
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2793391

OODB Support for Real-Time Open-Architecture Controllers

Article · May 1995

Source: CiteSeer

CITATIONS

5
READS

37

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Drug-drug interaction related ADR detection View project

XMDV Tool View project

Tok Wang Ling

National University of Singapore

310 PUBLICATIONS 3,403 CITATIONS

SEE PROFILE

Yoshifumi Masunaga

Ochanomizu University

89 PUBLICATIONS 269 CITATIONS

SEE PROFILE

Elke Rundensteiner

Worcester Polytechnic Institute

597 PUBLICATIONS 7,803 CITATIONS

SEE PROFILE

All content following this page was uploaded by Yoshifumi Masunaga on 07 April 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2793391_OODB_Support_for_Real-Time_Open-Architecture_Controllers?enrichId=rgreq-b4af5740015055b872a8c82e9598d558-XXX&enrichSource=Y292ZXJQYWdlOzI3OTMzOTE7QVM6MTAyNjg2NDMxMTIxNDE3QDE0MDE0OTM3NjE4Njk%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2793391_OODB_Support_for_Real-Time_Open-Architecture_Controllers?enrichId=rgreq-b4af5740015055b872a8c82e9598d558-XXX&enrichSource=Y292ZXJQYWdlOzI3OTMzOTE7QVM6MTAyNjg2NDMxMTIxNDE3QDE0MDE0OTM3NjE4Njk%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Drug-drug-interaction-related-ADR-detection?enrichId=rgreq-b4af5740015055b872a8c82e9598d558-XXX&enrichSource=Y292ZXJQYWdlOzI3OTMzOTE7QVM6MTAyNjg2NDMxMTIxNDE3QDE0MDE0OTM3NjE4Njk%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/XMDV-Tool?enrichId=rgreq-b4af5740015055b872a8c82e9598d558-XXX&enrichSource=Y292ZXJQYWdlOzI3OTMzOTE7QVM6MTAyNjg2NDMxMTIxNDE3QDE0MDE0OTM3NjE4Njk%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b4af5740015055b872a8c82e9598d558-XXX&enrichSource=Y292ZXJQYWdlOzI3OTMzOTE7QVM6MTAyNjg2NDMxMTIxNDE3QDE0MDE0OTM3NjE4Njk%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tok_Ling?enrichId=rgreq-b4af5740015055b872a8c82e9598d558-XXX&enrichSource=Y292ZXJQYWdlOzI3OTMzOTE7QVM6MTAyNjg2NDMxMTIxNDE3QDE0MDE0OTM3NjE4Njk%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tok_Ling?enrichId=rgreq-b4af5740015055b872a8c82e9598d558-XXX&enrichSource=Y292ZXJQYWdlOzI3OTMzOTE7QVM6MTAyNjg2NDMxMTIxNDE3QDE0MDE0OTM3NjE4Njk%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_University_of_Singapore?enrichId=rgreq-b4af5740015055b872a8c82e9598d558-XXX&enrichSource=Y292ZXJQYWdlOzI3OTMzOTE7QVM6MTAyNjg2NDMxMTIxNDE3QDE0MDE0OTM3NjE4Njk%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tok_Ling?enrichId=rgreq-b4af5740015055b872a8c82e9598d558-XXX&enrichSource=Y292ZXJQYWdlOzI3OTMzOTE7QVM6MTAyNjg2NDMxMTIxNDE3QDE0MDE0OTM3NjE4Njk%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yoshifumi_Masunaga?enrichId=rgreq-b4af5740015055b872a8c82e9598d558-XXX&enrichSource=Y292ZXJQYWdlOzI3OTMzOTE7QVM6MTAyNjg2NDMxMTIxNDE3QDE0MDE0OTM3NjE4Njk%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yoshifumi_Masunaga?enrichId=rgreq-b4af5740015055b872a8c82e9598d558-XXX&enrichSource=Y292ZXJQYWdlOzI3OTMzOTE7QVM6MTAyNjg2NDMxMTIxNDE3QDE0MDE0OTM3NjE4Njk%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ochanomizu_University?enrichId=rgreq-b4af5740015055b872a8c82e9598d558-XXX&enrichSource=Y292ZXJQYWdlOzI3OTMzOTE7QVM6MTAyNjg2NDMxMTIxNDE3QDE0MDE0OTM3NjE4Njk%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yoshifumi_Masunaga?enrichId=rgreq-b4af5740015055b872a8c82e9598d558-XXX&enrichSource=Y292ZXJQYWdlOzI3OTMzOTE7QVM6MTAyNjg2NDMxMTIxNDE3QDE0MDE0OTM3NjE4Njk%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elke_Rundensteiner?enrichId=rgreq-b4af5740015055b872a8c82e9598d558-XXX&enrichSource=Y292ZXJQYWdlOzI3OTMzOTE7QVM6MTAyNjg2NDMxMTIxNDE3QDE0MDE0OTM3NjE4Njk%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elke_Rundensteiner?enrichId=rgreq-b4af5740015055b872a8c82e9598d558-XXX&enrichSource=Y292ZXJQYWdlOzI3OTMzOTE7QVM6MTAyNjg2NDMxMTIxNDE3QDE0MDE0OTM3NjE4Njk%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Worcester_Polytechnic_Institute?enrichId=rgreq-b4af5740015055b872a8c82e9598d558-XXX&enrichSource=Y292ZXJQYWdlOzI3OTMzOTE7QVM6MTAyNjg2NDMxMTIxNDE3QDE0MDE0OTM3NjE4Njk%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elke_Rundensteiner?enrichId=rgreq-b4af5740015055b872a8c82e9598d558-XXX&enrichSource=Y292ZXJQYWdlOzI3OTMzOTE7QVM6MTAyNjg2NDMxMTIxNDE3QDE0MDE0OTM3NjE4Njk%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yoshifumi_Masunaga?enrichId=rgreq-b4af5740015055b872a8c82e9598d558-XXX&enrichSource=Y292ZXJQYWdlOzI3OTMzOTE7QVM6MTAyNjg2NDMxMTIxNDE3QDE0MDE0OTM3NjE4Njk%3D&el=1_x_10&_esc=publicationCoverPdf

