivingkompleting at its most preferred node. 

Index Terms-Load sharing, hypercube-connected multicomputers, 
real-time systems, node failures, backup queues. 

1 INTRODUCTION 
LOAD sharing (LS) in general-purpose distributed systems has 
been studied extensively by numerous researchers and many LS 
algorithms proposed [2], [3],  141, [ 5 ] .  These LS algorithms are usu- 
ally designed to minimize the average task-response time. By con- 
trast, LS in distributed real-time systems has been addressed far 
less than that in general-purpose distributed systems. 

In [61, we have proposed a decentralized, dynamic LS method 
for real-time applications. In this method, each node maintains the 
state of a set of nodes in its proximity, called a buddy set. Three 
thresholds of queue length (QL), denoted by TH,,, T H f ,  and TH,, 
are used to define the (load) state of a node. A node is said to be 
underloaded if Q L  5 TH,, medium-loaded if TH, < Q L  5 THp fully- 
loaded if T H f  < Q L  2 TH,, and overloaded if Q L  > TH,. Whenever a 
node becomes fully-loaded due to the arrival and/or transfer of 
tasks, it will broadcast this change of state to all the nodes in its 
buddy set; so will it when a node becomes underloaded as a result 
of completing the execution of tasks. Every node that receives this 
state-change broadcast will update its state information by mark- 
ing the node as fully-loaded or underloaded in its ordered list 
(called a preferred list) of available receivers. When a node becomes 
overloaded, it can then select, without probing other nodes, the 
first underloaded node from its preferred list. Note that the pre- 
ferred list of each node does not change over the time, but the 
nodes will be dynamically marked as underloaded or overloaded 
according to their load states, so that an overloaded node may 
select the first underloaded node from its preferred list. 
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Two most important issues in constructing preferred lists and 
buddy sets are identified as the coordination and congestion prob- 
lems [l]. First, when the number of overloaded nodes is not 
greater than the number of underloaded nodes, no more than one 
overloaded node should be allowed to select the same under- 
loaded node as a receiver; otherwise, an underloaded node could 
become overloaded due to the simultaneous transfer of overflow 
tasks from multiple overloaded nodes, even if there are other un- 
derloaded nodes in the system. This problem results from lack of 
coordination among overloaded nodes. Second, in order to mini- 
mize the task transfer delay, the buddy set of a node is composed 
of those nodes in its physical proximity (eg., those one or two 
hops away). The congestion problem arises when a hot region-a 
region where the number of overloaded nodes is greater than that 
of underloaded nodes-is formed in the system. To resolve this 
problem, the overloaded nodes in a buddy set should be able to 
transfer their overflow tasks to the nodes in different buddy sets 
such that the tasks arriving at overloaded nodes within a hot re- 
gion can be shared throughout the entire system, not just by those 
nodes in the same buddy set. 

We have already developed an algorithm to generate the pre- 
ferred lists in hypercube-connected multicomputers in the absence 
of faulty nodes [l]. Preferred lists are so constructed that each node 
will be selected as the kth preferred node of one and only one 
other node. In order to reduce the communication overhead for 
employing the LS method, the buddy set is chosen as the first few 
nodes in a preferred list. In an early paper 161, we also showed that 
the buddy set sizes of 10 to 15 nodes perform well for a system 
with up to 1,024 nodes. Moreover, we showed in [1] that the coor- 
dination and congestion problems can be resolved effectively with 
such preferred lists. However, occurrence of node failures will 
destroy the original structure of a preferred list if faulty nodes are 
simply dropped from the preferred list. For example, let N,  and Ny 
be the most and second preferred nodes of N,, and let N y  be the 
most preferred node of N2. If N,  becomes faulty and is dropped 
from N,'s preferred list, then Ny will become the most preferred 
node of both N, and N2, thus losing the original property that a 
node can be selected as the kth preferred node by one and only one 
other node. The same argument also applies to the case when both 
N,  and N2 are overloaded, but such a case, even if it occurs, should 
not last long; otherwise, the two nodes will be intrinsically unsta- 
ble. Thus, "static node pairing" should not be altered to deal with 
natural load fluctuations. 

For the reasons discussed above, we need to develop an algo- 
rithm to modify the preferred lists in case of node failures so that 
the original features of LS may be retained. We will show that 
such a modification/adjustment is always possible regardless of 
the number of faulty nodes jn the system. Moreover, we will pro- 
pose three adjustment algorithms which will be shown to incur 
only minimal communication overhead. 

If a node becomes faulty before completing all tasks in its 
queue, all of the unfinished tasks in the queue will be lost unless 
some fault-tolerant mechanisms are provided. Using the modified 
preferred lists, a simple fault-tolerant mechanism can be used to 
avoid/minimize task losses as follows. Each node N ,  is equipped 
with a backup queue for the tasks at its most preferred node N, 
which is in turn equipped with a backup queue for N,. Whenever 
N,  fails, its most preferred node N,  will process the unfinished 
tasks in its backup queue. If this node gets overloaded, it can 
transfer them just like those tasks arriving at the node. By using 
the proposed algorithms, the failed node in the preferred lists will 
be replaced by a fault-free node such that the node, which origi- 
nally selected the failed node as its most preferred node, will al- 
ways be backed up by a fault-free node. 

There are two advantages of using an existing preferred list to 
back up failed nodes. First, using a preferred list incurs no extra 

cost in providing the backup queue(s) for each node. Second, the 
proposed modification algorithms ensure faulty nodes to be re- 
moved from the preferred list, so that as long as a node is not iso- 
lated in the system, it can always find a fault-free node to back up 
its own tasks. 

