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Abstract
The degree to which a planning system succeeds
depends on its ability to meet critical deadlines as well
as the correctness and completeness of its models which
describe events and actions that change the world state.
It is often unrealistic to expect either unlimited
execution time or perfect models, so a planner must be
able to make appropriate time vs. quality tradeoffs, then
detect and respond to states it had not originally planned
to handle.  In this paper, we consider these issues in the
context of the Cooperative Intelligent Real-time
Control Architecture (CIRCA), which combines a
planner with a separate real-time system so that plans
are built, scheduled, and then executed with real-time
guarantees.  Specifically, we discuss  our recent
addition of a probabilistic model to help the planner
prioritize states for expansion, and present important
classes of “unplanned-for” states that we detect and
handle in CIRCA.  Finally, we describe our current
work to improve CIRCA’s planner by estimating
planning time constraints in advance and incorporating
a more intelligent utility function to prioritize states.

1  Introduction

Fully automating complex systems requires the ability
to reason about possible world events and react, often
quickly, to sensory input.  Ideally, a plan could be built to
handle all possible situations, as suggested in Universal
Planning work (Schoppers 1987), but such computations are
often prohibitively complex in many practical situations.
Conversely, one might plan for a very small set of “highly-
probable” states, but then many situations may not be
handled at all.

Automated systems impose time constraints in two
ways.  First, some restriction must be placed on the
planner’s deliberation time; otherwise, the planner could take
unacceptably long to produce a result.  Second, since
planning involves selecting actions that must execute in the
real world, these actions may need associated execution time
constraints.  For example, suppose a mobile robot planner

selected an action to change directions when detecting an
obstacle.  That action must be executed before the robot
strikes the obstacle.  If this robot had numerous tasks to
perform, the “change direction” action might be ignored
until it was too late.  Such problems led to the idea of
guaranteeing execution times, particularly when reacting too
slowly could result in failure. 

We study such problems within the context of CIRCA
(Cooperative Intelligent Real-time Control Architecture)
(Musliner, Durfee, and Shin 1995), which combines a
planner, scheduler, and separate real-time plan execution
module to build, schedule, then execute plans with real-time
guarantees of system safety.  CIRCA differs from an
anytime planning approach (Dean et al. 1993) in that it
primarily considers execution time guarantees in its plans.
Thus it would ensure that the robot in the example above
would react in time to avoid the obstacle, so long as
obstacle avoidance had been planned for.  While CIRCA
does not presently limit planning time, it does guarantee
real-time action via a separate real-time plan execution
subsystem.  We hope to incorporate planning time limits in
future improvements to CIRCA.

Working with CIRCA has illustrated some basic
problems involved with taking a complex problem,
specifying it in terms of a planner’s knowledge base, and
trying to make claims of guaranteed safety.  First, providing
the planner with comprehensive knowledge is virtually
impossible -- particularly when experts do not yet have a
complete understanding of the domain.  Thus, if some
possible event is missing or misrepresented, or if some
system sensor or actuator fails to operate as expected, safety
guarantees are lost.  We have been working to solve this
problem by incorporating state feedback to the planner when
an “unexpected” (or “unplanned-for”) state is reached, and by
building a probabilistic model which allows statistical
knowledge base specification and assists both planning and
plan scheduling by eliminating highly improbable states (so
we relax the 100% safety guarantee to, say, a 99.99%
guarantee of safety).  Details of CIRCA are presented in



Section 2, followed by a discussion of our recent additions
to the architecture in Section 3.

We briefly assess CIRCA’s strengths and weaknesses in
Section 4.  A major strength of CIRCA is its careful
consideration of the timings associated with planned action
execution.  With our recent additions, we feel we have
significantly enhanced its capability to limit its search through
state-space and compensate for unexpected occurrences.
However, one of CIRCA’s main weaknesses is that the
planner currently has no imposed execution time limit.  We
realize this is unrealistic for many situations, particularly
when replanning to handle “unexpected” states.  Although we
have no finalized algorithms, we present our ideas for limiting
planning time and more accurately prioritizing states in
Section 5, followed by a brief conclusion (Section 6).

