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Abstract 
Scheduling messages on the Controller Area Net- 

work (CAN) corresponds to assigning identifiers (IDS) 
to messages according t o  their priorities. If fized- 
priority scheduling such as deadline monotonic (OM) 
is used to calculate these priorities, then in general, 
it will result an low schedulability. Dynamic schedul- 
ing schemes such as earliest-deadline (ED) can give 
greater schedulability, but they are not practical for 
CAN because if the ID is t o  reflect message deadlines 
then a long ID must be used. This increases the length 
of each message to the point that ED is no better than 
DM. Our solution to this problem is the mazed trafic 
scheduler (MTS), which is a cross between ED and 
DM, and provides high schedulability without need- 
ing long IDS. Through simulations, we compare the 
performance of MTS with that of DM and ED* (an 
imaginary scheduler which works like ED, except it 
needs only short IDS). We use a realistic workload in 
our simulations based on messages typically found in 
computer-integrated manufacturing. Our simulations 
show that MTS  performs much better than DM and at 
the same level as ED*, ezcept under high loads and 
tight deadlines, when ED* is superior. 

1 Introduction 
Real-time controllers are today being used in di- 

verse applications such as manufacturing automation, 
robotic manipulators, and antilock braking systems. 
Because of the nature of the controlled process and/or 
for fault-tolerance reasons, a real-time controller is 
built with a network of processors which must coordi- 
nate their efforts to achieve a common goal. For cost- 
effectiveness reasons, usually a bus topology is used to 
connect the processors. 

In general, a real-time controller must detect events 
and then respond to them by taking appropriate ac- 
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agencies. 

tions. Real-world events are aperiodic in nature, but 
if an event occurs every 10-15ms on average and some 
action must be taken within 10ms of that event, then 
the corresponding sensor may be periodically polled to 
detect that event (with a period of lOms, if processing 
time is neglected). But if the same event is known to 
occur sporadically and has a large minimum interar- 
rival time (say  OS), then sampling the sensor every 
10ms makes no sense - it is a waste of communica- 
tion and computation bandwidth. A better solution 
will be to distribute intelligence by using smart sen- 
sors (sensors with limited processing abilities) [l]. In 
other words, it  is far better to let the sensor detect the 
event and notify the processor. This way, instead of 
one message every 10ms, there will be just one mes- 
sage whenever the event occurs, which is a t  least 10s 
apart. 

However, there is a disadvantage in using the above 
paradigm: sporadic messages are non-deterministic, 
making message scheduling much harder. But the ex- 
pected advantages in terms of fewer messages motivate 
us to find a communication protocol which can effi- 
ciently handle sporadic as well as periodic messages. 

Consider the kind of communication protocol which 
must be used to allow the smart sensor task to do 
its job. One can immediately think of at least two 
requirements: 

R1. The protocol must give fast bus access to high- 
priority sporadic messages. 

R2. Since all real-time systems also have periodic 
messages, the protocol should be able to support 
such messages efficiently as well. 

When trying to find such a protocol, we can im- 
mediately disregard CSMA-CD protocols like Ether- 
net [2] because of their unbounded network access la- 
tency. We can consider synchronous protocols like the 
token bus [2] and the time-triggered protocol (TTP) 
[3]. They satisfy the second requirement but not the 
first: it is well-known that these protocols give a large 
worst-case bus access latency making them unsuitable 
for systems with tight-deadline sporadic messages [4]. 
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SOF Identifier Control Data CRC Ack 

SOF: Start of Frame 
CRC: Cyclic Redundancy Code 
EOF: End of Frame 

EOF 

Figure 1: Various fields in the CAN data frame. 

The Controller Area Network (CAN) [5,6] is a 
contention-based multi-master network which uses a 
wired-OR (or wired-AND) bus and has the potential 
to efficiently handle both periodic as well as sporadic 
messages, thus satisfying both R1 and R2. 

In this paper we explore the capabilities of CAN in 
carrying mixed periodic, sporadic, and non-real-time 
traffic. We first develop a scheduling algorithm called 
the mixed trafic scheduler (MTS) which handles mes- 
sages of different priorities, and then evaluate its per- 
formance through simulations. 

The next section describes the CAN protocol in de- 
tail. Section 3 describes the various types of messages 
in our target application workload. Section 4 gives the 
MTS algorithm and its schedulability conditions. Sec- 
tion 5 gives simulation results. The paper concludes 
with Section 6. 

2 Controller Area Network (CAN) 
CAN [5,6] is an advanced serial communication pro- 

tocol for distributed real-time control systems. It is a 
contention-based multi-master network whose timeli- 
ness properties come from its collision resolution algo- 
rithm which gives a high schedulable utilization and 
guaranteed bus access latency less than 1 5 0 p  for the 
highest-priority message on a 1 Mbit/s bus. Some 
other salient features of CAN are prioritized bus ac- 
cess, reconfiguration flexibility, and high reliability in 
noisy environments through CRC checks and bit stuff- 
ing. 

2.1 Layered protocol 
The CAN specification defines the physical and data 

link layers (Layers 1 and 2 in the ISO/OSI reference 
model). Both layers are implemented in a bus inter- 
face chip which connects the processing element (like 
microprocessor or smart sensor) to the bus. Such 
chips are available from various vendors (e.g., Intel and 
Philips) with a variety of features. 

