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Abstract - The control system inertia is character- 
ized as the control system deadline (CSD). A computer 
controller may sometimes fail to produce correct and/or 
timely control signals due to massive component failures 
caused by external environmental interferences. How- 
ever, the underlying control system does not necessar- 
ily crash immediately upon controller failure. The CSD 
is defined as the maximum time the control system can 
stay in its allowed state space without the computer con- 
troller's services in producing correct and/or timely con- 
trol signals. Through the analysis and simulation of the 
Boeing 737 - a typical real-time control system - we 
characterized the CSD as a random variable. When eval- 
uating the system reliability with the CSD knowledge, 
we need not derive the complete distribution of CSD, 
but need only the first and second moments, thus sim- 
plifying the necessary calculation. Finally, we applied 
the CSD knowledge to the system reliability evaluation, 
showing significant improvements in accuracy. 

Key words: Real-time control systems, deadline, fault- 
tolerance, reliability models. 

1 Introduction 

Most existing control-system designs do not consider 
component failures during a given control mission. Con- 
sideration of possible component failures calls for the 
need of some form of fault-tolerant control. Adaptive 
control can be viewed as a faul-tolerant control option, 
because system parameters are estimated for every con- 
trol cycle and the control law is adapted to the change 
in the parameters. There are many other fault-tolerant 
control algorithms that are widely discussed in the open 
literature. Willsky [l] surveyed the methods of detecting 
failures in a control system. To improve the reliability 
of a control system, we must resort to some form (time, 
space, or both) of redundancy. References [2,4,7,8] are 
examples. These studies are based on one common as- 
sumption: the computer system can conduct all of de- 
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tection and reconfiguration tasks even when other com- 
ponents of the control system fail. 

Siljak [9] proposed a mathematical framework for ana- 
lyzing redundant computer controllers, taking computer 
failure into consideration. But he assumed that com- 
puter failures are independent of one another. However, 
in some cases, computers located close to each other tend 
to be exposed to the same environmental interference, 
which may cause all the computers to fail at the same 
time. Even when computers do not provide correct con- 
trol signals, the system may not crash immediately due 
to system inertia. If the fault can be removed within a 
certain time, the computer might be able to control the 
system back to normal operation. Shin et al. [lo] pro- 
posed a general concept of the control system deadline 
(CSD) when the computer controller does not work as 
specified. Kim and Shin [Ill studied in greater detail 
how to derive the CSD for linear and nonlinear systems. 
In this paper, we will consider the random behavior of 
CSD and incorporate this information into the reliabil- 
ity analysis of control systems. Section 2 introduces the 
definition of CSD and analyzes it as a function of some 
other variables for linear systems. Section 3 presents a 
numerical example to illustrate our idea of considering 
CSD as a random variable, not as a constant. Reliability 
analysis incorporating the CSD is presented in Section 
4. The paper concludes with Section 5. 

2 Analysis of Control System Deadlines 
Shin ei al. [lo-121 proposed the concept of CSD and de- 
veloped general methods for deriving it. For complete- 
ness, we first present a brief summary of their results 
and then analyze the CSD in depth for linear systems. 

Let x(t) denote the state of the controlled process at 
time t ,  then state transitions can be characterized by 
a mapping 4: T x T x X x U --+ X, where T C R 
represents the time region, X c R" the state space, 
and U C R' the input space: x(t1)  = 4 ( t l , t o , x ( t o ) , u ) .  
More specifically, if we have a dynamic system 

X=f(t,x,u) (2.1) 
then C$ can be considered as a solution to Eq. (2.1) given 
the initial condition x(t0)  at time t o .  Given a control 
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law U ,  the CSD is defined as 

 to)) E sup{r : d(to + 7, t o ,   to), U) E XA} 
where XA is the allowed state space. Xa is the inter- 
section of two sets of states. The first set, denoted by 
X i ,  is the state space in which a system must stay in 
order to avoid immediate failure, e.g., a commercial air- 
plane flying upside down. The second set, denoted by 
X i ,  is the state space where a system must stay in or- 
der to meet terminal constraints, e.g., airplane landing 
conditions. 

Normally, a predesigned control law should not only 
keep the controlled process in the allowed state space, 
but also provide satisfactory performance. But if under 
external environmental interferences, a controller com- 
puter may fail to work properly, not only degrading the 
control system performance, but also possibly driving 
the system out of the allowed state space. If the con- 
troller computer failed at t j  , then the CSD is defined as 
the maximum time after t j  that the system can stay in 
the allowed state space under the erroneous control sig- 
nals before the controller recovers from the failure and 
resumes the normal control function. In this paper, we 
focus on linear systems, because nonlinear systems are 
usually approximated by piecewise linear systems along 
a given nominal trajectory. 

First, consider a single-variable system z = ax + bu 
with the control law U = kx, where a, b and k are con- 
stant. Let t d  denote the time period between t j  and the 
time when the controller computer is recovered from a 
failure. During this time, the control is not updated, 
but kept constant at ut,. In some cases, the controller 
computer may update the control signal “randomly” as 
opposed to just failing to update it. The control signal 
during t d  depends on the application’s error handling 
mechanism. Here we will not discuss every possible case, 
but our discussion is general and applicable to other sit- 
uations as well as the constant control signal during t d .  

Given the mission lifetime T ,  the terminal state is 

Let M e ( a + 6 k ) ( T - - t d )  { e a t d  + Jld e a ( t d d - T ) d r b k } .  Note 

that M is not a function of t f .  From the terminal con- 
straint Iz(T)I < E ,  we have IMI < &. The largest 
t d  which satisfies the above inequality is the CSD. It 
depends on the initial condition z(O), the terminal con- 
straint E ,  mission lifetime T ,  and the feedback gain k. 
The shorter the mission time and the larger the differ- 
ence between the initial condition and the terminal con- 
straint, the smaller t d  gets. 