Proceedings of the Fourth International Conference on
Database Systems for Advanced Applications (DASFAA’95)
Ed. Tok Wang Ling and Yoshifumi Masunaga
Singapore, April 10-13, 1995
 World Scientific Publishing Co. Pte Ltd

206

OODB Support for Real-Time Open-Architecture Controllers

Lei Zhou, Elke A. Rundensteiner, and Kang G. Shin
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, Michigan 48109-2122

{lzhou, rundenst, kgshin}@eecs.umich.edu

Abstract

Open-architecture machine tool controllers have been an important
research subject in both academia and industry. They are hard real-
time applications that require a built-in database management system
to support concurrent data access and provide well-defined inter-
faces. These advanced applications often utilize object-oriented mod-
els to handle complex data types. Since there exists no agreed-upon
real-time object model, we design a conceptual real-time object-ori-
ented data model, called ROMPP (Real-time Object Model with Per-
formance Polymorphism). It captures the key characteristics of real-
time control applications, namely, timing constraints and perfor-
mance polymorphism. It uses specialization dimensions to model
timing specifications and letter class hierarchies to capture perfor-
mance polymorphism. Based on the model, we develop a prototype
controller on our open-architecture machine tool controller testbed.
The controller has been successfully used for a 6-axis robotic table.

1 INTRODUCTION

Machine tool controllers have become more sophisticated in
recent years by capitalizing on the technological progress
made in the field of computer. However, problems still remain
in terms of life-cycle cost and lack of openness in commer-
cially available controllers. There has been considerable inter-
est on the subject, in both academia and industry, North
America and Europe. Two primary examples of this activity
are the OSACA project [19] in Germany and the Enhanced
Machine Controller (EMC) project [1] at the National Institute
of Standards & Technology. There is a general consensus that
the controller should have a modular architecture and well-
defined interfaces that allow third parties to develop and use
these modules independently. Modules can be either hardware
or software. The VME processor board is an example of a
hardware module, while a POSIX-compliant operating system
kernel is an example of a software module. The modules may
be selected based on price and/or performance, while meeting
the constraints of the control application.

Modular machine tool controllers require a built-in data-
base management system (DBMS) to support concurrent data
access and provide well-defined interfaces between different
software entities (tasks, processes, and modules). They typi-

cally are subject to a range of timing constraints, which
require the DBMS to provide timing guarantees, sometimes
under complex conditions. The deadlines of real-time tasks
can be classified ashard, firm, or soft [21]. A deadline is hard
if the consequences of not meeting it can be catastrophic, such
as in a machine tool controller. A deadline is firm if the results
produced by the corresponding task cease to be useful as soon
as the deadline expires, but consequences of not meeting the
deadline are not catastrophic, e.g., weather forecast. A dead-
line which is neither hard nor firm is soft. The utility of results
produced by a task with a soft deadline decreases over time
after the deadline expires. Conventional DBMSs generally
have no mechanisms to specify, and much less to enforce,
such complex timing guarantees. Thus, they do not offer the
performance levels or response-time guarantees needed by
real-time applications.

Such inadequacy has recently spawned the field of real-
time databases (RTDBs) [11, 18, 21, 22, 24]. Most of RTDB
research has been focused on soft real-time constraints, and
many transaction management algorithms have been proposed
for this purpose. We instead offer a new paradigm for hard
RTDB applications, especially machine tool controllers.
Figure 1 demonstrates the role of a RTDB in machine tool
controllers: it provides data access services and well-defined
interfaces for data sharing among different modules within a
controller and/or among cooperating controllers, and facili-
tates module reuse across controllers (the shaded module is
used by both controllers). The RTDB may maintain actual
reusable modules or just references to them.