2.2 CAN data frame 
A data message in CAN has seven fields as shown 

in Figure 1. 
CAN allows for two message formats which can co- 

exist on the same bus. They differ in the length of 
the ID field: the standard format has an 11-bit ID, 
whereas the extended format has a 29-bit ID. The ID 
field serves two purposes: 

0 Controls bus arbitration. 

0 Describes the meaning of the data (message rout- 
ing). 

Here we describe message routing in CAN. (Bus ar- 
bitration is described in the next subsection.) The ID, 
instead of containing some destination address, con- 
tains a code identifying the meaning of the data. CAN 
allows all or part of the ID field to be used for this pur- 
pose. For example, if the ID is 11 bits long, periodic 
messages from a temperature sensor may have a binary 
code %xxxxxx10110, where an x denotes a bit not be- 
ing used for identification. All nodes desirous of know- 
ing the current temperature will set filters in their bus 
interface chips to match the above code. Then, when- 
ever a message with this ID code is sent on the bus, 
the interface chips will automatically receive it and no- 
tify the processing element of the node. This scheme 
is called message filtering. 

The control field specifies the number of bytes in the 
data field, from 0 to 8. The CRC field contains a 15 bit 
CRC check, and the ack field is used to acknowledge 
correct reception of a message. 

2.3 Bus arbitration mechanism 
CAN makes use of a wired-OR (or wired-AND) bus 

to connect all the n0des.l Two logical bit representa- 
tions are defined: dominant and recessive. If even a 
single node transmits a dominant bit on the bus, the 
bus will reflect a dominant bit, else it will reflect a 
recessive bit. 

When a processor has to send a message it first 
calculates the message ID which may be based on the 
priority of the message. The ID for each message must 
be unique to prevent a tie. 

The bus acquisition algorithm works as follows. 
Processors pass their messages and associated IDS to 
their bus interface chips. The chips wait till the bus is 
idle, then write the ID on the bus, one bit at a time, 
starting with the most significant bit. After writing 
each bit, each chip waits long enough for signals to 
propagate along the bus, then it reads the bus. If a 
chip had written a recessive bit but reads a dominant 
one, it means that another node has a message with 
a higher priority. If so, this node drops out of con- 
tention. In the end, there is only one winner and it 
can use the bus. 

2.4 Application interfaces for CAN: SDS 
and DeviceNet 

If software programs designed for CAN are to be 
compatible with each other, then a standard appli- 
cation interface will have to be defined. Currently, 
there are two emerging proposals: SDS from Honey- 
well and DeviceNet from Allen Bradley. The former 
is a master/slave protocol designed for simple sensors 
and actuators. It emphasizes a low-cost implement* 
tion. DeviceNet is a peer-to-peer connection-oriented 
protocol with more flexibility than SDS. Both proto- 
cols use the standard CAN message format with 11-bit 
IDS. 

'In the rest of the paper we assume a wired-OR bus. 
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3 
In computer-integrated manufacturing (CIM), the 

communicating devices are controllers (CPUs or 
PLCs), actuators (drives), and sensors. Some of these 
devices exchange periodic messages (such as drives) 
while others are more event-driven (such as smart sen- 
sors). Moreover, operators may need status informa- 
tion from various devices, thus generating messages 
which do not have timing constraints. So, we classify 
messages into three broad categories: 

1. Hard-deadline periodic messages. 
2. Hard-deadline sporadic messages. 
3. Non-real-time (best effort) aperiodic messages. 

Workload char act erist ics 

3.1 Periodic messages 
A common example of this type of messages is servo 

control of drives as in industrial cutting tools. The 
controller must periodically sample the current posi- 
tion/velocity of the drive and then send appropriate 
corrections to the drive. Such messages have hard 
deadlines, because if the update message to the drive is 
delayed beyond its deadline, the cutting tool may de- 
viate significantly from its desired path, thus ruining 
the workpiece. In general, any system which must fol- 
low a prescribed path will have hard-deadline periodic 
messages (because of the periodic sensor-controller- 
actuator loop). Such systems include all robots and 
industrial cutting tools. 

Note that a single periodic message will have mul- 
tiple invocations, each one period apart. So, whenever 
we use the term message to refer to a periodic, we are 
referring to all  invocations of that periodic. 

3.2 Sporadic messages 
Strictly speaking, all events in the real world are 

aperiodic in nature. If these events are expected to 
occur frequently enough, periodic monitoring can be 
used to detect them and take appropriate action (as 
in servo control). 

There are other events which are not as frequent, 
such as temperature of a process exceeding a crit- 
ical threshold. In fact, maximum interval between 
two such events is unbounded (event may never oc- 
cur again). In such cases, using periodic messages is a 
waste because there is nothing to say most of the time. 

Smart sensors [l] are most suitable for detecting 
such events. These sensors have DSP capabilities 
to recognize events on their own, so they signal the 
controller only when required. If these messages are 
treated as purely aperiodic, then we are assuming that 
they may be released at any time - even in rapid suc- 
cession. If so, we will not be able to guarantee their 
delivery by their deadlines. Fortunately, in most real- 
world situations, there is a minimum interval between 
consecutive aperiodic events. This corresponds to a 
minimum interarrival time (MIT) for these messages. 
Such aperiodic messages which have a MIT are called 
sporadic messages [7]. Knowing the MIT of a spo- 
radic message makes it possible to guarantee its deliv- 
ery even under the worst possible situation. 

