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Establishment of Isolated Failure 
Immune Real-Time Channels in HARTS 

Qin Zheng, Member, IEEE, and Kang G. Shin, Fellow, IEEE 

Abstracf- Fault-tolerant, real-time communication in distrib- 
uted systems is very important yet difficult to achieve. Tradi- 
tional protocols like the TCPDP achieve reliable communication 
through acknowledgment and retransmission schemes, where one 
achieves the reliability at the cost of performance. In this paper, 
we discuss how both the timeliness and fault-tolerance of com- 
munication can be achieved by using the concept of real-time 
channel [l] and exploring the inherent spatial redundancy of a 
given network topology. Specifically, we show how isolated failure 
immune real-time channels can be established in wrapped hexag- 
onal mesh networks, thus ensuring timely delivery of messages in 
the presence of network component failures as long as the failures 
are isolated. This kind of fault-tolerance cannot be achieved with 
other commonly-known topologies like rings, rectangular meshes, 
and hypercubes. The proposed approach is to be implemented in 
an experimental distributed real-time system, called HARTS [2], 
whose construction is underway. 

Index Terms- Distributed computing systems, fault-tolerant 
real-time communications, wrapped hexagonal mesh, isolated 
failure immune networks, real-time channels. 

I. INTRODUCTION 

ELIABLE and timely delivery of messages in point-to- R point packet-switching networks has long been a chal- 
lenge to system designers. To avoid unpredictable queueing 
delays at transmission linkshodes, real-time messages are 
usually transmitted along a pre-determined path on which 
the network resources are reserved to guarantee the actual 
delivery delay to be less than a pre-specified bound. Ex- 
amples include circuit-switching transmission, synchronous 
transmission mode (STM), and the recently-proposed real-time 
channel [l], [3], [4]. Sending messages along a static path, 
however, reduces the fault-tolerance of real-time traffic, since 
a nodeAink failure in the path would disable the channel that 
runs over the path. 

To alleviate this problem, Zheng and Shin [5] proposed 
a semi-dynamic routing scheme for real-time channels. By 
reserving resources at some extra links and nodes, these real- 
time channels with extra links and nodes can tolerate any 
single nodeAink failure in the network. 
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Fig. I .  Four types of nonisolated component failures. (a) Two faulty nodes 
which are adjacent. (b) Two faulty links which originate from the same 
functioning node. (c) Same as (b) except that one link is made unusable 
(thus regarded faulty) by the failure of another node. (d) Two incoming faulty 
links of the destination node. 

Making a real-time channel more robust than just tolerating 
a single component failure turns out to be very difficult and 
requires reservation of significantly more network resources. 
In the Real-time Computing Laboratory of the University of 
Michigan, we have been exploring various network topologies 
to solve this problem and have found a wrapped hexagonal 
mesh [6] to be isolated failure immune (IFI). An IF1 real- 
time channel guarantees the timely delivery of messages in 
the presence of network component failures as long as the 
failures are isolated with respect to the channel. Node failures 
are said to be isolated with respect to a real-time channel if 
the source and destination nodes of the channel are not faulty 
and any two faulty nodes in the channel are not adjacent. Link 
failures (a link failure is caused by either the failure of the link 
itself or the failure of the node which the link leads to) are said 
to be isolated if any two faulty links are not originated from 
the same functioning node or directed to the destination node. 
Fig. 1 shows four types of nonisolated component failures. 
Another two types of nonisolated failures are the failures of 
the source and destination nodes. Fig. 2 shows an example 
of an IF1 channel from node 1 to node 6 and one pattern of 
(tolerable) isolated failures. 

The isolated failure immune problem for undirected net- 
works was first discussed in [7] where the authors proved 
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Fig. 2. An IFI channel and one pattern of tolerable IinWnode failures. 

that a 2-tree' is a minimum IF1 network. In other words, 
any IF1 network must contain a spanning 2-tree. This result 
excludes almost all commonly-used network topologies (e.g., 
rings with more than 3 nodes, rectangular mesheskubes, and 
hypercubes) from the candidate set of IF1 networks, except 
for the hexagonal mesh. 