2  CIRCA Background

Figure 1 shows a block diagram of CIRCA.  The AI
subsystem (AIS) contains both the planner and the
scheduler.  The "shell" around all AIS operations consists of
meta-rules controlling a set of knowledge areas, similar to
the PRS architecture (Ingrand and Georgeff 1990).  Working
memory contains tasks that are ready to be executed.  These
tasks include planning, downloading plans from the AIS to
the real-time subsystem (RTS), and reading/processing
feedback data from the RTS.

The CIRCA knowledge base specifies a list of goals
which, when achieved in order, will enable the system to
successfully reach its final goal.  CIRCA executes a
planning cycle for each new goal in this list.  To minimize
domain knowledge complexity, the CIRCA world model is
created incrementally based on the initial state set and a
group of temporal and action state transitions.  Each
transition has a name, precondition set, and postcondition
set.  Action transitions correspond to commands that are
explicitly executed by the CIRCA RTS, while temporal
transitions correspond to state changes that are not initiated
by CIRCA.1  The planner currently selects actions based on
simple criteria,  including number of goal features achieved
and proximity to failure, and eventually backtracks if a
selected action does not ultimately help achieve a goal or
avoid failure.  CIRCA minimizes its use of memory and
time by expanding only states explicitly produced by
transitions from initial states or their descendants. 

                                                
1 Previously (Musliner, Durfee, and Shin 1995), CIRCA contained three
transition types:  action, temporal, and event.  “Events” can occur
instantaneously while “temporals” have a non-zero delay.  We now
model events and temporals as “temporal transitions”, with differences
specified using transition probabilities.
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Figure 1:  CIRCA  Architecture

Figure 2 shows a typical state set expanded during a
planning cycle.  CIRCA begins planning by selecting one
of the initial states and building a list of descendants
resulting from temporal transitions (tt).  If a tt leads to a
state that potentially violates the agent’s safe operating
envelope, then the state is labelled “failure” and the tt is
labelled TTF -- temporal transition to failure.  In this case,
CIRCA selects an action and associated execution deadline to
guarantee avoidance of the TTF.  Otherwise, CIRCA may
select an action that moves the system closer to the goal.
CIRCA continues state expansion for all other initial states
and their reachable descendants until at least one goal state is
found and all reachable TTFs are guaranteed to be avoided.
Note that the planner is minimally satisfied with only one
goal path due to tradeoffs between completeness and
schedulability (Musliner, Durfee, and Shin 1995).  Thus, as
shown in the figure, some reachable states (labeled
"deadend") do not lead to the goal.  These states are "safe"
because all TTFs are preempted by actions, but the system
has no chance of achieving its goals from those states.
Replanning for goal achievement when a deadend state is
encountered is discussed in (Atkins, Durfee, and Shin
1996b).

CIRCA's control plans are represented as cyclic schedules
of test-action pairs (TAPs).  Tests involve reading sensors;
actions involve sending actuator commands or transferring
data between CIRCA modules.  When the AIS planner
creates a TAP, it stores an associated worst-case execution
time and execution deadline to enable safety guarantees.
These TAP attributes are then used by a deadline-driven
scheduler (Liu and Layland 1973) to create a periodic TAP
schedule. If the scheduler is unable to create a schedule that
supports all deadlines, the AIS backtracks to the planner,
which then selects different actions.  This backtrack-(select
actions) cycle repeats until either the scheduler succeeds or
until the planner can find no actions that avoid failure and
reach the goal.
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Figure 2. States Expanded during Planning.

