
TCAST Lightweight Multicast for Real-Time Process Groups

Tarek Abdelzaher, Anees Shaikh, Farnam Jahanian, and Kang Shin

Real-time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, Michigan 48 109-2122

(zahel; ashaikh, farnam, kgshin) @ eecs.umich.edu

Abstract

We propose a lightweight fault-tolerant multicast and mem-
bership service for real-time process groups which m a y ex-
change periodic and aperiodic messages. The service sup-
ports bounded-time message transport, atomicity, and order
for multicasts within a group of communicating processes
in the presence of processor crashes and communication
failures. It guarantees agreement on membership among
the communicating processors, and ensures that member-
ship changes (e.g., resulting from processor joins or depar-
tures) are atomic and ordered with respect to multicast mes-
sages. We provide the Jlexibility of an event-triggered ap-
proach with the fast message delivery time of time-triggered
protocols, such as T l P [14], where messages are deliv-
ered to the application immediately upon reception. This is
achieved without compromising agreement, order and atom-
icity properties. In addition to the design and details of
the algorithm, we describe our implementation of theproto-
col using the x-Kemel protocol architecture running on RT
Mach 3.0.

1. Introduction

Process groups are a widely-studied paradigm for design-
ing dependable distributed systems in both asynchronous
[6,3,24, 171 and synchronous [14,4, 111 environments. In
this approach, a distributed system is structured as a group of
cooperating processes which provide service to the applica-
tion. A process group may be used, for example, to provide
active replication of system state or to rapidly disseminate
information from an application to a collection of processes.

The work reported in this paper was supported in part by the Advanced Re-
search Projects Agency, monitored by the US Air Force Rome Laboratory
under Grant F30602-95-1-0044.

Two key primitives for supporting process groups in a dis-
tributed environment are fault-tolerant multicast communi-
cation and group membership.

Coordination of a process group must address several
subtle issues including delivering messages to the group in a
reliable (and perhaps ordered) fashion, maintaining consis-
tent views of group membership, and detecting and handling
process or communication failures. It is critical that group
members maintain a consistent view of the system state and
group membership to avoid inconsistent response to exter-
nal or application-triggered events. Most process or pro-
cessor group communication services achieve agreement by
disseminating application and membership information via
multicast messages within the group. If multicast messages
are atomic and globally ordered, replicas can be kept consis-
tent when process state is determined by initial state and the
sequence of received messages.

The problem is further complicated in distributed real-
time applications which operate under strict timing and de-
pendability constraints. In particular, we are concerned here
with fault-tolerant real-time systems which must perform
multicast communication and group management activities
in a timely fashion, even in the presence of faults. In these
systems, multicast messages must be received and handled
at each replica by their stated deadlines. In addition, mem-
bership agreement must be achieved in bounded time when
processes in a group fail or rejoin, or when the network suf-
fers an omission or a communication failure.

In this paper, we propose an integrated multicast and
membershp protocol that is suitable for the needs of hard
real-time systems, and is also usable in a soft real-time sys-
tem with synchronized clocks. It is termed lightweight be-
cause, in contrast to other group membership protocols, it
does not use acknowledgments for every message and mes-
sage delivery is immediate without needing more than one
“round” of message transmissions. We envision the pro-
posed protocol as part of a larger suite of middleware group

250
0-8186-7448-2/96 $05 00 0 1996 IEEE

http://eecs.umich.edu

1 Real-Time Process Groups 1

Grnup ' ?"~d AtonIic

Servkr Conimuwcation
Membership Multieast

Clnck S~nchrnniradoo Virtual Network lnkrface

h c Unreliable Unicast Communication

Figure 1. A general framework for a middle-
ware group communication service

communication services that form a composable architec-
ture for the development of embedded real-time applica-
tions. Shaded blocks in Figure 1 indicate those services
whose design and implementation we present in this paper.
These services consist of two major components, a timed
atomic multicast, and a group membership service. :.They
are tightly coupled and thus considered a single service, re-
ferred to as RTCast in the remainder of the paper. Clock syn-
chronization is assumed in the protocol and enforced by the
clock synchronization service. To support portability, RT-
Cast might lie atop a layer exporting an abstraction termed a
virtual networkinterface. Ideally, this interface would trans-
parently handle different network topologies, each hwing
different connectivity and timing or bandwidth character-
istics. The network is assumed to support unreliable uni-
cast. Finally, the top layer provides functional (API) support
for the real-time process group service and interfaces to the
lower RTCust protocol.

RTCast proceeds as senders in a logical ring take turns in
multicasting messages over the network. A processor's turn
comes when the logical token arrives, or when it times out
waiting for it. After its last message, each sender multicasts
a heartbeat that is used for crash detection. The heartbeat
received from an immediate predecessor also serves as the
logical token. Destinations detect missed messages using
sequence numbers and when a processor detects a receive
omission, it crashes. Each processor, when its turn comes,
checks for missing heartbeats and eliminates the crashed
members, if any, from group membership by multicasting a
membership change message.

A key attribute of RTCust is that processes which detect
receive omissions take themselves out of the group. This
paper argues that in a real-time system bounded message
transmission time must be achieved. If a message (or its re-
transmission) does not reach a destination within a specified

time bound, the destination fails to meet its deadline(s) and
should be eliminated from the group.

