
Mapping Concurrently-Communicating Modules onto
Multicomputers Equipped with Virtual Channels

Bing-rung Tsai and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, MI 48109-2122

Email: {iast,kgshin}@eecs.umich.edu

Abstract-It is dificult t o define and evaluate a mean-
ingful performance metric when many packets are gen-
erated and exchanged concurrently in mesh-connected
multicomputers equipped with wormhole switching and
virtual channels. Thus, an approximate metric/cost
function must be chosen so that when task modules are
mapped b y optimizing this function, the actual perfor-
mance of the mapping is also optimized. Several low-
complexity cost functions are evaluated using the sim-
ulated annealing optimization process. The mappings
found by optimizing these cost functions are then f e d
into a flit-level simulator t o evaluate their actual per-
formance. One particular cost function is found to be
very effective.

1 Introduction
Interconnection networks equipped with wormhole

switching have been widely used for contemporary mul-
ticomputers/parallel machines. In such a network, each
pair of adjacent nodes is connected by a pair of uni-
directional physical links/channels. A fixed number of
virtual channels are time-multiplexed over each phys-
ical channel. Though most of our discussion may ap-
ply to general networks, we will focus primarily on the
mesh network topology, especially k-ary 2-cubes which
have been widely used in evaluating the performance of
virtual-channel networks. Particularly, we will concen-
trate on the case where a substantial number of packets
can be transmitted through the network (near) simulta-
neously, thus possibly causing serious traffic congestion.

Since internode communications largely depend on
how communicating task modules are assigned to the
nodes, our task-mapping model will consider intertask

The work reported in this paper was supported in part by the
National Science Foundation under Grant MIP-9203895, and the
Office of Naval Research under Grant N00014-94-1-0229. Any
opinions, findings, and recommendations in this paper are those
of the authors and do not reflect the views of the funding agencies.

communications only, just like Model 5 in [l].

The delivery of these concurrently-transmitted pack-
ets may not be mutually independent. In many cases,
task execution cannot proceed until all packets arrive at
their destinations. Therefore, in addition to the usual
latency measurement, we will use the makespan of a sei
of concurrently-sent packets for performance evaluation.
The makespan of a set of packets is defined as the time
span from the generation of the first packet until all the
packets reach their destination.

The paper is organized as follows. Basic terms and
concepts necessary for our discussion are defined in Sec-
tion 2. Simulation results are presented and discussed
in Section 3. The paper concludes with Section 4.

2 Preliminaries
A k-ary n-cube consists of k" nodes arranged in

an n-dimensional grid. Each node is connected to
its Cartesian-coordinate neighbors in the grid. A 2-
dimensional k x k flat mesh is a subgraph of a k-ary
2-cube, is not a regular graph, and has less edges than
the corresponding k-ary 2-cubes (no wrap links at its
boundary nodes). For convenience, we will call a k-ary
2-cube a wrapped mesh, or a w-mesh for short. Likewise,
we will call a 2-dimensional flat mesh an f-mesh.

Flow control in a virtual-channel network is per-
formed at three levels: routing algorithms, packet-
scheduling policies, and flit-multiplexing methods.
Each of these can be implemented with a variety of al-
gorithms.

Routing: We consider only oblivious routing. A packet
is routed to its destination via a fixed, shortest path. Is-
sues related to €ault-tolerance are not considered; phys-
ical and virtual channels are assumed to be fault-free.
In f-meshes, e-cube routing is used. The address of
each node is expressed in terms of X and Y coordi-

493
1063-6927/95 $4.00 0 1995 IEEE

mailto:iast,kgshin}@eecs.umich.edu

nates. A packet is routed first in the X-direction until
the Y coordinate of the node matches that of its des-
tination node. It is then routed in the Y-direction. In
w-meshes, a modified version of e-cube routing is imple-
mented to utilize the extra communication links so that
each packet is routed via a shortest path. Deadlock-
freedom is ensured by using the scheme proposed in [a] .
That is, the virtual channels corresponding to each uni-
directional physical channel are divided into high and
low channels. Routing restrictions are then imposed
such that either a high channel or a low channel, but
not both, is allocated to each given packet. The W-

meshes need at least two virtual channels per physical
channel to achieve deadlock-freedom.