3.3 Non-real-time messages 
In a manufacturing environment, an operator must 

be able to monitor the status of every device in the 
system. Also, some devices (especially drives) need to 
communicate operational data such as torque/speed 
limits and diagnostic information. Such messages are 
non-real-time because they do not have timing con- 
straints. Any communication protocol for manufac- 
turing applications must be able to  accommodate such 
messages while guaranteeing the deadlines of real-time 
traffic. 

3.4 Low-speed vs. high-speed real-time 

Messages in a manufacturing setting can have a 
wide range of deadlines. For example, messages from 
a controller to  a high-speed drive may have deadlines 
of few tens of microseconds (see Section 5.1 for more 
details). On the other hand, messages from devices 
such as temperature sensors can have deadlines of a 
few seconds because the physical property being mea- 
sured (temperature) changes very slowly. Thus, we 
further classify real-time messages into two classes: 
high-speed and low-speed, depending on the tightness 
of their deadlines. As will be clear in Section 4.2, the 
reason for this classification has to do with the number 
of bits required to represent the deadlines of messages. 

Note that “high-speed” is a relative term - relative 
to the tightest deadline do in the workload. So, all 
messages with the same order of magnitude deadlines 
as do (or within one order of magnitude difference from 
do) can be considered to be high-speed messages. All 
others will be low-speed. 

mess ages 

4 The Mixed Traffic Scheduler 
As stated earlier, access to the CAN bus is con- 

trolled by the IDS of competing messages. Then the 
question is ‘(how to assign IDS to messages to get the 
greatest possible schedulable utilization?” 

To see the difficulties faced in scheduling messages 
on CAN, we must first consider a typical CAN bus 
interface chip. These chips usually have memory space 
for one or more messages. When a processor has to 
send a message, it will calculate the ID and transfer 
the message (with its ID) to the chip’s memory. From 
then on, the chip will function autonomously: it will 
compete for the bus with the message ID, and upon 
getting access, it will transmit the message (there may 
be an option to notify the processor once a message 
has been sent). 

Once a message has been transferred to  the CAN 
chip for transmission, its ID will stay fixed unless the 
processor comes and updates it. If the ID is to be de- 
rived from the message’s priority, that priority should 
stay fixed (at least for reasonably long periods of time). 
So, fixed-priority scheduling is a natural fit for these 
CAN chips. Each message will have a unique prior- 
ity which will form its ID. This will not only uniquely 
identify the message for reception purposes but also 
schedule the message in a predictable fashion. How- 
ever, in general, fixed-priority schemes give lower uti- 
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lization than other schemes such as non-preemptive 
earliest-deadline2 (ED). This motivates us to use ED 
to schedule messages on CAN. However, under ED, 
message priorities change dynamically and it is infea- 
sible to continually update message IDS to reflect these 
priorities. This and other problems make ED imprac- 
tical for CAN. 

In this section we present the MTS scheduler which 
combines ED and fixed-priority scheduling to over- 
come the problems of ED. Like ED, MTS also requires 
that message IDS be updated but these updates can 
be spaced far apart in time, making MTS practical for 
CAN. 

4.1 Fixed-priority scheduling - low uti- 
lizat ion 

priority deadline 

As already mentioned, fixed-priority scheduling is 
the natural choice for currently available CAN bus in- 
terface chips. The most popular form of fixed-priority 
real-time scheduling is rate monotonic (RM) [lo]. In 
this scheme, messages with a shorter period get higher 
priority than those with longer periods. RM assumes 
that deadline equals period, which is not always true. 
So, instead of RM, we can use its close relative, dead- 
line monotonic (DM) scheduling [ll]. With DM, mes- 
sages with tighter deadlines are assigned higher prior- 
ities. Then these priorities will form the ID for each 
message. Once a message starts transmission, it will 
run to completion even if higher-priority messages are 
released during this time; that is, we must use the 
non-preemptive version of DM. 

In Section 3 we saw that the network must sup- 
port hard periodic as well as sporadic messages. More- 
over, it must also support non-real-time traffic. DM 
can do this by treating sporadic messages as period- 
ics with periods equal to their minimum interarrival 
times, then assigning priorities to all real-time mes- 
sage according to  their deadlines (breaking ties arbi- 
trarily), then using the remaining priority levels for 
non-real-time messages. This ensures that real-time 
traffic is protected from non-real-time traffic. Well- 
known schedulability conditions can then be used to 
check if all hard real-time messages are feasibly schedu- 
lable or not. We will discuss details later. 

DM is a simple scheme and is easily implementable 
on CAN. However, to get greater schedulable utiliza- 
tion, we are motivated to use ED to schedule messages 
on CAN. 

4.2 Earliest-deadline scheduling - dead- 

ED works by giving higher priority to messages with 
earlier deadlines-to-start-transmission at the schedul- 
ing instant. Our goal is therefore to make the IDS 
reflect the deadlines of messages. Moreover, each mes- 
sage must have a unique ID (which is a requirement of 
CAN). This can be done by dividing the ID into three 

line encoding problems 

Non-preemptive scheduling under release time constraints 
is NP-hard in the strong sense [SI, meaning that there is no 
polynomial time scheduler which will always give the maximum 
schedulable utilization. However, Zhao and Ramamritham [9] 
showed that ED performs better than other simple heuristics. 

uniqueness 
1 I 

Figure 2: Structure of the ID for ED scheduling. 

fields [12], as shown in Figure 2. The deadline field is 
derived from the deadline of the message. Actually, it 
is the logical inverse of the deadline because we want 
the shortest deadline to have the highest priority. To 
deal with the case when two messages have the same 
deadline, each message has a unique code which forms 
its uniqueness field. So, if two messages have the same 
deadline, the one with the higher uniqueness code will 
win. This uniqueness code also serves to identify the 
message for reception purposes. For ED scheduling, 
messages may be assigned codes arbitrarily as long as 
they are unique for each message [12]. However, as 
we will see later, the question of assigning uniqueness 
codes will be critical in MTS. 