In the next section we disciuss the related work on fault-
tolerant multicast and group membership protocols. Sec-
tions 3 and 4 present our system model and the design of
the RTCust protocol, respectively. Real-time schedulabil-
ity and admission control are described in Section 5. Sec-
tion 6 discusses the current implementation of the protocol
in the n-Kernel protocol development environment and our
PC-based development testbed. S'ection 7 concludes the pa-
per by discussing the limitations (of this work and future re-
search directions.

2. Related work

Several fault-tolerant, atomic ordered multicast and mem-
bership protocols have been proposed for use in asyn-
chronous distributed systems. In some of the earliest work,
Chang and Maxemchuk [7] piroposed a token based algo-
rithm for a process group where each member sends its mes-
sages to a token site which orders the messages and broad-
casts acknowledgments. Destinations use the acknowledg-
ments to order messages as ;specified by the token site.
Though the algorithm provides good performance at low
loads, acknowledging each message before sending the next
increases latency at higher loads. Moreover, introducing
a third node (the token site) in the path of every message
makes the service less available. Failure of the token site
will delay message reception even if both the source and
destination are operational. In contrast, RTCast does not ac-
knowledge each message, and need not involve an interme-
diate node on the path of each message.

ISIS [5, 61 introduced the concept of virtual synchrony,
and integrated a membership protocol into the multicast
communication subsystem, whereby membership changes
take place in response to communication failure. ISIS im-
plements an atomic ordered multicast on top of a vector
clock-based [151 causal multicast service, using an idea
similar to that of Chang and IMaxemchuk. We integrate
membership and multicast services, but implement ordered
atomic multicast directly without constructing a partial or-
der first. The ordering task, however, is simplified by as-
suming a ring network. In addition to ISIS, several other
systems have adopted the notion of fault-tolerant process
groups, using similar abstractions to support distributed ap-
plications. Some of these include Consul [17], Transis [3],
and Horus [24].

A number of systems choose to separate the group mem-
bership service from the fault-tolerant multicast service. As
a result, the group membership service maintains consis-
tency regarding the membership view and may assume that
separate reliable atomic multicast support is available. Ex-
amples of this approach are founld in the Strong Group Mem-

251

bership protocol [131 and the MGS protocol for processor
group membership [21]. Additional work on group mem-
bership protocols appears in [2, 10, 201.

Common to the above mentioned protocols whether
strictly group membership or combining multicast and
group membership, is that they do not explicitly consider
the needs of hard real-time applications. Thus these tech-
niques are not suitable for the applications in which we are
interested. There are, however, several protocols that inte-
grate reliable multicast and group membership and also tar-
get real-time applications.

Totem [4, 181 is an example of a protocol that provides
probabilistic real-time guarantees. It is based on a token
ring, and guarantees atomic ordered delivery of messages
within two token rounds (in the absence of message loss).
RTCast, on the other hand, achieves atomicity and order
within a single round. Messages are delivered to the appli-
cation as soon as they are received in order without the need
for acknowledgments. If one of the processors fails to re-
ceive a message and a retransmission request is issued, mes-
sage delivery will be delayed only on that processor; the re-
maining ones can deliver immediately upon reception. The
intuitive reason why immediate delivery does not interfere
with atomicity in RTCast is that processors failing to receive
a message take themselves out of the group.

Rajkumar et. al. [19] present an elegant pub-
lisher/subscriber model for distributed real-time systems.
It provides a simple user interface for publishing messages
on a logical “channel”, and for subscribing to selected
channels as needed by each application. In the absence
of faults each message sent by a publisher on a channel
should be received by all subscribers. The abstraction hides
a portable, analyzable, scalable and efficient mechanism
for group communication. It does not, however, attempt to
guarantee atomicity and order in the presence of failures,
which may compromise consistency.

TTP [14] is similar to RTCust in many respects. It
uses a time-triggered scheme to provide predictable im-
mediate message delivery, membership service, and redun-
dancy management in fault-tolerant real-time systems. Un-
like TTP, however, we gain flexibility by following an event
triggered approach, where the complete event schedule need
not be known a priori, and individual events may or may
not be triggered by the progression of time. Moreover, the
design of TTP is simplified by assuming that messages sent
are either received by all correct destinations or no destina-
tion at all (which is reasonable for the redundant bus LAN
used in TTP). We also consider the case where a sent mes-
sage is received by a proper subset of correct destinations,
which might occur in the case of receiver buffer overflow,
or message corruption on one of many links in an arbitrary
topology network.

Finally, a research effort complementary to ours is re-

ported in [SI. While we consider fault tolerance with respect
to processor failure, we do not suggest a mechanism for im-
plementing fault-tolerant message communication. For ex-
ample, we do not specify whether or not redundancy is used
to tolerate link failures. On the other hand, Chen et. al. de-
scribe a combination of off-line and on-line analysis where
spatial redundancy, temporal redundancy, or a combination
of both, may be used to guarantee message deadlines of pe-
riodic message streams on a ring-based network in the pres-
ence of a number of link faults as specified for each stream.
Unless the fault hypothesis is violated, the mechanism guar-
antees that at least one non-failed link will always be avail-
able for each message from its source to all destinations.

