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Abstract
The degreeto which a planning system succeeds
depends on its abilityo meetcritical deadlinesas well

selectedan action to changedirectionswhen detectingan
obstacle. That action must be executedbefore the robot
strikesthe obstacle. If this robot had numeroustasksto

as the correctness and completeness of its models whichperform, the “change direction” action might be ignored

describe events and actiotigt changethe world state.
It is often unrealistic to expect either unlimited
execution time or perfect models, aplannermust be

able to make appropriate time vs. quality tradeoffs, then
detect and respond to states it had not originally planned

until it wastoo late. Such problemsled to the idea of
guaranteeing execution times, particularly wheactingtoo
slowly could result in failure.

We study suchproblemswithin the context of CIRCA

to handle. In this paper, we consider these issues in the (Cooperative Intelligent Real-time Control Architecture)

context of the Cooperative Intelligent Real-time
Control Architecture (CIRCA), which combines a
plannerwith a separateeal-timesystemso that plans
arebuilt, scheduledand then executedwith real-time
guarantees. Specifically, we discuss our recent
addition of a probabilistic model to help the planner
prioritize statesfor expansion,and presentimportant
classesof “unplanned-for” statesthat we detect and
handlein CIRCA. Finally, we describeour current
work to improve CIRCA'’s planner by estimating
planning timeconstraintsn advanceandincorporating
a more intelligent utility function to prioritize states.

1 Introduction

Fully automatingcomplex systemsrequiresthe ability
to reasonabout possible world events and react, often
quickly, to sensorynput. Ideally, a plan could be built to
handleall possible situations, as suggestedn Universal

Planning work (Schoppers 1987), but such computations ag@mplete understandingof the domain.
often prohibitively complexin many practical situations.

Conversely, one might plan for a vesynall set of “highly-
probable” states, but then manysituations may not be
handled at all.

Automated systems impose time constraintsin two
ways. First, some restriction must be placed on the

(Musliner, Durfee, and Shin 1995), which combines a
planner, scheduler,and separatereal-time plan execution
module to build, schedule, then execptanswith real-time
guaranteesof system safety. CIRCA differs from an

anytime planning approach(Deanet al. 1993) in that it

primarily considersexecutiontime guaranteesn its plans.
Thusit would ensurethat the robot in the exampleabove
would reactin time to avoid the obstacle,so long as
obstacleavoidancehad beenplannedfor. While CIRCA

doesnot presentlylimit planningtime, it does guarantee
real-time action via a separatereal-time plan execution
subsystem. We hope to incorporate planning fimés in

future improvements to CIRCA.

Working with CIRCA has illustrated some basic
problems involved with taking a complex problem,
specifyingit in terms of a planner'sknowledgebase,and
trying to make claims ajuaranteedsafety. First, providing
the planner with comprehensiveknowledge is virtually
impossible-- particularly when expertsdo not yet have a
Thus, if some
possibleeventis missing or misrepresentedor if some
system sensor or actuator failsdperateas expectedsafety
guaranteegrelost. We have beerworking to solve this
problem by incorporating state feedback to plennerwhen
an “unexpected” (or “unplanned-for”) statereachedand by
building a probabilistic model which allows statistical

planner’s deliberation time; otherwise, the planner could takknowledgebasespecificationand assistsboth planning and

unacceptablylong to produce a result.
planning involves selecting actions that mesgécutein the
real world, these actions may negsbociate@gxecutiontime

constraints. For example,supposea mobile robot planner

Second, since

plan scheduling by eliminating highly improbalstates(so
we relax the 100% safety guaranteeto, say, a 99.99%
guaranteeof safety). Details of CIRCA are presentedin



Section2, followed by a discussionof our recentadditions
to the architecture in Section 3.

We briefly assesCIRCA’s strengthsand weaknesses
Section 4.

execution.

However, one of CIRCA’'s main weaknesseds that the
plannercurrently hasno imposedexecutiontime limit.  We

realize this is unrealistic for many situations, particularly

when replannindgo handle“unexpected’states. Although we
have no finalized algorithms, we present @aasfor limiting
planning time and more accurately prioritizing states in
Section 5, followed by a brief conclusion (Section 6).