In Figure 2 there is also a 1-bit priority field which 
is 1 for real-time messages and 0 otherwise. This en- 
sures that real-time messages always have higher pri- 
ority than non-real-time ones. 

As time progresses, deadline values get larger and 
larger. Eventually, they will require more bits than 
are available in the CAN ID field. The obvious solu- 
tion is to use slack time [12] (time to  deadline) instead 
of the deadline itself. But this introduces two other 
problems: 

P1. Remaining slack time of a message changes with 
every clock tick. This will require IDS of all mes- 
sages to be updated continually (at the start of 
each arbitration round). This will put too much 
burden on the local CPU. 

P2. In Section 3 we saw that a typical communica- 
tion workload in a manufacturing environment 
may have messages with vastly different deadlines. 
This means that we must encode a wide range of 
laxities, and there may not be enough bits in the 
CAN ID field to do this. 

Each of the above two problems is addressed below. 
Time epochs. We present a solution to P1 in great 
detail. We will encounter the same problem with MTS 
where we will use the same solution. 

One simple way to solve P1 will be to redesign 
the bus interface chips to have programmable coun- 
ters in appropriate positions of the ID. This way, 
the slack time will be updated automatically at ev- 
ery clock tick. However, at present such chips are 
not commercially available. Even if they were, they 
would be more expensive than chips without counters. 
This motivates us to  investigate a software solution (a 
cost/performance tradeoff). 

In a software solution, the CPU will still have to 
update the ID, but we want to reduce the frequency of 
these updates, i.e., spend less CPU-time on updates. 
Our solution uses actual deadlines (instead of slack 
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time) but expresses them relative to a periodically in- 
creasing reference called the s t u d  of epoch (SOE). The 
time between two consecutive SOEs is called the length 
of epoch, C. Then, the deadline field for message i will 
be the logical inverse of d; - SOE = di - L i ]  1, where 
di is the deadline of message i and t is the current 
time it is assumed that all nodes have synchronized 
clocks \ . Value of4  depends on what fraction of CPU- 
time the designer is willing to allow for ID updates. 
Let this fraction be 2. Let M be the MIPS of the 
CPU and n be the number of instructions required to 
do the update. Since each update must be C seconds 
apart, 1 =  +. 

So at every node, there is a periodic (timer-driven) 
process which wakes up every C seconds and updates 
IDS of all ready messages according to the above equa- 
tion. Comparing this with the slack-time approach, we 
see that if C is greater than the average message length, 
this approach uses less CPU time. Besides, the update 
process is periodic and predictable, unlike the slack- 
time approach where the CPU must be aperiodically 
interrupted at the start of each arbitration round. But 
these benefits come at a price - our approach requires 
more bits for the deadline field. 

Let D be the largest value of (d  - r )  of any message, 
where T is the release time. Then for the slack-time ap- 
proach, length of the deadline field is m = log, D ,  but 
for our method, m = log,(C+D). This is to accommo- 
date the worst-case situation shown in Figure 3. When 
message i, which has the largest (d-T) ,  is released just 
before a new SOE, then the deadline field of message 
i will have value di - SOEl = + D.  

1 

Figure 3: Largest possible value of the deadline field. 

deadline DM priority 

Length of ID field. The reason ED is impractical 
for CAN is that it requires too many bits for the dead- 
line field in the ID for the following reason. In a typical 
workload, messages associated with high-speed drives 
may have deadlines in the hundreds of microseconds 
range. Other messages, such as those related to tem- 
perature sensors, may have deadlines of several sec- 
onds. If we represent deadlines at the granularity of, 
say, a microsecond, then more than 20 bits will be re- 
quired to represent deadlines of several seconds. 

One may say that if the extended format of CAN 
is used with its 29-bit IDS, then there will be enough 
bits to represent deadlines with enough left over for 
the uniqueness field. Unfortunately, if this scheme is 
used, each message will be 20 bits longer compared 
to the standard 11-bit format of CAN (the extended 
format uses two more framing bits than the standard 
format). This means that 20-30% bandwidth will be 
wasted just because of using the longer ID format. 

This creates a dilemma: DM is easy to implement 

0 1  DM priority 

0 0  fixed priority 

Figure 4: Structure of the ID for MTS. Parts (a) 
through (c) show the IDS for high-speed, low-speed, 
and non-real-time messages, respectively. 

but it gives low utilization. We tried to use ED in 
hope of getting better utilization, but it increased the 
length of each message to the point that there was no 
net gain. Our solution to this problem is the MTS 
scheduler. 

4.3 MTS 
MTS attempts to give high utilization (like ED) 

while using the standard 11-bit ID format (like DM). 
In DM, an 11-bit ID can represent 2048 messages. 

No realistic system will have this many different mes- 
sages, implying that a few ID bits will remain unused. 
The goal is to use these bits to enhance schedulability. 
Since high-speed messages tend to use several times 
more bandwidth than low-speed ones, we will get a 
large improvement if we can increase the schedulabil- 
ity of just high-speed messages. 