Packet Scheduling: This determines which packet is
allowed to access a free virtual channel in case of con-
tention. When the number of packets to access a phys-
ical channel at the same time is larger than the number
of available virtual channels, some of these packets have
to be queued. So, we need to determine which packets
are allowed to access the virtual channels, and which
packets to be queued. When evaluating cost functions,
we will mainly use the FIFO policy as a default, but
other scheduling policies will also be tested when nec-
essary.

Flit Multiplexing: This determines the way packets
are time-multiplexed over a physical channel. When
there are multiple virtual channels per physical chan-
nel, the packets allocated to these virtual channels are
multiplexed over the physical channel. Flit multiplexing
determines the order for these flits from different virtual
channels to access the physical channel. In the round-
robin (RR) multiplexing, virtual channels take turns in
accessing the physical channel without using any net-
work or packet information. RR multiplexing without
any modification will henceforth be called strict RR.
Demand-dr iven (DD) allocation can be used to remedy
the waste of physical bandwidth with strict RR. With
DD allocation, virtual channels will contend for use of
a physical channel only if they have flits to send. Fur-
thermore, with CTS (Clear-To-Send) lookaheud, virtual
channels only contend for use of a physical channel if
each of them has a flit to send and the receiving node
has room for accepting it. This can further reduce the
waste of physical bandwidth. Like packet sequencing,
flit multiplexing can also be priority-based, as discussed
in [3].

We will use the following assumptions

1. All mappings are one-to-one, i.e., each processor
can be assigned at most one task module.

2.

3.

4.

5.

6.

Accurate values of t i’s (packet lengths in flits) are
given.

A physical channel takes one unit of time to trans-
mit a single flit. A unit of time is also called a
physical-channel cycle.

There is a single-flit buffer associated with each
virtual channel.

A packet arriving at its destination is consumed
without waiting.

There are an even number of virtual channels as-
sociated with each physical channel in a w-mesh.

Problem Statement: Given a set of task modules
and a set P of packets to be exchanged among these
modules, we want to map these modules into the multi-
computer so that the makespan and average latency to
deliver all the packets in P may be minimized.

To select one of a large number of possible mappings,
there must be a certain function to determine the qual-
ity of mapping. The most obvious choice is using the
performance objective itself. In our case, the average
latency of packets in the set P can be expressed as

t i / I P 1, where ti is the latency of packet pi. Their
P t E P
makespan can be expressed as max(tf +if), where ti”

is the generation time of pi. In these equations, tt can
be expressed as ti = tg + (l / r i) (t i - 1). The first term,
t f , denotes the time span between the generation of p;
at the source node and the arrival of its header flit at
the destination node. t! consists of two components:
the accumulated queueing delay tip and the accumu-
lated header flit multiplexing delay t?. tj is the sum
of queueing times at all nodes in the path waiting for
an available virtual channel. tl is the sum of times pi’s
header flit waits at the output buffers of nodes on its
path for use of physical channels. The second term,
(l/ri)(!i - l), represents the time required for all other
flits of pi to arrive at the destination, which is deter-
mined by &, which is the length of pi, and the trans-
mission rate, r;, of the pipeline set up for pi. Depending
on the flit-multiplexing method used and the network
condition, ri may change with time during the trans-
mission of p i . Also, given a set of packets and a fixed
number v of virtual channels over each physical link,
tf will be affected by the underlying packet-sequencing
scheme. Therefore, even when the exact values of ti’s
are given, it is still very difficult to predict t f ’ s .

Consider the simplest case of f-meshes using strict
RR multiplexing without DD allocation or CTS looka-

P , E P

494

head. We have ra = 1 / w Vi, hence only tf needs to
be calculated. Suppose w is large enough so that no
packets will be blocked, then ti = 0, and t: = t f .
However, tl E [0, ‘U c cl(af ,u~)] , where d (a ~ , u :) de-
notes the Hamming distance between the source node
address a: and the destination address U: of p i . As
v and d (a i , a:) become larger, it is more difficult to
predict tp’s. Furthermore, when the number of con-
current packets is large and blocking is inevitable, t; is
no longer 0, and the value oft! be,comes even less pre-
dictable. With DD allocation or CTS lookahead, ri is
no longer a constant. It becomes even more complex in
the case of w-meshes with partitioning of virtual chan-
nels for deadlock-avoidance. Thus, direct optimization
of the performance objective itself is not practical. We
need to come up with a certain simplified function that,
when mappings are derived by optimizing it, the re-
sulting performance is also optimized. In this paper,
we will investigate low-complexity cost functions whose
computational complexities are of order e ([P I).