2 CIRCA Background

Figure 1 showsa block diagramof CIRCA. The Al
subsystem (AIS) contains both the planner and the
scheduler. The "shell" around all AIS operaticosisistsof
meta-rulescontrolling a set of knowledgeareas,similar to
the PRS architecture (Ingrand and Geord®®0). Working
memory contains tasks that are re&ol\joe executed. These
tasks includeplanning, downloadingplansfrom the AIS to
the real-time subsystem (RTS), and reading/processing
feedback data from the RTS.

The CIRCA knowledgebasespecifiesa list of goals
which, whenachievedin order, will enablethe systemto
successfullyreach its final goal. CIRCA executesa
planning cycle for each new gaal this list. To minimize
domainknowledgecomplexity, the CIRCA world modelis
createdincrementallybasedon the initial state set and a
group of temporal and action state transitions. Each
transitionhas a name, preconditionset, and postcondition
set. Action transitionscorrespondto commandsthat are
explicitly executedby the CIRCA RTS, while temporal
transitions correspontd statechangeghat arenot initiated
by CIRCA! The plannecurrently selectsactionsbasedon
simple criteria, including numberof goal featuresachieved
and proximity to failure, and eventually backtracksif a
selectedaction doesnot ultimately help achievea goal or
avoid failure. CIRCA minimizes its use of memory and
time by expandingonly states explicitly produced by
transitions from initial states or their descendants.

! Previously(Musliner, Durfee, and Shin 1995), CIRCA containedthree
transition types: action, temporal, and event. “Events” can occur
instantaneouslywhile “temporals” have a non-zero delay. We now
model eventsand temporalsas “temporal transitions”, with differences
specified using transition probabilities.

A major strength of CIRCA is its careful
considerationof the timings associatedwith planned action
With our recent additions, we feel we have
significantly enhanced its capability to limit its seathhough
state-spaceand compensate for unexpected occurrences. (Environment Interface Functio)

Knowledge Bas

temporal/action transiti
initial state / goals

control v
commands

Real-Time Subsystel TAP
( schedules ( Meta-level Controller )

TAP Schedule
feedback . |( Planner )
data ( Scheduler )

Al Subsysten

Figure 1: CIRCA Architecture

Figure 2 shows a typical state set expandedduring a
planningcycle. CIRCA beginsplanningby selectingone
of the initial states and building a list of descendants
resultingfrom temporaltransitions(tt). If a tt leadsto a
state that potentially violates the agent’s safe operating
envelope,then the stateis labelled “failure” andthe tt is
labelled TTF --temporaltransitionto failure. In this case,
CIRCA selects an action and associated execution deadline to
guaranteavoidanceof the TTF. Otherwise,CIRCA may
selectan actionthat movesthe systemcloserto the goal.
CIRCA continues state expansitor all otherinitial states
and their reachable descendants until at least one goailsstate
found andall reachableT TFs are guaranteedo be avoided.
Note that the planneris minimally satisfiedwith only one
goal path due to tradeoffs between completenessand
schedulability (Musliner, Durfee, and Shi®995). Thus, as
shown in the figure, some reachable states (labeled
"deadend"do not leadto the goal. Thesestatesare "safe"
becausall TTFs are preempteddy actions,but the system
has no chanceof achievingits goals from those states.
Replanningfor goal achievementwhen a deadendstate is
encounteredis discussedin (Atkins, Durfee, and Shin
1996b).

CIRCA's control plans are represented as cyclic schedules
of test-actionpairs (TAPs). Testsinvolve readingsensors;
actionsinvolve sending actuatocommandsor transferring
data betweenCIRCA modules. When the AIS planner
createsa TAP, it storesan associatedvorst-caseexecution
time and executiondeadlineto enable safety guarantees.
TheseTAP attributes are then used by a deadline-driven
scheduler(Liu andLayland1973)to createa periodic TAP
schedule. If thescheduleiis unableto createa schedulethat
supportsall deadlinesthe AIS backtracksto the planner,
which then selectsdifferent actions. This backtrack-(select
actions)cycle repeatsuntil eitherthe schedulersucceedsor
until the plannercanfind no actionsthat avoid failure and
reach the goal.



Stateg States
State]

tt = temporal transition|
ttf = temporal to failurg
ac = action transition

®
tt ° =

ac

tt

ttf

States

Figure 2. States Expanded during Planning.

