
Non-Preemptive Scheduling of Messages on Controller
Area Network for Real-Time Control Applications*

Khawar M. Zuberi and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, MI 48109-2122

{zuberi,kgshin} Oeecs. umich. edu

Abstract
Scheduling messages on the Controller Area Net-

work (CAN) corresponds to assigning identifiers (IDS)
to messages according t o their priorities. If fized-
priority scheduling such as deadline monotonic (OM)
is used to calculate these priorities, then in general,
it will result an low schedulability. Dynamic schedul-
ing schemes such as earliest-deadline (ED) can give
greater schedulability, but they are not practical for
CAN because if the ID is t o reflect message deadlines
then a long ID must be used. This increases the length
of each message to the point that ED is no better than
DM. Our solution to this problem is the mazed trafic
scheduler (MTS), which is a cross between ED and
DM, and provides high schedulability without need-
ing long IDS. Through simulations, we compare the
performance of MTS with that of DM and ED* (an
imaginary scheduler which works like ED, except it
needs only short IDS). We use a realistic workload in
our simulations based on messages typically found in
computer-integrated manufacturing. Our simulations
show that MTS performs much better than DM and at
the same level as ED*, ezcept under high loads and
tight deadlines, when ED* is superior.

1 Introduction
Real-time controllers are today being used in di-

verse applications such as manufacturing automation,
robotic manipulators, and antilock braking systems.
Because of the nature of the controlled process and/or
for fault-tolerance reasons, a real-time controller is
built with a network of processors which must coordi-
nate their efforts to achieve a common goal. For cost-
effectiveness reasons, usually a bus topology is used to
connect the processors.

In general, a real-time controller must detect events
and then respond to them by taking appropriate ac-

*The work reported in this paper was supported in part by
the NSF under Grants MIP-9203895 and DDM-9313222, and by
the ONR under Grant N00014-94-1-0229. Any opinions, find-
ings, and conclusions or recommendations are those of the au-
thors and do not necessarily reflect the views of the funding
agencies.

tions. Real-world events are aperiodic in nature, but
if an event occurs every 10-15ms on average and some
action must be taken within 10ms of that event, then
the corresponding sensor may be periodically polled to
detect that event (with a period of lOms, if processing
time is neglected). But if the same event is known to
occur sporadically and has a large minimum interar-
rival time (say OS), then sampling the sensor every
10ms makes no sense - it is a waste of communica-
tion and computation bandwidth. A better solution
will be to distribute intelligence by using smart sen-
sors (sensors with limited processing abilities) [l]. In
other words, it is far better to let the sensor detect the
event and notify the processor. This way, instead of
one message every 10ms, there will be just one mes-
sage whenever the event occurs, which is a t least 10s
apart.

However, there is a disadvantage in using the above
paradigm: sporadic messages are non-deterministic,
making message scheduling much harder. But the ex-
pected advantages in terms of fewer messages motivate
us to find a communication protocol which can effi-
ciently handle sporadic as well as periodic messages.

Consider the kind of communication protocol which
must be used to allow the smart sensor task to do
its job. One can immediately think of at least two
requirements:

R1. The protocol must give fast bus access to high-
priority sporadic messages.

R2. Since all real-time systems also have periodic
messages, the protocol should be able to support
such messages efficiently as well.

When trying to find such a protocol, we can im-
mediately disregard CSMA-CD protocols like Ether-
net [2] because of their unbounded network access la-
tency. We can consider synchronous protocols like the
token bus [2] and the time-triggered protocol (TTP)
[3]. They satisfy the second requirement but not the
first: it is well-known that these protocols give a large
worst-case bus access latency making them unsuitable
for systems with tight-deadline sporadic messages [4].

240
1080-1812/95 $04.00 0 1995 IEEE

SOF Identifier Control Data CRC Ack

SOF: Start of Frame
CRC: Cyclic Redundancy Code
EOF: End of Frame

EOF

Figure 1: Various fields in the CAN data frame.

The Controller Area Network (CAN) [5,6] is a
contention-based multi-master network which uses a
wired-OR (or wired-AND) bus and has the potential
to efficiently handle both periodic as well as sporadic
messages, thus satisfying both R1 and R2.

In this paper we explore the capabilities of CAN in
carrying mixed periodic, sporadic, and non-real-time
traffic. We first develop a scheduling algorithm called
the mixed trafic scheduler (MTS) which handles mes-
sages of different priorities, and then evaluate its per-
formance through simulations.

The next section describes the CAN protocol in de-
tail. Section 3 describes the various types of messages
in our target application workload. Section 4 gives the
MTS algorithm and its schedulability conditions. Sec-
tion 5 gives simulation results. The paper concludes
with Section 6.

2 Controller Area Network (CAN)
CAN [5,6] is an advanced serial communication pro-

tocol for distributed real-time control systems. It is a
contention-based multi-master network whose timeli-
ness properties come from its collision resolution algo-
rithm which gives a high schedulable utilization and
guaranteed bus access latency less than 1 5 0 p for the
highest-priority message on a 1 Mbit/s bus. Some
other salient features of CAN are prioritized bus ac-
cess, reconfiguration flexibility, and high reliability in
noisy environments through CRC checks and bit stuff-
ing.

2.1 Layered protocol
The CAN specification defines the physical and data

link layers (Layers 1 and 2 in the ISO/OSI reference
model). Both layers are implemented in a bus inter-
face chip which connects the processing element (like
microprocessor or smart sensor) to the bus. Such
chips are available from various vendors (e.g., Intel and
Philips) with a variety of features.