An IF1 real-time channel has the following advantages over 
a basic real-time channel: 

High Reliability: The channel can tolerate a large number 
of component failures as long as they are isolated. For 
example, the IF1 channel shown in Fig. 2 can tolerate as 
many as 7 faulty links and 2 faulty nodes, which represent 
70% of the links and 33% of the nodes that the channel 
runs through. 
Easy Failure Detection: Non-isolated failures in the net- 
work can be easily detected by a node using only its 
local information, i.e., the status of its own links and its 
neighbors. This makes the system maintenance extremely 
easy. A node can safely shut down one of its links or 
itself by checking the status of its links and neighbors. 
Accommodation of Emergency Messages: A path be- 
tween any pair of nodes in a network can always be 
constructed using only those links whose failure will not 
cause nonisolated failures. So, in the absence of network 
component failures, it is always safe to break down some 
links of existing IF1 real-time channels and use their 
full link transmission bandwidth to handle emergency 
messages. 

This paper is organized as follows. For completeness, the 
HARTS topology and its routing algorithm are reviewed in 
Section 11. The concept of real-time channel is also briefly 
discussed there. Section I11 presents the schemes of establish- 
ing isolated failure immune real-time channels in HARTS. The 
paper concludes with Section IV. Proofs of theorems in this 
paper are given in an appendix. 

11. HARTS AND REAL-TIME CHANNELS 

HARTS is an experimental distributed real-time system 
currently being built in the Real-Time Computing Laboratory 
of the University of Michigan [2]. As shown in Fig. 3, the 
interconnection network of HARTS is a wrapped hexagonal 
mesh which can be defined as follows. 

' A  2-tree can be constructed as follows. Two nodes connected by a link 
is a 2-tree. A new node can be added to a 2-tree by connecting it to two 
neighboring nodes in the 2-tree. 

2 3 3 1 4 5  
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Fig 3 A wrapped hexagonal mesh of size 3 

Dejinition 2.1: Let [ a ] b  denote a mod b. Then a wrapped 
hexagonal mesh of size n (or the number of nodes on each 
peripheral edge) is composed of N = 3n(n - 1) + 1 nodes, 
labeled from 0 to N - 1, such that each node s has six 
neighbors [s + l ] ~ ,  [s + 3n(n - l ) ] ~ ,  [s + 3n - 2 ] ~ ,  [s + 
3n2 - 6 n  + 3IN1 [s + 3n2 - 6 n  + 2 ] ~ ,  and [s + 3n - l ] ~ ,  in 
the X, -X, Y, -Y, 2, -2 directions, respectively. 

It was proved in [6] that a wrapped hexagonal mesh is 
homogeneous. Consequently, any node can view itself as the 
center of the mesh. Let m,, my, and m, be, respectively, the 
number of hops (negative values mean the moves in negative 
directions) from the source node to the destination node along 
the X,Y, and 2 directions on a shortest path. The following 
routing algorithm [6] determines the values of m,, my, and 
m, for the shortest paths from a source node s to a destination 
node d in a wrapped hexagonal mesh of size n: 

Algorithm 2.1 (Routing in HARTS): 
Step 0. Set m, := 0, my := 0, m, := 0. Let p = 
3n2 - 3n - 1, k = ( d  - s) mod p ,  T = ( k  - n)  div 
(3n - 2 ) ,  t = ( k  - n)  mod (3n - 2). 
Step 1. If k < n then set m, := k ,  stop. Else if 
IC > 3n2 - 4n + 1 then set m, = IC - 3n2 + 3n - 1, 
stop. Else goto Step 2. 
Step 2. If t 5 n + T - 1 then 

If t 5 T then set m, := t - T ,  m, := n - T - 1, 
stop. 
If t 2 n - 1 then set m, := t - n + 1, my := 
T + 1 - 12, stop. 
Else set my := T - t ,  m, := n - t - 1, stop. 