The idea behind MTS is to try to use ED for high- 
speed messages and DM for low-speed ones. First, 
we give high-speed messages priority over low-speed 
and non-real-time ones by setting the most significant 
bit to 1 in the ID for high-speed messages (Figure 4a). 
This protects high-speed messages from all other types 
of traffic. If the uniqueness field is to be, say 5 bits 
(allowing 32 high-speed messages), and the priority 
field is 1 bit, then the remaining 5 bits are still not 
enough to encode the deadlines (relative to the latest 
SOE). Our solution is to quantize time into regions 
and encode deadlines according to which region they 
fall in. To distinguish messages whose deadlines fall in 
the same region, we use the DM-priority of a message 
as its uniqueness code. This makes MTS a hierarchi- 
cal scheduler. At the top level is ED: if the deadlines 
of two messages can be distinguished after quantiza- 
tion, then the one with the earlier deadline has higher 
priority. At the lower level is DM: if messages have 
deadlines in the same region, they will be scheduled 
by their DM priority. 

We can calculate length of a region (I,.) as I ,  = A 
where m is the length of the deadline field (5 in this 
case). This is clear from Figure 5 (shown for m = 
2). We must reserve one coding for messages whose 
deadlines fall beyond the end of the current epoch. 
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I + 

end of epoch SOE 
4 b 

I 

Figure 5: Quantization of deadlines (relative to start 
of epoch) for m = 2. 

This leaves 2m - 1 codings for deadlines before the 
end of epoch. 

why not use logarithmic 
quantization for the deadlines? This way, we will 
get fine-grain discrimination for “near” deadlines and 
coarse-grain for (‘far” deadlines. This scheme would 
work if we were updating the deadline fields constantly, 
which we are not. Deadline fields of all messages are 
updated at the SOE and then stay fixed till the next 
SOE. So, what was “far” at the start of the epoch will 
eventually become “near” as time progresses, but its 
deadline encoding will stay the same coarse-grained 
value as it was earlier. Then, MTS will degrade to 
DM. 

We use DM scheduling for low-speed messages and 
fixed-priority scheduling for non-real-time ones, with 
the latter being assigned priorities arbitrarily. The 
IDS for these messages are shown in Figures 4 (b) and 
(c). The second most significant bit gives low-speed 
messages higher priority than non-real-time ones. 

This scheme allows up to 32 different high-speed 
messages (periodic or sporadic), 512 low-speed mes- 
sages (periodic or sporadic), and 512 non-real-time 
messages - which should be sufficient for most ap- 
plications. 
4.4 Schedulability conditions 

For MTS, we want off-line schedulability conditions 
which, when satisfied, will guarantee that all messages 
will meet their deadlines. We will first review such 
conditions for non-preemptive ED and DM, and then 
develop those for MTS. 
Earliest-deadline: Schedulability conditions for 
non-preemptive ED are described by Zheng and Shin 
[13]. worst-case, sporadic messages are treated as 
periodic with period equal to their MIT. Then, if all 
messages are released at the same time t = 0 (creat- 
ing the worst-possible congestion), they will still be 
schedulable if the following two conditions hold: 

Another idea may be: 

1. ~ j ” = , C j / T j  _< 1. 

2. ’dt E S,  zr=1 [(t - di)/%l+Ci + Cp 5 t ,  
where S = Uy=lSi, Si = {d i  + nz : n = 0 , 1 , .  . ., 
[(tmax - di)/Zj}, and tmax = max(d1,. . ., dn, 
(Cp + Ci”=1(1 - di /Z)Ci) / ( I -  Cdn,l CilZ)).  

where T,,  Ci, di are the period, length, and deadline 
of message i, C, is the length of the longest possible 
packet,,and [XI+ = n if n - 1 5 z < n,  n = 1 , 2 ,  ..., 
and [XI+ = 0 for z < 0. 

The first condition ensures that maximum utiliza- 
tion does not exceed capacity, and the second one en- 
sures that each message with deadline < t can finish 
by t .  

We must extend the above conditions for the situa- 
tion when some messages have phase offsets and can- 
not all be released at the same time. A common exam- 
ple of such messages are those involved in servo control. 
The drive first sends a feedback to the controller which 
then sends a command back to the drive. These two 
messages can never be released at the same time (be- 
cause one synchronizes off the other). The worst-case 
occurs when one is released at  t = 0 and the other at 
its phase offset. We can model every such pair of mes- 
sages by letting the first message have phase dl  = 0 
and the second message with $2 = its phase offset rel- 
ative to the first message. Then the above conditions 
become: 

1. Cj/Tj 5 1. 

2. W E S, [(t - di - 4i)/Zl+Ci + Cp 5 t, 
whereS=Uy=l=lSi, Si = { d i + n Z :  n = O , l , . . . ,  
[(tmax - di - 4i ) /GJ} ,  and 
tmUx = max{dl,. . . ,  dn, 
( c p  + C:=l(1- di/Z)Ci)/(l-  E?--, Ci/Z)}.  