2.2 CAN data frame
A data message in CAN has seven fields as shown

in Figure 1.
CAN allows for two message formats which can co-

exist on the same bus. They differ in the length of
the ID field: the standard format has an 11-bit ID,
whereas the extended format has a 29-bit ID. The ID
field serves two purposes:

0 Controls bus arbitration.

0 Describes the meaning of the data (message rout-
ing).

Here we describe message routing in CAN. (Bus ar-
bitration is described in the next subsection.) The ID,
instead of containing some destination address, con-
tains a code identifying the meaning of the data. CAN
allows all or part of the ID field to be used for this pur-
pose. For example, if the ID is 11 bits long, periodic
messages from a temperature sensor may have a binary
code %xxxxxx10110, where an x denotes a bit not be-
ing used for identification. All nodes desirous of know-
ing the current temperature will set filters in their bus
interface chips to match the above code. Then, when-
ever a message with this ID code is sent on the bus,
the interface chips will automatically receive it and no-
tify the processing element of the node. This scheme
is called message filtering.

The control field specifies the number of bytes in the
data field, from 0 to 8. The CRC field contains a 15 bit
CRC check, and the ack field is used to acknowledge
correct reception of a message.

2.3 Bus arbitration mechanism
CAN makes use of a wired-OR (or wired-AND) bus

to connect all the n0des.l Two logical bit representa-
tions are defined: dominant and recessive. If even a
single node transmits a dominant bit on the bus, the
bus will reflect a dominant bit, else it will reflect a
recessive bit.

When a processor has to send a message it first
calculates the message ID which may be based on the
priority of the message. The ID for each message must
be unique to prevent a tie.

The bus acquisition algorithm works as follows.
Processors pass their messages and associated IDS to
their bus interface chips. The chips wait till the bus is
idle, then write the ID on the bus, one bit at a time,
starting with the most significant bit. After writing
each bit, each chip waits long enough for signals to
propagate along the bus, then it reads the bus. If a
chip had written a recessive bit but reads a dominant
one, it means that another node has a message with
a higher priority. If so, this node drops out of con-
tention. In the end, there is only one winner and it
can use the bus.

2.4 Application interfaces for CAN: SDS
and DeviceNet

If software programs designed for CAN are to be
compatible with each other, then a standard appli-
cation interface will have to be defined. Currently,
there are two emerging proposals: SDS from Honey-
well and DeviceNet from Allen Bradley. The former
is a master/slave protocol designed for simple sensors
and actuators. It emphasizes a low-cost implement*
tion. DeviceNet is a peer-to-peer connection-oriented
protocol with more flexibility than SDS. Both proto-
cols use the standard CAN message format with 11-bit
IDS.

'In the rest of the paper we assume a wired-OR bus.

241

3
In computer-integrated manufacturing (CIM), the

communicating devices are controllers (CPUs or
PLCs), actuators (drives), and sensors. Some of these
devices exchange periodic messages (such as drives)
while others are more event-driven (such as smart sen-
sors). Moreover, operators may need status informa-
tion from various devices, thus generating messages
which do not have timing constraints. So, we classify
messages into three broad categories:

1. Hard-deadline periodic messages.
2. Hard-deadline sporadic messages.
3. Non-real-time (best effort) aperiodic messages.

Workload char act erist ics

3.1 Periodic messages
A common example of this type of messages is servo

control of drives as in industrial cutting tools. The
controller must periodically sample the current posi-
tion/velocity of the drive and then send appropriate
corrections to the drive. Such messages have hard
deadlines, because if the update message to the drive is
delayed beyond its deadline, the cutting tool may de-
viate significantly from its desired path, thus ruining
the workpiece. In general, any system which must fol-
low a prescribed path will have hard-deadline periodic
messages (because of the periodic sensor-controller-
actuator loop). Such systems include all robots and
industrial cutting tools.

Note that a single periodic message will have mul-
tiple invocations, each one period apart. So, whenever
we use the term message to refer to a periodic, we are
referring to all invocations of that periodic.

3.2 Sporadic messages
Strictly speaking, all events in the real world are

aperiodic in nature. If these events are expected to
occur frequently enough, periodic monitoring can be
used to detect them and take appropriate action (as
in servo control).

There are other events which are not as frequent,
such as temperature of a process exceeding a crit-
ical threshold. In fact, maximum interval between
two such events is unbounded (event may never oc-
cur again). In such cases, using periodic messages is a
waste because there is nothing to say most of the time.

Smart sensors [l] are most suitable for detecting
such events. These sensors have DSP capabilities
to recognize events on their own, so they signal the
controller only when required. If these messages are
treated as purely aperiodic, then we are assuming that
they may be released at any time - even in rapid suc-
cession. If so, we will not be able to guarantee their
delivery by their deadlines. Fortunately, in most real-
world situations, there is a minimum interval between
consecutive aperiodic events. This corresponds to a
minimum interarrival time (MIT) for these messages.
Such aperiodic messages which have a MIT are called
sporadic messages [7]. Knowing the MIT of a spo-
radic message makes it possible to guarantee its deliv-
ery even under the worst possible situation.

3.3 Non-real-time messages
In a manufacturing environment, an operator must

be able to monitor the status of every device in the
system. Also, some devices (especially drives) need to
communicate operational data such as torque/speed
limits and diagnostic information. Such messages are
non-real-time because they do not have timing con-
straints. Any communication protocol for manufac-
turing applications must be able to accommodate such
messages while guaranteeing the deadlines of real-time
traffic.