else 

If t 5 2n - 2 then set m, := t + 2 - 2n, my := 
T + 1, stop. 
If t 2 2n + T - 1 then set m, := t - 2n - T + 
1, m, := -T - 1, stop. 
Else set my := 2n+r - t - 1, m, := 2n - t - 2, 
stop. 
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To send a packet, the source node calculates m,, myl  m, 
using the above algorithm. It then sends the packet to an 
appropriate neighbor. Intermediate nodes update these values 
to indicate the remaining number of hops to take in X ,  
Y ,  and Z directions before forwarding the message. Hence 
m, = my = m, = 0 indicates that the packet has reached 
its destination. The readers are referred to [6], [2] for a 
detailed account of the wrapped hexagonal mesh and its 
routing algorithm. 

To meet the requirement of real-time communication, the 
HARTS communication subsystem is designed to support real- 
time channels [8]. A real-time channel is a simplex virtual 
connection between the source and destination nodes which 
guarantees the delivery of packets within a user-specified end- 
to-end delay bound. Two techniques are used to achieve this 
goal: admission control of channels and deadline scheduling 
of packet transmissions. 

Admission control requires those processes requesting real- 
time communication to establish real-time channels before 
starting packet transmission. A channel-establishment request 
may be accepted or rejected, depending on the current 
network-load condition. Admission control is necessary 
because packet-delay bounds cannot be guaranteed without 
controlling the network load. 

Packet transmissions are scheduled as follows. Real-time 
packets have a higher transmission priority than nonreal-time 
packets. Each real-time packet is assigned a deadline over 
each link it traverses which is determined according to the 
packet’s generation time at the source node and the delay 
bounds dZ’s  assigned to the links of the real-time channel. 
When several real-time packets contend for use of the same 
link, the packet with the earliest deadline is transmitted first. 
The advantages of using deadline scheduling are the minimiza- 
tion of contention delays and protection between established 
channels [3], [4]. 

To set up a real-time channel, the requesting process must 
determine two parameters, T and C, specifying its traffic 
generation pattem, where T is the minimum packet inter- 
generation time and C is the maximum packet transmission 
time (directly proportional to the maximum packet length). It is 
reasonable to assume prior knowledge of these parameters for 
many real-time applications, such as interactive voice/video 
transmission‘ and real-time control/monitoring. In other ap- 
plications where the traffic pattem is less predictable, the 
estimated values of T and C could be used. A process may 
exceed its pre-specified maximum packet generation rate at 
the risk that its packets may be delivered with delays longer 
than the pre-specified bound or may even be discarded, but 
due to the deadline scheduling of packet transmissions, this 
particular process will not affect the guarantees of the other 
existing channels. 

The process then sends a channel establishment request 
message containing T and G together with the end-to-end 
packet delay bound D and addresses of the source and destina- 
tion nodes to a special node containing the Network Manager 
(NM), which maintains the information of all existing channels 
and executes the channel establishment algorithm of [3], [4] 
to check if the requested channel can be established over a 

specified route under the current network load condition. If 
the channel can be established, the algorithm also calculates 
the link delay bounds d j ’ s  which will be used to determine 
the deadlines of the channel’s packets. 

Interested readers are referred to [l], [9], [3], [4] for a 
detailed discussion of real-time channels. 

111. ISOLATED FAILURE IMMUNE 
REAL-TIME CHANNELS IN HARTS 

This section discusses how real-time channels can be en- 
hanced to be Isolated Failure Immune (IFI) in HARTS. The 
first step is to find an IFI path,  which is defined as a 
subnetwork containing a directed path from the source to 
the destination in the presence of any isolated failures. Let 
ds(wl, w2) denote the minimum number of hops (i.e., distance) 
from node ti1 to node v2 in a network S. The following 
theorem gives a sufficient condition for S to be an IF1 path 
from source node w, to destination node l id  in a general 
directed network. 