The rest of this paper is organized as follows. Some important 
features of constructing preferred lists are briefly reviewed in Sec- 
tion 2. We propose in Section 3 the adjustment algorithms and 
fault-tolerant mechanisms whose performance is evaluated via 
modeling and simulation in Section 4. The paper concludes with 
Section 5. 

2 CONSTRUCTION OF PREFERRED LISTS 
The time to transfer a task is usually proportional to the distance 
between the two nodes involved, so the preferred list of each node 
is constructed based on inter-node distances. The mth component 
group of N[s preferred list is composed of those nodes m hops 
away from N, where 1 2 m 2 n and n is the dimension of the binary 
hypercube under consideration. Note that N,'s preferred list is an 
ordered set of all the other nodes on the system. Let N;s address 
be represented by i,-,i,-, ... io and let Ik  denote an n-bit number, all 
but the kth bit of which are zeros. The symbol 0 denotes the bit- 
wise EXCLUSIVE-OR operation. The nodes of N,'s preferred list 
are then determined as follows: 

DEFINITION 1 

1) The nodes in the first component group are ordered as 
{(in-lin-2 ... io) 0 Ijl (j = 0, 1, ..., n - 1). 

2)  The nodes in the second component group are ordered 
as {(in-lilz-2 ... io) 0 Ij  0 IkJ (j 1, ..., n - 2,0, and j + 1 5 k 5 
n ~ 1). 

3) The nodes in the third component group are ordered as 
{(in-lin-2 ..' io) 0 Ti 0 Ik @ I e )  ( j  = 1, ..., n - 3, 0, j + 1 5 k 5 
n ~ 1, and k + 1 S e S n  ~ 1). 

4) In general, the nodes in the kth component group of N [ s  
preferred list are ordered as {(in-lin-2 ... io) 0 Ijl 0 Ij2 ... 0 
I,,] (jl = 1, ___, n - k, 0, jl + 1 I j 2  I n - 1, and jk-l + 1 5 j k  
I n - 1 ) .  

An example of preferred lists generated for a $-cube, or Q4, is 
shown in Fig. 1. N,'s buddy set of size c i s  formed with the first cs 
nodes in N,'s preferred list. 

Let N denote the set of nodes in the system. Then, in order to 
describe the properties of a preferred list, it is necessary to intro- 
duce the following notation and the (forward) node mapping 

function MI:  N + N and the inverse node mapping function 
M: : N + N, such that Mj(Ni)  is the jth preferred node of N,, and 

M J ' ( N i )  is the node that selects N,  as its jth preferred node. The 

forward and inverse mapping function can be applied recursively to 

preferred node of MI(NJ,  but M i l ( M j ( N i ) )  is the node that selects 

the jth preferred node of N, as its kth preferred node. Using the pre- 
ferred list as shown in Fig. 1, a few more examples of using the node 

mapping function are M2(M,(No)) = N3, M i 1 ( M , ( N 0 ) )  = N ,  , 
M 3 ( M i 1 ( N o ) )  = N, ,  and M i l ( M i l ( N 1 ) )  = N,. 

identify any node in a buddy set. For example, M,(M,(N,)) is the kth 

SnL : N,'s buddy set of size o, i.e., SN, = { M , ( N , ) ,  M2(Nr), . . . , 
M G ( N z ) I .  

SN, : The ordered set that includes all nodes in the N,'s pre- 

ferred list except those nodes in N,'s buddy set, Le., 
S N 2  = M G + , ( N l ) , M G + 2 ( N l ) ,  . . . ,M *,,-, (Ni)l. 

- 

- 
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1 0  3 5 9 7 1 1 1 3  2 4 8 1 5 1 2 1 0  6 1 4  
3 0 6 1 0  4 8 1 4  1 7 1 1 1 2 1 5  9 5 1 3  

' 2  1 7 1 1  5 9 1 5  0 6 1 0 1 3 1 4  8 4 1 2  
5 6 0 1 2  2 1 4  8 7 1 1 3 1 0  9 1 5  3 1 1  
4 7 1 1 3  3 1 5  9 6 0 1 2 1 1  8 1 4  2 1 0  
7 4 2 1 4  0 1 2 1 0  5 3 1 5  8 1 1 1 3  1 9  
6 5 3 1 5  1 1 3 1 1  4 2 1 4  9 1 0 1 2  0 8 
9 1 0 1 2  0 1 4  2 4 1 1 1 3  1 6  5 3 1 5  7 
8 1 1 1 3  1 1 5  3 5 1 0 1 2  0 7 4 2 1 4  6 

11 8 1 4  2 1 2  0 6 9 1 5  3 4 7 1 1 3  5 
10 9 1 5  3 1 3  1 7  8 1 4  2 5 6 0 1 2  4 
1 3 1 4  8 4 1 0  6 0 1 5  9 5 2 1 7 1 1  3 
1 2 1 5  9 5 1 1  7 1 1 4  8 4 3 0 6 1 0  2 
1 5 1 2 1 0  6 8 4 2 1 3 1 1  7 0 3 5 9 1 
1 4 1 3 1 1  7 9 5 3 1 2 1 0  6 1 2  4 8 0 

Order of preference 

No 
Nl 
N2 
N3 

N4 

N5 
Ns 
N7 

Na 
Ns 
NI o 

N1 I 
N12 
N13 

N14 

N1.5 

# of faulty nodes 
1 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  
1 2  4 8 6 1 0 1 2  3 5 9 1 4 1 3 1 1  7 1 5  