3.4 Low-speed vs. high-speed real-time

Messages in a manufacturing setting can have a
wide range of deadlines. For example, messages from
a controller to a high-speed drive may have deadlines
of few tens of microseconds (see Section 5.1 for more
details). On the other hand, messages from devices
such as temperature sensors can have deadlines of a
few seconds because the physical property being mea-
sured (temperature) changes very slowly. Thus, we
further classify real-time messages into two classes:
high-speed and low-speed, depending on the tightness
of their deadlines. As will be clear in Section 4.2, the
reason for this classification has to do with the number
of bits required to represent the deadlines of messages.

Note that “high-speed” is a relative term - relative
to the tightest deadline do in the workload. So, all
messages with the same order of magnitude deadlines
as do (or within one order of magnitude difference from
do) can be considered to be high-speed messages. All
others will be low-speed.

mess ages

4 The Mixed Traffic Scheduler
As stated earlier, access to the CAN bus is con-

trolled by the IDS of competing messages. Then the
question is ‘(how to assign IDS to messages to get the
greatest possible schedulable utilization?”

To see the difficulties faced in scheduling messages
on CAN, we must first consider a typical CAN bus
interface chip. These chips usually have memory space
for one or more messages. When a processor has to
send a message, it will calculate the ID and transfer
the message (with its ID) to the chip’s memory. From
then on, the chip will function autonomously: it will
compete for the bus with the message ID, and upon
getting access, it will transmit the message (there may
be an option to notify the processor once a message
has been sent).

Once a message has been transferred to the CAN
chip for transmission, its ID will stay fixed unless the
processor comes and updates it. If the ID is to be de-
rived from the message’s priority, that priority should
stay fixed (at least for reasonably long periods of time).
So, fixed-priority scheduling is a natural fit for these
CAN chips. Each message will have a unique prior-
ity which will form its ID. This will not only uniquely
identify the message for reception purposes but also
schedule the message in a predictable fashion. How-
ever, in general, fixed-priority schemes give lower uti-

242

lization than other schemes such as non-preemptive
earliest-deadline2 (ED). This motivates us to use ED
to schedule messages on CAN. However, under ED,
message priorities change dynamically and it is infea-
sible to continually update message IDS to reflect these
priorities. This and other problems make ED imprac-
tical for CAN.

In this section we present the MTS scheduler which
combines ED and fixed-priority scheduling to over-
come the problems of ED. Like ED, MTS also requires
that message IDS be updated but these updates can
be spaced far apart in time, making MTS practical for
CAN.

4.1 Fixed-priority scheduling - low uti-
lizat ion

priority deadline

As already mentioned, fixed-priority scheduling is
the natural choice for currently available CAN bus in-
terface chips. The most popular form of fixed-priority
real-time scheduling is rate monotonic (RM) [lo]. In
this scheme, messages with a shorter period get higher
priority than those with longer periods. RM assumes
that deadline equals period, which is not always true.
So, instead of RM, we can use its close relative, dead-
line monotonic (DM) scheduling [ll]. With DM, mes-
sages with tighter deadlines are assigned higher prior-
ities. Then these priorities will form the ID for each
message. Once a message starts transmission, it will
run to completion even if higher-priority messages are
released during this time; that is, we must use the
non-preemptive version of DM.

In Section 3 we saw that the network must sup-
port hard periodic as well as sporadic messages. More-
over, it must also support non-real-time traffic. DM
can do this by treating sporadic messages as period-
ics with periods equal to their minimum interarrival
times, then assigning priorities to all real-time mes-
sage according to their deadlines (breaking ties arbi-
trarily), then using the remaining priority levels for
non-real-time messages. This ensures that real-time
traffic is protected from non-real-time traffic. Well-
known schedulability conditions can then be used to
check if all hard real-time messages are feasibly schedu-
lable or not. We will discuss details later.

DM is a simple scheme and is easily implementable
on CAN. However, to get greater schedulable utiliza-
tion, we are motivated to use ED to schedule messages
on CAN.

4.2 Earliest-deadline scheduling - dead-

ED works by giving higher priority to messages with
earlier deadlines-to-start-transmission at the schedul-
ing instant. Our goal is therefore to make the IDS
reflect the deadlines of messages. Moreover, each mes-
sage must have a unique ID (which is a requirement of
CAN). This can be done by dividing the ID into three

line encoding problems

Non-preemptive scheduling under release time constraints
is NP-hard in the strong sense [SI, meaning that there is no
polynomial time scheduler which will always give the maximum
schedulable utilization. However, Zhao and Ramamritham [9]
showed that ED performs better than other simple heuristics.

uniqueness
1 I

Figure 2: Structure of the ID for ED scheduling.

fields [12], as shown in Figure 2. The deadline field is
derived from the deadline of the message. Actually, it
is the logical inverse of the deadline because we want
the shortest deadline to have the highest priority. To
deal with the case when two messages have the same
deadline, each message has a unique code which forms
its uniqueness field. So, if two messages have the same
deadline, the one with the higher uniqueness code will
win. This uniqueness code also serves to identify the
message for reception purposes. For ED scheduling,
messages may be assigned codes arbitrarily as long as
they are unique for each message [12]. However, as
we will see later, the question of assigning uniqueness
codes will be critical in MTS.

In Figure 2 there is also a 1-bit priority field which
is 1 for real-time messages and 0 otherwise. This en-
sures that real-time messages always have higher pri-
ority than non-real-time ones.

As time progresses, deadline values get larger and
larger. Eventually, they will require more bits than
are available in the CAN ID field. The obvious solu-
tion is to use slack time [12] (time to deadline) instead
of the deadline itself. But this introduces two other
problems:

P1. Remaining slack time of a message changes with
every clock tick. This will require IDS of all mes-
sages to be updated continually (at the start of
each arbitration round). This will put too much
burden on the local CPU.

