
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995 113

Establishment of Isolated Failure
Immune Real-Time Channels in HARTS

Qin Zheng, Member, IEEE, and Kang G. Shin, Fellow, IEEE

Abstracf- Fault-tolerant, real-time communication in distrib-
uted systems is very important yet difficult to achieve. Tradi-
tional protocols like the TCPDP achieve reliable communication
through acknowledgment and retransmission schemes, where one
achieves the reliability at the cost of performance. In this paper,
we discuss how both the timeliness and fault-tolerance of com-
munication can be achieved by using the concept of real-time
channel [l] and exploring the inherent spatial redundancy of a
given network topology. Specifically, we show how isolated failure
immune real-time channels can be established in wrapped hexag-
onal mesh networks, thus ensuring timely delivery of messages in
the presence of network component failures as long as the failures
are isolated. This kind of fault-tolerance cannot be achieved with
other commonly-known topologies like rings, rectangular meshes,
and hypercubes. The proposed approach is to be implemented in
an experimental distributed real-time system, called HARTS [2],
whose construction is underway.

Index Terms- Distributed computing systems, fault-tolerant
real-time communications, wrapped hexagonal mesh, isolated
failure immune networks, real-time channels.

I. INTRODUCTION

ELIABLE and timely delivery of messages in point-to- R point packet-switching networks has long been a chal-
lenge to system designers. To avoid unpredictable queueing
delays at transmission linkshodes, real-time messages are
usually transmitted along a pre-determined path on which
the network resources are reserved to guarantee the actual
delivery delay to be less than a pre-specified bound. Ex-
amples include circuit-switching transmission, synchronous
transmission mode (STM), and the recently-proposed real-time
channel [l], [3], [4]. Sending messages along a static path,
however, reduces the fault-tolerance of real-time traffic, since
a nodeAink failure in the path would disable the channel that
runs over the path.

To alleviate this problem, Zheng and Shin [5] proposed
a semi-dynamic routing scheme for real-time channels. By
reserving resources at some extra links and nodes, these real-
time channels with extra links and nodes can tolerate any
single nodeAink failure in the network.

Manuscript received July 3, 1992; revised February 14, 1994.
The work reported in this paper was supported in part by the Office of Naval

Research under Grant N00014-92-J- 1080 and the National Science Foundation
under Grants MIP-9012549 and MIP-9203895.

Q. Zheng is with Mitsubishi Electric Research Laboratories, Inc., Cam-
bridge, MA 02139 USA (e-mail: zheng@merl.com).

K. G. Shin is with Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, MI 48109 USA (e-mail: kgshin@eecs.umich.edu).

IEEE Log Number 9408128.

4
dcstkation

(C) (d)

Fig. I . Four types of nonisolated component failures. (a) Two faulty nodes
which are adjacent. (b) Two faulty links which originate from the same
functioning node. (c) Same as (b) except that one link is made unusable
(thus regarded faulty) by the failure of another node. (d) Two incoming faulty
links of the destination node.

Making a real-time channel more robust than just tolerating
a single component failure turns out to be very difficult and
requires reservation of significantly more network resources.
In the Real-time Computing Laboratory of the University of
Michigan, we have been exploring various network topologies
to solve this problem and have found a wrapped hexagonal
mesh [6] to be isolated failure immune (IFI). An IF1 real-
time channel guarantees the timely delivery of messages in
the presence of network component failures as long as the
failures are isolated with respect to the channel. Node failures
are said to be isolated with respect to a real-time channel if
the source and destination nodes of the channel are not faulty
and any two faulty nodes in the channel are not adjacent. Link
failures (a link failure is caused by either the failure of the link
itself or the failure of the node which the link leads to) are said
to be isolated if any two faulty links are not originated from
the same functioning node or directed to the destination node.
Fig. 1 shows four types of nonisolated component failures.
Another two types of nonisolated failures are the failures of
the source and destination nodes. Fig. 2 shows an example
of an IF1 channel from node 1 to node 6 and one pattern of
(tolerable) isolated failures.

The isolated failure immune problem for undirected net-
works was first discussed in [7] where the authors proved

1045-9219/95$04.00 0 1995 IEEE

I14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995

destination

souIce

Fig. 2. An IFI channel and one pattern of tolerable IinWnode failures.

that a 2-tree' is a minimum IF1 network. In other words,
any IF1 network must contain a spanning 2-tree. This result
excludes almost all commonly-used network topologies (e.g.,
rings with more than 3 nodes, rectangular mesheskubes, and
hypercubes) from the candidate set of IF1 networks, except
for the hexagonal mesh.