Figure 1. Data Sharing and Module Reusing of Controllers

The object-oriented approach has been shown to be effec-
tive in managing the development and maintenance of large
complex systems, including real-time systems [5, 7]. It is the

Shared Data

controller controller

RTDB
Reusable Modules

207

choice of technology for controllers as well. Although real-
time database research often uses the object-oriented para-
digm, no agreed-upon real-time object-oriented data model is
available at this time. Therefore, we define in this paper a real-
time data model that is suitable for manufacturing applica-
tions. We have evaluated existing models used for real-time
applications [3, 9, 12, 13, 15, 17, 25]. Based on this evalua-
tion and the characteristics of manufacturing applications, we
extract a simple yet powerful real-time object model. It
explicitly captures important characteristics of RTDB applica-
tions, especially in the manufacturing application domain,
namely, timing constraints and performance polymorphism. It
uses specialization dimensions to model timing specifications
and letter class hierarchies to capture performance polymor-
phism. Although regular object-oriented programming tech-
niques (e.g., composite object classes) may be used to
implement the proposed concepts, they neither explicitly cap-
ture these concepts nor provide a mechanism to enforce them.

The remainder of the paper is organized as follows.
Section 2 describes a conceptual real-time object model, while
Section 3 presents the application of the model to a motion
controller. Section 4 briefly covers related work, and the paper
concludes with Section 5.

2 CONCEPTUAL REAL-TIME OBJECT MODEL

Machine tool controllers are hard real-time applications. All
operations, from reading sensor data to issuing actuator com-
mands, must be completed within each control period. Timing
requirements are intrinsic to these operations. Any failure to
meet timing constraints may cause severe property damages
and human injuries. At the same time, the openness of the
controller clears the path to the general availability of compat-
ible modular software (and hardware) components, to be
offered by different vendors. An application-programming
interface (API) that automates this selection process based on
application requirements would be a major help for applica-
tion developers. This is the main goal of our real-time model
design, namely, to provide facilities for simplifying reuse of
modules, for increasing the productivity of real-time applica-
tion developers, and for keeping application-code as con-
straint-optimized as possible given an up-to-date library of
application-specific kernel classes. In this section, we describe
theReal-time Object Model with Performance Polymorphism
(ROMPP). It isconceptual in the sense that it is not dependent
on any specific implementation. This model aims to provide a
simple, yet sufficiently powerful foundation, for our real-time
data management research for open-architecture machine tool
controllers by explicitly capturing key application characteris-
tics. In other words, we are not proposing acomplete data
model, instead, one that is suitable for manufacturing applica-
tions.

2.1 Object-Oriented Concepts

Machine tool controllers have become more sophisticated in
recent years by capitalizing on the progress of computer tech-
nology. However, problems still remain in terms of life-cycle
cost and lack of openness in commercially available control-
lers. The object-oriented approach has been shown to be
effective in managing the development and maintenance of
controllers. Therefore, our data model ROMPP is object-ori-
ented, that is, any real-world entity is represented by an
object. ROMPP adopts basic object-oriented concepts, such as
class and inheritance, as can be found in most object-oriented
models [6, 10, 14]. For completeness, these concepts are
defined below.

Definition 1. Anobject is a triple (identifier, state, behavior),
where the identifier is generated by the system and uniquely
identifies the object, the state is determined by the set of
values of theinstance variables associated with the object,
and the behavior corresponds to themethods associated with
the object. An instance variable of an object can hold as value
either a system-provided object, such as an integer, or a user-
defined object, such as a sensor. Instance variables are
private to the object, i.e., they can only be accessed by the
object’s methods. A method is defined by (signature, body),
where the signature consists of a method name and a
mapping from input parameter specifications to an output
parameter specification: . A
parameter specification (either input or output) is a class
name. The body corresponds to the actual code which
implements the desired functionality of the method. Methods
can be either private orpublic. A public method is accessible
to all methods of the object or even to other objects. An
instance variable of an object can be specified as being
composite. In this case, the object referenced through the
composite instance variable is owned by the object .
Deletion of will cause the deletion of .

Definition 2. A class is a tuple (name, structure) that
represents a group of objects with the same declaration of
instance variables and methods. The name of a class is a
string and the structure consists of the declaration of common
instance variables and methods.

Definition 3. For two classes and , is asubclass1 of
, denoted is-a , if and only if inherits every

instance variable and method of .

Multiple inheritance is allowed, that is, a class can have
more than one superclass. Note that private instance variables
and methods of a class are not visible to its subclasses,
although they are inherited by the subclasses. Only public
methods of the superclasses are accessible to the subclass and
become part of its public interface. In other words, private

1. Throughout this paper, we say that A is asubclass of B (B is a
superclass of A) iff A inherits directly from B, and A is adescendant
of B (B is anancestor of A) iff A inherits directly/indirectly from B.

M

M In 1 In 2 ... Inn, , ,() Out→

Vi A
B

Vi A
A B

C1 C2 C1
C2 C1 C2 C1

C2

208

instance variables inherited from a superclass are stored in the
instances of the subclass, but these private instance variables
(and methods) can only be accessed by the subclass via public
methods defined in the superclass. A public method of a class
can be declared virtual, i.e., it has no code associated with it
and must be implemented in the class’ subclasses (or descen-
dants). The objects of the same class type are usually called
instances of the class.

Definition 4. Aclass hierarchy is a directed acyclic graph2

(DAG) , where is a finite set of vertices and is
a finite set of directed edges. Each element in corresponds
to a class , while corresponds to a binary relation on

 that represents all subclass relationships between all
pairs of classes in . In particular, each directed edge from

 to , denoted by , represents the is-a
relationship (is-a).