3. System model and assumptions

We consider a distributed system in which an ordered set of
processing nodes N = { N I , N2, ..., N,} are organized
into a logical ring representing a single multicast group. Fig-
ure 2 depicts the ring configuration. Each node runs a dae-
mon process responsible for multicast communication. The
ring is assumed to have the following properties:

P1: Each processor Nj on the ring has a unique identifier.

P2: For any processor pair (N i , N j) there exists a (logical)
FIFO channel Cij from Ni to Nj along which Ni can
send messages to Nj .

P3: Message delays along a channel are bounded by some
known constant d,,, unless a failure occurs. That is,
any message sent along channel Cij is either received
within d,,, or not received at all.

P4: Processor clocks are synchronized.

We achieve total order of messages and enforce timeliness
using the above assumptions. The specific mechanisms are
described in more detail in Sections 4 and 6. The failure se-
mantics are as follows :

AI: Processors fail by crashing, in which case the processor
halts and its failure is detectable. Send omissions are
converted to crash failures by halting a processor if it
does not receive its own message.

A2: Message receive omissions are allowed, e.g., due to
transient link failures, or by discarding by the receiver,
due to corruption or buffer overflow. Permanent link
failures (resulting in network partitions) are not con-
sidered. We believe that the proper way to handle per-
manent link failures in fault-tolerant real-time systems
is to employ hardware redundancy, for example, as in
l’TP [14] or suggested in [SI.

252

-

msgreceptionhandlero
1 if state = RUNNING
2 if more msgs from saine member
3 if missed msgs -+ CRASH else
4 deliver msg
5 elseif msg from different member
6 if missed msgs -+ CRASH else
I check for missed msgs from processors

a if no missing msgs
9 deliver current rnsg
10 else CRASH
11 elseif join msg from non-member
12 handle join request-
13if state = J O I N I N G ANI)

14 if need more join-acks
15 wait for additions-t join-acks
16 else state = RUNNING
end

between current and l as t senders

msg is a valid join-ack

The token
(indicates current sender)

The logical ring
showing direction

of token rotation.

-
--+

Shows the order of senders on the logical ring.
Traces the flow of some multicast message ml.

Figure 2. The logical ring

4. Multicast and membership service

Our primary purpose is to provide a fault-tolerant atomic
ordered multicast service for distributed real-time systems
that achieves agreement on replicated state. In a token rmg,
sent messages have a natural order defined by token rotatiion.
Senders are logically organized in a ring and messages from
each are sequenced in the order they are sent. We reconstruct
message order at the receivers using a protocol layer below
RTCast which detects out-of-order arrival of messages and
swaps them, thus forwarding them to RTCast in correct or-
der. Section 6.1 provides more details on this layer. Note
that it does not guarantee reliability; lost messages will re-
sult in gaps in the forwarded sequence. RTCast is designed
to deal with such receive omissions. In the following dis-
cussion, message reception refers to reception by RTCast
unless otherwise stated.

RTCast ensures; atomicity so that “correct” members
can reach agreement on replicated state. We formulate the
problem as one of group membership. A processor that
detects a message receive omission takes itself out of the
group, thus maintaining agreement among the remaining
ones. Each receiver may deliver each message immediately
upon receipt, yet be guaranteed that delivery is atomic to all
group members since processors which missed that message
left the group. In a real-time system one may argue that pro-
cesses waiting for a message that does not arrive will miss
their deadlines anyway, so it is acceptable to eliminate the
processor(s) which suffered receive omissions.’ Our algo-
rithm allows a processor to become inconsistent with the

‘ A lower communication layer may support a bounded number of re-
transmissions. See Section 4.6.

Figure 3. Message reception handler

group but ensures that such inconsistencies are contained.
The inconsistent processor will always crash before it com-
municates any messages. For ihe rest of the group this is
identical to the case where no inconsistency ever arose, as-
suming no hidden channels.

Membership changes are coinmunicated exclusively by
membership change messages using our multicast mecha-
nism. Since message multicast is atomic and ordered, so
are the membership changes. ‘Thk guarantees agreement
on membership view. Order, atomicity and agreement are
proven more formally in [11.

Section 4.1 presents the steady state operation of the al-
gorithm (with no receive omissions, processor crashes or
membership changes). Section 4.2 then describes how re-
ceive omissions are detected anid handled. Section 4.3 de-
scribes processor crashes and member elimination. Sec-
tions 4.4 and 4.5 discuss other membership changes (joins
and leaves), and the relevant issue of recomputing token ro-
tation time. Finally, Section 4.6 extends the design to man-
age message retransmissions,

The protocol is triggered by two different event types,
namely message reception, and token reception (or timeout).
It is structured as two event handlers, one for each event
type. The message reception handler (Figure 3) detects re-
ceive omissions as described in Section 4.2, delivers mes-
sages to the application, and services protocol control mes-
sages. The token handler (Figure 4) is invoked when the
token is received or when the tolken timeout expires. It de-
tects processor crashes as described in Section 4.3 and sends
messages out as described in Section 4.1.