An IF1 real-time channel has the following advantages over
a basic real-time channel:

High Reliability: The channel can tolerate a large number
of component failures as long as they are isolated. For
example, the IF1 channel shown in Fig. 2 can tolerate as
many as 7 faulty links and 2 faulty nodes, which represent
70% of the links and 33% of the nodes that the channel
runs through.
Easy Failure Detection: Non-isolated failures in the net-
work can be easily detected by a node using only its
local information, i.e., the status of its own links and its
neighbors. This makes the system maintenance extremely
easy. A node can safely shut down one of its links or
itself by checking the status of its links and neighbors.
Accommodation of Emergency Messages: A path be-
tween any pair of nodes in a network can always be
constructed using only those links whose failure will not
cause nonisolated failures. So, in the absence of network
component failures, it is always safe to break down some
links of existing IF1 real-time channels and use their
full link transmission bandwidth to handle emergency
messages.

This paper is organized as follows. For completeness, the
HARTS topology and its routing algorithm are reviewed in
Section 11. The concept of real-time channel is also briefly
discussed there. Section I11 presents the schemes of establish-
ing isolated failure immune real-time channels in HARTS. The
paper concludes with Section IV. Proofs of theorems in this
paper are given in an appendix.

11. HARTS AND REAL-TIME CHANNELS

HARTS is an experimental distributed real-time system
currently being built in the Real-Time Computing Laboratory
of the University of Michigan [2]. As shown in Fig. 3, the
interconnection network of HARTS is a wrapped hexagonal
mesh which can be defined as follows.

' A 2-tree can be constructed as follows. Two nodes connected by a link
is a 2-tree. A new node can be added to a 2-tree by connecting it to two
neighboring nodes in the 2-tree.

2 3 3 1 4 5

e * ^ *e %
14 1 5 15 16 16 17

Fig 3 A wrapped hexagonal mesh of size 3

Dejinition 2.1: Let [a] b denote a mod b. Then a wrapped
hexagonal mesh of size n (or the number of nodes on each
peripheral edge) is composed of N = 3n(n - 1) + 1 nodes,
labeled from 0 to N - 1, such that each node s has six
neighbors [s + l] ~ , [s + 3n(n - l)] ~ , [s + 3n - 2] ~ , [s +
3n2 - 6 n + 3IN1 [s + 3n2 - 6 n + 2] ~ , and [s + 3n - l] ~ , in
the X, -X, Y, -Y, 2, -2 directions, respectively.

It was proved in [6] that a wrapped hexagonal mesh is
homogeneous. Consequently, any node can view itself as the
center of the mesh. Let m,, my, and m, be, respectively, the
number of hops (negative values mean the moves in negative
directions) from the source node to the destination node along
the X,Y, and 2 directions on a shortest path. The following
routing algorithm [6] determines the values of m,, my, and
m, for the shortest paths from a source node s to a destination
node d in a wrapped hexagonal mesh of size n:

Algorithm 2.1 (Routing in HARTS):
Step 0. Set m, := 0, my := 0, m, := 0. Let p =
3n2 - 3n - 1, k = (d - s) mod p , T = (k - n) div
(3n - 2) , t = (k - n) mod (3n - 2).
Step 1. If k < n then set m, := k , stop. Else if
IC > 3n2 - 4n + 1 then set m, = IC - 3n2 + 3n - 1,
stop. Else goto Step 2.
Step 2. If t 5 n + T - 1 then

If t 5 T then set m, := t - T , m, := n - T - 1,
stop.
If t 2 n - 1 then set m, := t - n + 1, my :=
T + 1 - 12, stop.
Else set my := T - t , m, := n - t - 1, stop.

else

If t 5 2n - 2 then set m, := t + 2 - 2n, my :=
T + 1, stop.
If t 2 2n + T - 1 then set m, := t - 2n - T +
1, m, := -T - 1, stop.
Else set my := 2n+r - t - 1, m, := 2n - t - 2,
stop.

ZHENG AND SHIN: FAILURE IMMUNE REAL-TIME CHANNELS I15

To send a packet, the source node calculates m,, myl m,
using the above algorithm. It then sends the packet to an
appropriate neighbor. Intermediate nodes update these values
to indicate the remaining number of hops to take in X ,
Y , and Z directions before forwarding the message. Hence
m, = my = m, = 0 indicates that the packet has reached
its destination. The readers are referred to [6], [2] for a
detailed account of the wrapped hexagonal mesh and its
routing algorithm.