Theorem 3.1: A subnetwork S containing the source node 
v, and the destination node l id  is an IF1 path from v, to l i d  if 

c1 :  Every node E s, ii # V d ,  has at least two outgoing 
links to two other nodes, say IQ and v2, such that 
d~(v1,vd) < d s ( i i . d d ) ,  d ~ ( 1 1 2 , v d )  I ds(v ,vd) ,  and V I ,  

v2 are adjacent, 
C2: There is no loop in S whose nodes are all of the same 
distance d > 1 to the destination node U d .  

From the above theorem, one can see that each node in an 
IF1 path needs only two outgoing links. We call one of them 
the primary link and the other the secondary link. 

The primary link is the one which leads to a node closer to 
the destination. One can choose the primary link from the 
shortest path as determined by Algorithm 1. In case there 
exist multiple choices, i.e., more than one of mzl my, m, 
are nonzero, we will use the following algorithm to select 
a primary link L. 

abs ( z )  and sign(z) denote the absolute value and the sign 
of z, respectively, and let X ,  - X ,  Y ,  -Y, 2. -2 denote the 
outgoing links of a node along the six different directions. 

Algorithm 3.1 (Selection of the Primary Link): L Let 

Then, 
If abs(m,) > 1 then set L := s i g n ( m z ) X  
else if abs(my) > 1 then set L := sign(m,)Y 
else if abs(m,) > 1 then set L := sign(m,)Z 
else if abs(m,) = 1 then set L := sign(m,)X 
else if &(my) = 1 then set L := sign(m,)Y 
else if abs(m,) = 1 then set L := sign(m,)Z. 
The logic behind the above algorithm is that one should first 

select the primary link in the direction which is more than one 
hop away from the destination. If there are more than one such 
directions, the primary link is selected in the order of X, Y, Z. 
On the other hand, if there are no such directions, the primary 
link is selected in the direction which is one hop away from 
the destination in the order of X, Y, Z .  As will be clear later, 
the selection of the primary links in this specific way will 
facilitate the determination of the secondary links and reduce 
the number of nodedlinks of the resulting IF1 channel. 
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In a wrapped hexagonal mesh network, to ensure that the 
secondary link does not lead to a node which is farther away 
from the destination, it must be either 60 degree above or 60 
degree below the primary link. Here “above” means counter- 
clockwise and “below” means clockwise. We use the notation 
L + 1 to denote the link which is 60 degree above L, and L - 1 
the one which is 60 degree below L. For example, if L = X, 
then X + 1 = -2 and X - 1 = -Y. 

Let node[i]  denote the ith node of an IF1 path, and node[i] .p  
and node[i] .s  denote the node’s primary and secondary links, 
respectively. We propose the following algorithm to construct 
an IF1 path from U ,  to Vd. 

Algorithm 3.2 (Construction of an IFI Path): 
Step 1. Calculate m,, my, m, for the source node v, 
using Algorithm 1. Notice that at most two of them can 
be nonzero. 
Step 2. Set i := 1 and n o d e [ l ]  := w,. Set the initial 
rotating direction for the secondary link R := 1 if 
one of the following conditions holds: (1) abs(my) > 
abs(m,) = 1, ( 2 )  abs(m,) 2 abs(my)  = 1, (3) 
abs(m,) > 1,  m, # 0, and (4) abs(m,) = abs(m,) = 1. 
Otherwise, set R := -1. 
Step 3. Calculate the primary link L( i )  using Algorithm 
2. If i > 1, L ( i )  # L(i - l ) ,  and node[i  - 11 is not 
adjacent to Vd, set R := -R. 
Step 4. Set node[i].p := L(i) ,  node(i) .s  := L(i)+R, and 
set node[i  + 11 to be the node which the secondary link 
of node[i]  leads to. Update m,, my, m, for node[i  + 11. 
Step 5 .  If node[ i+ l ]  = node[i-11, then set node[ i+ l ]  := 
Vd and stop. The destination node has been reached. 
Otherwise, set i := i + 1 ,  R := -R, goto Step 3. 