P2. In Section 3 we saw that a typical communica-
tion workload in a manufacturing environment
may have messages with vastly different deadlines.
This means that we must encode a wide range of
laxities, and there may not be enough bits in the
CAN ID field to do this.

Each of the above two problems is addressed below.
Time epochs. We present a solution to P1 in great
detail. We will encounter the same problem with MTS
where we will use the same solution.

One simple way to solve P1 will be to redesign
the bus interface chips to have programmable coun-
ters in appropriate positions of the ID. This way,
the slack time will be updated automatically at ev-
ery clock tick. However, at present such chips are
not commercially available. Even if they were, they
would be more expensive than chips without counters.
This motivates us to investigate a software solution (a
cost/performance tradeoff).

In a software solution, the CPU will still have to
update the ID, but we want to reduce the frequency of
these updates, i.e., spend less CPU-time on updates.
Our solution uses actual deadlines (instead of slack

243

time) but expresses them relative to a periodically in-
creasing reference called the s t u d of epoch (SOE). The
time between two consecutive SOEs is called the length
of epoch, C. Then, the deadline field for message i will
be the logical inverse of d; - SOE = di - L i] 1, where
di is the deadline of message i and t is the current
time it is assumed that all nodes have synchronized
clocks \ . Value of4 depends on what fraction of CPU-
time the designer is willing to allow for ID updates.
Let this fraction be 2. Let M be the MIPS of the
CPU and n be the number of instructions required to
do the update. Since each update must be C seconds
apart, 1 = +.

So at every node, there is a periodic (timer-driven)
process which wakes up every C seconds and updates
IDS of all ready messages according to the above equa-
tion. Comparing this with the slack-time approach, we
see that if C is greater than the average message length,
this approach uses less CPU time. Besides, the update
process is periodic and predictable, unlike the slack-
time approach where the CPU must be aperiodically
interrupted at the start of each arbitration round. But
these benefits come at a price - our approach requires
more bits for the deadline field.

Let D be the largest value of (d - r) of any message,
where T is the release time. Then for the slack-time ap-
proach, length of the deadline field is m = log, D , but
for our method, m = log,(C+D). This is to accommo-
date the worst-case situation shown in Figure 3. When
message i, which has the largest (d-T) , is released just
before a new SOE, then the deadline field of message
i will have value di - SOEl = + D.

1

Figure 3: Largest possible value of the deadline field.

deadline DM priority

Length of ID field. The reason ED is impractical
for CAN is that it requires too many bits for the dead-
line field in the ID for the following reason. In a typical
workload, messages associated with high-speed drives
may have deadlines in the hundreds of microseconds
range. Other messages, such as those related to tem-
perature sensors, may have deadlines of several sec-
onds. If we represent deadlines at the granularity of,
say, a microsecond, then more than 20 bits will be re-
quired to represent deadlines of several seconds.

One may say that if the extended format of CAN
is used with its 29-bit IDS, then there will be enough
bits to represent deadlines with enough left over for
the uniqueness field. Unfortunately, if this scheme is
used, each message will be 20 bits longer compared
to the standard 11-bit format of CAN (the extended
format uses two more framing bits than the standard
format). This means that 20-30% bandwidth will be
wasted just because of using the longer ID format.

This creates a dilemma: DM is easy to implement

0 1 DM priority

0 0 fixed priority

Figure 4: Structure of the ID for MTS. Parts (a)
through (c) show the IDS for high-speed, low-speed,
and non-real-time messages, respectively.

but it gives low utilization. We tried to use ED in
hope of getting better utilization, but it increased the
length of each message to the point that there was no
net gain. Our solution to this problem is the MTS
scheduler.

4.3 MTS
MTS attempts to give high utilization (like ED)

while using the standard 11-bit ID format (like DM).
In DM, an 11-bit ID can represent 2048 messages.

No realistic system will have this many different mes-
sages, implying that a few ID bits will remain unused.
The goal is to use these bits to enhance schedulability.
Since high-speed messages tend to use several times
more bandwidth than low-speed ones, we will get a
large improvement if we can increase the schedulabil-
ity of just high-speed messages.

The idea behind MTS is to try to use ED for high-
speed messages and DM for low-speed ones. First,
we give high-speed messages priority over low-speed
and non-real-time ones by setting the most significant
bit to 1 in the ID for high-speed messages (Figure 4a).
This protects high-speed messages from all other types
of traffic. If the uniqueness field is to be, say 5 bits
(allowing 32 high-speed messages), and the priority
field is 1 bit, then the remaining 5 bits are still not
enough to encode the deadlines (relative to the latest
SOE). Our solution is to quantize time into regions
and encode deadlines according to which region they
fall in. To distinguish messages whose deadlines fall in
the same region, we use the DM-priority of a message
as its uniqueness code. This makes MTS a hierarchi-
cal scheduler. At the top level is ED: if the deadlines
of two messages can be distinguished after quantiza-
tion, then the one with the earlier deadline has higher
priority. At the lower level is DM: if messages have
deadlines in the same region, they will be scheduled
by their DM priority.

We can calculate length of a region (I,.) as I , = A
where m is the length of the deadline field (5 in this
case). This is clear from Figure 5 (shown for m =
2). We must reserve one coding for messages whose
deadlines fall beyond the end of the current epoch.

244

00 ~ 01 - 10 _, 11 - - - -
I +

end of epoch SOE
4 b

I

Figure 5: Quantization of deadlines (relative to start
of epoch) for m = 2.