253

token-handler0
1 if (state = RUNNING)
2 for each processor p in

3 if‘ no heartbeat seen from all predecessors

4 remove p from group view
5 multicast new group view
6 send out all queued messages
7 mark the last msg
8 send out heartbeat msg
9 if (state = JOINING)
10 send out j o i n msg
end

current membership view

up to and including p

Figure 4. Token handler

4.1. Steady state operation

We employ a logical token ring algorithm to control access
to the communication medium. Upon receipt of the token,
a processor multicasts its messages starting with a member-
ship change message, if any membership changes were de-
tected during the last round. As messages are sent they are
assigned successive sequence numbers by the sender.2 The
last message sent during a particular token visit is marked
last by setting a corresponding bit. When the last message
has been transmitted the processor multicasts a heartbeat
(which has no sequence number). The heartbeat from pro-
cessor Ni serves as an indication that Na was alive during
the given token visit (and therefore all its sent messages
should be received). When received by its successor N+l,
the heartbeat also serves as the logical token, informing the
successor that its turn has come.

Each processor Ni has a maximum token hold time Ti.
A token holder releases the token (i.e., multicasts the heart-
beat) when it has sent all its messages, or when has ex-
pired, whichever comes first. This guarantees a bounded
token rotation time, Ptoken, which is important for mes-
sage admission control and schedulability analysis. It also
makes it possible to set the timeout used to detect token loss.
Ptoken3 is given by:

n

Q t o k e n = c T; + (n - l)&”, (1)

where TI is the number of processors in the current group
membership, and d,,, is as defined in P3 in Section 3.

Each processor must send at least one message during
each token visit. If it has no messages to send, a dummy

i=l

2Rollover problems are avoided since message communication time is
bounded; “old” messages do not survive to be confused with newer ones.

3Expression 1 will be refined in Section 4.4 as new factors are
considered.

message is transmitted. This simplifies the detection of re-
ceive omissions, since each processor knows it must receive
from every other processor within a token round, unless a
message was lost.

4.2. Message reception and receive omissions

Each processor maintains a message sequence vector, M ,
which holds the sequence number of the last message re-
ceived from every group member (including itselQ4. Let Mi
be the number of the last message received from processor
Ni. The multicast protocol layer expects to receive multi-
cast messages in total order. Thus, after receiving message
number Mi, the receiver expects message number Mi i- 1
from Ni or, if Mi was marked lust, the receiver expects
message number Mi+l + 1 from processor Ni+l. N;+1 is
the successor of Ni in the current group membership view.
If the next message received, say mk, is not the expected
message, a receive omission is detected, and the receiver
crashes.

As an optimization, we prevent receivers crashing upon
detectably “false” receive omissions. Instead of forcing a
crash, we first check whether or not the just received mes-
sage mk is a membership change message which eliminates
the sender of the missed message, say N j , from member-
ship5. If so, mk also contains the number of Nj’s last mes-
sage sent before it was eliminated. This number is attached
by the sender of the membership change message accord-
ing to its own message vector information. If this number
matches Mj in the current receiver’s message sequence vec-
tor then the receiver is assured that all messages sent by Nj
before it was eliminated have been received, and hence the
receiver remains in the group. Otherwise, the receiver con-
cludes that it did suffer a receive omission and it crashes.

4.3. Membership change due to processor crashes

Each processor Ni keeps track of all other group members
from which it has received a heartbeat during the current
token round. That is, it records the processors from which
it received a heartbeat since the time it sent its own and
until it either receives that of its predecessor or times out,
whichever comes first. Either case indicates that Ni’s turn
to send messages has come.

When Ni’s turn comes, it first determines the processors
from which it has not received a heartbeat within the last to-
ken round. A possible decision then is to assume that all of
them have crashed and eliminate them from group member-
ship (by multicasting a corresponding membership change

4This is different from using vector clocks [15]: here, messages carry

5We know who the sender is because we know from whom a message
only their sequence number and sender id.

is missing

254

0 Token

Figure 5. Excluding failed members.

message). It turns out a better decision is to eliminate only
the transitive closure of immediate predecessors from which
a heartbeat has not been received, if any. The rationale for
this is best illustrated by an example. Consider Figure 5
where processor H has just timed out. Assume that H de-
termines that it has not received a heartbeat from processors
D, F , and G. In this case H should eliminate only F and
G. D is not eliminated since it would have been eliminated
by E had it indeed been down. If E has not eliminated D,
then it must have received a heartbeat from it, and D must
be alive, even though its heartbeat did not reach H.

Note that this algorithm does not distinguish between to-
ken loss and processor failure. Thus, a correct processor
may occasionally be eliminated from the group. If a proces-
sor receives a membership message telling it that it has been
eliminated from the group it crashes.

4.4. Membership change due to joins and leaves

In the previous section we described how processors :SUS-

pected of having crashed are eliminated from the group. The
remaining membership changes are voluntary member joins
and member departures. A member can leave the group
simply by multicasting a membership change message elim-
inating itself from membership. When a new processor,
Nnew, wants to join a group it starts out in ajoining state
where it sends a join request message to some processor
Np in the group, which may later multicast a membership
change message on behalf of the joining processor, addling
it to the group. The message is received atomically by mem-
bers of the group who then send acknowledgments to the
joining processor, containing their current membership view
(with the new member added). The joining processor, niow
considered a member, checks that all received acknowledg-
ments (membership views) are identical, and that acknowl-
edgments have been received from every member in that
view. If the check fails the new member crashes and at-
tempts to rejoin later.