The correctness of Algorithm 3 is proved by the following 

Theorem 3.2: The subnetwork obtained from Algorithm 3 

We make several remarks on Algorithm 3 as follows. 
1) In Step 4, the address of node[i  + 11 can be obtained 

from that of node[i]  using Definition 1, which gives the 
addresses of the six neighboring nodes of a node in six 
directions. The values of m,, my, m, for node[i  + 11 
can be updated directly with Algorithm 1 using the 
address of node[i  + 11. But a simpler way of doing this 
is as follows. Let U be the direction of link node[i] .s  
and v , w  be the remaining two directions. Let s = 1 
if link L( i )  + R is at the positive direction of U and 
s = -1 otherwise. Then, if (mu = m, = 0 and 
sm, > 0) or (mu = mw = 0 and sm, > 0), update 
m, := m, - s,m, := mw - s. Otherwise, update 
mu := mu - s. The correctness of this algorithm can 
be verified by placing the destination node Wd at the 
center of the wrapped hexagonal mesh and checking the 
changes of m,, my, my as one moves from node[i]  to 
node[i  + 11 along link node[i] .s .  

2) In Step 2, the initial rotating direction R for the sec- 
ondary link is chosen such that if n o d e [ l ]  has two 
links both on shortest paths2 to the destination nodes, 

*Note that there could be multiple shortest paths between a pair of nodes. 

theorem. 

is an IF1 path from U ,  to Vd. 

node[ 11 .s will take one of them. In this way, the resulting 
IF1 path needs less links and nodes than all other 
cases. The way in which the primary link is chosen in 
Algorithm 2 also serves this purpose. 

3) Since the primary links are always on the shortest path 
to the destination, they form a shortest path sinking 
tree to the destination. In other words, if a packet 
generated at any node in S is always forwarded using 
the primary links, it will take a minimum number of 
hops to the destination. This fact results in the following 
routing policy at each node: an arriving packet should be 
forwarded via the primary link whenever possible. The 
secondary link is used only if the primary link is down. 

We now discuss how an IF1 real-time channel can be 
established over an IF1 path obtained from Algorithm 3. The 
procedures to establish an IFI real-time channel are composed 
of the following three steps. 

Step 1. Calculate the packet-delay bound over each link 
of the channel. 
Step 2. Calculate the end-to-end delay bound using the 
link-delay bounds. 
Step 3. If the end-to-end delay bound is not larger than the 
requested one, the channel can be established. Calculate 
the link delay bounds to be assigned to the channel. 
Otherwise, the channel establishment request is rejected. 

Results in [3], [4] can be used for the calculation of the 
link-delay bounds in Step 1. Let node[ i] ,  i = 1,  . . . , k be the 
nodes of an IF1 path obtained from Algorithm 3, where n o d e [ l ]  
is the source node and node[k]  is the destination node. Let 
d[ i] .p  and d[ i] . s  be the delay bounds over the primary and 
secondary links of node[ i] ,  respectively. Then the end-to-end 
packet delivery delay bound in Step 2 can be calculated using 
the following algorithm. 

Algorithm 3.3 (Calculation of the Packet Delivery Delay 
Bounds): The packet delivery delay bound d[ i]  from node[i]  
to the destination node node[k]  can be calculated as follows: 

d[k  - 11 = m a x { d [ k  - l ] . p ,  d[k  - 11.s + d[k  - 2].p}, 

d[k  - 21 = m a x { d [ k  - 2].p, d [ k  - 21.s + d[k  - l ] . p } ,  

d[ i ]  = max{d[ i ] .p  + d [ i p ] ,  d[i] .s  + d[i ,]}  i = k - 3 , .  . . 7 1. 

where node[i,],node[i,] are the nodes to which the primary 
and secondary links of node[i]  lead, respectively. 

The correctness of Algorithm 4 can be verified as fol- 
lows. From the proof of Theorem 2, the connections between 
node[k  - 21, node[k - 11, and node[k]  are shown in Fig. 4(b), 
from which the first two equations can be obtained. For 
1 5 i 5 k - 3, node[i]  is connected to node[i,] and node[i,] 
in the way shown in Fig. 4(a), which proves the remaining 
k - 3 equations. Since i, and i, are always larger than i for 
i I k - 2, the maximum delay bound from node[i]  to node[k]  
can be obtained from the above equations. 