To meet the requirement of real-time communication, the
HARTS communication subsystem is designed to support real-
time channels [8]. A real-time channel is a simplex virtual
connection between the source and destination nodes which
guarantees the delivery of packets within a user-specified end-
to-end delay bound. Two techniques are used to achieve this
goal: admission control of channels and deadline scheduling
of packet transmissions.

Admission control requires those processes requesting real-
time communication to establish real-time channels before
starting packet transmission. A channel-establishment request
may be accepted or rejected, depending on the current
network-load condition. Admission control is necessary
because packet-delay bounds cannot be guaranteed without
controlling the network load.

Packet transmissions are scheduled as follows. Real-time
packets have a higher transmission priority than nonreal-time
packets. Each real-time packet is assigned a deadline over
each link it traverses which is determined according to the
packet’s generation time at the source node and the delay
bounds dZ’s assigned to the links of the real-time channel.
When several real-time packets contend for use of the same
link, the packet with the earliest deadline is transmitted first.
The advantages of using deadline scheduling are the minimiza-
tion of contention delays and protection between established
channels [3], [4].

To set up a real-time channel, the requesting process must
determine two parameters, T and C, specifying its traffic
generation pattem, where T is the minimum packet inter-
generation time and C is the maximum packet transmission
time (directly proportional to the maximum packet length). It is
reasonable to assume prior knowledge of these parameters for
many real-time applications, such as interactive voice/video
transmission‘ and real-time control/monitoring. In other ap-
plications where the traffic pattem is less predictable, the
estimated values of T and C could be used. A process may
exceed its pre-specified maximum packet generation rate at
the risk that its packets may be delivered with delays longer
than the pre-specified bound or may even be discarded, but
due to the deadline scheduling of packet transmissions, this
particular process will not affect the guarantees of the other
existing channels.

The process then sends a channel establishment request
message containing T and G together with the end-to-end
packet delay bound D and addresses of the source and destina-
tion nodes to a special node containing the Network Manager
(NM), which maintains the information of all existing channels
and executes the channel establishment algorithm of [3], [4]
to check if the requested channel can be established over a

specified route under the current network load condition. If
the channel can be established, the algorithm also calculates
the link delay bounds d j ’ s which will be used to determine
the deadlines of the channel’s packets.

Interested readers are referred to [l], [9], [3], [4] for a
detailed discussion of real-time channels.

111. ISOLATED FAILURE IMMUNE
REAL-TIME CHANNELS IN HARTS

This section discusses how real-time channels can be en-
hanced to be Isolated Failure Immune (IFI) in HARTS. The
first step is to find an IFI path, which is defined as a
subnetwork containing a directed path from the source to
the destination in the presence of any isolated failures. Let
ds(wl, w2) denote the minimum number of hops (i.e., distance)
from node ti1 to node v2 in a network S. The following
theorem gives a sufficient condition for S to be an IF1 path
from source node w, to destination node l id in a general
directed network.

Theorem 3.1: A subnetwork S containing the source node
v, and the destination node l id is an IF1 path from v, to l i d if

c1 : Every node E s, ii # V d , has at least two outgoing
links to two other nodes, say IQ and v2, such that
d~(v1,vd) < d s (i i . d d) , d ~ (1 1 2 , v d) I ds(v ,vd) , and V I ,

v2 are adjacent,
C2: There is no loop in S whose nodes are all of the same
distance d > 1 to the destination node U d .

From the above theorem, one can see that each node in an
IF1 path needs only two outgoing links. We call one of them
the primary link and the other the secondary link.

The primary link is the one which leads to a node closer to
the destination. One can choose the primary link from the
shortest path as determined by Algorithm 1. In case there
exist multiple choices, i.e., more than one of mzl my, m,
are nonzero, we will use the following algorithm to select
a primary link L.

abs (z) and sign(z) denote the absolute value and the sign
of z, respectively, and let X , - X , Y , -Y, 2. -2 denote the
outgoing links of a node along the six different directions.