Definition 5. Aschema is the description of a database. An
OODB schema is equal to the class hierarchy.

2.2 Key Characteristics
Based on our evaluation of existing real-time systems
[3, 9, 12, 13, 15, 17, 25] and real-time manufacturing applica-
tions [2, 4, 16], we have identified two key characteristics for
real-time data models:timing constraints and performance
polymorphism. In manufacturing automation applications
(machine tool controllers, in particular), control tasks periodi-
cally read sensor data, compute control parameters, and issue
actuator commands. All these operations must be completed
within each control cycle; otherwise, it may cause cata-
strophic consequences. Timing constraints are an essential
characteristic of such applications. Open-architecture require-
ments of machine tool controllers mandate and facilitate the
development of hardware and software modules that have the
same functionality and interface but with different perfor-
mance. This characteristic, which we call performance poly-
morphism, is a fundamental requirement for manufacturing
automation applications. We will show that a simple model
capturing these two key characteristics can provide significant
help to manufacturing automation application developers.

2.2.1 Timing Constraints
The first key characteristic is the concept of timing con-
straints. A real-time system must have the ability for the users
to specify timing constraints and for the system to provide
timing guarantees. Any real-time object model must thus have
constructs to specify timing constraints. The implementation
of a real-time DBMS must provide mechanisms to guarantee
these deadlines.

Definition 6. Thetiming constraint of a task refers to the
deadline by which the task must be completed.

In our real-time object model, timing constraints are asso-

2. A class hierarchy without multiple inheritance corresponds to a
tree rather than a DAG.

S V E,()= V E
V

Ci E
V V×

V e
C1 C2 e C1 C2,〈 〉=

C1 C2

ciated with the performance of methods, since the behavior of
an object is represented by its methods. Applications will be
requesting services from objects via their respective methods.
We thus need to extend the definition of a method
(Definition 1).

Definition 7. Amethod in ROMPP is now extended to be
defined as a triple (signature, body, performance), with
signature and body defined as in Definition 1. The (optional)
third field specifies the performance measure of the method,
such as execution time, memory space, etc.

We shall see that the exact specification of the perfor-
mance field of a method triplet depends on the type of class, as
described in the next subsection.

2.2.2 Performance Polymorphism

To implement the functionality of a method, typically several
different algorithms and/or data structures can be used.
Machine tool controllers need support in selecting one from
these implementations based on performance and/or price,
optimizing the objectives of the control applications. For
example, a controller that controls a milling machine may
choose among a variety of control algorithms, such as adap-
tive control, linear and nonlinear control algorithms. The con-
troller may want to select among these different control
algorithms based on performance characteristics, but without
having to deal with details of the respective implementation.
Such selection may occur either at application start-up time or
at run time. This second key characteristic of a real-time
model is called performance polymorphism.

Definition 8. Performance polymorphism refers to the
concept of maintaining and selecting among multiple
implementations of a method (body) that carry out the same
task and differ only in their performance measures, such as
execution time, memory space, system configuration, result
precision, and so on. Performance polymorphism is explicitly
supported by ROMPP, allowing dynamic selection of the most
appropriate method implementation by the system based on
performance characteristics desired by the application.

If a real-time object model does not have explicit con-
structs for performance polymorphism, we have to use one of
the following approaches:

1. The knowledge of performance polymorphism is captured
and maintained separately from the schema. For example,
the service designer3 may use a library to group different
implementations of the same service. The knowledge
about such real-time object libraries is not part of the
system schema. Although the schema may include a
description of different implementations of the service, it
provides no help to the application developer on how to

3. In this paper, we distinguish between theservice designer who
builds the kernel classes required by an application, and theapplica-
tion developer who utilizes these kernel classes stored in the DBMS
to construct applications.

209

use them. Therefore, it is the application developer’s
responsibility to keep track of different implementations
and, more importantly, about their relative characteristics
and performance metrics. The application developer must
use them appropriately in the improvement of existing
systems or the development of new applications.
Furthermore, it does not offer an automated mechanism to
ensure the proper use of different implementations of the
service. Obviously, such approaches do not provide
support for software reusability, and put all burden on the
application developer.

2. The service designer could use one implementation of an
object to meet all performance requirements, no matter
how different they are. This over-simplified approach
would typically require us to assume a worst-case
scenario. This is not even always possible, because
requirements may contradict one another. It also wastes
resources and poses true limitation on applications. For
example, suppose the system has a memory space of
10MB, and the chosen implementation of object A
requires 8MB while object B needs 3MB. Obviously, A
and B cannot co-exist in memory. Therefore, a real-time
task cannot receive services from A and B concurrently,
even if A needs only 2MB to provide the desired services
for this particular application when using a slightly slower
algorithm.

3. Another option is to duplicate the definition of the method
(or object) with each of its implementations and give them
distinct names in order to simulate performance
polymorphism. This would again carry all disadvantages
of the first approach above, making the application
developer responsible for maintaining information about
individual services and their relationships. In addition, a
system of such a type is difficult to maintain. Any change
in the definition of the method has to be made to all its
duplicates, which is inefficient and often prone to errors.