1 2  3 4 5 6 7 8 9 10 

1 2 3 4 5 6 7 8 7 8  
2 
3 
12 
38 
64 

Fig. 1 .  Preferred lists in a 4-cube system, 

2 4 6 8 10 12 14 12 12 14 
3 6 9 12 15 18 21 16 16 20 
10 19 25 29 36 40 43 60 45 46 
30 42 47 49 58 55 60 62 58 59 
36 46 52 51 51 53 52 51 54 52 

TABLE 1 
NUMBER OF NODES SELECTED BY MORE THAN TWO NODES AS THEIR kTH PREFERRED NODES 

IN AN 8-CUBE SYSTEM WITH A BUDDY SET OF 10 NODES, WHERE 1 5 k<  10 

I Preference 

Si :  : The ordered set of Mi1(N8 Is, 1 5 k I q Le., 

s; = {M~(NJ,M~(NJ, ..., M;'(N~)J. 

The following theorems and corollaries state that the preferred 
lists designed above can solve both the coordination and conges- 
tion problems in a failure-free situation. (See [l] for their detailed 
account). 

THEOREM 1. Each node in a Q, will be selected as the kth preferred node of 
one and only one other node, ie., for any Ni, M ? ( N ! )  f M,'(N,), 

3 LOAD SHARING IN THE PRESENCE OF NODE 
FAILURES 

Faulty nodes are assumed to not affect the operation of fault-free 
nodes in the system. Node failures are detected by the other nodes 
through communication timeouts, and testing issues are outside of 
the scope of this paper. Adjusting the preferred lists and imple- 
menting a fault-tolerant backup queue are discussed below. All 
the adjustment algorithms will be applied only to those nodes that 
remain connected in the presence of faulty nodes or links. That is, 
we will not consider "isolated" nodes. 

V j , k c  11 ,___, d a n d j g k .  3.1 Adjusting the Preferred Lists 
If faulty nodes are simply dropped from the preferred lists, some 
nodes will be selected "permanently" by more than one node as 
the eth preferred nodes where 1 5 e 5 a For example, suppose 
node No is faulty, then the preferred lists of the nodes in SG, will 

be changed as follows. Since No is faulty, the node that selects No 
as its jth preferred node must select its ( j  + 1)th node to replace No. 
So, M J + l ( M 7 ( N o ) )  will become Mj(M:(No))  for j = 1, _._, a How- 

Since each node in a hypercube is selected as the most pre- 
ferred node by one and only one other node, the probability of an 
underloaded node being selected by more than one overloaded 
node is very small, thereby solving the coordination problem. 

2. If ( g ) r  Ike preferred Of ' O d e  in a buddy set 

W U S t  COmefYOm a different buddy set. In other suords, a riodc artd its 
most preferred node are not co-located in the same SN, for any N,. 

Since each node will be selected as the most preferred node by 
one and only one other node, the probability of an underloaded 
node being selected by more than one overloaded node is very 
small, thereby solving the coordination problem. Furthermore, 
since an overloaded node is most likely to transfer an overflow 
task to its most preferred node, the overloaded nodes in a buddy 
set will spread their overflow tasks out to many different buddy 
sets instead of overloading the nodes in its own buddy set, thus 
solving the congestion problem. 

ever, according to Theorem 1, the ( j  + 1)th preferred node of MJ'(N,) 
is already assigned as the jth preferred node of another node, so this 
node will be selected by two different nodes as the jth preferred node 

if No is simply dropped from the preferred list of MT (No  . 
Generally, if there are f faulty nodes none of which are located 

in the same buddy set, then there will be f x k nodes to be selected 
as the kth preferred node by two other nodes. However, if some 
faulty nodes are located in the same buddy set, the number of 
nodes that will be selected by more than two nodes is very compli- 
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cated (thus difficult) to derive. For example, Table 1 lists the num- 
ber of nodes that are selected by more than two nodes in a Q8. 

If a node were selected by more than one node as their most 
preferred node, the failure of this node will affect all of them. 
Thus, it is desirable to adjust the preferred lists dynamically 
whenever a node becomes faulty, such that Theorems 1 and 2 will 
remain valid even in case of node failures. The following theorem 
states that such an adjustment is always possible, but not unique. 

THEOREM 3. Regardless of the number of faulty nodes i n  the system, 
there always exists an  algorithm to adjust the pvefevred lists, suck 
that Theorems 1 and 2 will hold. 

PROOF. Let S, be the ordered set of fault-free nodes in the system. 
Suppose I S, I = x, and let N"' be the ith node in S,. N'" can 
choose any node other than itself (in x - 1 ways) as its most 
preferred node, N"' can choose any node other than itself 
(in x ~ 2 ways) and the one just picked by N"' as its most 
preferred node, and so on. Thus, there are (x - l)! ways to 
assign the most preferred node to each of the nodes in S,. 
The assignment of the second preferred node for each node 
in S, without violating the conditions of Theorems 1 and 2 
can be obtained by shifting the assignment of the most pre- 
ferred node as described above, i.e., N"' picks N(L+l''~ most 
preferred node for i = 1, . . ., x - 1 while N") picks N(l)'s most 
preferred node. The rest of the nodes can be ordered simi- 
larly. Thus, there are at least (x - l)! ways to modify a pre- 
ferred list for the nodes in S, without violating the condi- 
tions of Theorems 1 and 2. 0 

When N ,  becomes faulty, the preferred list of each node in S;, 
needs to be adjusted. Since adjusting a preferred list will introduce 
computation and communication overheads, it is desirable to de- 

tinct nodes, such that Ny = Mk(N,), M;'(N,) 6 SN,, and 

N, hi S M i , ( N , ) ,  i.e., M;' (N$)  is not in N,'s buddy set and Ny is 

not in M:(Nl)'s buddy set. Then we can satisfy the condi- 
tions of Theorem 1 and 2 with the following adjustments: 

1) replace N, by Ny as the the kth preferred node of M: ( N ,  1, 

2) replace Ny by M;'(N,)  as the the kth preferred node of N,. 