This leaves 2m - 1 codings for deadlines before the
end of epoch.

why not use logarithmic
quantization for the deadlines? This way, we will
get fine-grain discrimination for “near” deadlines and
coarse-grain for (‘far” deadlines. This scheme would
work if we were updating the deadline fields constantly,
which we are not. Deadline fields of all messages are
updated at the SOE and then stay fixed till the next
SOE. So, what was “far” at the start of the epoch will
eventually become “near” as time progresses, but its
deadline encoding will stay the same coarse-grained
value as it was earlier. Then, MTS will degrade to
DM.

We use DM scheduling for low-speed messages and
fixed-priority scheduling for non-real-time ones, with
the latter being assigned priorities arbitrarily. The
IDS for these messages are shown in Figures 4 (b) and
(c). The second most significant bit gives low-speed
messages higher priority than non-real-time ones.

This scheme allows up to 32 different high-speed
messages (periodic or sporadic), 512 low-speed mes-
sages (periodic or sporadic), and 512 non-real-time
messages - which should be sufficient for most ap-
plications.
4.4 Schedulability conditions

For MTS, we want off-line schedulability conditions
which, when satisfied, will guarantee that all messages
will meet their deadlines. We will first review such
conditions for non-preemptive ED and DM, and then
develop those for MTS.
Earliest-deadline: Schedulability conditions for
non-preemptive ED are described by Zheng and Shin
[13]. worst-case, sporadic messages are treated as
periodic with period equal to their MIT. Then, if all
messages are released at the same time t = 0 (creat-
ing the worst-possible congestion), they will still be
schedulable if the following two conditions hold:

Another idea may be:

1. ~ j ” = , C j / T j _< 1.

2. ’dt E S, zr=1 [(t - di)/%l+Ci + Cp 5 t ,
where S = Uy=lSi, Si = {d i + nz : n = 0 , 1 , . . .,
[(tmax - di)/Zj}, and tmax = max(d1,. . ., dn,
(Cp + Ci”=1(1 - di /Z)Ci) / (I - Cdn,l CilZ)).

where T,, Ci, di are the period, length, and deadline
of message i, C, is the length of the longest possible
packet,,and [XI+ = n if n - 1 5 z < n, n = 1 , 2 , ...,
and [XI+ = 0 for z < 0.

The first condition ensures that maximum utiliza-
tion does not exceed capacity, and the second one en-
sures that each message with deadline < t can finish
by t .

We must extend the above conditions for the situa-
tion when some messages have phase offsets and can-
not all be released at the same time. A common exam-
ple of such messages are those involved in servo control.
The drive first sends a feedback to the controller which
then sends a command back to the drive. These two
messages can never be released at the same time (be-
cause one synchronizes off the other). The worst-case
occurs when one is released at t = 0 and the other at
its phase offset. We can model every such pair of mes-
sages by letting the first message have phase dl = 0
and the second message with $2 = its phase offset rel-
ative to the first message. Then the above conditions
become:

1. Cj/Tj 5 1.

2. W E S, [(t - di - 4i)/Zl+Ci + Cp 5 t,
whereS=Uy=l=lSi, Si = { d i + n Z : n = O , l , . . . ,
[(tmax - di - 4i) /GJ} , and
tmUx = max{dl,. . . , dn,
(c p + C:=l(1- di/Z)Ci)/(l- E?--, Ci/Z)}.

Deadline monotonic: For the non-preemptive
case, a message i is feasible if all higher-priority mes-
sages are feasible and i finds an opportunity to start
transmission sometime during [0, di - Ci]. So, all we
have to do is look at messages with priority higher than
that of i and assume that they are the only messages
in the system. If the bus ever becomes idle during
[0, di - Ci], then i is schedulable. If messages are num-
bered according to their priority with j = 0 being the
highest-priority message, then i is schedulable if [14] :

3t E S, cfzi~(t - +j)/TjlCj + ~p < t ,
where S ={set of all release times of messages
O , l , . . . j i-1 through time di-Ci} u{di-Ci},
and $j are the relat ive phase offsets.

To check schedulability of a set of messages, repeat
the above check for each message.
MTS: First, we will discuss the schedulability check
for high-speed messages and then look at low-speed
ones. The worst-case loading conditions for high-speed
messages result when there is

1. worst possible traffic congestion, and
2. worst possible deadline encoding.

The first situation is created by releasing all mes-
sages at the same time t o (messages with non-zero q5i
will be released later). To see the second situation,
consider Figure 6. Suppose we want to determine
worst-case schedulability of message i . We want to
maximize the number of messages which get priority
over i. If deadline-to-start of i falls at the start of a re-
gion, then all messages with earlier deadlines-to-start

245

+Ck di-ci dj -Cj

(a) F ‘ pt ’

w

start of region end of region

&-Ck 4 - C i dj-Cj

b (b) b

l r
start of region end of region

Figure 6: Suppose j has higher DM-priority than i
but IC does not. Then in (a), i has the highest priority,
whereas in (b), it has the lowest. So (b) is the worst-
case situation for i.

will fall in earlier regions and get higher priority. More-
over, it will allow the maximum number of messages
- whose deadlines-to-start are greater than that of i
- to fall in the same region as i. If they have higher
DM-priority, they will also go before i.