Our model overcomes all of these problems by adopting
the following strategies:

1. It provides a definition of the service offered by a method,
and supports explicit association of distinct
implementations with each service;

2. It allows for the explicit annotation of the performance
features that characterize each implementation by the
service designer, and for their explicit maintenance by the
database system;

3. It supports an automatic mechanism for the application
developer to work with the most appropriate
implementation of a desired service based on requested
performance requirements, without having to explicitly
choose one of the implementations. Should the
performance requirements of an application change, the
mechanism would transparently rebind the requested
service with the most appropriate implementation.

Performance polymorphism in ROMPP is captured by the
letter class hierarchy, which is based on an object-oriented
programming technique—theenvelope/letter structure [8].

Definition 9. An envelope/letter structure is a composite
object structure formed by a pair of classes that act as one: an
outer class (envelope class, or EC) that is the visible part to
the user, and an inner class (letter class, or LC) that buries
implementation details.

Definition 10. Aletter class hierarchy is a class hierarchy as
defined in Definition 4 that consists of, as its root, an envelope
class and zero to many letter classes. The envelope class and
all its letter classes must have exactly the same public
methods. Furthermore, the letter classes can only have is-a
relationships with classes in the same letter class hierarchy.
Letter classes are not explicitly accessed by the application
developer, but rather manipulated by the system based on the
performance requirements specified with the envelope class.

In other words, the letter classes of a letter class hierarchy
are all descendants of their corresponding envelope class.
They can have is-a relationships between themselves, thus
inheriting additional instance variables and methods. But they
cannot have is-a relationships with any other envelope or let-
ter classes.

Definition 11. An envelope class hierarchy is a class
hierarchy that consists of, as its root, a system-provided class,
calledROOT, and one or more envelope classes.

Notice that the definition of an envelope class hierarchy
does not include letter classes, although each envelope class
has an associated letter class hierarchy. This emphasizes the
fact that, for applications, letter classes are hidden behind their
corresponding envelope classes. A public method of an enve-
lope class can be designated as aspecialization dimension, as
defined below.

Definition 12. Aspecialization dimension is a performance
measure (Definition 7) that distinguishes letter classes from
one another. A specialization dimension must be assigned to a
public method in the letter class hierarchy. There is a
specialization space associated with each letter class
hierarchy and its axes are specialization dimensions.

The letter classes specialize along one or more specializa-
tion dimensions that have been specified for the public meth-
ods in their corresponding envelope class. The most common
specialization dimension for real-time applications is the exe-
cution time of a method. The public methods corresponding to
a specialization dimension must be declared virtual in the
envelope class. That is, there is no code attached to the meth-
ods with envelope classes. A public method could represent
more than one specialization dimension. For example, if the
implementation of a method requires a trade-off between exe-
cution time and memory space consumed, different imple-
mentations of the method will represent different points in a
two-dimensional specialization space, whose axes are execu-

210

tion time and memory space consumed.
The performance-related information of a letter class hier-

archy is reflected in its specialization space. A simple imple-
mentation of a specialization space would be to organize all
letter classes in a letter class hierarchy into an unsorted linked
list. A sequential search through the list would find the best
letter class (if one exists) satisfying the given performance
requirements. This simple approach would work well when
the number of letter classes is small. For more efficient
lookup, letter classes may be sorted along their specialization
dimensions. Envelope classes have complete knowledge of
how their corresponding letter class hierarchies are organized.
This knowledge may be implicit when all letter class hierar-
chies use the same organization technique and it is known to
the system, or explicit when the knowledge of the organiza-
tion technique is stored in individual envelope classes. The
relative performance of a letter class is significant in terms of
its location in this specialization space. Hence any change on
the performance value may map the letter class to a different
point in its specialization space. Letter classes are not neces-
sarily static (or predefined); they can be created at run-time.

2.3 Model Constructs

For the specification of the constructs introduced above, we
propose the following data definition notation. Note that these
model constructs are designed to be programming language
independent. They are specified by statements with special
key words preceded by the character “@”. The following con-
structs have been defined:

1. @EC <ec>

It declares that <ec> is an envelope class. This statement is
used when defining classes.

2. @LC <lc> OF <ec>

It declares that <lc> is a letter class of the envelope class
<ec>, again used for class definition.

3. @DIM: <method> = <identifier>

It specifies that <method> is a specialization dimension of
the letter class hierarchy and gives it a unique identifier.
This construct can only be used within the definition of an
envelope class.

4. @DIM: <identifier> = { <value> | <expr> | unknown }

It specifies the performance value of the specialization
dimension <identifier> that has been declared for its
corresponding envelope class. This construct can only be
used in the context of letter classes.

An example is given below to illustrate the newly intro-
duced concepts. It is described in C++, since C++ and C are
among the most popular programming languages for real-time
applications. By placing the model constructs in programming
language comments, we avoid modifying the programming
language itself. The model constructs can be pre-processed,
before the code is sent to the programming language compiler.