Theorem 1 is satisfied by assuring M,'(N,) e SNr,  and 

N ,  G SM., . Before making this adjustment, Mi'(Ni) is 

selected as the kth preferred node by N, only and it will not 
be selected as the kth preferred node of any other node, 

when N ,  becomes faulty. So, after making the adjustment, 
Mil(Nl) will be selected as the kth preferred node by node 

N, only, and Ny will be selected as the kth preferred node by 
Mi1 (N,), thus satisfying the conditions of Theorem 2. 

As long as the size of a buddy set satisfies the conditions 

of Theorem 2,  there will always exist the (N,, N J  pair in a 

Q4 or larger hypercube. The restriction N, E SMMI N,) implies 

that Ny must be at least two hops away from M ; ( N < ) ,  and 

the relation N,, = M,&N,) implies that N ,  must be at least 
three hops away from Mil(Nr).  (This modification is also 
shown in Table 2.) 0 

and 

k ( z )  

k (  

TABLE 2 
ILLUSTRATION OF MODIFICATION OF A PREFERRED LIST 

N, (faulty) 

sign an algorithm which requires minimal adjustments in case of 
node failures. Moreover, in the fault-tolerant backup queue ap- 
proach, the most preferred node should be located as close to the 
failed node as possible to reduce the communication overhead for 
maintaining/updating the backup queue. 

3.2 Minimizing the Number of Adjustments 
An adjustment algorithm is said to be "optimal" if it requires a 
minimal number of nodes to be adjusted. 

THEOREM 4. When N, is faulty, the minimal adjustment to the pre- 
ferred list of each node in S$ is to change the lcth preferred 

node of either one node if Mk(Nl) # Mil(Nl), or two nodes 

if M k ( N i )  = Mil(Ni), k = 1, ..., owithout violating the con- 
ditions of Theorems 1 and 2. 

PROOF. Since N, is the k t h  preferred node of M ; ' ( N i ) ,  it needs to be 

replaced by a fault-free node. Note that according to Theo- 
rem 1, the lcth preferred node of N,  (i.e., Mk(NJ) will not be 
selected as the lcth preferred node by any other node. If 
M , ( N t )  # M;' (Nz) ,  one can simply substitute Mk(Nl) for N,  

as the kth preferred node of M i ' ( N , ) .  This adjustment will 
satisfy the conditions of Theorems 1 and 2. However, in the 
case of M , ( N , )  = M i ' ( N r ) ,  Vk ,  the above adjustment is 
meaningless. We now show that there always exist a pair of 

nodes, say N, and Ny, such that changing the kth preferred 
node of both M&NJ and N, will always satisfy the condi- 
tions of Theorems 1 and 2. 

For notational convenience, let N ,  and N, be two dis- 

Modification 

NX 

We can find the (Nx, Ny) pair systematically for each node in 

S; as follows. Since Ny will replace N ,  as the kth preferred node of 

M i l ( N , ) ,  Ny must not be a node in M i l ( N l ) ' s  buddy set. The 

search can follow the sequence of nodes in M,'(N,)'s preferred 
list, starting from the first node outside of its buddy set. This node 
can be found by M;'(N,)  0 I p  0 I ,  if it is two hops away from 

M;' (N, ) ,  or by M;'(N,) 0 I ,  0 I ,  0 1" if it is three hops away, 

wherep = 1,2, ..., n -  1, 0,q = p + 1,2, ..., n -  1, and r = q + 1,2, _._,  

n ~ 1. The next step is to check if Mk(NJ is not in N,'s buddy set. 
This can be guaranteed if N,  is located farther away from Mk(Nj) .  
Without loss of generality, one can consider the case of k 5 n, and 

assume that the buddy set of a node Nk contains all nodes one hop 

away from Nk and some of the nodes which are two hops away from 

Nk. The faulty nodes can be replaced by the following algorithm. 
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Preferred List Adjustment Algorithm 1 
fork = 1 to odo 

1) Find N ,  = M , l ( N z ) O I ,  @ I q ,  such that p, 7 # k - 1 and 

N ,  @ SM- 
k l ( N , )  

2) Replace N ,  by N y  
3) Find N, = Ny 0 Ik-l 
4) Replace N,, by M:(Ni) 

To illustrate the above adjustment algorithm, consider a Qs as an 
example. Without loss of generality, assume the buddy set size is 10 

161 and let No be the faulty node. According to the definition of the 
preferred list, SNo = W ,  , N, , N ,  , N, , N,, , N,, , N,,, N12RI N, , N,, I .  

Since N, selects No as its most preferred node, we must find a node 

to replace Nu. According to Algorithm 1, the search for the pair 

(Nx, N J  starts from the first node outside N,'s buddy set. So, 
N ,  = My1(N0)  0 I ,  O I ,  = N ,  0 I ,  0 I ,  = N,,and N ,  = NI8. The 

new most preferred node of Nl will be N,, and the new most pre- 

ferred node of N,, will be N,. Similarly, the N i s  buddy set = {N3, 

No, N6, Nlo, N,,, N34, N66, N,30, N4, N,]. The first node outside N i s  
buddy set is N ,  = M i 1 ( N 0 )  0 I ,  O I ,  = N, O I ,  0 I ,  = N,, and N, = 

Nle So, the new second preferred node of N2 (N,,) will be N I 6  (N2). 