3  CIRCA Enhancements

We have recently improved CIRCA in two respects.
First, we sought to relax the absolute 100% safety guarantee
requirement, at least when planning and scheduling become
prohibitively difficult.  To do this, we have implemented a
model in which transition probabilities (specified in the
domain knowledge base as any functions of time) are used to
approximately compute state probabilities as described in
(Atkins, Durfee, and Shin 1996a).  These probabilities are
then used by the planner so that state expansion occurs in
decreasing order of probability.  This provides two
advantages:  (1) highly-probable goal paths are identified,
saving the planner time by not requiring expansion of all
potentially goal-reaching states, and (2) highly-improbable
states may be removed from consideration when scheduling is
difficult or impossible.  This probabilistic model has been
tested using an aircraft simulator and is discussed in (Atkins,
Durfee, and Shin 1996b).

We also have incorporated and tested algorithms for
detecting and handling certain classes of “unplanned-for”
states.  Figure 3 characterizes the relationships between
subclasses of all possible world states for any domain.  At
the top level, states are either “modeled” or “unmodeled”.
Modeled states are those whose distinguishing features and
values are represented in the planner’s knowledge base.
Because the planner cannot consider unmodeled states
without the addition of a feature discovery algorithm,
unmodeled states cannot be considered.  Within the modeled
set, the “planned-for” states include those the planner has
expanded.  This set is divided into two parts: “handled” states
which avoid failure and can reach the goal, and “deadend”
states which avoid failure but cannot reach the goal with the
current plan.

Aside from the “planned-for” states, a variety of other
states are modelable by the planner.  Such states include
those identified as reachable, but which have been “removed”
because attending to them along with the “planned-for”
states exceeds the system’s capabilities.  Other modeled
states include those that indicate “imminent failure;” if the

system enters these states, it is likely to fail shortly
thereafter.  Note that some states might be both “removed”
and “imminent-failure”, as illustrated in Figure 3.  Finally,
some modeled states might not fall into any of these
categories, such as the states the planner considered
unreachable from the initial states but that are not
immediately dangerous.

All World States
Modeled

Planned-for

"Handled" --
can reach goalDeadend

Removed
Imminent
  Failure

World States Actually Reached

Figure 3.  World State Classification Diagram.

The shaded region in Figure 3 illustrates a state set
reached during plan execution.  To assure reaching the
desired goal, the set should be empty except for where it
overlaps the “handled” region.  To assure safety, the set
should only have elements that are in the “planned-for”
region.  When the set has elements outside these regions,
safety and performance depend on detecting the new state and
responding appropriately.

A critical premise in our work is that a planner, or
system in which it is embedded, cannot be expected to
somehow just “know” when it has deviated from plans---it
must explicitly plan actions and allocate resources to detect
such deviations.  For example, to make real-time guarantees,
CIRCA's AI planner must specify all TAPs the RTS will
execute, including any to detect and react to unhandled states.
In our implementation, after the planner builds its normal
plan, it builds special TAPs to detect each of the deadend,
removed, and imminent-failure unhandled state classes.
First, the planner builds separate lists of all states that fall
into each unhandled state class.  The TAP tests for an
unhandled state class could include an explicit test for every
set of state features in that unhandled state class list, but
these tests would be repeated frequently during plan
execution and may be unnecessarily time-consuming with
long state lists.  Thus, once each list is completed, the
planner calls the ID3 test minimization algorithm (Quinlan
1986) with that unhandled state list as the set of positive
examples and a subset of the reachable states (depending on
the unhandled state type) as the set of negative examples.
ID3 returns what it considers a minimal test set, which is
then used as the special TAP test to detect that unhandled
state class.

When one of these special TAPs detects an unhandled
state, CIRCA’s RTS feeds back all state feature information



to the AIS.  The AIS then reads the uplinked state feature
values and selects a subgoal (from the knowledge base list)
that is closest to the final goal but with preconditions
matching the uplinked state features.  Next, the AIS runs the
state expansion part of the planner, using the state feature
feedback as the initial state, all temporal transitions, and the
executing plan's test-action (TAP) transitions.  The state list
returned from this state expansion routine contains all
possible states the RTS could reach while the AIS is
replanning, thus each is a possible initial state when the
new plan begins executing.  The AIS then replans using this
potentially large initial state set and the selected subgoal.
This new plan is downloaded to the RTS which will then
have the ability to react to the previously unhandled state
and its descendants.