Example: A Letter Class Hierarchy with Two Specializa-
tion Dimensions

In Figure 2, the classSensor is the envelope class, while
classesSensor1 and Sensor2 are its letter classes. There are
two specialization dimensions, associated with the methods
sample() andprocess() (identified asSTime andPTime), respec-
tively. Therefore, the specialization space is a plane, as shown
in Figure 2(c). Note that specialization dimensions may not
necessarily be inferred from the structure of the letter class
hierarchies as, for instance, shown in Figure 2(b), since these
simply capture is-a relationships in terms of property inherit-
ance.

Figure 2. Example of Two-Dimensional Specialization Space

2.4 Real-Time Object-Oriented Database
Schema

Definition 13. A real-time object-oriented database
(RTOODB) schema is composed of one envelope class

 Sensor();
 // @DIM: int sample() = STime
 virtual int sample();
 // @DIM: void process() = PTime
 virtual void process();

};

class Sensor1 : public Sensor {
public:
 Sensor1();
 // @DIM: STime = 10 ms
 int sample();
 // @DIM: PTime = 6 ms
 void process();

// @LC: Sensor2 OF Sensor
class Sensor2 : public Sensor {
public:
 Sensor2();
 // @DIM: STime = 20 ms
 int sample();
 // @DIM: PTime = 3 ms
 void process();

};

// @LC: Sensor1 OF Sensor

};

public:
class Sensor {
// @EC: Sensor

(a) Model Description

Sensor2Sensor1

Sensor

STime (ms)

Sensor1

Sensor2

10 200

PTime
(ms)

3

6

(b) Letter Class Hierarchy

(c) Specialization Space

211

hierarchy and a set of zero or more letter class hierarchies,
defined in Definition 11 and Definition 10, respectively. Each
letter class hierarchy is associated with one envelope class.

If an envelope class has no letter classes, it degenerates to
a conventional class. Therefore, a RTOODB schema is com-
prised of exactly one envelope class hierarchy and zero to
many letter class hierarchies. The root of the envelope class
hierarchy is the system provided classROOT, while the root of
a letter class hierarchy is its corresponding envelope class.

2.5 Application-Programming Interface (API)

ROMPP offers a unique application-programming interface
(API) for manufacturing applications. Because ROMPP
explicitly models timing constraints and performance poly-
morphism, it naturally supports an automated mechanism in
the API that selects software modules based on requirements
of the application. This mechanism is visualized in Figure 3.
For example, the service designer provides a collection of sys-
tem services that constitute the kernel of the RTOODB. When
a machine tool controller (being built by the application
developer) needs some service, it sends a service request,
which specifies the type of service, performance constraints,
and other requirements, to the API. The mechanism in API,
enabled and explicitly supported by ROMPP, will automati-
cally select the most appropriate service for the request. This
selection process may be accomplished either at application
start-up time or at run time. We will show the application of
the model to a real working application in Section 3.

Example: A RTOODB Schema

Figure 4 shows an example RTOODB schema. The shaded
area is an envelope class hierarchy, which is visible to the
application. We now demonstrate how this schema can be
used by an application developer. Suppose that the rightmost
letter class hierarchy (enclosed in the rounded rectangle) is the
same as that in Example 2 (Figure 2), i.e., a letter class hierar-
chy with a two-dimensional specialization space.

Assume that an application requires aSensor object with
the following constraints:

class Foo {
public:

...
private:

Sensor s(“STime<=15ms, PTime<7ms”);
...

};
Then an object ofSensor1 will be constructed by our sys-

tem since it satisfies constraints on bothSTime andPTime. If in
future, the application adjusts its requested timing require-
ments for theSensor object to “STime<22ms, PTime<5ms”,
then the system will automatically select another implementa-
tion object forSensor, namely, an object instance of classSen-

sor2, replacing the initial choice of aSensor1 object. This
process of rebinding will betransparent to the application

developer, since our model supports true performance poly-
morphism.

Figure 3. Application-Programming Interface for Manufacturing

Figure 4. Example Real-Time Object-Oriented Database Schema

3 APPLICATION OF MODEL TO A PROTO-
TYPE CONTROLLER

We now want to demonstrate the utility of the real-time object
model ROMPP defined in Section 2. In particular, we want to
discuss how it can be used to build real-time machine tool
controllers. Figure 5 depicts our open-architecture machine
tool controller testbed. Control tasks are executed on VME-
based processors boards (e.g., Motorola 680x0s and Intel
80x86s) running a real-time operating system (e.g., VxWorks
or QNX), in order to achieve good performance and timing
predictability. Sensors and actuators on the computer numeri-
cally-controlled (CNC) machine are accessed through com-
mercial controllers (e.g., Delta Tau PMAC) and/or IO
interface boards (e.g., Controller Area Network or CAN, and
SERCOS). Control software may be cross-developed on and
downloaded from remote workstations connected to the test-
bed via ethernet. This testbed architecture allows easy adop-
tion of new hardware components as they become available,
and thus provides good hardware openness. Well-defined
interfaces and support for performance polymorphism will
supply a foundation of software openness.