Deadline monotonic: For the non-preemptive 
case, a message i is feasible if all higher-priority mes- 
sages are feasible and i finds an opportunity to start 
transmission sometime during [0, di - Ci]. So, all we 
have to do is look at messages with priority higher than 
that of i and assume that they are the only messages 
in the system. If the bus ever becomes idle during 
[0, di - Ci], then i is schedulable. If messages are num- 
bered according to their priority with j = 0 being the 
highest-priority message, then i is schedulable if [14] : 

3t E S, cfzi~(t - +j)/TjlCj + ~p < t ,  
where S ={set of all release times of messages 
O , l , .  . . j  i-1 through time di-Ci} u{di-Ci}, 
and $j are the relat ive phase offsets. 

To check schedulability of a set of messages, repeat 
the above check for each message. 
MTS: First, we will discuss the schedulability check 
for high-speed messages and then look at low-speed 
ones. The worst-case loading conditions for high-speed 
messages result when there is 

1. worst possible traffic congestion, and 
2. worst possible deadline encoding. 

The first situation is created by releasing all mes- 
sages at the same time t o  (messages with non-zero q5i 
will be released later). To see the second situation, 
consider Figure 6. Suppose we want to determine 
worst-case schedulability of message i .  We want to 
maximize the number of messages which get priority 
over i. If deadline-to-start of i falls at the start of a re- 
gion, then all messages with earlier deadlines-to-start 
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Figure 6: Suppose j has higher DM-priority than i 
but IC does not. Then in (a), i has the highest priority, 
whereas in (b), it has the lowest. So (b) is the worst- 
case situation for i. 

will fall in earlier regions and get higher priority. More- 
over, it will allow the maximum number of messages 
- whose deadlines-to-start are greater than that of i 
- to fall in the same region as i. If they have higher 
DM-priority, they will also go before i. 

Now, we can draw a parallel between schedulability 
conditions for MTS and those for DM. To determine 
schedulability of some message, consider its first in- 
vocation i and all j with priority greater than that 
of i under worst-case situations (for MTS, this means 
deadline-to-start of i coincides with the start of a re- 
gion). Then, from the above discussion, message invo- 
cations j will have priority over i if 

1. ( d i  - Ci) > (d j  - Cj), or 
2. (a) (di-Ci) < (d j  -C j )  5 ( d i - C i + l r ) ,  and 

(b) DM priority of j is greater than that of i, 

(c) j is released before di  - Ci. 
and 

Note that j represents individual invocations, not en- 
tire “messages.” 

Then, if we consider only those invocations j which 
satisfy the above conditions and schedule them accord- 
ing to MTS and the bus ever becomes idle during in- 
terval [ t o , t o  + (d i  - Ci)], then message i will get a 
chance to run and it will be schedulable. This check 
must be repeated for each high-speed message in the 
workload. Formally, a message is schedulable if its first 
invocation i satisfies the condition: 

t-(to++j)lCj + c < t 3 E s, C V J T  P -  , 
where each j must satisfy the above condi- 
tions, S ={set of release times of each j }  
U{& --Ci}, CP is the size of a longest possible 
packet, and q5j are the relative phase offsets. 

Checking schedulability of low-speed messages is 
simple - just check DM schedulability for each 
low-speed message. Since high-speed messages have 
shorter deadlines than low-speed ones, they will auto- 
matically have higher DM priority (which is exactly 
what we want). 

5 Evaluation 
We have designed MTS to offer better performance 

and schedulability than DM. Since deadlines in MTS 
are quantized, we would expect the performance of 
MTS to be close to that of ED if somehow message 
length did not increase when using ED. So, let ED* be 
an ideal (imaginary) scheduling policy which works the 
same as ED but requires only an 11-bit ID. Then ED*’s 
performance should be an upper bound on MTS’s. 

In the absence of any analytical results to prove 
which scheduler is better, we have to resort to simu- 
lations to evaluate performance. For this, we need a 
workload. Rather than randomly generating messages, 
we came up with a single realistic workload model - 
realistic in the sense that all messages are associated 
with devices commonly used in manufacturing such as 
drives, sensors, etc. 

In this section, we will first describe our workload 
model, then present simulations to evaluate MTS’s 
performance as compared to DM and ED*. 

5.1 Workload model 
In computer-integrated manufacturing (CIM), high- 

speed messages are usually related to servo control 
of drives. Currently-available drives can operate at 
speeds of up to 1200 rpm or higher. Frequency of up- 
dates needed to control such drives is a function of how 
much error (e.g., in position and velocity) is tolerable 
for the application at hand [15], but these frequencies 
can be as high as 10 kHz. As already mentioned, a 
pair of messages are involved in controlling each drive. 
First, the drive will send feedback to the controller. 
The controller will require some time to compute the 
new command, then send this to the drive. The drive 
will adjust according to the new command, and after 
some delay, repeat the cycle. For simulation purposes, 
we assume that the delay on each side is 10% of the 
cycle time. So if the cycle is of length e, the cycle 
will start by the drive sending a message at time t o  
whose deadline will be t o  + 0 . 4 ~ .  At time t o  + 0.5c, 
the controller will send the new command to the drive 
with deadline t o  + 0.9c, and then the cycle will repeat 
forever. 

An example of high-speed sporadic messages will be 
those associated with a robotic gripper. Each finger 
in the gripper will have its own drive. Since the fin- 
ger must be controlled precisely, the update frequency 
for these drives will be quite high. Now, to minimize 
the time required to grasp an object, velocity con- 
trol may initially be used to close the fingers rapidly. 
When the fingers touch the object, the controller must 
switch to force control to avoid both slippage at one 
hand and damage to the object (from excessive force) 
at the other. To detect first-contact, each finger is 
equipped with a sensor which will send a message on 
contact [16]. Since the controller must immediately 
switch control strategies, this message will not only 
have a hard deadline, but also a very tight one. For 
simulation, we assume that this message must be re- 
ceived by the controller within one-fourth of the cycle 
time of the drive to give the controller enough time 
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to switch control strategies. Also, the minimum inter- 
val between a robot picking up two separate objects 
will be at least several seconds, which is the minimum 
interarrival time (MIT) for these sporadic messages. 