Algorithm 3.1 (Selection of the Primary Link): L Let

Then,
If abs(m,) > 1 then set L := s i g n (m z) X
else if abs(my) > 1 then set L := sign(m,)Y
else if abs(m,) > 1 then set L := sign(m,)Z
else if abs(m,) = 1 then set L := sign(m,)X
else if &(my) = 1 then set L := sign(m,)Y
else if abs(m,) = 1 then set L := sign(m,)Z.
The logic behind the above algorithm is that one should first

select the primary link in the direction which is more than one
hop away from the destination. If there are more than one such
directions, the primary link is selected in the order of X, Y, Z.
On the other hand, if there are no such directions, the primary
link is selected in the direction which is one hop away from
the destination in the order of X, Y, Z . As will be clear later,
the selection of the primary links in this specific way will
facilitate the determination of the secondary links and reduce
the number of nodedlinks of the resulting IF1 channel.

116 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995

In a wrapped hexagonal mesh network, to ensure that the
secondary link does not lead to a node which is farther away
from the destination, it must be either 60 degree above or 60
degree below the primary link. Here “above” means counter-
clockwise and “below” means clockwise. We use the notation
L + 1 to denote the link which is 60 degree above L, and L - 1
the one which is 60 degree below L. For example, if L = X,
then X + 1 = -2 and X - 1 = -Y.

Let node[i] denote the ith node of an IF1 path, and node[i] .p
and node[i] .s denote the node’s primary and secondary links,
respectively. We propose the following algorithm to construct
an IF1 path from U , to Vd.

Algorithm 3.2 (Construction of an IFI Path):
Step 1. Calculate m,, my, m, for the source node v,
using Algorithm 1. Notice that at most two of them can
be nonzero.
Step 2. Set i := 1 and n o d e [l] := w,. Set the initial
rotating direction for the secondary link R := 1 if
one of the following conditions holds: (1) abs(my) >
abs(m,) = 1, (2) abs(m,) 2 abs(my) = 1, (3)
abs(m,) > 1, m, # 0, and (4) abs(m,) = abs(m,) = 1.
Otherwise, set R := -1.
Step 3. Calculate the primary link L(i) using Algorithm
2. If i > 1, L (i) # L(i - l) , and node[i - 11 is not
adjacent to Vd, set R := -R.
Step 4. Set node[i].p := L(i) , node(i) .s := L(i)+R, and
set node[i + 11 to be the node which the secondary link
of node[i] leads to. Update m,, my, m, for node[i + 11.
Step 5 . If node[i+ l] = node[i-11, then set node[i+ l] :=
Vd and stop. The destination node has been reached.
Otherwise, set i := i + 1 , R := -R, goto Step 3.

The correctness of Algorithm 3 is proved by the following

Theorem 3.2: The subnetwork obtained from Algorithm 3

We make several remarks on Algorithm 3 as follows.
1) In Step 4, the address of node[i + 11 can be obtained

from that of node[i] using Definition 1, which gives the
addresses of the six neighboring nodes of a node in six
directions. The values of m,, my, m, for node[i + 11
can be updated directly with Algorithm 1 using the
address of node[i + 11. But a simpler way of doing this
is as follows. Let U be the direction of link node[i] .s
and v , w be the remaining two directions. Let s = 1
if link L(i) + R is at the positive direction of U and
s = -1 otherwise. Then, if (mu = m, = 0 and
sm, > 0) or (mu = mw = 0 and sm, > 0), update
m, := m, - s,m, := mw - s. Otherwise, update
mu := mu - s. The correctness of this algorithm can
be verified by placing the destination node Wd at the
center of the wrapped hexagonal mesh and checking the
changes of m,, my, my as one moves from node[i] to
node[i + 11 along link node[i] .s .

2) In Step 2, the initial rotating direction R for the sec-
ondary link is chosen such that if n o d e [l] has two
links both on shortest paths2 to the destination nodes,

*Note that there could be multiple shortest paths between a pair of nodes.

theorem.

is an IF1 path from U , to Vd.

node[11 .s will take one of them. In this way, the resulting
IF1 path needs less links and nodes than all other
cases. The way in which the primary link is chosen in
Algorithm 2 also serves this purpose.

3) Since the primary links are always on the shortest path
to the destination, they form a shortest path sinking
tree to the destination. In other words, if a packet
generated at any node in S is always forwarded using
the primary links, it will take a minimum number of
hops to the destination. This fact results in the following
routing policy at each node: an arriving packet should be
forwarded via the primary link whenever possible. The
secondary link is used only if the primary link is down.

We now discuss how an IF1 real-time channel can be
established over an IF1 path obtained from Algorithm 3. The
procedures to establish an IFI real-time channel are composed
of the following three steps.