THEOREM 5 .  The preferred list resulting from Algorithm 1 will satisb 
the conditions of Theorems 1 and 2 in the presence of faulty nodes. 

PROOF. According to the definition of a preferred list, Mk(Ni)  = N ,  0 
Ik-l and N ,  = M i l ( N z )  0 I ,  O I 4  = N i  0 Ik- ,  0 I ,  0 I,. Then 

N ,  = M:(N,) = N ,  o I,-, = N ,  o I ,  o is farther awayfrom 

M i l ( N l )  if p ,  9 # k - 1. Since a preferred list is generated ac- 

cording to the distance between nodes, if N, is not in 

M;'(N,)'s buddy set, then Nx, which is farther away from 

M;' (Nt ) ,  will also not be in its buddy set. Thus, the CN,, N J  
0 

3.2.1 Reduction of Average Internode Distance in a Buddy Set 
Although Algorithm 1 can modify the preferred lists with a mini- 
mal number of adjustments, the distance between a node and the 
nodes in its buddy set is found to increase significantly after 

making these adjustments. Whenever a node N ,  becomes faulty, 
the nodes in 5'; need to adjust their preferred lists. In each of 

these adjustments a pair of nodes, N,  and Ny, need to be selected. 
According to Algorithm 1 every node in S: will select the first 

fault-free node as N y  in SM-, . Suppose Ny = Ni 0 Ik-l 0 Ir,O I,, 

then N ,  = M i l ( N , )  = N ,  0 I,c-, = N i  0 I ,  0 I,. So, in each of these 

adjustments N ,  = N ,  0 I ,  0 IT is the same node. In other words, 
after completing the adjustment for every node in Sit ,  the nodes 

in N ,  O I p  0 1;s buddy set will be at least three hops away from 
this node, making the average distance greater than 2, while the 
average distance is around 1 in all other nodes. Consider the pre- 

vious example Q8 and assume No is faulty. After completing the 
adjustments for all nodes in N,'s buddy set, N,,'s buddy set will 

become {Nl, N2, N4, N,, N,,, N32, Nti4, N128, Nti, YO).  

pair will satisfy the conditions of Theorems 1 and 2. 

k ( N z )  

To alleviate this problem, Algorithm 1 is modified in such a 

way that a different pair of nodes, N ,  and Ny,  are selected for each 
node in Sz, . In such a case, after completing the adjustment for 

every node in S z  the average distance between a node and the 

nodes in its buddy set will become smaller than the distance re- 
sulting from Algorithm 1. From the definition of a preferred list, 

the nodes which are two hops away from Ni are ordered according 

to the operation of Ni 0 Ii 0 lk (j = 1, . . ,, n - 1, 0, and j + 1 5 k 5 n - 1). 
For convenience, the nodes with the same j in the above operation 

are grouped as parcel j ,  denoted as YJ(i) (parcel j of node i). The 

kth node in Y&i) can be obtained by N ;  O I) 0 Ik 
Preferred List Adjustment Algorithm 2 
Fork = 1 to crdo 

1) Find the first parcel j of M i l ( N , )  for j # k -  1. 
2) if j = 1 then 

if j + k 5 n -- 1 then N ,  = Mk'(Ni)  0 I ,  0 I i i k  

else j t j + 1 goto step 2. 
else p = k - ~ ~ ~ ~ l Y t ( i ) l  

if p 2 0 then N ,  = M i ' ( N l )  0 I ,  O I ,  '-, 

else N ,  = M;'(N,) o I ,  o I ~ + ,  

3) Replace N ,  by N y  as M i l ( N l ) ' s  kth preferred node. 
4) Find N, = N y  0 I, . 
5) Replace N y  by Mk(N,) as N,'s kth preferred node. 

end-do 

3.3 Minimization of Average Internode Distance in a 

Although the number of adjustments in each preferred list is 
minimized by Algorithm 2, the distance between a node and its 
most preferred node is not necessarily minimal. According to Al- 

gorithm 2, the kth preferred node of M i l ( N i )  (i.e., N,) is replaced 

by N y  which is at least two hops away from M i ' ( N i ) .  Moreover, 

the kth preferred node of N ,  ke., N J  is replaced by Mk(Ni) which 

is at least three hops away from N,. In the case of k = 1 the most 

preferred nodes of M y l ( N , )  and N, will be two and three hops 

away from M ; ' ( N ~ ) ,  respectively. 
Since each node needs to be aware of the tasks arriving at its 

most preferred node and vice versa, the longer distance between 
them means the larger communication delay. An alternative ap- 
proach is to minimize the distance between the nodes and their 
replacement nodes. The following algorithm will adjust the pre- 
ferred list of each fault-free node such that the most preferred 
node is located one or two hops away from each fault-free node. 