Now, we can draw a parallel between schedulability
conditions for MTS and those for DM. To determine
schedulability of some message, consider its first in-
vocation i and all j with priority greater than that
of i under worst-case situations (for MTS, this means
deadline-to-start of i coincides with the start of a re-
gion). Then, from the above discussion, message invo-
cations j will have priority over i if

1. (d i - Ci) > (d j - Cj), or
2. (a) (di-Ci) < (d j -C j) 5 (d i - C i + l r) , and

(b) DM priority of j is greater than that of i,

(c) j is released before di - Ci.
and

Note that j represents individual invocations, not en-
tire “messages.”

Then, if we consider only those invocations j which
satisfy the above conditions and schedule them accord-
ing to MTS and the bus ever becomes idle during in-
terval [t o , t o + (d i - Ci)], then message i will get a
chance to run and it will be schedulable. This check
must be repeated for each high-speed message in the
workload. Formally, a message is schedulable if its first
invocation i satisfies the condition:

t-(to++j)lCj + c < t 3 E s, C V J T P - ,
where each j must satisfy the above condi-
tions, S ={set of release times of each j }
U{& --Ci}, CP is the size of a longest possible
packet, and q5j are the relative phase offsets.

Checking schedulability of low-speed messages is
simple - just check DM schedulability for each
low-speed message. Since high-speed messages have
shorter deadlines than low-speed ones, they will auto-
matically have higher DM priority (which is exactly
what we want).

5 Evaluation
We have designed MTS to offer better performance

and schedulability than DM. Since deadlines in MTS
are quantized, we would expect the performance of
MTS to be close to that of ED if somehow message
length did not increase when using ED. So, let ED* be
an ideal (imaginary) scheduling policy which works the
same as ED but requires only an 11-bit ID. Then ED*’s
performance should be an upper bound on MTS’s.

In the absence of any analytical results to prove
which scheduler is better, we have to resort to simu-
lations to evaluate performance. For this, we need a
workload. Rather than randomly generating messages,
we came up with a single realistic workload model -
realistic in the sense that all messages are associated
with devices commonly used in manufacturing such as
drives, sensors, etc.

In this section, we will first describe our workload
model, then present simulations to evaluate MTS’s
performance as compared to DM and ED*.

5.1 Workload model
In computer-integrated manufacturing (CIM), high-

speed messages are usually related to servo control
of drives. Currently-available drives can operate at
speeds of up to 1200 rpm or higher. Frequency of up-
dates needed to control such drives is a function of how
much error (e.g., in position and velocity) is tolerable
for the application at hand [15], but these frequencies
can be as high as 10 kHz. As already mentioned, a
pair of messages are involved in controlling each drive.
First, the drive will send feedback to the controller.
The controller will require some time to compute the
new command, then send this to the drive. The drive
will adjust according to the new command, and after
some delay, repeat the cycle. For simulation purposes,
we assume that the delay on each side is 10% of the
cycle time. So if the cycle is of length e, the cycle
will start by the drive sending a message at time t o
whose deadline will be t o + 0 . 4 ~ . At time t o + 0.5c,
the controller will send the new command to the drive
with deadline t o + 0.9c, and then the cycle will repeat
forever.

An example of high-speed sporadic messages will be
those associated with a robotic gripper. Each finger
in the gripper will have its own drive. Since the fin-
ger must be controlled precisely, the update frequency
for these drives will be quite high. Now, to minimize
the time required to grasp an object, velocity con-
trol may initially be used to close the fingers rapidly.
When the fingers touch the object, the controller must
switch to force control to avoid both slippage at one
hand and damage to the object (from excessive force)
at the other. To detect first-contact, each finger is
equipped with a sensor which will send a message on
contact [16]. Since the controller must immediately
switch control strategies, this message will not only
have a hard deadline, but also a very tight one. For
simulation, we assume that this message must be re-
ceived by the controller within one-fourth of the cycle
time of the drive to give the controller enough time

246

to switch control strategies. Also, the minimum inter-
val between a robot picking up two separate objects
will be at least several seconds, which is the minimum
interarrival time (MIT) for these sporadic messages.

Low-speed periodic messages can be associated with
several types of devices such as slow drives (e.g., 200
rpm) and periodic polling of dumb sensors. Such mes-
sages will have periods and deadlines in the order of
several milliseconds.

Low-speed sporadic messages may result, for ex-
ample, from a smart sensor monitoring the tempera-
ture of a process. If the temperature exceeds a cer-
tain limit, the sensor transmits a warning to some
controller which may shut down the process. Since
temperature changes slowly, such messages will have
deadlines of tens of milliseconds or more. Once the
process is stopped, i t will take at least several minutes
to restart i t , which will be the minimum interarrival
time for these messages.

Having a qualitative idea of the types of messages
in CIM, we can now choose specific values for message
periods and deadlines to be used in simulation.

Consider a drilling machine with an attached robot
arm to move workpieces. Suppose the robot has a
two-fingered gripper. Since the fingers must be con-
trolled precisely, their drives will have a high update
frequency which we chose to be 8 kHz. The robot arm
will have several joints, each with a drive. They re-
quire a high degree of precision as well, but not quite
as high as the fingers, so we chose 6 kHz as their up-
date frequency. One drive is needed to move the drill
along a single axis (in and out of the workpiece). This
carriage requires even less precision, so we chose its
frequency to be 4 kHz. Finally, the drill itself has a
drive whose speed is limited by the maximum possible
metal removal rates. We chose its update frequency
to be 2 kHz. Each of these drives has a pair of mes-
sages associated with i t whose deadlines are assigned
according to the general framework presented earlier.

For each finger there is a smart contact sensor. This
means one sporadic message per finger with a deadline
of one-fourth of the drive cycle (3 0 ~ s) .

For low-speed messages, we arbitrarily chose peri-
odic messages to have periods of 20ms and deadlines
of Sms, and sporadic messages with deadlines of 5ms
and MITs of 5s.