Note that, before joining, the new processor does not
have an assigned slot on the ring. On a multiple access L14N
this causes a problem since any access to the communication
medium has to be charged to a slot assigned to some proces-
sor in the group in order to preserve bounded token rotation
time.6 To address this problem in our broadcast LAN imple-

mentation, the group contains a join slot, T, , large enough
for sending a join message. Expression (l), which gave the
maximum token rotation time is thus refined to include T,
as follows :

n

a’=1

When the member following T; on the ring receives the to-
ken from the member before ?”, it waits for a duration T,
before sending its own messages. The slot T, is used by a
joining processor to send out its join request. In the case of
multiple simultaneous joins, processors that fail to send the
join message successfully within the assigned common slot
wait for a random number of token rounds and retransmit
their join. A joining processor need not know the position
of T, with respect to the current group members. Instead, it
waits for a token with the join slot set on (sent by the join
slot’s predecessor). The join request message, sent to pro-
cessor N p , contains the identity of the joining processor, and
the requested maximum token hold time Tnew.

Processor Np who receives a join request computes the
new Ptoken from (2), then initiates a query round in which
it multicasts a query message asking whether or not the new
Ptoken can be accommodated by each group member, and
then waits for acknowledgments. If all acknowledgments
are positive, Np broadcasts the membership change adding
the new member to the group.

4.5. Token rotation time

Each processor keeps a copy of variable P , which ide-
ally contains the value of the maximum token rotation time
Ptoken given by (2). P is used in admission control and
schedulability analysis. When ia processor fails and leaves
the group, Ptoken decreases, since there are now fewer pro-
cessors on the ring. The failed processor will often try to
rejoin very soon. Thus, to avoid updating P twice in a short
time we may keep the old value for a while after a crash.

P is thought of as a resource representing how much
“space” we have available on the ring for processors to take.
Each processor Ni is thought to take Ti out of P. Thus,
Ptoken represents the present utilization of resource P. A
joining processor may be added t o the ring without the query
round described in the previous section, if Ptoken (with the
joining processor added) is still no greater than P . 0th-
erwise, the query round is necessary to give all members
a chance to check whether or not they can still guarantee
their connections’ deadlines under the new P. Schedulabil-
ity analysis is described in Section 5.

P is updated by multicasting a corresponding message.
In the case o€ a join, the membership message implicitly

a general topology network the computed value of dma, should ac-

2155

count for the extra traffic.

serves that purpose. When a member leaves or crashes, a
separate message is used to update P. The point at which the
message is sent is a matter of policy. In the current imple-
mentation, a resource reclaimer module runs on the proces-
sor with the smallest id among those in the current member-
ship. Since processors agree on current membership, they
also agree on who runs the reclaimer. The module detects if
any balance P - Ptoken remained unused for more than a
certain amount of time, after which it multicasts a request to
reduce P by the corresponding balance.

4.6. Handling retransmissions

A valid criticism of the presented algorithm is that it
converts receive omissions into processor crash failures
which allows rapid decomposition of the group when
the probability of message loss is high. Permitting a
bounded number of retransmissions, however, significantly
reduces loss probability, eliminating this problem. As men-
tioned earlier, a communication layer below RTCast, the
Retransmission layer, may be responsible for (transpar-
ent) message retransmission. During normal operation this
layer simply forwards all messages up to RTCast in re-
ceived order. However, if a message is detected missing it
queues up an outgoing retransmission request and temporar-
ily holds all subsequent incoming messages. If a retransmis-
sion is not received within a pre-specified number r of to-
ken rounds, the retransmission layer skips the missing mes-
sage(s), and resumes forwarding the available ones up to
RTCast (which then detects a receive omission and reacts
accordingly as described in Section 4.2).

5. Admission Control

In this section we discuss the admission control and schedu-
lability analysis of real-time messages in the context of the
multicast algorithm presented in the preceding section. This
module implements a protocol layer above the RTCust layer
to regulate traffic flow, although an application may choose
to send messages directly to RTCast if hard real-time guar-
antees are not required.

Real-time messages may be either periodic or aperiodic.
A periodic real-time message m; is described by its maxi-
mum transmission time Ci, period P; and deadline di, where
we assume that di 5 Pi. An aperiodic message may be
viewed as a periodic one whose period tends to infinity. Be-
fore considering a real-time message for transmission its
deadline must be guaranteed. Guaranteeing the deadline
of a periodic message means ensuring that the deadline of
each of its instances will be met, provided the sender and
receiver(s) do not fail, and the network is not partitioned.
The same applies to guaranteeing aperiodic message dead-
lines except that, by definition, the message has only one in-

stance. Each message instance has an arrival time, which is
the time at which the message is presented by the applica-
tion. When an application needs to send a real-time mes-
sage it presents the message to the admission control layer
for schedulability analysis and deadline guarantee evalua-
tion. The layer checks whether or not the message can be
scheduled alongside the currently guaranteed messages, de-
noted by the set G, without causing itself or another mes-
sage to miss its deadline. If so, the message is accepted for
transmission and its deadline is guaranteed. Otherwise the
message is rejected. Bandwidth is reserved for a guaranteed
periodic message by adding it to set G, thereby affecting fu-
ture guarantee decisions. The message is not removed from
G until so instructed by the application. A guaranteed ape-
riodic message remains in G until it is sent. Non real-time
messages are sent only after real-time messages, if time per-
mits.

