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1  Introduction

 Fully-automating aircraft flight presents a number of
challenges for researchers.  Perhaps most important is the
criticality of real-time responses -- an aircraft cannot remain
safe indefinitely once it has left the ground.  Additionally,
aircraft flight dynamics are complex and not fully-
understood, so computations are often time-consuming and
approximate at best.  Current aircraft use low-level
controllers to handle ordinary situations, but rely on human
pilot commands to respond when emergencies or
unexpected situations (e.g., course changes) arise.  We are
working to expand the role of autopilots to also handle
emergency situations.  Unfortunately, there are many
possible emergencies, ranging from a failed sensor to
collision-course traffic to unexpectedly flying into a
tornado.  In fact, the comprehensive set of possible
emergencies is so large that it is infeasible to build a
database of pre-planned responses.  Instead, we approach the
problem by building control plans to handle “expected”, or
highly-probable, situations.  Then, we detect and replan to
handle unexpected situations or emergencies as they arise. 

Flexible computation is very important during these
replanning phases.  Ideally, the planner could carefully
expand all reachable states, selecting actions to keep the
plane safe while reaching the goal.  However, a quick
response is usually necessary because the aircraft cannot
just “stop” and wait for a new plan.  For example, if all
engines fail, the new plan must be completed in time for
the aircraft to fly to a desirable landing location (e.g.,
nearby airport or open field) before it loses too much
altitude.  Thus, we should restrict planning time to allow
production of an approximate plan in time to execute
successfully.  If planning time permitted, this plan may be
able to reach the desired goal.  Alternatively, if allowable
planning time was brief, this approximate plan may simply
maintain a safe set of states, buying the time required to
develop a complete plan that can reach the goal.

We have investigated replanning for unexpected
situations during aircraft flight in the context of CIRCA
(Cooperative Intelligent Real-time Control Architecture)
[Musliner], which combines a planner, scheduler, and
separate real-time plan execution module such that plans are

built, scheduled, then executed with real-time guarantees of
system safety.  Section 2 briefly describes CIRCA,
including recent enhancements that admit probabilistic
knowledge specification as well as the detection and
handling of unexpected situations.  Section 3 describes
flight simulation tests, followed by a discussion of future
additions we feel are required to achieve a sufficient level of
robustness when replanning must occur rapidly (Section 4).

2  CIRCA Background

Figure 1 shows the general architecture of the CIRCA
system.  The AI subsystem (AIS) contains both the planner
and the scheduler.  The "shell" around all AIS operations
consists of meta-rules controlling a set of knowledge areas.
Working memory contains tasks that are ready to be
executed, including planning, downloading plans from the
AIS to the real-time subsystem (RTS), and processing
feedback from the RTS.  The CIRCA domain knowledge
base specifies a list of goals which will enable the system
to successfully reach its final goal.  The world model is
created incrementally based on the initial state set and the
set of temporal and action state transitions.  The planner
selects actions based on estimated "cost vs. benefit" and
backtracks if the action does not ultimately help achieve a
goal or avoid failure (e.g., striking an obstacle or crashing
an airplane).  CIRCA minimizes its use of memory and
time by expanding only states explicitly produced by
transitions from initial states or their descendants.  State
expansion terminates whenever all specified goals have
been reached while avoiding failure states.
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Figure 1.  CIRCA  Architecture.



CIRCA's control plans are represented as cyclic schedules
of test-action pairs (TAPs).  Typical tests involve reading
sensors and comparing the sensed values with certain preset
thresholds, while actions involve sending actuator commands
or transferring data between CIRCA modules.  When the
AIS planner creates a TAP, it stores an associated worst-case
execution time and execution deadline to enable safety
guarantees.  These TAP attributes are used by a deadline-
driven scheduler [Liu] to create a periodic TAP schedule.  If
the scheduler is unable to create a schedule to support all
deadlines, the AIS backtracks to the planner, which then
removes states or selects different actions. The AIS
downloads a successfully-scheduled TAP plan to the RTS,
which then executes it.

Recently, we have improved CIRCA in two respects.
First, we sought to relax the absolute 100% safety guarantee
requirement, at least when planning and scheduling become
prohibitively difficult.  To do this, we have implemented a
model in which transition probabilities (specified as
functions of time) are used to approximately compute state
probabilities [Atkins].  These probabilities are used by the
planner so that state expansion occurs in decreasing order of
probability.  This provides two advantages:  (1) highly-
probable goal paths are identified, saving the planner time by
not requiring expansion of all potentially goal-reaching
states, and (2) highly-improbable states may be removed
from consideration when scheduling is impossible.

We also have incorporated algorithms for detecting and
handling certain classes of “unplanned-for” states. Figure 2
shows the relationship between subclasses of possible
world states.  Modeled states have distinguishing features
and values represented in the planner knowledge base; we
have not considered methods (e.g., discovery) to handle
unmodeled states.  The planned-for set are states from
which failure is avoided.  Handled states are on a goal path,
while deadend are not.  The planner can model other states,
including those that are reachable but “removed” due to
resource limitations, and “imminent-failure” that are not
considered reachable but, if reached, lead directly to failure. 