4  Assessment of CIRCA

The main motivation driving the original CIRCA
development was the ability to specify real-time guarantees
of safety via explicit scheduling of critical planned actions.
As a first approximation, worst-case times were assumed for
action execution and temporal transitions to failure during
scheduling.  In this manner, guarantees were provided with
100% certainty (so long as the model was correct), but there
was no sense of compromise, so the planning and
scheduling was slow, and scheduling sometimes failed
completely.  Additionally, it was assumed that an executing
plan could keep the system safe indefinitely, thus there were
no restrictions placed on planning and scheduling execution
time.

Because of the emphasis placed on execution guarantees,
the real strength of CIRCA was its combination of “off-the-
shelf” algorithms from the AI and real-time systems fields.
Although tests used relatively simple knowledge bases,
researchers demonstrated that it could plan, build schedules,
and successfully reach goals while avoiding failure in several
situations, including a simulated assembly line processing
task with time-critical reaction to aperiodic events
(Musliner, Durfee, and Shin 1995).  CIRCA’s modular
architecture provides a good platform for introducing state-
of-the-art planning and real-time systems technology,
especially due to the meta-level architecture controlling AIS
execution.

We feel we have enhanced CIRCA’s capabilities by
relaxing the restrictions on model precision -- handling
important “unplanned-for” states and computing approximate
state probabilities.  Due to the generic nature of our planner,
we feel our algorithms to compute probabilities and detect
“unplanned-for” states are not CIRCA-specific, but
applicable to any planner which considers execution times
and imprecise models. 

Improvements are still needed, particularly to our
probabilistic model (Atkins, Durfee, and Shin 1996a).
CIRCA’s planner allows cycles in its state diagrams, a
realistic representation of many real-world situations, such
as executing a holding pattern in an aircraft.  Such cycles
may introduce significant inaccuracies in our approximate
state probability calculations.  Also, we currently require the
user to specify all time-dependent probability functions for
temporal transitions in the domain knowledge base -- a
daunting task because these functions must account for
probabilistic dependencies when multiple transitions match
the same state.

5  Future Work -- Limiting Planning Time

Researchers generally agree that one must restrict planner
execution time, thus meta-level controlling mechanisms,
such as anytime (Dean et al. 1993) and design-to-time
(Garvey, Humphrey, and Lesser 1993) algorithms, have been
added to impose limits on planning execution time, and
learning mechanisms, such as chunking in SOAR
(Rosenbloom, Laird, and Newell 1993), have been added to
increase planning execution speed.  However, use of an
anytime algorithm alone does not guarantee good-quality
results unless the planner has had time to complete at least
an approximate plan, and learned chunks do not even exist
until the situation has been encountered at least once.  The
tradeoff between planner execution time and plan quality has
been documented from many perspectives, but in proposed
solutions, either the time or quality must be compromised
when new, complex problems are encountered.

CIRCA's reaction to unhandled states is coincidentally
real-time, and was successful during our relatively simple
flight simulation tests.  This may not always be the case,
particularly when unhandled states quickly lead to failure.
Timely reactions may be achieved either by bounding
replanning execution time or by building reactions in
advance.  As planning technology progresses, more
architectures employ methods for computing and adhering to
planner execution time bounds, as discussed in (Dean et al.
1993), (Hendler and Agrawala 1990), (Horwitz 1988),
(Ingrand and Georgeff 1990), (Musliner, Durfee, and Shin
1995), and (Zilberstein 1994).  We feel a combination of
these and other innovative ideas is required before achieving
a near-optimal balance between planning time and plan
quality.  We would ideally like to use the planner’s initial
state(s) to quickly compute an initial estimate of a planning
time limit, then modify this estimate based on environment
changes during planning.  Assuming an algorithm to
compute a planning time limit, we could use a type of
design-to-time algorithm.  We are now expanding states in
inverse order of probability, so the most probable states will
be handled first.  Whenever the planner’s execution time



expires, the probability of the next state to be expanded will
be the maximum probability of reaching any single
unplanned-for state. 