In order to perform schedulability analysis, and in view
of the algorithm presented in the previous section, we can
make the following assumptions:

Assumption 1: Each sender node Nj has a bounded token
hold time q, and a bounded token interarrival time
P-Tj.

Assumption 2: The elapsed interval between the time
a message has been transmitted by the sender and
the time it has been delivered at the destination(s)
is bounded by a known constant A. (Note that
A= (r + 1)P, where T is the maximum number of
allowable retransmissions.)

Under the above assumptions we have a sufficient schedula-
bility condition, given by the following theorem. The proof
of the theorem is detailed in [11.

Theorem 1 A set of messages G presented by node Nj is
schedulable $E,,, 5 2 q, where ni = [(d;-A)/Pj.

The above schedulability condition does not depend on de-
tails of the underlying communication algorithm as long as it
provides bounds on token hold time, token interarrival time,
and message communication delay. Similarly, RTCast is
unaware of the type of admission control policy used. The
goal of this separation is to allow use of a number of admis-
sion control policies to ensure timeliness while leaving con-
sistency to the multicast algorithm. For example, instead of
the schedulability condition stated in Theorem 1, one may
use the generalized rate monotonic analysis [22], FDDI syn-
chronous bandwidth allocation analysis [161, or delay analy-
sis for Controller Area Networks [23], depending on the ap-
plication at hand.

256

Private LAN

RT-Mach 3.0

e

Pmcss gmup

Figure 6. The protocol testbed

6. Implementation

The protocol presented in Section 4 is implemented on a net-
work of Intel Pentiumm-based PCs connected over a pn'-
vute Ethernet. In general, Ethernet is unsuitable for real-
time applications due to packet collisions and subsequent re-
transmissions that make it impossible to impose determin-
istic bounds on communication delay. However, since we
use a private Ethernet (exclusive access to the commuinica-
tion medium), and since our token-based protocol ensures
that only one machine can send messages at any given time
(namely, the token holder), no collisions are possible. The
Ethernet driver always succeeds in transmitting each packet
on the first trial, making message communication delays
deterministic7. Note that detection of dropped messages,
due to buffer overflow or data corruption, is left to a higher
level. Our protocol detects a message omission and may
try a bounded number of retransmissions, r , as described in
Section 4.6. These are accounted for as described in Sec-
tion 5. In the present implementation, retransmissions are
not supported. Each machine on the private LAN runs the
CMU Real-Time Mach 3.0 operating system and all ma-
chines are members of a single logical ring. Figure 6 illus-
trates the testbed.

6.1. Protocol stack layers

We implement the communication service as a protocol de-
veloped in the x-Kernel 3.2 protocol implementation envi-
ronment [121. The protocol stack is shown in Figure 7. ESach
box represents a separate protocol layer. The primary ad-
vantage of usingx-Kernel is the ability to easily reconfigure
the protocol stack according to application needs by adding
or removing corresponding protocols.

Maximum functionality is attained by configuring the
protocol stack as shown in Figure 7-(a). The ACSA layer
performs admission control and schedulability analysis (as
described in Section 5) to guarantee hard real-time deadlines
of dynamically arriving messages and periodic connection
requests. The RTCast layer implements the multicast and

7A collision may occur, however, if two processes try to use the join
slot simultaneously. We presently circumvent this problem by preventing
simultaneous joins.

(a) Full Configuration (b) Minimal Configuration.

Figure 7. The x-kernel protocol stack

membership service described in Section 4. The Retrans-
mission layer is responsible for handling retransmissions as
described in Section 4.6. ClockSync provides a synchro-
nization service using the probabilistic algorithm developed
by Cristian [9]. It uses the underlying unreliable messaging
service provided in the x-Kemld environment.

In soft real-time systems, non real-time systems, or
systems where hard real-time communication has been
prescheduled and guaranteed a priori, we may wish to omit
the ACSA layer, in which case the application interfaces di-
rectly to RTCast. The RTCast layer provides a subset of
ACSA's API including message send and receive calls,
but does not compute deadline guarantees.

If the underlying network is sufficiently reliable, we may
choose not to use message retransmissions. This will enable
supporting tighter deadlines, since we need not account for
retransmissions when computing worst case deadline guar-
antees. This can be done by removing the Retransmission
layer from the protocol stack.