Preferred List Adjustment Algorithm 3 
For k =  1 do 

Buddy Set 

if M,'(Ni)is not faulty then 

Replace Ni by ME-, (Mi ' (NZ))  as the kth preferred node of 

M : ( N ~ )  

of M ; ' ( M ~ - ~ ( M ; ~ ( N J )  

Replace Mr,-k(Mi ' (Nl ) )  by Mk(Ni) as the kth preferred node 

Use the same procedure in Algorithm 2 to find a node to 
replace 
M,' (Mn-k(Mi ' (Ni ) ) )  as the (n-k)thpreferrednodeof M:(N,) 

else no adjustment 
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Number of adjustments 
on a node 

TABLE 3 
COMPARISON OF PREFERRED LIST ADJUSTMENT ALGORITHMS IN AN 8-CUBE SYSTEM WITH 15 FAULTY NODES 

~ 

Alaorithm 1 1.33 I 2.89 1 4 2 
Algorithm 2 
Algorithm 3 

1.33 1.46 1 4 2 
1.33 1.51 1 2 4 

end-do 
for k = 2 to o d o  same as Algorithm 2 end-do 

Algorithm 3 can be explained as follows. In the first step 

M ? ( N z )  chooses N, as its most preferred node, so M,,-l(MY1(N,)) 

is selected to replace N,. In a Q,, the first nth preferred nodes in a 
buddy set are within one hop. So, the distance between M;'(N,) 
and Mtq-l(M;'(Nl)) is one hop. However, Mrl-, (M:(Nz) )  is origi- 

nally selected by another node (M;1(M,7-l(M:(Nt))) as the most 

preferred node, so Mj&NJ needs to replace M,<-,(MY'(Nz)) and the 

distance between Mk(N,)  and My'(Mr,+l(M;1(N2)) is two hops. The 

other two adjustments are to find a replacement for Mn-l(M;'(Nt)) 
as the (n - 1)th preferred node for M i l ( N l ) ,  so the total number of 
adjustments will be four when k = 1. For the cases when k > 1, only 
two adjustments are needed as done in Algorithm 2. 

Note that in Algorithm 3, the distance between a node and its 
most preferred node is less than two as long as the node is con- 
nected to the system, but it requires four adjustments (if M;' (N, )  
is not faulty). This algorithm can be run in parallel on all nodes in 

SG , as long as N,'s failure is detected by the nodes in S:, . When 

there are more than one faulty node, Algorithms 2 and 3 can be 
used sequentially to make the adjustments. 

The number of adjustments and the average distance between a 
node and its preferred node resulting from these algorithms are 
compared in Table 3. It is shown that Algorithm 1 results in the 
largest distance while Algorithm 3 results in minimal distance 
between a node and its preferred node. If the number of adjust- 
ments is the main concern, Algorithm 2 should be used because it 
results in a smaller average distance than Algorithm 1 while 
minimizing the number of adjustments. 

4 IMPLEMENTATION AND ANALYSIS OF FAULT- 
TOLERANT BACKUP QUEUE 

Based on the proposed adjustment algorithms, a simple fault-tolerant 
mechanism can be implemented to reduce the number of task losses 
when a node fails. Each node maintains two (or more) task queues, 
one for its own arrivals (EAQ) and the other for the arrivals from its 
most preferred node (BKQ). The BKQ i s  updated upon arri- 
val/completion of each task at a node@ most preferred node. 

Upon N,'s failure, Ml(Ni)  will accept all the tasks in its BKQ (as 

bursty arrivals). M,(N,) will process all of these tasks if it is un- 
derloaded; otherwise, it will transfer some or all of these tasks to 
the underloaded nodes in its buddy set. The most important issue 
in this approach is to adjust the preferred list of MY1(N,) and up- 
date its BKQ with the newly assigned most preferred node. 

Since each node in S; can execute the adjustment algorithm 
concurrently with other nodes in this set, the communication de- 
lay, Tadlusi, associated with updating the BKQ of M ; ' ( N 2 )  and the 

newly assigned node N,, can be derived as T,+s, = (k ,  + k2) x T,  + 
T,, where k ,  and k,  is the number of tasks in the EAQ of M-ll(Ni) 

and M,(Nb), respectively, T ,  is the task transfer time, and T,  is the 
communication time between M,(N,) and Nb, or between MY'(Nb) 
and M,(N,) required to set up the updating procedure. If M,(N,) 
fails before completing the adjustment of preferred lists and the 
updating procedure, the tasks in EAQ and BKQ in this node will 
be lost. Since the communication delay for updating BKQ in- 
creases with the number of preferred lists to be adjusted, it is im- 
portant to use an algorithm that requires minimal adjustment. 

To further reduce task losses, multiple BKQs can be provided 
to maintain/update the tasks from a node's second, or higher, 
preferred nodes. But the communication overhead and delay for 
maintaining/updating these BKQs in each node may become high, 
thus offsetting any improvement to be gained by using multiple 
BKQs. In fact, our simulation results show that the improvement 
of having more than two BKQs in each node is insignificant, as 
compared to a single BKQ when the number of faulty nodes is less 
than 25% of the total number of nodes in the system. 

4.1 Notation 

0 MTBF : mean time between failure (1/A). 
T,, : (average) task execution time. 
a:  ratio of mean time between failure (MTBF) to T,,,. 
,8 : ratio of task transfer time to T,,,. 

* A, : average number of tasks queued in a node. 
Pi: probability of a node failure before completing the up- 
dating process. 

0 Pht,, t,) : probability of a node failure in time interval [t,, t21. 
* tu : time to transfer a task between two adjacent nodes. 

A : probability density function of a node failure in [0, t ] .  
0 T,,,, : average number of lost tasks in a node. 

TeN1 : N,'s queue for externally arriving tasks. 

BS' : the jth backup queue of node NL. 