The key concepts of ROMPP, namely, using specialization
dimensions to characterize timing constraints and using letter
class hierarchies to capture performance polymorphism, are

Controller

service request RT Applications

API

Services

ROOT

Envelope Class Hierarchy

Sensor1 Sensor2

Sensor

Actuator

212

incorporated in MDARTS [15]. MDARTS is a multiprocessor
database architecture for real-time systems, built in C++ at the
University of Michigan. To evaluate the suitability of the
MDARTS in the domain of real-time manufacturing control
applications, a prototype motion controller for a six degree-of-
freedom (DOF) robotic manipulator was implemented
(Figure 6). It is a physical mechanism for geometric error
compensation at the assembly stage of automotive applica-
tions. This mechanism includes a multi-axis manipulating
device (essentially a robotic table to which sheet metal parts
can be affixed), and a multi-axis servo-motion controller that
handles the execution of desired motions at the manipulator
joint level. The servo-motion controller board is a Program-
mable Multi-Axis Controller (PMAC) designed and manufac-
tured by Delta Tau Systems. The manipulator consists of a
fixed base, a movable platform, and six independently posi-
tioned legs. Each leg is connected to the base by a 2-DOF
joint on one end, and to the platform by a 3-DOF joint on the
other end. The tops of adjacent legs are joined together at the
platform connection point, forming a set of three leg triangles.

Figure 5. Open-Architecture Controller Testbed

Figure 6. MDARTS Experiment Setup (using a ROMPP model).

Workstation

CPU

IOsIOs

Workstation

CPU CPU

Machine

VME bus

Ethernet

commercial
controller

Motorola 68030

VME
bus

PMAC
object

(MDARTS)

control
task

processor board

Delta Tau

PMAC-VME board

motion programs

Dual-Ported RAM

control parameters

machine state

sensor
data

actuator
commands

6-Axis
Robotic
Table Electronics

The PMAC board executes downloaded motion programs
to manipulate the robotic table. There is a dual-ported RAM
on the PMAC board, where machine state and control parame-
ters are stored. The PMAC is encapsulated in thePmac object
of the control task. During each control cycle, the control task
reads machine state, computes control parameters, and sends
them to the PMAC. The PMAC then adjusts the motion trajec-
tory of the robotic table based on the control parameters and
the original motion program, and updates machine state. Tim-
ing constraints for data access (which restrict the methods
Pmac::getValue() and Pmac::setValue()) and computations are
specified for thePmac object in order to ensure that all opera-
tions can be finished within each (periodic) control cycle.

There are several system-defined specialization dimen-
sions in MDARTS: read time, write time, priority, persistency,
etc. Constraints can be specified for these pre-defined and
user-defined specialization dimensions. The most appropriate
data access services are selected automatically at the applica-
tion start-up time based on the above specified timing require-
ments, therefore, reducing run-time overhead to a minimum.
This method of binding at initialization time is very suitable
for meeting the needs of manufacturing automation applica-
tions, since timing information may be obtained beforehand.
In fact, this is the only way that the granularity of performance
(as small as tens of microseconds) required by the application
can be achieved.

Furthermore, without the automated mechanism of perfor-
mance polymorphism explicitly supported by ROMPP, the
application developer would have to figure out exactly which
database services to use. Whenever the application require-
ments and/or database service implementations change, the
application developer has to find suitable services again and
modify the application code manually. With the automated
mechanism, all the application developer needs to do is
change the requirement specifications (in the case of applica-
tion requirement changes) or nothing (in the case of service
implementation changes). The system then will take care of
the service selection and binding. It was shown that this proto-
type controller is able to monitor and modify the path of the
manipulator while it is executing a sequence of move com-
mands. This experiment thus demonstrates, among other fea-
tures of MDARTS, that our real-time object model is useful in
practice.

4 RELATED WORK

While a large body of work on real-time systems exists, no
agreed-upon, conceptual model for real-time databases has
been established. In this paper, we show that timing con-
straints and performance polymorphism are two key charac-
teristics for real-time manufacturing applications and should
be explicitly supported by a real-time data model. Unlike our
work, none of the existing models were specifically targeted
to real-time open-architecture controllers. Due to limited

213

space, interested reader is referred to [26] for a comparison
between ROMMP and existing real-time models, such as
CHAOS [3, 20], ARTS [17, 23], RTC++ [12], Flex [13],
HiPAC [9], RTSORAC [25], and MDARTS [15].

5 CONCLUSIONS

In the paper, we identified timing constraints and performance
polymorphism as two key characteristics of real-time manu-
facturing applications. We then presented a conceptual real-
time object model, ROMPP, which provides a simple, yet suf-
ficiently powerful foundation for our real-time data manage-
ment research for open-architecture machine tool controllers
by explicitly capturing these key characteristics. In other
words, we have not proposed acomplete real-time data model,
instead, described one that is suitable for manufacturing appli-
cations. Our real-time model provides facilities for optimized
reuse of modules, for increasing the productivity of real-time
application developers, and for keeping application-code as
optimized as possible given a collection of application-spe-
cific kernel classes in ROMPP. We also demonstrated the
applicability and usefulness of the proposed concepts for real-
time manufacturing applications, in particular, open-architec-
ture machine tool controllers. We discussed how this model
was successfully used in building a real-time machine tool
controller, namely, a prototype motion controller for a six
degree-of-freedom robotic manipulator.

As next step, we are investigating the impact of schema
evolution technology on real-time OODBs in terms of reduc-
ing turn-around time for developing real-time control applica-
tions, and for reusing the most appropriate kernel classes with
minimal effort. Preliminary results are reported in [26].