All World States
Modeled

Planned-for

"Handled" --
can reach goalDeadend

Removed
Imminent
  Failure

World States Actually Reached

Figure 2.  World State Classification Diagram.

As shown in Figure 2, states actually reached may
include any subclass.  We detect all deadend, removed, and
imminent-failure states, and replan to handle each if it is
reached.  While our algorithms successfully build

minimized tests (using ID3 [Quinlan]) to detect these
states, we seek ways to improve efficiency.  With large sets
of unplanned-for states, creating detection tests might take
longer than the planner can afford.  We are considering
methods to build approximate detection tests quickly.  Such
tests will not identify all unplanned-for states, but may be
required if the CIRCA planner is to admit execution time
bounds, as discussed below.  

3  Flight Simulation Tests

To test our local probabilistic model and unhandled state
detection capabilities in the aircraft domain, we interfaced
the ACM F-16 flight simulator [Rainey] to a low-level
Proportional-Derivative (P-D) control system which
calculated the proper actuator commands to achieve a
commanded altitude and heading.  CIRCA's RTS issued
commands to the low-level controller, which then
computed actuator commands.  Modeled state features
include altitude, heading, location (or “FIX”), gear and
traffic status, and navigation sensor data. CIRCA
successfully controlled the aircraft during normal "flight
around a pattern" (illustrated in Figure 3) from initial
takeoff through a full-stop landing on the runway.
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Figure 3.  Flight Pattern Flown
during Simulation.

We have tested our new algorithms using two
emergencies: “gear fails on final approach”, and “collision-
course traffic on final approach” [Atkins].  In either
situation, failure to notice and react to the problem will
result in a crash.  A series of test runs provided examples of
each possible unhandled state type:  deadend, removed, and
imminent-failure.  A comparison of tests with and without
the unhandled state detection/reaction routines demonstrated
that the aircraft had a better chance to land safely when the
unhandled states were detected than when they were ignored.

4  Limiting Planning Execution Time

CIRCA's reaction to unhandled states is coincidentally
real-time, and was successful during our relatively simple
tests.  However, this may not be acceptable when
unhandled states quickly lead to failure.  Timely reactions
may be achieved either by bounding replanning execution
time or by building reactions in advance. 

As planning technology progresses, more architectures
employ methods for computing and adhering to planner



execution time bounds, as discussed in works such as
[Dean], [Horwitz], [Ingrand], and [Zilberstein].  We feel a
combination of these and other innovative ideas is required
to achieve a near-optimal balance between planning time
and plan quality.  We would ideally like to use a planner’s
initial state(s) to quickly compute an initial estimate of a
planning time limit, then modify this estimate based on
environment changes during planning.  Assuming an
algorithm to compute a planning time limit, we could use
a type of design-to-time algorithm [Garvey].  We are now
expanding states in inverse order of probability, so the
most probable states will be handled first.  Whenever the
planner’s execution time expires, the probability of the
next state to be expanded will be the maximum probability
of reaching any single unplanned-for state. 

There are still potential quality problems with this
algorithm.  Perhaps most important, with a short planning
deadline, high probability states may remain unexpanded.
The planner may make use of its knowledge about
probabilities and temporal delays, as well as knowledge
about relative “importance” among states, to make tradeoffs
that may improve planning.  State expansion may be
ordered by decreasing utility u(s), as shown in equation (1),
where p(s) = probability of reaching state s, t(s) =
minimum time before the system can reach state s, pf(s,n)
= probability of reaching failure in n (or fewer) steps from
state s, and a, b, and c are (as yet undetermined) scaling
constants.  By expanding states in this order, we hope to
plan for the most “important” states, achieving a balance
between state probability, system safety (i.e., prioritizing
expansion to handle states that can reach failure), and the
time horizon considered by the planner (i.e., near-term
states are handled; far-term states will be handled by
subsequent plans).   Unfortunately, even the best u(s) will
not guarantee a high-quality plan when the planner must
execute quickly, so we continue to search for ways to
achieve the ever-elusive balance between quality and
execution time.

u (s) = a * p(s) + b * t(s) + c * pf(s, n)  (1)

5  Conclusion

Aircraft control is not a “solved problem” -- uncertain or
unexpected events such as collision-course traffic may
occur.  Most emergency situations are now handled by
pilots, and even the best pilots may select suboptimal
responses.   Fully-automated aircraft flight will require
approximate knowledge, and quite a large knowledge base
will be necessary.  Limiting planning time and carefully
scheduling planned actions to guarantee critical responses
will be crucial for safe, fully-automated flight in which all
expected time-critical operations are part of a scheduled plan
and have near 100% chance of executing properly, while
emergency situations are handled by some combination of

pre-planned reflex actions and fast replanning.  We have
begun to investigate methods to build plans that handle
such emergency situations, including necessary feature-
value specifications for aircraft, types of time-dependent
temporal transition probabilities to use, and available
sources of statistical data (e.g., FAA accident reports).  We
have tested simple situations such as “collision-course
traffic” and “landing gear fails on final approach”, but will
need to significantly enhance CIRCA’s planning and
temporal reasoning capabilities before a full-scale aircraft
control knowledge base could be handled with sufficient
speed and accuracy to be trusted during emergencies.
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