If d [ l ]  5 D, the IF1 real-time channel can be established, 
and we need to determine the link-delay bounds to be assigned 
to the channel. As discussed in [3], [4], the link-delay bounds 
of the channel should be set as large as possible to reduce the 
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(a) 

Fig. 4. Calculation of d [ i ] ’ s .  

channel’s influence on the links’ ability to establish more real- 
time channels in future. This can be done using the following 
algorithm. 

Algorithm 3.4 (Assignment of Link-Delay Bounds): 
Step 1. In Algorithm 4, for i = k - 1. . . . , 1 ,  record the 
link (i.e., the primary or secondary link) [[i] on which the 
maximum is attained for 421. Notice that there could be 
two such links for i = k - 2 or i = k - 1. 
Step 2 .  Record all the links traversed as one goes from 
n o d e [ l ]  to node[k]  using only the links recorded in Step 
1. This gives a critical pa th  from the source to the 
destination which has the end-to-end delay bound d[l] 
as calculated from Algorithm 4. 
Step 3. Let N be the total number of links on the critical 
path. For each link l j  on the critical path, set the channel’s 
delay bound d j  := d j  + ( D  - d [ j ] ) / N ,  where d j  is the 
minimum link-delay bound calculated for l j  . 
Step 4. Recalculate d[i]’s in Algorithm 4 with the link 
delay bounds on the critical path replaced by d j ’ s .  The 
channel’s delay bounds of the links not on the critical 
path can then be calculated as the differences of d[i]’s of 
the nodes they connect. 

In summary, we have the following algorithm for the 

Algorithm 3.5 (Establishment of an IF1 Real-Time Chan- 

Step 1. Calculate the minimum packet delay bounds 
d[i].p,;, and d[i].s,i, over the primary and secondary 
links of n o d e [ i ] , i  = l , . . . , k  - 1. 
Step 2. Calculate the end-to-end delay bound d [ l ]  from 
Algorithm 4. 
Step 3. If d [ l ]  is larger than the user-requested end-to-end 
delay bound D, the channel request is rejected. Otherwise, 
the channel can be established with the link delay bounds 
calculated from Algorithm 5.  

We now give an example to demonstrate the above ideas. 
Fig. 5 shows a portion of a hexagonal mesh. We want to 
establish an IF1 real-time channel from node 1 to node 8 with 
channel parameters (T ,  C,  D )  = ( 1 0 0 , 5 , 7 0 ) .  

establishment of an IF1 real-time channel. 

nel): 

P node[l-2] 

X 

Fig. 5. An IF1 real-time channel from node 1 to node 8. Solid arrows 
represent the primary links, and dashed mows represent secondary links. 
Link delays assigned to the channel are shown near the links. 

We first construct an IF1 path from node 1 to node 8 using 
Algorithm 3. For i = 1, n o d e [ l ]  = node 1. (mz,  my, m,) = 
(2,0,  -2). The initial rotating direction for the secondary link 
R = 1 since abs(m,) > 1 and m, # 0. From Algorithm 2, 
the primary link is calculated to be node[ l] .p  = L ( 1 )  = X ,  
and the secondary link is n o d e [ l ] . s  = L ( 1 )  + 1 = -2. 

Set the next node to one which link -2 leads to, then 
node[2] = node 2. Update mz,  my, m, for node[2] as follows. 
The direction of -2 is 2, so U = 2, and v = X ,  20 = Y .  
Also, s = -1. Since m, = 0 and smv = -2 < 0, we only 
need to update mu := mu - s = -2 + 1 = -1. Thus, for 
node 2, (m,,m,,m,) = (2,0,  -1) .  

Repeating the above procedure, we get an IF1 path as shown 
in Fig. 5 ,  where the primary links are denoted by solid arrows 
and the secondary links by dashed arrows. It is not difficult 
to see that a packet can be transmitted from node 1 to node 8 
in the presence of any isolated failures. Also, all the primary 
links and the nodes form a shortest path sinking tree to the 
destination node. 