3 CIRCA Enhancements

We have recently improved CIRCA in two respects.
First, we sought toelax the absolute100% safetyguarantee
requirementat least when planning and schedulingbecome
prohibitively difficult. To do this, we have implementeda
model in which transition probabilities (specified in the
domain knowledge base as dmyctionsof time) are usedto
approximately compute state probabilities as describedin
(Atkins, Durfee, and Shin 1996a). Theseprobabilities are
thenusedby the plannerso that state expansionoccursin
decreasing order of probability.  This provides two
advantages: (1) highly-probablegoal paths are identified,
saving the plannertime by not requiring expansionof all
potentially goal-reachingstates, and (2) highly-improbable
states may be removed from consideration wéahedulingis
difficult or impossible. This probabilistic model has been
tested using an aircradimulatorandis discussedn (Atkins,
Durfee, and Shin 1996b).

We also have incorporatedand tested algorithms for
detecting and handling certain classesof “unplanned-for”
states. Figure 3 characterizeghe relationships between
subclassesf all possibleworld statesfor any domain. At
the top level, statesare either “modeled” or “unmodeled”.
Modeledstatesare thosewhose distinguishing featuresand
values are representedn the planner's knowledge base.
Because the planner cannot consider unmodeled states
without the addition of a feature discovery algorithm,
unmodeled states cannot tensidered. Within the modeled
set, the “planned-for” statesinclude those the plannerhas

expanded. This set is divided into two parts: “handled” statelgng state lists.

which avoid failure and can reachthe goal, and “deadend”
states which avoid failure but cannot reachgbal with the
current plan.

Aside from the “planned-for” states,a variety of other
statesare modelableby the planner. Such statesinclude
those identified as reachable, but which have Bezmoved”
becauseattendingto them along with the “planned-for”
states exceedsthe system’s capabilities. Other modeled
statesinclude thosethat indicate“imminent failure;” if the

system enters these states, it is likely to fail shortly
thereafter. Note that somestatesmight be both “removed”
and “imminent-failure”,asillustratedin Figure3. Finally,
some modeled states might not fall into any of these
categories, such as the states the planner considered
unreachablefrom the initial states but that are not
immediately dangerous.

All World State
@ Modeled )
Planned-fol
"Handled" -- Imminem
Deadend | can reach goe Failure
C )
\_ \ World States Actually Reachey Y,
Figure 3. World State Classification Diagram.

The shadedregion in Figure 3 illustrates a state set
reachedduring plan execution. To assurereaching the
desiredgoal, the set should be empty exceptfor where it
overlapsthe “handled” region. To assuresafety, the set
should only have elementsthat are in the “planned-for”
region. Whenthe set has elementsoutside theseregions,
safety and performance depend on detecting thestet@and
responding appropriately.

A critical premisein our work is that a planner, or
systemin which it is embeddedcannot be expectedto
somehowjust “know” whenit hasdeviatedfrom plans---it
must explicitly plan actionsandallocateresourcego detect

such deviations. For example, to make real-time guarantees,

CIRCA's Al plannermust specifyall TAPs the RTS will

execute, including any to detect and react to unhandled states.

In our implementation after the plannerbuilds its normal
plan, it builds specialTAPs to detecteachof the deadend,
removed, and imminent-failure unhandled state classes.
First, the plannerbuilds separatdists of all statesthat fall
into each unhandledstate class. The TAP tests for an
unhandled state classuld include an explicit test for every
setof statefeaturesin that unhandledstate classlist, but
these tests would be repeated frequently during plan
executionand may be unnecessarilftime-consumingwith
Thus, once eachlist is completed,the
planner callghe ID3 test minimization algorithm (Quinlan
1986) with that unhandledstate list as the set of positive
examples and aubsetof the reachablestates(dependingon
the unhandledstatetype) as the set of negativeexamples.
ID3 returnswhatit considersa minimal test set, which is
then usedasthe specialTAP test to detectthat unhandled
state class.