Finally, ClockSync is needed to implement the gap detec-
tion property and message order. In an arbitrary network,
messages may be received out of order by the machine. A
protocol layer, Order may be used to reconstruct message
order. We showed in Section 4.2 that upon message recep-
tion it is possible to detect whether it has arrived in correct
order. For example, if a message with a timestamp t s e n d ar-
rives before its preceding one, O r d e r may wait untiltsend+
d,,,, before regarding the missing message lost and for-
warding its successor(s) to RTCast. If themissing message
arrives before t send + d,,,, it is forwarded immediately
with the rest in correct order. Note that this mechanism re-
quires the sender and receiver to have synchronized clocks.
In the special1 case of broadcast LANs, however, messages
are ordered by the communication medium and O r d e r is not
needed. CZockSync is also needed €or receivers to enforce
timed multicast semantics, if so desired; that is to drop mes-
sages which arrive after their deadline. Soft real-time appli-
cations may not need this property.

Thus, the minimal configuration of the protocol stack

257

set if last message.

last
hit

message sender sequence message
type id number length

Message
Change Header Entry I “ * Entry 1

Id I Message I

7 0: Add
.~ 1 :Remove

Message Required Set by predecessor
T Header of join slot

loin

I
J.

Heartbeat Message Join
(& token) Header token bit

Figure 8. Message types

consists of the RTCast layer alone, as shown in Figure 7-(b).
This configuration, when used on a broadcast LAN, supports
bounded message transport delay, provides atomic ordered
multicast, and implements a group membership service that
guarantees atomic ordered membership changes, and agree-
ment on group membership view.

6.2. RTCast message types

As mentioned in Section I, RTCast is the essential layer of
our group communication service. It is implemented by the
two event handlers, message reception handler and token
handler. Figure 8 shows the different types of messages,
and their formats, as well as the header format. Only the
atomic ordered message types and the heartbeautoken type
are illustrated. Atomic ordered types are those messages
guaranteed to be multicast atomically and in total order.

When implementing the protocol we also found it use-
ful to support unreliable messages, whose atomicity and or-
der need not be guaranteed. These messages do not have
sequence numbers and thus, their omission is undetectable,
and their order is not specified. They are useful to im-
plement voting, for example. A given sender suggests a
“proposition”, then waits to receive “votes” from group
members before deciding whether some change should be
(atomically) enacted. An instance of voting in our algorithm
is to decide on a new member join when the token rotation
time P needs to be increased.

6.3 Protocol testing

Preliminary testing was performed to verify experimentally
the behavior of the implemented protocol layers. The RT-
Cast layer was tested first to verify its support for system
consistency, then the ACSA layer was added, and the system
was tested for deadline guarantees.

The RTCast protocol was tested using the x-Kernel trace
library to log the occurrence of certain major events at run-
time. Major events include: sending and receiving of mes-
sages and heartbeats, token receipt (or timeout), “rotation”
of current sender, detection of receive omissions and proces-
sor crashes, membership changes resulting from processor
crashes, joins and leaves, and processor state transitions (be-
tween the running, crashed and joining states).

The system was run with event logging on the current
testbed. Logs were then verified for conforinity to intended
semantics. Processor crash and receive omission failures
where instrumented by introducing a uniformly distributed
random variable for each type of instrumented failure. The
current value of each variable was used to determine if the
corresponding failure should be introduced next. These val-
ues were computed periodically. The probability of each
failure was controlled by specifying the subrange of the cor-
responding random variable for which the failure is intro-
duced. Crash failures were introduced by letting the failed
processor go to the crashed state, from which it later recov-
ers into thejoining state to rejoin the group. Receive omis-
sion failures were introduced simply by dropping the next
incoming message. Logs were then manually checked for
order and atomicity of multicasts and membership changes,
as well as agreement on membership view. In a subse-
quent set of experiments, the instrumented failures them-
selves were logged too, and logs were checked for correct
failure detection as well.

To test the real-time behavior of the system, the protocol
stack was configured with both ACSA and RTCast (with in-
strumented failures) present. Trace statements where used
in the ACSA layer to record message arrival times and dead-
lines. The RTCast was used to log the receipt time of
each message. It was verified that all messages guaran-
teed by ACSA made it to all destinations by their respec-
tive deadlines, unless the destination crashed. The mes-
sages themselves, in all experiments, were generated syn-
thetically. More details regarding performance evaluation
are reported in [11.

7. Conclusions

In this paper we presented RTCast, a new multicast and
membership protocol to support fault-tolerant real-time
applications. Our approach follows the process group
paradigm in which a group of cooperating processes per-
forms application tasks. We combine the flexibility of an
event-triggered approach with bounded message transport
and immediate message delivery upon receipt, without sac-
rificing order, atomicity, and agreement. In addition, RT-
Cast supports on-line admission and schedulability anal-
ysis of periodic and dynamically arriving aperiodic mes-
sages. Finally, our implementation separates support for

258

group management and fault-tolerant multicast from tlhat of
system timeliness by dividing functionality into two distinct
layers, RTCust and ACSA respectively. The design is such
that RTCust may be used alone if support for hard real-time
guarantees is not required.

As discussed in Section 1, RTCust represents part of
a larger middleware service architecture providing group
communication support for embedded real-time applica-
tions. As such, our current implementation realizes a sub-
set of the suite of services ootlined in Figure 1. We intend
to improve the current preliminary implementation and con -
tinue toward the goal of developing a composable toolkit
for provision o f group communication support. Further ar-
eas of research on RTCast in particular include additional
experiments to better characterize the performance andl fail-
ure detection capability of the algorithm, investigation into
techniques to exploit broadcast networks such as FDDI by
fine-tuning the algorithms, and an extension of the protocol
to support multiple process groups running on overlapping
processors.