We now establish an IF1 real-time channel over the IF1 path 
thus obtained by assigning delay bounds to the links using 
Algorithm 6. Suppose there is no other real-time traffic in the 
network. Then, for i = 1 , . . . , 8 ,  d[i].p,;, = d[i].s,;, = 
C = 5. Using Algorithm 4, d[i]’s are calculated and shown 
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Fig. 6. 

near each node in Fig. 5. The requested real-time channel can 
be established since d [ l ]  = 35 < D = 70. 

The critical path can be determined by recording the links 
over which the maximum is achieved in Algorithm 4, which 
is in this example the ones marked by “//” in Fig. 5. There are 
a total of N = 7 links on the critical path. The channel’s 
delay bounds over the links of the critical path are thus 
d j  = d 3 + ( D - d [ l ] ) / N  = 5+(70-35)/7 = 10. Theupdated 
values of d[i]’s calculated from Algorithm 4 are shown in the 
parentheses near each node. Then, the channel’s delay bounds 
on the other links can be calculated as the differences of d[ i ] ’s  
of the nodes they connect, which are shown near each link 
in Fig. 5. 

From the above example, one can see that an IF1 channel 
usually needs 3 to 4 times more links than a basic real-time 
channel. This means that more transmission bandwidth needs 
to be reserved for an IF1 channel. This “over-reservation” 
reduces a network’s ability of accommodating real-time chan- 
nels. However, as discussed in [3], [4], real-time channels 
make only “soft” reservation since any unused bandwidth can 
be used for non real-time traffic. In this sense, the “cost” of 
an IF1 channel to non real-time traffic is the same as a basic 
channel. So, in a network with a large portion of traffic being 
non real-time, IF1 real-time channels is an economical means 
of achieving fault-tolerant real-time communications. 

Proof of the adjacency of 1’1 and 2’2. 

IV. CONCLUSION 

We have in this paper discussed how IF1 real-time channels 
can be established in HARTS by exploiting its wrapped 
hexagonal mesh topology. Thus far, the researchers of the 
HARTS project have implemented most of the basic real- 
time channel on the top of sKemel [lo]. We do not expect to 
face any difficulty in enhancing the HARTS communication 
subsystem with IF1 real-time channels due mainly to the 
following features of HARTS. 

Programmable Routing Controller: HARTS achieves 
maximum flexibility by using a custom-designed Pro- 
grammable Routing Controller (PRC) [2], which can 
implement various switching and routing schemes. 
(The PRC is the front-end interface for each node 

in HARTS and contains six pairs of transmitters and 
microprogrammable receivers.) Thus, enhancing the basic 
real-time channel to be IF1 is very simple; it requires a 
simple modification of the microprogram residing in 
each receiver of the PRC. HARTS can easily be made 
to support different types of real-time channels ranging 
from basic or single-failure-immune (SFI) channels [5] 
to IF1 channels. 
Bit-by-bit feedback transmission links: The current ver- 
sion of HARTS is equipped with bit-by-bit feedback 
transmission links. Each receiver acknowledges every bit 
it receives from a sender. So, each node has up-to-date 
information about its neighboring nodes. This provides 
the error-detection capability required by the IF1 channels. 

In addition to its other salient features discussed in [2] such 
as homogeneity and fine scalability, the enhancement of basic 
real-time channel with the IF1 capability will make HARTS an 
even more promising architecture for distributed fault-tolerant 
real-time applications. 