When one of thesespecial TAPs detectsan unhandled
state, CIRCA’'s RTS feeds back all st&atureinformation



to the AIS. The AIS thenreadsthe uplinked state feature
values andselectsa subgoal(from the knowledgebaselist)
that is closestto the final goal but with preconditions

Improvements are still needed, particularly to our
probabilistic model (Atkins, Durfee, and Shin 1996a).
CIRCA's planner allows cycles in its state diagrams,a

matching the uplinked state features. Next, the AIS runs thealistic representatiof many real-world situations, such

stateexpansion parof the planner,using the state feature
feedback as the initial state, all tempdrainsitions,andthe
executing plan's test-action (TAP) transitions. The diste
returned from this state expansionroutine contains all
possible statesthe RTS could reach while the AIS is
replanning,thus eachis a possibleinitial state when the

as executinga holding patternin an aircraft. Such cycles
may introduce significant inaccuraciesn our approximate
state probability calculations. Also, we currently reqifire
userto specifyall time-dependenprobability functions for
temporal transitions in the domain knowledge base -- a
daunting task becausethese functions must account for

new plan begins executing. The AIS then replans using thigrobabilisticdependenciesrhen multiple transitions match

potentially large initial state set and the selectedsubgoal.
This new plan is downloadedo the RTS which will then
havethe ability to reactto the previously unhandledstate
and its descendants.

4 Assessment of CIRCA

The main motivation driving the original CIRCA
developmentvasthe ability to specify real-timeguarantees
of safetyvia explicit schedulingof critical plannedactions.
As a first approximation, worst-case times wassumedor
action executionand temporaltransitionsto failure during
scheduling. In this manner,guaranteesvere provided with
100% certainty (so long as the model wasrect),but there
was no sense of compromise, so the planning and
schedulingwas slow, and scheduling sometimes failed
completely. Additionally, it wasssumedhat an executing
plan could keep the system safe indefinitéhys therewere
no restrictionsplacedon planning and schedulingexecution
time.

Because of the emphagifacedon executionguarantees,
the real strength of CIRCA was it®mbinationof “off-the-
shelf” algorithmsfrom the Al andreal-timesystemsfields.
Although tests used relatively simple knowledge bases,
researcherslemonstratedhat it could plan, build schedules,
and successfully reach goals while avoiding failureaweral
situations,including a simulatedassemblyline processing
task with time-critical reaction to aperiodic events
(Musliner, Durfee, and Shin 1995). CIRCA’s modular
architectureprovidesa good platform for introducing state-
of-the-art planning and real-time systems technology,
especially due to thmeta-levelarchitecturecontrolling AIS
execution.

We feel we have enhancedCIRCA’s capabilities by
relaxing the restrictions on model precision -- handling

the same state.

5 Future Work -- Limiting Planning Time

Researchers generally agree that one must reskaizher
executiontime, thus meta-level controlling mechanisms,
such as anytime (Dean et al. 1993) and design-to-time

(Garvey, Humphrey, and Lesser 1993) algorithms, have been

addedto imposelimits on planning executiontime, and
learning mechanisms, such as chunking in SOAR
(Rosenbloomaird, and Newell 1993), have beeraddedto
increaseplanning execution speed. However, use of an
anytime algorithm alone does not guaranteegood-quality
results unless thplannerhashadtime to completeat least
an approximateplan, andlearnedchunksdo not even exist
until the situation hasbeenencounteredt leastonce. The
tradeoff between planner execution time @hah quality has
beendocumentedrom many perspectivesput in proposed
solutions, eitherthe time or quality must be compromised
when new, complex problems are encountered.
CIRCA's reactionto unhandledstatesis coincidentally
real-time, and was successfulduring our relatively simple
flight simulationtests. This may not alwaysbe the case,
particularly when unhandledstatesquickly lead to failure.
Timely reactions may be achieved either by bounding
replanning execution time or by building reactions in
advance. As planning technology progresses, more
architectures employ methods for computing adberingto
planner executiotime bounds,as discussedn (Deanet al.
1993), (Hendler and Agrawala 1990), (Horwitz 1988),
(Ingrand and Georgeff 1990), (Musliner, Durfee, and Shin
1995), and (Zilberstein 1994). We feel a combinationof
these and otha@nnovativeideasis requiredbeforeachieving
a near-optimalbalance betweenplanning time and plan
quality. We would ideally like to usethe planner'sinitial

important “unplanned-for” states and computing approximatstate(s) to quickly compute an initiastimateof a planning

state probabilities. Due to the generic nature ofpdamner,
we feel our algorithmsto computeprobabilities and detect
“unplanned-for’ states are not CIRCA-specific, but
applicableto any plannerwhich considersexecutiontimes
and imprecise models.

time limit, then modify thisestimatebasedon environment
changes duringplanning. Assuming an algorithm to
computea planning time limit, we could use a type of
design-to-timealgorithm. We arenow expandingstatesin
inverse order of probability, so the most probable statbs
be handledfirst. Wheneverthe planner’s executiontime



expires, the probability of the next stateb®expandedwill
be the maximum probability of reaching any single
unplanned-for state.