Acknowledgment
The authors wish to thank Jia-Jang Liou for his assistance

in implementing the membership and clock synchronization1
services and the reviewers for their valuable comments and
suggestions.

References

[I] T. Abdelzaher, A. Shaikh, F. Jahanian, and K. Shin. RT-
CAST Lightweight multicast for real-time process groups.
Technical Report CSE-TR-29 1-96, Dept. of Elec. Engineer-
ing and Comp. Science, University of Michigan, January
1996.

[2] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Membership
algorithms for multicast communication groups. In Proc. 6th
International Workshop on Distributed Algorithms, number
647 in Lecture Notes in Computer Science, pages 292-3 12,
Haifa, Israel, November 1992.

[3] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A com-
munication sub-system for high availability. Technical' Re-
port TR CS91-13, Dept. of Computer Science, Hebrew Uni-
versity, April 1992.

[4] Y. Amir, L. Moser, P. Melliar-Smith, D. Agarwal, andP. Cia-
rfella. The Totem single-ring ordering and membership pro-
tocol. ACM Transactions on Computer Systems, 13(4):3 11-
342, November 1995.

Lightweight
causal and atomic group multicast. ACM Transactions on
Computer Systems, 9(3):272-314, August 1991.

The process group approach to reliable
distributed computing. Communications of the ACM,
36(12):37-53, December 1993.

[7] J.-M. Chang and N. Maxemchuk. Reliable broadcast pro-
tocols. ACM Transactions on Computer Systems, 2(3):25 1-
273, August 1984.

[5] K. Birman, A. Schiper, and P. Stephenson.

[6] K. P. Birman.

[8] B. Chen, S. Kamat, and b! Zhao. Fault-tolerant real-time
communication in fddi-basted networks. In Proc. 16th IEEE
Real-Time Systems Symposium, pages 141-150, Pisa, Italy,
December 1995.

[9] F. Cristian. Probabilistic clock synchronization. Distributed
Computing, 3:146-158,19139.

1101 E Cristian. Reaching agreement on processor-group mem-
bership in synchronous distributed systems. Distributed
Computing, 4:175-187,1991.

[I 11 E Cristian, B. Dancy, and J. Dehn. Fault-tolerance in the ad-
vanced automation system. In Proc. of Fault-Tolerant Com-
puting Symposium, pages 6-17, June 1990.

[12] N. C. Hutchinson and L. L. Peterson. The x-Kemel: An
architecture for implementing network protocols. IEEE
Transactions on Software Engineering, 17(1):64-76, Jan-
uary 1991.

[I31 F. Jahanian, S. Fakhouri, and R. Rajkumar. Processor group
membership protocols: Specification, design, and imple-
mentation. In Proc. 12th Symposium on Reliable Distributed
Systems, pages 2-11,1993.

[I41 H. Kopetz and G. Griinsteidl. TIT - a protocol for fault-
tolerant real-time systems. IEEE Computer, 27(1): 14-23,
January 1994.

[I51 L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communicationsof the ACM, 21 (7):558-
565, July 1978.

[16] N. Malcolm, S. Kamat, and W. Zhao. Real-time communi-
cation in FDDI networks. Rcral-Time Systems, 10(1):75-107,
January 1996.

[17] S. Mishra, L. Peterson, and R. Schlichting. Consul: A com-
munication substrate for fault-tolerant distributed programs.
Distributed Systems Engineming Journal, 1 (2):87-103, De-
cember 1993.

[181 L. Moser and P. Melliar-Smith. Probabalistic bounds on mes-
sage delivery for the totem single-ring protocol. In Proc.
IEEE Real-Time Systems Symposium, pages 238-248,1994.

The real-time
publisherhubscriber inter-process communication model for
distributed real-time systems: Design and implementation.
In Proc. Real Time TechnologyandApplications Symposium,
pages 66-75, Chicago, IL, NIay 1995.

[20] A. M. Ricciardi and K. P. B m a n . Process membership in
asynchronous environments. Technical Report TR93-1328,
Dept. of Computer Science, Comell University, February
1993.

A low-level
processor group membership protocol for LANs. In Proc.
hit. Con$ on Distributed Computer Systems, pages 541-550,
1993.

[22] L. Sha, IR. Rajkumar, and S. S. Sathaye. Generalized rate
monotorric scheduling theory: A framework for developing
real-time systems. Proceedings of the IEEE, 82(1):68-82,
January 1994.

[23] K. Tindell, A. Bums, and A. J. Wellings. Calculating con-
troller area network (CAN) message response times. Control
Engineering Practice, 3(8):1163-1169, August 1995.

[24] R. van Renesse, T. Hickey, and K, Birman, Design and per-
formance of Horus: A lightweight group communications
system. Technical Report TR94-1442, Dept. of Computer
Science, Comell University, ,4ugust 1994.

[I91 R. Rajkumar, M. Gagliardi, and L. Sha.

[21] L. Rodrigues, P. Vekssimo, and J. Rufino.

259