Low-speed periodic messages can be associated with 
several types of devices such as slow drives (e.g., 200 
rpm) and periodic polling of dumb sensors. Such mes- 
sages will have periods and deadlines in the order of 
several milliseconds. 

Low-speed sporadic messages may result, for ex- 
ample, from a smart sensor monitoring the tempera- 
ture of a process. If the temperature exceeds a cer- 
tain limit, the sensor transmits a warning to  some 
controller which may shut down the process. Since 
temperature changes slowly, such messages will have 
deadlines of tens of milliseconds or more. Once the 
process is stopped, i t  will take at least several minutes 
to restart i t ,  which will be the minimum interarrival 
time for these messages. 

Having a qualitative idea of the types of messages 
in CIM, we can now choose specific values for message 
periods and deadlines to  be used in simulation. 

Consider a drilling machine with an attached robot 
arm to move workpieces. Suppose the robot has a 
two-fingered gripper. Since the fingers must be con- 
trolled precisely, their drives will have a high update 
frequency which we chose to  be 8 kHz. The robot arm 
will have several joints, each with a drive. They re- 
quire a high degree of precision as well, but not quite 
as high as the fingers, so we chose 6 kHz as their up- 
date frequency. One drive is needed to  move the drill 
along a single axis (in and out of the workpiece). This 
carriage requires even less precision, so we chose its 
frequency to  be 4 kHz. Finally, the drill itself has a 
drive whose speed is limited by the maximum possible 
metal removal rates. We chose its update frequency 
to be 2 kHz. Each of these drives has a pair of mes- 
sages associated with i t  whose deadlines are assigned 
according to  the general framework presented earlier. 

For each finger there is a smart contact sensor. This 
means one sporadic message per finger with a deadline 
of one-fourth of the drive cycle ( 3 0 ~ s ) .  

For low-speed messages, we arbitrarily chose peri- 
odic messages to have periods of 20ms and deadlines 
of Sms, and sporadic messages with deadlines of 5ms 
and MITs of 5s. 

Table 1 summarizes the choice of parameters. It 
also gives the number of messages of each type for our 
simulations. The values marked with "*" are default 
and will be varied during simulation. 

Now, we must consider the length of each message. 
The standard CAN message format requires 47 fram- 
ing bits per message for ID, CRC, etc. For position 
or velocity control of a drive, 32-bit command and 32- 
bit feedback variables are required [17], making each 
message 79 bits long. We use this length for each peri- 
odic message in the workload as well as for the longest 
possible message ((7,). 

Aperiodic messages are used to notify a controller 
of some event. A unique message ID is enough for the 
controller to  recognize which event is being signaled, so 

Class Period (ms) Deadline (ms) MZT- 
Periodc 20.0 8.0 
Aperiodic - 5 .O 5s 

__ 

High-speed messages 
Type Class Period/MIT D eadline # of mssg. 
Fingers Periodic 1 2 5 . 0 ~ s  (8 kHz) 5 0 . 0 ~ ~  4 

2 
2 

Sensors heriodic 2s 30.0us* 2" 
Drill 

I Low-sseed messages I 

Table 1: Simulation workload. 

ED* 

MTS 

I I 
0.0 2.0 4.0 6.0 8.0 

Number of 6kIIz messages 

Figure 7: Schedulability under DM, MTS, and ED* 
as number of 6 kHz periodic messages are varied. 

aperiodics can have 0 data bytes, making them 47 bits 
long each. This is the length we use in our simulations. 

The last parameter to  consider is the length of 
epoch (t) for the simulations. We assume a 20 MIPS 
CPU. If each deadline update requires 1000 instruc- 
tions and we allow 5% of CPU time for these updates, 
then 1 = l o , o s ~ ~ ~ x , o e ,  = lms. Then each region has 
length I, = t/(2m - 1) = l m ~ / ( 2 ~  - 1) = 3 2 . 3 ~ s .  

5.2 Simulation results 
Current CAN chips are designed for a 1 Mb/s physi- 

cal medium. This speed is insufficient for applications 
like high-speed servoing. So in our simulations, we 
assume a 10 Mb/s physical medium (which implies a 
time granularity of 0 . 1 ~ ~ ) .  

In all our simulations, we use the general drilling 
machine workload described in the previous subsec- 
tion. Using the schedulability conditions of section 4.4, 
we want to check schedulability of workloads under dif- 
ferent scheduling policies when one workload parame- 
ter (such as the number of a certain type of message) is 
varied. We expect that MTS will perform better than 
DM and close to ED*. Initially, we evaluate MTS's 
performance for high-speed messages. Then we go on 
to low-speed messages. 

Varying number of high-speed periodics: We 
varied the number of 6 kHz periodic messages. This 
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ED* 

MTS 

DM 

~~ 

0.0 20.0 40.0 60.0 80.0 100.0 
Deadlines of 6wIz messages (microseconds) 

Figure 8: Deadlines of 6 kHz periodic messages for 
which workload is unschedulable under DM, MTS, and 
ED*. 

can be thought of as varying the number of joints in 
the robot arm. 