6 ACKNOWLEDGEMENTS

This research was supported in part by the Horace H. Rack-
ham School of Graduate Studies at the University of Michigan
under a Research Partnership Grant, the United Parcel Service
Foundation under an IVHS Graduate Fellowship, and the
National Science Foundation under Grants DDM-9313222
and IRI-9309076.

7 REFERENCES

[1] James Albus, presentation at theInt’l Workshop on Open-Archi-
tecture Controllers for Automation, Ann Arbor, MI, Apr. 1994.

[2] B. Anderson, “Next Generation Workstation/Machine Control-
ler (NGC),”Proc. IPC’92, April 1992, pages xix-xxvi.

[3] Thomas E. Bihari, and Prabha Gopinath, “Object-Oriented Real-
Time Systems: Concepts and Examples,”IEEE Computers,
December 1992, pages 25-32.

[4] Sushil Birla, “Conceptual Modeling of Manufacturing Automa-
tion,” CSE-TR-220-94, The University of Michigan, Oct. 1994.

[5] Grady Booch,Object-Oriented Design with Applications, Ben-
jamin/Cummings, 1991.

[6] Paul Butterworth, Allen Otis, and Jacob Stein, “The Gemstone
Object Database Management System,”Communications of the

ACM, Vol. 34, No. 10, October 1991, pages 64-77.

[7] R.G.G. Cattell,Object Data Management: Object-Oriented and
Extended Relational Database Systems, Addison-Wesley, 1991.

[8] James Coplien,Advanced C++ Programming Styles and Idi-
oms, Addison-Wesley, 1992.

[9] U. Dayal, et al., “The HiPAC Project: Combining Active Data-
bases and Timing Constraints,”SIGMOD Record, Vol. 17, No.
1, March 1988, pages 51-70.

[10] O. Deux, et al., “The O2 System,”Communications of the ACM,
Vol. 34, No. 10, October 1991, pages 34-48.

[11] Marc H. Graham, “Issues in Real-Time Data Management,”The
Journal of Real-Time Systems, 4, 1992, pages 185-202.

[12] Yutaka Ishikawa, Hideyuki Tokuda, and Clifford W. Mercer,
“An Object-Oriented Real-Time Programming Language,”
IEEE Computer, October 1992, pages 66-73.

[13] Kevin B. Kenny, and Kwei-Jay Lin, “Building Flexible Real-
Time Systems Using the Flex Language,”IEEE Computer, May
1991, pages 70-78.

[14] Won Kim, et al., “Architecture of the ORION Next-Generation
Database System,”IEEE Transactions on Knowledge and Data
Engineering, Vol. 2, No. 1, March 1990, pages 109-124.

[15] Victor B. Lortz, “An Object-Oriented Real-Time Database Sys-
tem for Multiprocessors,”Ph.D. dissertation, The University of
Michigan, March 1994.

[16] Martin Marietta Astronautics Group,Next Generation Worksta-
tion/Machine Controller Specification for an Open System
Architecture Standard, NGC-0001-13-000-SYS, March 1992.

[17] Clifford W. Mercer, and Hideyuki Tokuda, “The ARTS Real-
Time Object Model,”Proceedings of the 11th Real-Time Sys-
tems Symposium, 1990, pages 2-10.

[18] Krithi Ramamritham, “Real-Time Databases,”Distributed and
Parallel Databases, 1, 1993, pages 199-226.

[19] Günter Prischow and Gerd Junghans, presentations at theInter-
national Workshop on Open-Architecture Controllers for Auto-
mation, Ann Arbor, Michigan, April 1994.

[20] Karsten Schwan, et al., “CHAOS-Kernel Support for Objects in
the Real-Time Domain,”IEEE Transactions on Computers, Vol.
C-36, No. 8, Aug. 1987, pages 904-916.

[21] Kang Shin, and Parameswaran Ramanathan, “Real-Time Com-
puting: A New Discipline of Computer Science and Engineer-
ing,” IEEE Proceedings, Vol. 82, No. 1, Jan. 1994, pages 6-24.

[22] Mukesh Singhal, “Issues and Approaches to Design of Real-
Time Database Systems,”SIGMOD Record, Vol. 17, No. 1,
March 1988, pages 19-33.

[23] Hideyuki Tokuda, and Clifford W. Mercer, “ARTS: A Distrib-
uted Real-Time Kernel,”ACM Operating Systems Review,
23(3), July 1989, pages 29-53.

[24] Ozgur Ulusoy, “Current Research on Real-Time Databases,”
SIGMOD Record, Vol. 21, No. 4, December 1992, pages 16-21.

[25] Victor Wolfe, et al., “A Model For Real-Time Object-Oriented
Databases,”Proceedings of the Tenth IEEE Workshop on Real-
Time Operating Systems and Software, May 1993, pages 57-63.

[26] Lei Zhou, Elke Rundensteiner, and Kang Shin, “Schema Evolu-
tion for Real-Time Object-Oriented Databases,” CSE-TR-199-
94, The University of Michigan, March 1994.

View publication statsView publication stats

https://www.researchgate.net/publication/2793391