There are still potential quality problems with this
algorithm. Perhapsmost important, with a short planning
deadline,high probability statesmay remain unexpanded.
The planner may make use of its knowledge about
probabilities and temporal delays, as well as knowledge
about relative “importancedmongstates,to maketradeoffs

particularly when replanning for an unhandled statg may
lead to failure. We hope to take advantageof our
probabilistic model and temporal knowledge to expstiades
in order of decreasing utility, theerminateplanning before
time expires with only low-utility states remaining
unexpanded.We arestill working to build algorithmsthat
will help the planner consistently achieve an appropriate
tradeoff between time and result quality.

One of our major long-term researchgoalsis to help

that may improve planning. State expansion may be orderegthievesafe,fully-automatedaircraft flight -- a challenging

by decreasingutility u(s), asshownin equation(1), where
p(s) = probability ofreachingstates, t(s) = minimum time

before the systernanreachstates, pf(s,n) = probability of

reaching failure in r{or fewer) stepsfrom states, anda, b,

and ¢ are (as yet undetermined)scaling constants. By

expanding states in this order, we hapeplan for the most
“important” states, achieving a balance between state
probability, systemsafety (i.e., prioritizing expansionto

handlestatesthat can reachfailure), and the time horizon
considered byhe planner(i.e., near-termstatesare handled,;
far-term states will be handled by subsequentplans).
Unfortunately, even thbestu(t) will not guarantee high-

quality plan whenthe plannermust executequickly, so we

continue to searchfor ways to achieve the ever-elusive
balance between quality and planner deliberation time.

u(s)y=a*p(s)+b=*t(s) +c*pf(s, n) (1)

6 Conclusion

This paperpresentsa discussionof real-time challenges
associatedvith building andexecutingplansin the context
of CIRCA, an architecturewhich separategplanning from
plan executionto allow hard real-time guaranteesvithout
truncatingplanning. Unfortunately,incompleteknowledge
and boundedresourcesnay allow reachableworld statesto
be unhandlediuring planning. Recently,we incorporateda
probabilisticmodelwhich is usedby the plannerto select
highly-probable goal paths ard removeimprobablestates
from considerationvhen planningor schedulingdifficulties
arise. We introduce a classification hierarchy of possible
world states,and identify three important unhandledstate
classes- deadendremoved,and imminent-failure. New
algorithms implementedwithin CIRCA can detect these
unhandledstateswhen reachedand subsequentlyreplan to
handle them.

We have concentratedon timeliness issues associated
with plan execution,not planning itself. However, our
work directly addressesne importantissuein time-limited
planning -- pruning the searchspaceby expandingonly
reachablestatesand ignoring low-probability states. As
domain complexity increaseswe recognizethat we may
need to impose explicit restrictions on planning time,

task due to the multitudef possibleevents(e.g., sensoror
actuatorfailures, traffic, weather,etc.) andtight restrictions
on response time and quality, sirtbe only absolutelysafe
stateis when the aircraft sits motionless on the ground.
Additionally, aircraft control is not a “solved problem” —

uncertaineventssuchas collision-courseraffic may occur.
In fact, most emergencysituations are now handled by
pilots, and even the best pilots may select suboptimal
responses. Therefore,fully-automatedaircraft flight will

require approximate knowledgand quite a large knowledge
base will be necessary. Limiting planning time and
carefully scheduling planneatctionswill thus be crucial for

safe, fully-automatedflight in which all expectedtime-
critical operations are part af schedulegplan and havenear
100% chanceof executingproperly. Emergencysituations
must be handled byomecombinationof pre-plannedeflex
actionsandfast replanning. We havebegunto investigate
methods to build plans to handle swahergencysituations,
including necessanfeature-valuespecificationsfor aircraft,
typesof time-dependentemporaltransition probabilitiesto
use, and available sourcesof statistical data (e.g., NTSB
(National Transportation Safety Board) aircraft accident
reports). We have tested simple situations such as
“collision-course traffic” and “landing gear fails on final

approach”but will needto significantly enhanceCIRCA’s
planningandtemporalreasoningcapabilitiesbefore a full-

scaleaircraft control knowledgebasecould be handledwith

sufficient speed and accuracy to be trusted during
emergencies.
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