Step 1. Calculate the packet-delay bound over each link
of the channel.
Step 2. Calculate the end-to-end delay bound using the
link-delay bounds.
Step 3. If the end-to-end delay bound is not larger than the
requested one, the channel can be established. Calculate
the link delay bounds to be assigned to the channel.
Otherwise, the channel establishment request is rejected.

Results in [3], [4] can be used for the calculation of the
link-delay bounds in Step 1. Let node[i] , i = 1, . . . , k be the
nodes of an IF1 path obtained from Algorithm 3, where n o d e [l]
is the source node and node[k] is the destination node. Let
d[i] .p and d[i] . s be the delay bounds over the primary and
secondary links of node[i] , respectively. Then the end-to-end
packet delivery delay bound in Step 2 can be calculated using
the following algorithm.

Algorithm 3.3 (Calculation of the Packet Delivery Delay
Bounds): The packet delivery delay bound d[i] from node[i]
to the destination node node[k] can be calculated as follows:

d[k - 11 = m a x { d [k - l] . p , d[k - 11.s + d[k - 2].p},

d[k - 21 = m a x { d [k - 2].p, d [k - 21.s + d[k - l] . p } ,

d[i] = max{d[i] .p + d [i p] , d[i] .s + d[i ,]} i = k - 3 , . . . 7 1.

where node[i,],node[i,] are the nodes to which the primary
and secondary links of node[i] lead, respectively.

The correctness of Algorithm 4 can be verified as fol-
lows. From the proof of Theorem 2, the connections between
node[k - 21, node[k - 11, and node[k] are shown in Fig. 4(b),
from which the first two equations can be obtained. For
1 5 i 5 k - 3, node[i] is connected to node[i,] and node[i,]
in the way shown in Fig. 4(a), which proves the remaining
k - 3 equations. Since i, and i, are always larger than i for
i I k - 2, the maximum delay bound from node[i] to node[k]
can be obtained from the above equations.

If d [l] 5 D, the IF1 real-time channel can be established,
and we need to determine the link-delay bounds to be assigned
to the channel. As discussed in [3], [4], the link-delay bounds
of the channel should be set as large as possible to reduce the

ZHENG AND SHIN: FAILURE IMMUNE REAL-TIME CHANNELS 117

(a)

Fig. 4. Calculation of d [i] ’ s .

channel’s influence on the links’ ability to establish more real-
time channels in future. This can be done using the following
algorithm.

Algorithm 3.4 (Assignment of Link-Delay Bounds):
Step 1. In Algorithm 4, for i = k - 1. . . . , 1 , record the
link (i.e., the primary or secondary link) [[i] on which the
maximum is attained for 421. Notice that there could be
two such links for i = k - 2 or i = k - 1.
Step 2 . Record all the links traversed as one goes from
n o d e [l] to node[k] using only the links recorded in Step
1. This gives a critical pa th from the source to the
destination which has the end-to-end delay bound d[l]
as calculated from Algorithm 4.
Step 3. Let N be the total number of links on the critical
path. For each link l j on the critical path, set the channel’s
delay bound d j := d j + (D - d [j]) / N , where d j is the
minimum link-delay bound calculated for l j .
Step 4. Recalculate d[i]’s in Algorithm 4 with the link
delay bounds on the critical path replaced by d j ’ s . The
channel’s delay bounds of the links not on the critical
path can then be calculated as the differences of d[i]’s of
the nodes they connect.

In summary, we have the following algorithm for the

Algorithm 3.5 (Establishment of an IF1 Real-Time Chan-

Step 1. Calculate the minimum packet delay bounds
d[i].p,;, and d[i].s,i, over the primary and secondary
links of n o d e [i] , i = l , . . . , k - 1.
Step 2. Calculate the end-to-end delay bound d [l] from
Algorithm 4.
Step 3. If d [l] is larger than the user-requested end-to-end
delay bound D, the channel request is rejected. Otherwise,
the channel can be established with the link delay bounds
calculated from Algorithm 5.

We now give an example to demonstrate the above ideas.
Fig. 5 shows a portion of a hexagonal mesh. We want to
establish an IF1 real-time channel from node 1 to node 8 with
channel parameters (T , C, D) = (1 0 0 , 5 , 7 0) .

establishment of an IF1 real-time channel.

nel):

P node[l-2]

X

Fig. 5. An IF1 real-time channel from node 1 to node 8. Solid arrows
represent the primary links, and dashed mows represent secondary links.
Link delays assigned to the channel are shown near the links.