All other high-speed message types have fixed pa- 
rameters as shown in Table l :  two fingers (four period- 
ics) and two contact sensors (two sporadics); one drill 
carriage (two periodics); and one drill (two periodics). 
No low-speed messages are needed at this point since 
they do not affect the schedulability of high-speed mes- 
sages. 

The schedulability results for DM, ED*, and MTS 
are shown in Figure 7. DM can handle only five 6 kHz 
messages (total utilization of 58.5%), whereas both 
ED* and MTS can handle up to  8 each (72.7% uti- 
lization). At least for this workload, MTS performed 
better than DM and same as ED*. 
Varying deadlines of high-speed periodics: In 
this simulation, we varied the deadlines of 6 kHz peri- 
odic messages while keeping their number fixed at 6. 
Parameters for all other message types were the same 
as in Table 1, giving a utilization of 63.2%. 

This workload was found unschedulable under DM 
at the deadlines of 99.911s or less (Figure 8). On the 
other hand, the workload was schedulable under both 
MTS and ED* even at the smallest possible deadline 
of 5 6 . 8 ~ s .  (If deadlines are decreased to  56.7ps, then 
the message set is unschedulable because C, + two 8 
kHz messages + three 6 kHz messages + two sporadic 
messages need at least 5 6 . 8 ~ ~  to  complete). 

Again, MTS performed much better than DM and 
at the same level as ED*. 
Varying number of high-speed sporadics: In 
this simulation, we vary the number of sporadic mes- 
sages while keeping their deadlines fixed at the value 
shown in Table 1. The number and deadlines of all 
periodic messages are fixed at the values in Table 1, 
giving a utilization of 63.2%. 

Our simulations showed that DM can handle only 
one sporadic message in the workload, whereas both 
MTS and ED* handled up to four (Figure 9). 

DM-schedulability is shown to decrease rapidly as 
the number of sporadic messages increase. On the 

ED' 

MTS 

DM 

0.0 1 .o 2.0 3.0 4.0 
Numbw of sporadic messages 

Figure 9: Schedulability under DM, MTS, and ED* 
as number of sporadic messages are varied. 

ED* 

MTS 

DM 

~~ 

0.0 50.0 100.0 1 
Deadlin- of sporadic messages (microseconds) 

1.0 

Figure 10: Deadlines of sporadic messages for which 
workload is unschedulable under DM, MTS, and ED*. 
Number of 6 kKz periodics is 6 for this simulation. 

other hand, MTS (as well as ED*) is capable of han- 
dling a significant number of sporadic messages in the 
workload. 

Varying deadlines of high-speed sporadics: In 
this simulation, we vary the deadlines of all high-speed 
sporadic messages while keeping all other parameters 
at their default values. 

The workload becomes unschedulable under DM for 
sporadic message deadlines of 1 0 4 . 1 ~ s  or lower (Fig- 
ure lo),  but continues to  be feasible under both MTS 
and ED* till the deadline of 17.3ps, which is minimum 
possible (C, + two sporadic messages take at least 
1 7 . 3 ~ s  to  complete). 

To better compare MTS against ED*, we tested the 
two under heavier loads. We increased the number of 
6 kHz messages to  10 (82.2% utilization), then started 
varying sporadic message deadlines. This workload 
was unschedulable under MTS for deadlines of 1 5 1 . 5 ~ ~  
or less, whereas it became unschedulable under ED* 
only at deadlines of 7 2 . 5 ~ s  or less (Figure 11). So un- 
der heavy loads and tight deadlines, ED* outperforms 
MTS, as expected. 
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0.0 50.0 100.0 150.0 200.0 
Deadlines of sporadic messages (microseconds) 

Figure 11: Deadlines of sporadic messages for which 
workload is unschedulable under MTS and ED*. Num- 
ber of 6 kHz periodics is 10 for this simulation. 

Low-speed messages: Under default loading con- 
ditions, high-speed messages use up 63.2% of the band- 
width. The remaining 36.8% can accommodate sev- 
eral hundred low-speed sporadic and periodic mes- 
sages. Even 10% of the bandwidth is enough to  ac- 
commodate about a hundred or so low-speed messages. 
Thus, the schedulability of low-speed messages is not 
a problem. Our simulations showed no real difference 
between DM, MTS, or ED* in scheduling low-speed 
messages for a fixed load of high-speed messages. 

6 Conclusion 
The two most attractive features of CAN are a short 

worst-case bus access latency and a bus acquisition 
scheme based on the priority of messages, both of 
which give CAN the potential for high performance 
and fewer missed deadlines in distributed control sys- 
tems. However, the bus arbitration mechanism must 
be used properly with careful design of the message 
ID; otherwise, CAN will give low utilization. 

In this paper we presented the MTS scheduler which 
allowed three different types of messages - hard spo- 
radic, hard periodic, and non-real-time aperiodic - 
to  be carried on the same bus. Then, we designed the 
message ID which implements MTS on CAN. MTS not 
only gives high schedulability but is also easily imple- 
mentable on CAN. 

Through simulations we compared MTS with DM 
and ED* (an idealized form of ED). We used a realistic 
workload for these simulations, modeling drives, con- 
trollers, and sensors typically found in CIM systems. 
As expected, MTS performed much better than DM 
and only slightly worse than ED*, and in many cases, 
it matched the performance of ED*. 
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