Table 1 summarizes the choice of parameters. It
also gives the number of messages of each type for our
simulations. The values marked with "*" are default
and will be varied during simulation.

Now, we must consider the length of each message.
The standard CAN message format requires 47 fram-
ing bits per message for ID, CRC, etc. For position
or velocity control of a drive, 32-bit command and 32-
bit feedback variables are required [17], making each
message 79 bits long. We use this length for each peri-
odic message in the workload as well as for the longest
possible message ((7,).

Aperiodic messages are used to notify a controller
of some event. A unique message ID is enough for the
controller to recognize which event is being signaled, so

Class Period (ms) Deadline (ms) MZT-
Periodc 20.0 8.0
Aperiodic - 5 .O 5s

__

High-speed messages
Type Class Period/MIT D eadline # of mssg.
Fingers Periodic 1 2 5 . 0 ~ s (8 kHz) 5 0 . 0 ~ ~ 4

2
2

Sensors heriodic 2s 30.0us* 2"
Drill

I Low-sseed messages I

Table 1: Simulation workload.

ED*

MTS

I I
0.0 2.0 4.0 6.0 8.0

Number of 6kIIz messages

Figure 7: Schedulability under DM, MTS, and ED*
as number of 6 kHz periodic messages are varied.

aperiodics can have 0 data bytes, making them 47 bits
long each. This is the length we use in our simulations.

The last parameter to consider is the length of
epoch (t) for the simulations. We assume a 20 MIPS
CPU. If each deadline update requires 1000 instruc-
tions and we allow 5% of CPU time for these updates,
then 1 = l o , o s ~ ~ ~ x , o e , = lms. Then each region has
length I, = t/(2m - 1) = l m ~ / (2 ~ - 1) = 3 2 . 3 ~ s .

5.2 Simulation results
Current CAN chips are designed for a 1 Mb/s physi-

cal medium. This speed is insufficient for applications
like high-speed servoing. So in our simulations, we
assume a 10 Mb/s physical medium (which implies a
time granularity of 0 . 1 ~ ~) .

In all our simulations, we use the general drilling
machine workload described in the previous subsec-
tion. Using the schedulability conditions of section 4.4,
we want to check schedulability of workloads under dif-
ferent scheduling policies when one workload parame-
ter (such as the number of a certain type of message) is
varied. We expect that MTS will perform better than
DM and close to ED*. Initially, we evaluate MTS's
performance for high-speed messages. Then we go on
to low-speed messages.

Varying number of high-speed periodics: We
varied the number of 6 kHz periodic messages. This

247

ED*

MTS

DM

~~

0.0 20.0 40.0 60.0 80.0 100.0
Deadlines of 6wIz messages (microseconds)

Figure 8: Deadlines of 6 kHz periodic messages for
which workload is unschedulable under DM, MTS, and
ED*.

can be thought of as varying the number of joints in
the robot arm.

All other high-speed message types have fixed pa-
rameters as shown in Table l : two fingers (four period-
ics) and two contact sensors (two sporadics); one drill
carriage (two periodics); and one drill (two periodics).
No low-speed messages are needed at this point since
they do not affect the schedulability of high-speed mes-
sages.

The schedulability results for DM, ED*, and MTS
are shown in Figure 7. DM can handle only five 6 kHz
messages (total utilization of 58.5%), whereas both
ED* and MTS can handle up to 8 each (72.7% uti-
lization). At least for this workload, MTS performed
better than DM and same as ED*.
Varying deadlines of high-speed periodics: In
this simulation, we varied the deadlines of 6 kHz peri-
odic messages while keeping their number fixed at 6.
Parameters for all other message types were the same
as in Table 1, giving a utilization of 63.2%.

This workload was found unschedulable under DM
at the deadlines of 99.911s or less (Figure 8). On the
other hand, the workload was schedulable under both
MTS and ED* even at the smallest possible deadline
of 5 6 . 8 ~ s . (If deadlines are decreased to 56.7ps, then
the message set is unschedulable because C, + two 8
kHz messages + three 6 kHz messages + two sporadic
messages need at least 5 6 . 8 ~ ~ to complete).

Again, MTS performed much better than DM and
at the same level as ED*.
Varying number of high-speed sporadics: In
this simulation, we vary the number of sporadic mes-
sages while keeping their deadlines fixed at the value
shown in Table 1. The number and deadlines of all
periodic messages are fixed at the values in Table 1,
giving a utilization of 63.2%.

Our simulations showed that DM can handle only
one sporadic message in the workload, whereas both
MTS and ED* handled up to four (Figure 9).

DM-schedulability is shown to decrease rapidly as
the number of sporadic messages increase. On the

ED'

MTS

DM

0.0 1 .o 2.0 3.0 4.0
Numbw of sporadic messages

Figure 9: Schedulability under DM, MTS, and ED*
as number of sporadic messages are varied.

ED*

MTS

DM

~~

0.0 50.0 100.0 1
Deadlin- of sporadic messages (microseconds)

1.0

Figure 10: Deadlines of sporadic messages for which
workload is unschedulable under DM, MTS, and ED*.
Number of 6 kKz periodics is 6 for this simulation.

other hand, MTS (as well as ED*) is capable of han-
dling a significant number of sporadic messages in the
workload.

Varying deadlines of high-speed sporadics: In
this simulation, we vary the deadlines of all high-speed
sporadic messages while keeping all other parameters
at their default values.