We first construct an IF1 path from node 1 to node 8 using
Algorithm 3. For i = 1, n o d e [l] = node 1. (mz, my, m,) =
(2,0, -2). The initial rotating direction for the secondary link
R = 1 since abs(m,) > 1 and m, # 0. From Algorithm 2,
the primary link is calculated to be node[l] .p = L (1) = X ,
and the secondary link is n o d e [l] . s = L (1) + 1 = -2.

Set the next node to one which link -2 leads to, then
node[2] = node 2. Update mz, my, m, for node[2] as follows.
The direction of -2 is 2, so U = 2, and v = X , 20 = Y .
Also, s = -1. Since m, = 0 and smv = -2 < 0, we only
need to update mu := mu - s = -2 + 1 = -1. Thus, for
node 2, (m,,m,,m,) = (2,0, -1) .

Repeating the above procedure, we get an IF1 path as shown
in Fig. 5 , where the primary links are denoted by solid arrows
and the secondary links by dashed arrows. It is not difficult
to see that a packet can be transmitted from node 1 to node 8
in the presence of any isolated failures. Also, all the primary
links and the nodes form a shortest path sinking tree to the
destination node.

We now establish an IF1 real-time channel over the IF1 path
thus obtained by assigning delay bounds to the links using
Algorithm 6. Suppose there is no other real-time traffic in the
network. Then, for i = 1 , . . . , 8 , d[i].p,;, = d[i].s,;, =
C = 5. Using Algorithm 4, d[i]’s are calculated and shown

118 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995

Fig. 6.

near each node in Fig. 5. The requested real-time channel can
be established since d [l] = 35 < D = 70.

The critical path can be determined by recording the links
over which the maximum is achieved in Algorithm 4, which
is in this example the ones marked by “//” in Fig. 5. There are
a total of N = 7 links on the critical path. The channel’s
delay bounds over the links of the critical path are thus
d j = d 3 + (D - d [l]) / N = 5+(70-35)/7 = 10. Theupdated
values of d[i]’s calculated from Algorithm 4 are shown in the
parentheses near each node. Then, the channel’s delay bounds
on the other links can be calculated as the differences of d[i] ’s
of the nodes they connect, which are shown near each link
in Fig. 5.

From the above example, one can see that an IF1 channel
usually needs 3 to 4 times more links than a basic real-time
channel. This means that more transmission bandwidth needs
to be reserved for an IF1 channel. This “over-reservation”
reduces a network’s ability of accommodating real-time chan-
nels. However, as discussed in [3], [4], real-time channels
make only “soft” reservation since any unused bandwidth can
be used for non real-time traffic. In this sense, the “cost” of
an IF1 channel to non real-time traffic is the same as a basic
channel. So, in a network with a large portion of traffic being
non real-time, IF1 real-time channels is an economical means
of achieving fault-tolerant real-time communications.

Proof of the adjacency of 1’1 and 2’2.

IV. CONCLUSION

We have in this paper discussed how IF1 real-time channels
can be established in HARTS by exploiting its wrapped
hexagonal mesh topology. Thus far, the researchers of the
HARTS project have implemented most of the basic real-
time channel on the top of sKemel [lo]. We do not expect to
face any difficulty in enhancing the HARTS communication
subsystem with IF1 real-time channels due mainly to the
following features of HARTS.

Programmable Routing Controller: HARTS achieves
maximum flexibility by using a custom-designed Pro-
grammable Routing Controller (PRC) [2], which can
implement various switching and routing schemes.
(The PRC is the front-end interface for each node

in HARTS and contains six pairs of transmitters and
microprogrammable receivers.) Thus, enhancing the basic
real-time channel to be IF1 is very simple; it requires a
simple modification of the microprogram residing in
each receiver of the PRC. HARTS can easily be made
to support different types of real-time channels ranging
from basic or single-failure-immune (SFI) channels [5]
to IF1 channels.
Bit-by-bit feedback transmission links: The current ver-
sion of HARTS is equipped with bit-by-bit feedback
transmission links. Each receiver acknowledges every bit
it receives from a sender. So, each node has up-to-date
information about its neighboring nodes. This provides
the error-detection capability required by the IF1 channels.

In addition to its other salient features discussed in [2] such
as homogeneity and fine scalability, the enhancement of basic
real-time channel with the IF1 capability will make HARTS an
even more promising architecture for distributed fault-tolerant
real-time applications.