A packet pi E P is characterized by its source and des-
tination moduIes, 4 , and t f . Of these parameters, the
accurate packet-generation time, t4 , is the most difficult
to obtain beforehand, since t; will be affected by the
precedence relationship among modules, and is intrin-
sically difficult for a compiler or loader to analyze be-
fore actual execution. Even if the modules can be test-
executed, packet-generation times can still vary with
different executions of the same set of modules due to
minor variations in the execution environment, such as
clock-frequency drift. Besides, introducing time-related
parameters into the optimization process can further
complicate the problem by adding the scheduling into
the picture. Since we are mostly interested in deal-
ing with concurrently-communicating modules, the time
window within which packets are generated, denoted by
AT, should be relatively small. We therefore propose
cost functions which ignore AT and assume ti“ = 0,
‘dpi E P . Nevertheless, as we will show in our simula-
tions, the mappings obtained by optimizing a properly-
chosen cost function still perform well when AT is large.
Besides, the issues of packet scheduling can be handled
at run-time and, as we will demonstrate, can further
improve the performance of a mapping.

The following cost functions will be evaluated:

f1: Let < x, y > denote the physical channel
connecting node x and y, C,, denote the max-
imum number of packets that share < x,y >,
and L; denote the set of physical channels in the
path of p i . The estimated value of makespan

max Cx,}(& -I), where z is the estimated time
< X , Y > € L ,
required for the header flit of pi to reach its destina-
tion. z is computed as random() *C<x.,Y,EL, Fzy,
where random() is a random number uniformly dis-
tributed in (0 , l) and F,, is the total number of
flits that go through < x, y > during the execution
of the task. The estimated makespan is computed
by taking the maximum of e’s. Since ri assumes
the lowest possible value, this will be a pessimistic
estimate.

e f2: Similar to f1 , except that the estimated average
value of l:’s is computed.

e f3: sum of length-distance products, i.e., the
total physical bandwidth required by the pack-
ets in P . Formally, it can be expressed as
Cp,€? 1; * d(af, a:). This cost function is shown to
be quite effective in large-buffer, non-multiplexing
networks [4]. However, in a virtual channel net-
work with wormhole switching, apart from physical
bandwidth, the usage of flit buffers is also a major
factor in network performance.

e f4: max C,,, the maximum number of packets

to go through a physical channel, i.e., maximum
congestion.

O l x , y < M

* f5: C,, , the sum of congestion on all phys-
O < x , y < M

ical channels.

f6: P,EP max{ F,,}, the maximum number of
< X . U > E L .

flits to go thiough a physical channel on the paths
of all pi E P .

f7: { F ~ ,) . Similar to f6 but summa-

tion is taken instead. Note that f? is different from
f3. In f7, a flit can be counted several times if the
physical channel it goes through are shared by a
number of paths.

fs I f3: fs constaained by f3, i.e., a mapping is
considcred better only if it has smaller values of fs
and f3.

f7 1 f3: f7 constrained by f3.

P , € P <X,Y>€L,

It is obvious that finding true optimal mappings with
respect to each of the above cost functions is NP-hard,
i.e., there are no known polynomial time algorithms. - . -

ti, denoted as cl is computed by z + min{w, Also, finding optimal mappings with respect to them

495

is not very meaningful since the cost functions them-
selves are not the actual performance measure. There-
fore, our goal is to obtain good sub-optimal mappings
with respect to each cost function with a reasonable
computing time, and the mappings will perform well at
run-time and show significant improvements over ran-
dom mappings. We will adopt the simulating annealing
method for this purpose.