The workload becomes unschedulable under DM for
sporadic message deadlines of 1 0 4 . 1 ~ s or lower (Fig-
ure lo), but continues to be feasible under both MTS
and ED* till the deadline of 17.3ps, which is minimum
possible (C, + two sporadic messages take at least
1 7 . 3 ~ s to complete).

To better compare MTS against ED*, we tested the
two under heavier loads. We increased the number of
6 kHz messages to 10 (82.2% utilization), then started
varying sporadic message deadlines. This workload
was unschedulable under MTS for deadlines of 1 5 1 . 5 ~ ~
or less, whereas it became unschedulable under ED*
only at deadlines of 7 2 . 5 ~ s or less (Figure 11). So un-
der heavy loads and tight deadlines, ED* outperforms
MTS, as expected.

248

MTS

0.0 50.0 100.0 150.0 200.0
Deadlines of sporadic messages (microseconds)

Figure 11: Deadlines of sporadic messages for which
workload is unschedulable under MTS and ED*. Num-
ber of 6 kHz periodics is 10 for this simulation.

Low-speed messages: Under default loading con-
ditions, high-speed messages use up 63.2% of the band-
width. The remaining 36.8% can accommodate sev-
eral hundred low-speed sporadic and periodic mes-
sages. Even 10% of the bandwidth is enough to ac-
commodate about a hundred or so low-speed messages.
Thus, the schedulability of low-speed messages is not
a problem. Our simulations showed no real difference
between DM, MTS, or ED* in scheduling low-speed
messages for a fixed load of high-speed messages.

6 Conclusion
The two most attractive features of CAN are a short

worst-case bus access latency and a bus acquisition
scheme based on the priority of messages, both of
which give CAN the potential for high performance
and fewer missed deadlines in distributed control sys-
tems. However, the bus arbitration mechanism must
be used properly with careful design of the message
ID; otherwise, CAN will give low utilization.

In this paper we presented the MTS scheduler which
allowed three different types of messages - hard spo-
radic, hard periodic, and non-real-time aperiodic -
to be carried on the same bus. Then, we designed the
message ID which implements MTS on CAN. MTS not
only gives high schedulability but is also easily imple-
mentable on CAN.

Through simulations we compared MTS with DM
and ED* (an idealized form of ED). We used a realistic
workload for these simulations, modeling drives, con-
trollers, and sensors typically found in CIM systems.
As expected, MTS performed much better than DM
and only slightly worse than ED*, and in many cases,
it matched the performance of ED*.

References
[l] J . Brignell and N. White, Intelligent Sensor Sys-

[2] A. Tanenbaum, Computer Networks, Prentice-
tems, Bristol, Philadelphia, 1994.

Hall, Englewood Cliffs, N.J., 1989.

[3] H. Kopetz and G. Grunsteidl, “TTP - a protocol
for fault-tolerant real-time systems,” IEEE Com-
puter, vol. 27, no. 1, pp. 14-23, January 1994.

[4] J . K. Strosnider and T. E. Marchok, “Responsive,
deterministic IEEE 802.5 token ring scheduling,”
Journal of Real-Time Systems, vol. 1, no. 2, pp.
133-158, September 1989.

[5] CAN Specification Version 2.0, Robert Bosch
GmbH, 1991.

[6] SAE Handbook, Society of Automotive Engineers,

[7] A. K. Mok, “Fundamental design problems of dis-
tributed systems for the hard real-time environ-
ment,” Ph.D thesis, MIT, 1983.

[8] K. Jeffay, D. F . Stanat, and C. U. Martel, “On
non-preemptive scheduling of periodic and spo-
radic tasks,” in Proc. Real- Time Systems Sympo-
sium, pp. 129-139, 1991.

[9] W. Zhao and K. Ramamritham, “Simple and in-
tegrated heuristic algorithms for scheduling tasks
with time and resource constraints,” Jounal of
Systems and Software, vol. 7, pp. 195-205, 1987.

[lo] C. L. Liu and J . W. Layland, “Scheduling algo-
rithms for multiprogramming in a hard real-time
environment,” Journal of the ACM, vol. 20, no.
1, pp. 46-61, January 1973.

[ll] J . Y.-T. Leung and J . Whitehead, “On the com-
plexity of fixed-priority scheduling of periodic,
real-time tasks,” Performance Evaluation, vol. 2,
no. 4, pp. 237-250, December 1982.

[12] K. G. Shin, “Real-time communications in
a computer-controlled workcell,” IEEE Trans.
Robotics and Automation, vol. 7, no. 1, pp. 105-
113, February 1991.

[13] Q. Zheng and K. G. Shin, “On the ability
of establishing real-time channels in point-
to-point packet-switched networks,” IEEE
Trans. Communications, pp. 1096-1105, Febru-
ary/March/April 1994.

[14] D. D. Kandlur, K. G. Shin, and D. Fer-
rari, “Real-time communication in multihop net-
works,” IEEE Trans. Parallel and Distributed
Systems, vol. 5, no. 10, pp. 1044-1056, October
1994.

[15] M. Ehsani, I. Hussain, and K. R. Ramani, “An
analysis of the error in indirect rotor position
sensing of switched reluctance motors,” in In-
ternational Conference on Industrial Electronics,
Control and Instrumentation, pp. 295-300, Octo-
ber 1991.

[16] S. Soloman, Sensors and Control Systems in Man-
ufacturing, McGraw-Hill, Inc., New York, 1994.

[17] Electrical Equipment of Industrial Machines -
Serial Data Link for Real- Time Communication
between Controls and Drives, International Elec-
trotechnical Commission, Rev. 8, 1994.

pp. 20.379-20.392, 1993.

249