APPENDIX

Proof of Theorem 3.1: From C1, every node U E S
except the destination node has two outgoing links C1 and C2

which lead to a pair of adjacent nodes u1 and 212, respectively.
Then, a packet will be blocked at node U only if (1) both !I
and C2 are disabled, or (2) both u1 and 212 are disabled, or (3)

and u2 are disabled, or (4) l 2 or 211 are disabled. All of these
situations represent nonisolated failures. Thus, in the absence
of nonisolated failures, a packet from the source node can
always progress unless it has reached the destination. Further,
C1 ensures a packet will not move away from the destination,
and C2 ensures a packet will not move around forever without
reaching the destination node or cycling in a loop in which
each node is directly connected to ud. Since Vd cannot have
more than one faulty incoming link, we conclude that a packet
from the source node can always reach the destination node

0
Proof of Theorem 3.2: We prove that the resulting sub-

network S satisfies C1 and C2 of Theorem 1.
For any node[i] # ud in s, let u1 and u2 be the two

respective nodes which links node[i] .p and node[i].s enter.
From the algorithm, node[i + 11 = u2. Thus u2 E S. To show
that u1 is also in S, and u1 and u2 are adjacent, we first prove
that there is a link in S from u2 to 211.

Since a secondary link will never lead to the destination
node, u2 # U d . Thus, node[i+l] always has two outgoing links
node[i + l1.p and node[i + l1.s in S. Assume node[i].s is 60
degree above node[i] .p. As shown in Fig. 6, from the direction
of node[i].p (which is on the shortest path from node[i] to ‘U&

node[z + 11.p (i.e., the shortest path from node[z + 11 to u d)

has only three choices: 1 3 , 14, Cs. We claim that node[i + 11.23
cannot take C3 since otherwise, from Algorithm 2, node[i].p
would have taken C2 instead of Cl. If node[i + l1.p = CS,
the primary link of node[i + 11 is the link from u2 to VI.

Otherwise, node[i+l] .p = 14. From Algorithm 3, node[i+l].s
should be 60 degree below node[i + 11.p since node[i].p and
node[i + l1.p have the same direction and node[i] is not
adjacent to ud (node[i + l1.p would otherwise have taken &).

in a finite number of steps.

ZHENG AND SHIN: FAILURE IMMUNE REAL-TIME CHANNELS I19

Thus node[Z + 11,s = e , is the link from v2 to V I . Similarly,
it can be proved that there is a link from 712 to w1 in S when
node[i] .s is 60 degree below node[i].p.

We now prove that v1 E S . If node[i + 11.s = P 5 , then
V I = node[i + 21 E S. Otherwise, from the above proof,

[IO] K. Shin, D. Kandlur, D. Kiskis, P. Dodd, H. Rosenberg, and A.
Indiresan, “A distributed real-time operating system,” ZEEE Software,
pp. 58-68, Sept. 1992.

node[i+ l] .p = e;. If 111 = ?Id , from Algorithm 3 , node[i+ l] . s
directs back to node[Z]. Then, v1 = node[z + 21 E S .
Otherwise, as shown in Fig. 6, rug = notle[i + 21. Continuing
this induction, we can conclude that either 111 E S, or the six
neighbors of 111 all have primary links directed to v1. The latter
case implies u1 = lid. Thus, v1 E S. Since there is a link in S
from v2 to ul, ‘01 and 7J2 are adjacent in S.

Further, since node[i].p is on the shortest path, ds(w1. vd) =
d s (n o d e [i] . Z J ~) - 1 < ds(irode[i]. lid). Since there exists a
link in S from v2 to v1, tls(v*.vd) 5 cls(i i l ,vd) + 1 =
ds(node[i] . vd). Thus C1 is proved.

We now prove that there does not exist any loop all of whose
nodes are of a constant distance d > 1 to vd by contradiction.
First, notice that such a loop contains only secondary links
since a primary link connects two nodes of different distances
to ’ud. Then, all the primary links of the nodes in the loop must
lead to a common node ‘U. This is from the fact proved above
that either node[i + 11.p or node[i + 11.s must lead to a node
v which rrode[i].p leads to. But node[i + 11.s can not lead to
71 since it must lead to a node of the same distance to wd as
that of n.ode[l]. This is possible only if 71 = ‘ud, i.e., d = 1.
Thus, C2 is proved. 0