The termination of a simulated annealing process is
generally decided by the following parameters: the ini-
tial temperature, the freezing point, the temperature
updating function, and the exit criteria at each tem-
perature. For each tested cost function, we carefully
select these parameters so that for a given input traf-
fic pattern and traffic density, the optimization process
will terminate in approximately the same number of tri-
als, denoted by nT. A trial is defined as an instance of
randomly choosing two modules and exchanging their
positions, followed by the evaluation of the cost func-
tion. On a Sun IPX workstation, the compiled C pro-
gram requires approximately 20 seconds of CPU time
for 500 trials. For each given n T , only those inputs that
the optimization process terminates after nT f 10% tri-
als are used. The resulting mappings are collected and
their average performance is calculated. Note that we
do not artificially force the simulated annealing process
to stop. Instead, we choose the parameters carefully
and discard inputs which can lead to early or late ter-
minations when using any of the above cost functions.
By doing this, we can ensure fairness in comparing the
effectiveness of cost functions.

erformarace Evaluation

The mappings optimized with respect to the various
cost functions are fed into a network simulation pro-
gram. Under the following assumptions, we developed
the program that simulates the flit-level communication
behavior. The simulation results presented here were
obtained using the following parameters:

Transferring a flit between two nodes via a physical
channel takes one unit of time.

B) At any instant of time, all flits that have been allo-
cated channels are transferred synchronously in a
single physical channel cycle.

Q Each virtual channel is assigned a single-flit buffer.

e The default packet-scheduling policy is FIFO, and
the default flit-multiplexing method is RR with
demand-driven (DD) allocation,

e Both w- and f- meshes are of size 16 x 16. Since
performance trends are similar for f-meshes and w-
meshes for the same P , unless stated otherwise,
only the data obtained with w-meshes are plotted.
The number of communicating modules is fixed at
256, i.e., the same as the number of nodes in the
network. The default number of virtual channels is
21 = 4.

0 Unless stated otherwise, all packets are 20 flits
long. During the task execution, The probability,
dens i t y , that node i sends a packet to node j in
the uniform traffic pattern is 0.01. In a 16 x 16
network, the total number of concurrent packets
during a mission is w 0.01. (16’ - 1)’.

0 Unless stated otherwise, the traffic pattern is uni-
form. In hot-spot traffic, 5 hot spots in the network
are randomly chosen, with dens i t y = 0.5 between
any node and each of the hot spots. The default
value of AT is 0.

0 Each data point is obtained by averaging results
from 10,000 mappings. Deviation from the mean
values is found t o be small (< 5%).

In Figs. 1 and 2, the makespans of average latency
of mappings optimized with respect to the various cost
functions after 500 trials, (i.e., n~ = SOO) , are com-
pared for different values of v. The performance of f1

and fi are found to be very close to that of f4 and f 6 ,

and hence are not shown. fl and fz are only found to be
effective in the case of f-meshes with large U ’ S and small
d e n s i t y values. This can be attributed to the fact that
only in these situations makespan and latency estimates
are more accurate.

From the results shown, it is obvious that f7, fs I f3
and f7 I f3 perform better than the other cost func-
tions in this case. Mappings optimized with respect to
these functions are also more resilient to the change of
U ’ S . On the other hand, mappings optimized with some
functions (e.g., f.1 and f6) perform well with small v’s
but become worse with larger U ’ S . In the case of f4,

mappings optimized with respect to it improve over the
random mappings when v 5 6, but actually perform
worse than random mappings when v gets larger. A
similar behavior can also be observed from mappings
optimized with the other mini-max type cost function,
f 6 , though to a less pronounced degree.

In Figs. 3 and 4, the performance of mappings opti-
mized with the various cost functions under uniformly-
distributed traffic are evaluated with variable nT’s. The
number of virtual channels is fixed at v = 4. A good

496

cost function should demonstrate a more predictable be-
havior, i.e., better performance measurements and less
fluctuations when 7 1 ~ is increased. Note that for each
plotted curve, n~ = 0 corresponds to random mappings.
Among the cost functions investigated, fi, fi, f 4 and f6
all demonstrate highly unpredictable behaviors with in-
creasing n ~ . With more computing effort, mappings
optimized with these cost functions can often worsen
performance. This phenomenon is especially prominent
with the makespan measurement. On the other hand,
f3, f7, and their related functions like f5 I f3 and f7 I f3,
all have more predictable performance, at least up to a
much larger TLT than other cost functions. In makespan
measurements, f3 shows continual improvement of map-
pings up to nt = 3000, and f5 I f3 can improve up to
nT = 4000. While f7 I f3 is found to improve map-
pings continually up to n~ = 10,000. For average la-
tency measurement, there are less fluctuations for all
cost functions. However, mappings optimized with most
cost functions stop making noticeable improvement af-
ter nT 2 1000. Only f7, f5 I f3 and f7 I f3 show con-
tinual improvement for nT > 1000, while f7 I f3 shows
improvement even when nT > 8000.