APPENDIX 

Proof of Theorem 3.1: From C1, every node U E S 
except the destination node has two outgoing links C1 and C2 

which lead to a pair of adjacent nodes u1 and 212, respectively. 
Then, a packet will be blocked at node U only if (1) both !I 
and C2 are disabled, or (2) both u1 and 212 are disabled, or (3) 

and u2 are disabled, or (4) l 2  or 211 are disabled. All of these 
situations represent nonisolated failures. Thus, in the absence 
of nonisolated failures, a packet from the source node can 
always progress unless it has reached the destination. Further, 
C1 ensures a packet will not move away from the destination, 
and C2 ensures a packet will not move around forever without 
reaching the destination node or cycling in a loop in which 
each node is directly connected to ud.  Since Vd cannot have 
more than one faulty incoming link, we conclude that a packet 
from the source node can always reach the destination node 

0 
Proof of Theorem 3.2: We prove that the resulting sub- 

network S satisfies C1 and C2 of Theorem 1. 
For any node[i] # ud in s, let u1 and u2 be the two 

respective nodes which links node[i] .p  and node[i].s  enter. 
From the algorithm, node[ i  + 11 = u2. Thus u2 E S. To show 
that u1 is also in S, and u1 and u2 are adjacent, we first prove 
that there is a link in S from u2 to 211. 

Since a secondary link will never lead to the destination 
node, u2 # U d .  Thus, node[i+l] always has two outgoing links 
node[ i  + l1.p and node[i + l1.s in S. Assume node[i].s  is 60 
degree above node[i] .p. As shown in Fig. 6, from the direction 
of node[i].p (which is on the shortest path from node[i] to ‘U& 

node[z + 11.p (i.e., the shortest path from node[z + 11 to u d )  

has only three choices: 1 3 ,  14,  Cs. We claim that node[ i  + 11.23 
cannot take C3 since otherwise, from Algorithm 2, node[i].p 
would have taken C2 instead of Cl. If node[ i  + l1.p = CS, 
the primary link of node[ i  + 11 is the link from u2 to VI. 

Otherwise, node[ i+l] .p  = 14. From Algorithm 3, node[i+l].s 
should be 60 degree below node[i + 11.p since node[i].p and 
node[i + l1.p have the same direction and node[ i]  is not 
adjacent to ud (node[i + l1.p would otherwise have taken &). 

in a finite number of steps. 
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Thus node[Z + 11,s = e ,  is the link from v2 to V I .  Similarly, 
it can be proved that there is a link from 712 to w1 in S when 
node[i] .s  is 60 degree below node[i].p.  

We now prove that v1 E S .  If node[i + 11.s = P 5 ,  then 
V I  = node[i + 21 E S. Otherwise, from the above proof, 

[IO] K. Shin, D. Kandlur, D. Kiskis, P. Dodd, H. Rosenberg, and A. 
Indiresan, “A distributed real-time operating system,” ZEEE Software, 
pp. 58-68, Sept. 1992. 

node[ i+ l ] .p  = e;. If 111 = ?Id ,  from Algorithm 3 ,  node[ i+ l ] . s  
directs back to node[Z]. Then, v1 = node[z + 21 E S .  
Otherwise, as shown in Fig. 6, rug = notle[i + 21. Continuing 
this induction, we can conclude that either 111 E S, or the six 
neighbors of 111 all have primary links directed to v1. The latter 
case implies u1 = lid. Thus, v1 E S. Since there is a link in S 
from v2 to ul, ‘01 and 7J2 are adjacent in S. 

Further, since node[i].p is on the shortest path, ds(w1. vd) = 
d s ( n o d e [ i ] .  Z J ~ )  - 1 < ds(irode[i].  lid). Since there exists a 
link in S from v2 to v1, tls(v*.vd) 5 cls( i i l ,vd) + 1 = 
ds(node[i] .  vd). Thus C1 is proved. 

We now prove that there does not exist any loop all of whose 
nodes are of a constant distance d > 1 to vd by contradiction. 
First, notice that such a loop contains only secondary links 
since a primary link connects two nodes of different distances 
to ’ud. Then, all the primary links of the nodes in the loop must 
lead to a common node ‘U. This is from the fact proved above 
that either node[i + 11.p or node[ i  + 11.s must lead to a node 
v which rrode[i].p leads to. But node[ i  + 11.s can not lead to 
71 since it  must lead to a node of the same distance to wd as 
that of n.ode[l]. This is possible only if 71 = ‘ud, i.e., d = 1. 
Thus, C2 is proved. 0 
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