REFERENCES

D. Ferrari and D. C. Verma, “A scheme for real-time channel estab-
lishment in wide-area networks,” lEEE J . Select. Areas Commun., vol.
SAC-8, pp. 368-379, Apr. 1990.
K. G. Shin, “HARTS: A distributed real-time architecture,” ZEEE
Comput., vol. 24, pp. 25-35, May 1991.
Q. Zheng and K. G. Shin, “On the ability of establishing real-time
channels in point-to-point packet-switched networks,” IEEE Trans.
Commun., vol. 42, pp. 1096-1 105, Mar. 1994.
Q. Zheng, “Real-time fault-tolerant communication in computer net-
works,” Ph.D thesis, Univ. of Michigan, 1993. (PostScript version of
the thesis is available via anonymous FTP from ftp.eecs.umich.edu in
directory outgoinghheng.)
Q. Zheng and K. G. Shin, “Fault-tolerant real-time communication
in distributed computing systems,” in Proc. 22nd Annual Int. Symp.
Fault-tolerant Comput., pp. 86 - 93, 1992.
M . 4 . Chen, K. G. Shin, and D. D. Kandlur, “Addressing, routing and
broadcasting in hexagonal mesh multiprocessors,” IEEE Trans. Compur.,
vol. 39, no. 1, pp. 10-18, Jan. 1990.
A. M. Farlev, “Networks immune to isolated failures,” Nemorks, vol.
1 1 , pp. 2551268, 1981.
D. D. Kandlur and K. G. Shin, “A communication subsystem for
HARTS: An experimental distributed real-time system,” submitted for
publication.
D. D. Kandlur, K. G. Shin, and D. Ferrari, “Real-time communication
in multi-hop networks,” in Proc. Int. Conf Distrib. Compur. Syst., pp.
300-307, May 1991.

than 110 of these in
areas of distributed re;

Qin Zheng (S’89-M’94) received the B.S. and M.S.
degrees in electrical engineering from the University
of Science and Technology of China in 1982 and
1985, respectively, and Ph.D. degree in electrical
engineering from the University of Michigan in
1993.

He joined Mitsubishi Electric Research Labs,
Inc., Cambridge Research Center in 1993 and is
currently working on high-speed computer networks
and distributed real-time industrial systems.

Kang G. Shin (S’75-M’78-SM’83-F’94) received
the B.S. degree in electronics engineering from
Seoul National University, Seoul, Korea in 1970,
and both the M.S. and Ph.D degrees in electrical
engineering from Cornell University, Ithaca, New
York in 1976 and 1978, respectively.

He is Professor and Director of the Real-Time
Computing Laboratory, Department of Electrical
Engineering and Computer Science, The University
of Michigan, Ann Arbor, Michigan. He has au-
thoredcoauthored over 250 technical papers (more

archival journals) and several book chapters in the
il-time computing and control, fault-tolerant computing,

computer architecture, robotics and automation, and intelligent manufacturing.
He has also been applying the basic research results of real-time computing
to manufacturing-related applications ranging from the control of robots and
machine tools to the development of open architectures for manufacturing
equipment and processes. Recently, he has initiated research on the open-
architecture Information Base for machine tool controllers. From 1978 to 1982
he was on the faculty of Rensselaer Polytechnic Institute, Troy, New York.
In 1985, he founded the Real-Time Computing Laboratory, where he and his
colleagues are currently building a 19-node hexagonal mesh multicomputer,
called HARTS, to validate various architectures and analytic results in the
area of distributed real-time computing. He has held visiting positions at
the U.S. Airforce Flight Dynamics Laboratory, AT&T Bell Laboratories,
Computer Science Division within the Department of Electrical Engineering
and Computer Science at UC Berkeley, and International Computer Sci-
ence Institute, Berkeley, CA. He also chaired the Computer Science and
Engineering Division, EECS Department, The University of Michigan for
three years beginning Jan. 1991. He was the Program Chairman of the
1986 IEEE Real-Time Systems Symposium (RTSS), the General Chairman
of the 1987 RTSS, the Guest Editor of the 1987 Aug. special issue of IEEE
TRANSACTIONS ON COMPUTERS on Real-Time Systems, a Program Co-chair
for the 1992 Inremational Conference on Parallel Processing, and served
numerous technical program committees. He also chaired the IEEE Technical
Committee on Real-Time Systems during 1991 -93, is a Distinguished Visitor
of the Computer Society of the IEEE, an Editor of IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED COMPUTING, and an Area Editor of International
Journal of Time-Critical Computing Systems.

In 1987, Dr. Shin received the Outstanding IEEE Transactions on Automatic
Control Paper Award for a paper on robot trajectory planning. In 1989, he also
received the Research Excellence Award from The University of Michigan.

http://ftp.eecs.umich.edu