Figs. 5 and 6 compare the performance of mappings
optimized with various cost functions under hot-spot
traffic. For makespan measurement, almost each cost
function becomes less predictable under hot-spot traffic.
Except f5 I f3 and f7 I f3, mappings optimized with all
other functions cease to improve after n~ > 500. f5 I f3
starts to show fluctuations after nT > 4000. On the
other hand, f7 I f3 still shows predictable improvements
after nT > 5000.

From the above results, we can conclude that map-
pings optimized with respect to f7 1 f3 have the most
predictable improvement under various traffic patterns.
Thus, we will focus on evaluating this particular func-
tion.

Given the same PI the effect of increasing A T is
shown in Figs. 7 and 8. Mappings are optimized with
f7 I f3 after 5,000 trials. It is obvious that mappings
optimized with f7 1 f3 still improve over random map-
pings with significant margins for large AT’S. It is found
that even with AT = 250, the margin of improvement is
still more than 20% for both makespans and average la-
tency measurements. Note that, for random mappings,
the makespan decreases monotonically with increasing
A T up to 180, showing that even when packets in P
arrive in such a large time window, the network is still
saturated. On the other hand, for mappings optimized
with f7 I f3, the network becomes less congested when
AT > 120 and makespan tilts upward slightly with in-
creasing AT’S.

In [3], we have shown that by employing appropriate
packet-scheduling policies and flit-multiplexing meth-
ods, the performance of a virtual-channel network un-
der concurrent communication traffic can be greatly
improved. Here we will demonstrate that by apply-
ing these run-time flow-control mechanisms, the perfor-
mance of mappings which are already optimized with
f7 I f3, can be improved further. In Figs. 9 and 10,
the performance measurements are shown for mappings
optimized with f7 I f3 when executed on systems with
various packet-scheduling and flit-multiplexing combi-
nations. “SRBF” denotes the packet-scheduling policy
which gives a higher priority to the packet with the
smallest remaining bandwidth. “SRBP” denotes the
flit-multiplexing method giving a higher priority to the
same type of packets as in SRBF. These two schemes
are shown in [3] to perform particularly well. Also, to
prevent deadlock, CTS lookahead is implemented with
SRBP multiplexing.

These flow-control mechanisms can still improve the
performance of mappings significantly. Though using
SRBF scheduling alone can introduce some performance
fluctuations when nT is increased, it can still improve
makespans by at least 12% and average latency by at
least 10%. The combination of SRBF and SRBP can
further improve the performance, especially the aver-
age latency. Also note that, when these flow-control
mechanisms are used, the margin of improvement with
increasing nT’s is narrowed. For example, mappings
found with TIT = 5000 still outperform n~ = 1000, but
when compared with the case using only FIFO-RR, the
margin is greatly reduced. This shows that by using
proper run-time flow controls, we may save some com-
puting effort on finding optimized mappings.

In Figs. 11 and 12 we show the effect of applying the
mapping optimization process and flow-control mech-
anisms on the performance of one set of communicat-
ing modules under uniform and hot-spot traffic, respec-
tively. The mapping is optimized with f7 I f3 and
nT = 5000. It can be observed that given a mapping,
different flow-control mechanisms will result in differ-
ent rates of “energy” (remaining bandwidth) dissipation.
Better flow-control not only results in a higher rate, but
also a more linear behavior, and hence, a more pre-
dictable task communication response time. Further-
more, in the presence of hot-spot traffic, a good flit-
multiplexing method like SRBP can reduce makespan
dramatically by reducing the time the system spends in
non-saturated regions, as shown in Fig. 12.

On the other hand, the mapping optimization pro-
cess leads to lower “initial energy,”, and reduces the
time needed to dissipate it. Note that it can work in-

491

dependently of the flow-control mechanisms, and their
improvements on the performance can be additive. It is
also interesting to note that the amount of initial band-
width is a good indication of the quality of mappings,
especially when A T is small. In most of our inputs
used here, when AT < 70, a mapping with a smaller
initial bandwidth almost always has a better makespan
and average latency measurements. However, in most
cases, given the same computing time, mapping opti-
mized with f3 actually has a higher initial bandwidth
than f71f3. The reason for this is that using f3 alone,
the simulated annealing process can be “trapped” in a
local optimum much more quickly than using f7 1 f3.
4 Conclusion