There are still potential quality problems with this
algorithm.  Perhaps most important, with a short planning
deadline, high probability states may remain unexpanded.
The planner may make use of its knowledge about
probabilities and temporal delays, as well as knowledge
about relative “importance” among states, to make tradeoffs
that may improve planning.  State expansion may be ordered
by decreasing utility u(s), as shown in equation (1), where
p(s) = probability of reaching state s, t(s) = minimum time
before the system can reach state s, pf(s,n) = probability of
reaching failure in n (or fewer) steps from state s, and a, b,
and c are (as yet undetermined) scaling constants.  By
expanding states in this order, we hope to plan for the most
“important” states, achieving a balance between state
probability, system safety (i.e., prioritizing expansion to
handle states that can reach failure), and the time horizon
considered by the planner (i.e., near-term states are handled;
far-term states will be handled by subsequent plans). 
Unfortunately, even the best u(t) will not guarantee a high-
quality plan when the planner must execute quickly, so we
continue to search for ways to achieve the ever-elusive
balance between quality and planner deliberation time.

u (s) = a * p(s) + b * t(s) + c * pf(s, n)  (1)

6  Conclusion

This paper presents a discussion of real-time challenges
associated with building and executing plans in the context
of CIRCA, an architecture which separates planning from
plan execution to allow hard real-time guarantees without
truncating planning.  Unfortunately, incomplete knowledge
and bounded resources may allow reachable world states to
be unhandled during planning.  Recently, we incorporated a
probabilistic model which is used by the planner to select
highly-probable goal paths and to remove improbable states
from consideration when planning or scheduling difficulties
arise. We introduce a classification hierarchy of possible
world states, and identify three important unhandled state
classes -- deadend, removed, and imminent-failure.  New
algorithms implemented within CIRCA can detect these
unhandled states when reached and subsequently replan to
handle them.

We have concentrated on timeliness issues associated
with plan execution, not planning itself.  However, our
work directly addresses one important issue in time-limited
planning -- pruning the search space by expanding only
reachable states and ignoring low-probability states.  As
domain complexity increases, we recognize that we may
need to impose explicit restrictions on planning time,

particularly when replanning for an unhandled state that may
lead to failure.  We hope to take advantage of our
probabilistic model and temporal knowledge to expand states
in order of decreasing utility, then terminate planning before
time expires with only low-utility states remaining
unexpanded.  We are still working to build algorithms that
will help the planner consistently achieve an appropriate
tradeoff between time and result quality.

One of our major long-term research goals is to help
achieve safe, fully-automated aircraft flight -- a challenging
task due to the multitude of possible events (e.g., sensor or
actuator failures, traffic, weather, etc.) and tight restrictions
on response time and quality, since the only absolutely safe
state is when the aircraft sits motionless on the ground.
Additionally, aircraft control is not a “solved problem” --
uncertain events such as collision-course traffic may occur.
In fact, most emergency situations are now handled by
pilots, and even the best pilots may select suboptimal
responses.   Therefore, fully-automated aircraft flight will
require approximate knowledge, and quite a large knowledge
base will be necessary.  Limiting planning time and
carefully scheduling planned actions will thus be crucial for
safe, fully-automated flight in which all expected time-
critical operations are part of a scheduled plan and have near
100% chance of executing properly.  Emergency situations
must be handled by some combination of pre-planned reflex
actions and fast replanning.  We have begun to investigate
methods to build plans to handle such emergency situations,
including necessary feature-value specifications for aircraft,
types of time-dependent temporal transition probabilities to
use, and available sources of statistical data (e.g., NTSB
(National Transportation Safety Board) aircraft accident
reports).  We have tested simple situations such as
“collision-course traffic” and “landing gear fails on final
approach”, but will need to significantly enhance CIRCA’s
planning and temporal reasoning capabilities before a full-
scale aircraft control knowledge base could be handled with
sufficient speed and accuracy to be trusted during
emergencies.
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