4.2 Single Backup Queue 

Suppose N, and N2 back up each other, then B," = T y 2  and 

B,"z = TeN1, If N, i s  faulty, N2 will take over the tasks in its backup 

queue as its own tasks, the new task queue of N, will be 

T r 2  U TeN1. Since N2 was backed up by N,, it must find a new 
backup node and transfer its T:' to the newly-selected node. If 

this process is completed before N2 becomes faulty, no tasks will 
be lost; otherwise, some of the tasks will be lost. Let the time of 

N,'s failure be the reference time to. Since the number of tasks in 
TcN2 is 2A, after N, becomes faulty, .?AT tasks will be lost if N2 fails 

between [to, t u ] ,  24, - 1 tasks will be lost if N2 fails between [tu, 2 tJ ,  
and one task will be lost if N2 fails between [(2AT- l)tu, 2ATt,1. No 

task will be lost in N2 after 2ATt,, because all of these tasks will be 
backed up by another node. Thus, the average number of tasks lost 
is the sum of the product of the number of tasks lost and the prob- 

ability of N2 fails in each interval. 
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when R t,, R t, 1. Then, we have P,&, mf,,) = m ;It, and P , h t u ,  (m 
+ 1)tJ = Atu, when mlt ,  4 1 and At, 4 1. Using the above equation, 
we can rewrite (4.1) as follows: 

2AT 2A1 -1 

= atr, z - Atu (2A, - i) i] 

A, (ZA, - 1)(2A, + 1) 
3 = at,, A, ( 2 ~ ,  + 1) - at, I 

L A 

= [AT(2AT + 1)] Rf,, when Atu 1 (4.2) 

4.3 Double Backup Queues 

Let N,, N2, and N3 back up each other, then B," = TcN2, B,"I = T N 3  e t  

B,"z = TeNI, and B P  = qNJ. Note that the first and second backup 

queue of N3 and N2 will be the task queue of some other nodes, 

respectively. If N, is faulty, N2 will take over the tasks in its 

backup queue as its own tasks, the new task queue of N2 will be 

TeN2 U TeN1. Since N2/s first backup queue was in Nl, it must find a 

new first backup node and transfer its TeN2 to the newly-selected 

node. If N2 failed before completing this process, N3 will take over 

its B?, and the same process will start on N3. However, if N3 

failed before completing this process, some of tasks in N ,  will be 
lost. The probability of losing a task is analyzed as follows. Sup- 
pose N2 fails in [O, tu], then 

AT -1 

q!Ei = ~ , ( o { t u )  C (Ai - ~ ) ~ - ~ f ( o ~ ~ t ~ ~ ) ] p f ( i t ~ / ( ~  +1)tt , )  
/=0 

A ,  -1 

= ( I f u )  A T [ ;  -A: +-+- 2 :2j (4.3) 

Equation (4.3) gives the probability of task loss when N,'s failure 
is followed by N2 and N3. Since N, and N3 both have one backup 
queue on Nl, if the nodes that hold another backup queue of N2 or 
N3 fail, the task in N2 and N3 will be lost. This probability can be 

expressed exactly as (4.3). So, the total probability of task loss is 
three times that of (4.3). However, there are many higher-order 
probabilities of task loss. That is, when Nl, N2, N3, N4, and N, all 
failed, if the nodes that hold N4 and N5's backup queue fail, the 
tasks in N4 and N5 will also be lost, and so on. Since there are 
many combinations (2 ) that will result in a higher-order prob- 
ability of losing a task and these probabilities decrease exponen- 
tially as the number of nodes involved increases, the combinations 
with more than five nodes are ignored in the analysis. 

4.4 Triple Backup Queues 

In the case of three backup queues and let Nl, N2, N3, and N4 back 
up each other, we have B," = TN2,  B> = TcN3, B F  = TeN4, 
B,"2 = q,N1, B F  = T;l, and B r 4  = T,N1, where the first, second, 

and third backup queue of N4, N,, and N, will be the task queue of 
some other nodes, respectively. The probability of task loss can be 
expressed as follows. (Due to its complexity, a closed-form solu- 
tion cannot be found.) 

N 

A" -1 

AT -i-,-l 

( A ~  - i - j - k ) ( 1 ~  Itat,,) atu . 
k=O 

For the case of multiple backup queues, one can express the 
probability of task loss similarly to the above equation, but it is too 
difficult to derive a closed-form solution. Note that Atu in all equa- 
tions is equal to a/P. 

4.5 Simulation Results 
In addition to modeling, the performance of the proposed adjust- 
ment algorithms and fault-tolerant BKQ mechanisms is also evalu- 
ated via simulations. The results in [6] show that threshold pattern 
TH, = 1, THf = 2, TH, = 3 performs well in the capability of load 
sharing for a wide range of system load, and thus, is used in the 
simulations. The size of a buddy set is chosen to be 10, because the 
performance improvement beyond this size is shown to be insig- 
nificant [6]. The system load is varied from 0.5 (medium-loaded) to 
0.9 (overloaded) and the number of faulty nodes is changed from 
5% to 50% of the total number of nodes in an 8-cube system. 

The first simulation is run without adjusting preferred lists. 
Faulty nodes are randomly generated before the simulation and no 
new faults are assumed to occur during the simulation. Since the 
faulty nodes are simply dropped from the preferred lists, the missing 
probability (or probability of missing a tasks deadline) increases very 
fast with the number of node failures when preferred lists are not 
adjusted. The missing probabilities in the presence of faulty nodes 
are normalized to the case without faulty nodes in Fig. 2. In case of 
50% faulty nodes and system load at 0.8, the missing probability can 
be two times as high as the case without faulty nodes. 