In this paper, we have addressed the problem of map-
ping concurrently-communicating modules into mesh-
connected multicomputers equipped with wormhole
switching and virtual channels. Our objective is to opti-
mize the makespan and average latency of these packets
exchanged among modules. It has been shown that di-
rect optimization of the performance objective is not
practical. We investigated several simplified cost func-
tions for the simulated annealing method. The effec-
tiveness of these proposed cost functions are compared
by using a flit-level simulation program to access the ac-
tual run-time performance of the mappings optimized
with each cost function when approximately the same
amount of computing time is given. The cost function
f7 I f3, has been found to be quite effective. Mappings
optimized with it have been shown to be consistently
outperform the others. Also, performance of mappings
can be continually improved with the increase of com-
puting time. We also showed that the run-time perfor-
mance of optimized mappings can be further improved
when on-line flow-control mechanisms are used.

References
[l] M. 6. Norman, “Models of machines and computation

for mapping in multicomputers,” A CM Computing Sur-
veys, vol. 25, no. 3, pp. 263-302, September 1993.

[2] W. J. Dally, “Deadlock-free message routing in multipro-
cessor interconnection networks,” IEEE Trans. on Com-
puters, vol. C-36, no. 5, pp. 547-553, May 1987.

[3] B.-R. Tsai and K. G. Shin, “Sequencing of concur-
rent communication traffic in mesh multicomputers with
virtual channels,” in Proc. of the 23-rd International
Conference on Parallel Processing, pp. 126-133, August
1994.

[4] B.-R. Tsai and K. G. Shin, “Communication-oriented
assignment of task modules in hypercube multicomput-
ers,” in Proc. 12-th Int’l Conf. on Distributed Comput.
Syst., pp. 38-45, June 1992.

0---0 rand

0 - . - 0 fllf3

0 4 8 12 16
V

Figure 1 :
with various cost functions.

Makespan comparison of mappings optimized

0
350.0

g -
M ‘ 300.0 -

250.0 -

200.0 -

150.0 -

100.0 -
0 4 8 12 16

V

Figure 2: Average latency comparison of mappings opti-
mized with various cost functions.

498

I I I I I
1000 2000 3WO 4000 SO00

300.0

Number of tnals

0 ----0 f l
A---A n
A . " " 'A n

i 4
-.-¤ f5

x- - - x P6
0 0 f/

.-..- fSlB
m ---a f7lB

Figure 3:
with various cost functions, uniform traffic.

Makespan comparison of mappings optimized

I I t I I

I I I I 1
1000 2000 3M)O 4000 5000

100.0 I
Numbcr of trials

0 --.-o f l

A ' A fi
A- - -A f2

P

0 --.-o f l

125.0

fSlR
0 -.-m f710

0 1000 2000 3WO 4000 5000
75.0

Numbcr of tnat

Figure 6: Average latency comparison of mappings opti-
mized with various cost functions, hot-spot traffic.

*.-..-e f51B
m - - . -0 i7lB

o 20 40 60 a0 IOO 120 MO 160 iao 200
200.0

Delta T

Figure 4: Average latency comparison of mappings opti-
mized with various cost functions, uniform traffic.

Figure 7: Makespan of mappings optimized with f7 I fa
versus varying AT.

~ 700.0

600.0

500.0

...............
400.0

1000 2000 3000 4000 5000
300.0

Numbcr of uiala

0 - . -0 I1
A---A M

o-----o 14
-.-# 15

x- - - x f6
0 0 f7

f5ln
a --.-a f7lR

......

0.0
0 20 40 60 80 100 120 140 160 180 200

=Ita T

Figure 5:
with various cost functions, hot-spot traffic.

Makespan comparison of mappings optimized Figure 8: Average latency of mappings optimized with f7 I
f3 versus varying AT.

499

I I I I I
0 1000 2m 3000 4000 M O O

200.0

Figure 9: Makespan of mappings optimized with f7 I f3
under different flow-control strategies.

Figure 11: Plot of remaining bandwidth versus time, uni-
form traffic.

1000 2000 3MM 4000 5000
50.0

Numbcr of trialr

Figure 10:
f7 I f3 under different flow-control strategies.

Average latency of mappings optimized with

Figure 12: Plot of remaining bandwidth versus time, hot-
spot traffic.

500