Another simulation is run to test the goodness of the proposed 
adjustment algorithm. In order to eliminate other factors that may 
influence the results, the faulty nodes are randomly generated, 
and the preferred lists of the nodes with faulty nodes in the buddy 
set are adjusted before the simulation. No new faults are assumed 
to occur throughout the simulation. These results are superim- 
posed in Fig. 2. Surprisingly, the missing probability for the case 
with faulty nodes is found to be nearly the same as that for the 
case without faulty nodes regardless of the fraction of faulty nodes 
and system load. 
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Fig. 2. Comparison of missing probabilities 

The performance of the fault-tolerant BKQ method is measured 
by the number of lost tasks. The tasks in a node and its most pre- 
ferred node will be lost when these two nodes fail within the time 
period, Tndiu5t, required to adjust the preferred lists. The simulation 
results are tabulated in Table 4, where three BKQs (= l ,2,3) along 
with the case of BKQ = 0 are listed at each run under different 
system loads. The analytical results are shown in Figs. 3 and 4. The 
simple fault-tolerant mechanism with BKQ = 1 is shown to com- 
pletely eliminate the number of lost tasks when the number of 

? 

P f ‘  p f  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I 
Ratio of task transfer time/task execulion time (@) 

faulty nodes is less than 15% and the system load is less than 0.7. 
Except in an extreme case when the number of faulty nodes 
reaches 50% of the total number of nodes, this simple approach 
can reduce the number of lost tasks significantly, as compared to 
the approach without BKQ. 

Using multiple BKQs reduces further the number of lost tasks 
for the cases of a higher percentage of faulty nodes. However, due 
to the increased communication overhead and delay with the 
multiple BKQs, the number of lost tasks cannot be completely 
eliminated in the case of 50% or higher percentage of faulty nodes. 
However, as shown in Fig. 3, the cases of BKQ = 2 and 3 yield 
higher tasks loss as compared to BKQ = 1 when the node is not too 
reliable (MTBF = ZOOT,,,). On the other hand, when the node is 
relatively reliable (MTBF = 5,000Te,,) the case of using multiple 
backup queue did reduce the number of task losses except when 
,L3,0.7 for the case of two backup queues. 

The analytical results agree well with the simulation results in 
all cases. For example, consider the case of 35% faulty node, p = 0.1, 
and p = 0.8. The AT is approximately equal to 1.5 [61 (Table 1) and 
MTBF is close to 5,000 times T,,,. From Fig. 4, the average number 
of tasks lost on a node resulting from using one, two, and three 
backup queues are 8 x lo5, 1.0 x and 1.1 x m7, respectively. 
The total number of lost tasks is equal to the above value times the 
total number of processed tasks which is around 4.1 x lo4 in the 
simulation. So, the total number of lost tasks for one, two, and 
three backup queues will be 32.8,4.1, and 0.045, while the simula- 
tion results are 27,6, and 0, respectively. 

An interesting problem found during the simulation is that the 
probability of missing task deadlines in the case of using fault- 
tolerant BKQs is higher than the case without any BKQ. The reason 
is that a node may fail during the processing of a task, and this 
task is restarted on another node instead of continuing its execu- 
tion from the point in time when the node failed. Although this 
task can be successfully completed by another node, the total 
processing time may often exceed its deadline if it is queued at the 
new node before its execution. 

1 16’ 

t 

Legend 
A backup qUOUe=l 

0 bockup queue4  

0 M u p - g u J : ?  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Ratio of task transfer time/task execution time (8) 

Fig. 3. Number of lost tasks vs. p(MTBF= 200 x rex,) Fig. 4. Number of lost tasks vs. p ( M T 6 f  = 5,000 x Texe) 
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25% 

36 
3 
0 
0 

46 
4 
0 
0 
73 
4 
0 
0 
87 
6 
1 
0 
96 
11 
5 
0 
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35% 50% 

50 67 
8 29 
2 10 
0 2 

74 106 
10 35 
5 13 
0 3 

105 180 
15 47 
5 15 
0 5 

134 211 
27 61 
6 26 
0 9 

164 297 
35 84 
7 30 
1 12 

TABLE 4 
THE NUMBER OF LOST TASKS VS. NUMBER OF BACKUP QUEUES 

System load ## of BKQs 
0 

Yo of faultv nodes I 
5% 

10 

I :  1 I 0.5 I 2 

3 
0 23 

I 0.7 I ; I :  

42 

2 0 
0.9 

3 1 0  

5 CONCLUSION 
Several algorithms to adjust preferred lists and implement a fault- 
tolerant mechanism are proposed and evaluated in this paper. The 
preferred lists modified by the proposed algorithms are shown to 
retain their original properties-thus solving both the coordina- 
tion and congestion problems-regardless of the number of faulty 
nodes in the system. Moreover, these algorithms can either mini- 
mize the number of adjustments or minimize the distance between 
a node and the node in its buddy set. A simple fault-tolerant BKQ 
is implemented based on the proposed algorithms. The communi- 
cation overhead and delay for maintaining/updating the BKQ is 
shown to be minimal, thus reducing the number of task losses. 

There remain several issues worth further investigation. First, 
the preferred lists in the buddy sets are generated according to the 
physical distance between nodes, and the nodes with shorter dis- 
tance between them will receive higher preference. However, 
when some nodes failed, the distance between nodes might be 
changed. How to modify the preferred lists to adapt to this change 
needs to be studied further. Second, the missing probability in the 
case with a BKQ is found to be higher than the case without a 
BKQ. In other words, although some tasks are saved by using the 
fault-tolerant BKQ, its completion time often exceeds the deadline. 
How to design a fault-tolerant BKQ for real-time applications is an 
interesting problem. 
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