Multivariable systems are more complicated due to 
the coupling between state variables. We should first 
choose the form of the terminal constraints. Unlike 
the single-variable case in which there is one obvious 
choice, there are several ways to specify the terminal 
constraints. One way is to have a constraint for each 
state variable, i.e., Ixi(T)I < ~ i .  The problem with this 
method is that due to the coupling of state variables, the 

absolute value of each state is not necessarily monotone. 
In order to solve this problem, as the second approach, 
one may restrict the norm of the terminal state, i.e., 
11 ZT /I< E .  The norm of the state should decrease to 
0 as T gets larger. The third approach is a more gen- 
eral than the second, taking a weighted sum of the state 
variables. We have chosen the second approach because 
the third approach requires knowledge of relative impor- 
tance of each state variable, which is often unavailable 
and/or depends on the underlying application. 

Consider a linear system x = Ax + Bu with the con- 
trol law U = Kx where x and U are n- and p dimen- 
sional vectors, respectively. A , B  and K are constant 
matrices with appropriate dimensions. The terminal 
state is then derived as: 
x(T) = e ( A + B K ) ( T - t l - l d ) { , A t d  + (ltd e ~ ( t d - 7 ) c i T )  

BK}e(A+BK)*jx(0) = Mx(0). 

Given the initial condition, terminal constraint, mis- 
sion time, M is also a function of t j  (time when the 
controIler computer fails), which is different from the 
single-variable case where the CSD is independent of t  j . 
To meet the terminal constraints, the following inequal- 
ity should be satisfied: 

II W O )  II< E (2.2) 
Inequality (2.2) indicates that the CSD not only de- 

pends on the norm of initial condition, but also the direc- 
tion of the initial condition. Let F(M) and c(M) denote 
the maximum and minimum singular value of M, then 
we have 

0 4  II 4 0 )  11111 Mx(O) IIL a4 II 4 0 )  II 
The most conservative estimation of CSD would be 

the largest t d  which satisfies (M) 1 1  x(0) II< E .  It 
guarantees the worst case since the CSD thus derived is 
a lower bound. When the condition number of matrix M 
is very large, the CSD can vary drastically for different 
initial conditions. One can see this from an example in 
Section 3. If we evaluate system reliability according to 
the most conservative estimate of CSD, the reliability 
is underestimated and the cost of fault tolerance will 
be much higher than necessary. Our solution to this 
problem is to consider the CSD as a random variable 
and derive its distribution for a particular application. 

We will use a numerical example to illustrate the char- 
acteristics of the CSD of a linear control system. 

3 A Numerical Example 

We have chosen the Boeing 737 as our example control 
system, because it is a typical real-time control system 
and its detailed dynamics are readily available to us via 
the NASA Langley Research Center. 

3.1 
The perturbation equation of the Boeing 737 is derived 
by linearizing its nonlinear dynamics along a trajec- 
tory during the landing phase, which consists of a con- 
stant path angle and a constant airspeed. The trim 
conditions are: forward speed UB=213.98627 ft/sec, 

Overview of the Example Control System 
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vertical speed WB=8.5686209 ft/sec, pitch attitude 
THETA=-0,012338403 rads, pitch rate QB=O. Con- 
trol signals are: THRUSTd3504.9006 lbs, ELEVA- 
TOR=2.723202 rads. The perturbation equation is 
x = Ax i- Bu where x = [ UB, WB, THETA, &BIT, 
U = [ THRUST, ELEVATORIT, and 

1 -0.0377 0.1061 -8.5649 -32.1660 
-0.2785 -0.7114 213.8900 0.4300 
-0.0002 -0.0062 -0.5235 -0.0003 

0 0 1.0000 0 

A =  [ 
0.3785 0.0065 

-0.0003 -0.1621 
= [ 0.00603 -0.021,] 

The system is completely controllable. The goal of 
control is to keep the system at the trim condition 
until touchdown. The control signal constraints are: 
THRUST is between -7 and 13, ELEVATOR is between 
-15 and 15 degrees. 

Whenever the real trajectory sways away from the 
nominal trajectory, the control system starts to pull the 
airplane back to the nominal trajectory. If it is in the 
middle of the mission, a slight deviation from the nom- 
inal trajectory will not do any harm. But after the air- 
plane began the touchdown phase, it imposes very strin- 
gent constraints on its state. 

The feedback matrix is 

1 -1.5644 3.1364 -679.2176 -197.0190 
-3.6333 3.2242 -415.1189 -212.5539 K =  [ 

which makes the poles of the whole system: 2.2 It 2.2i 
and 0.14 f 0.14i1 and thus, the damping ratio of the 
system is 0.7. 

3.2 Results 
First, let’s consider the situation where the devia- 
tion from the nominal trajectory starts a t  an alti- 
tude of 1OOOft. Since we know that the vertical speed 
is 8.5686209ft/sec, the remaining mission time before 
touchdown is 116.7 seconds. We want to control the 
system so that when the aircraft approaches the end of 
the mission, the norm of the states is in the vicinity of 
zero (i.e., 11 x ( T )  I]< E ) .  

Simulation 1: We study the effect of the direction of 
terminal constraints. Let x(0) = [0,10,0, 0IT. First, 
consider the terminal constraint in terms of each state 
variable, i.e., Izj(T)I < zj(T), where zi denotes the i-th 
element of x. Figures 1 and 2 show the results when the 
terminal constraint (TC) = 3 1  = 2 2  = 2 3  = 0.001, 5 4  = 
0.002, and T C  = ??2 = 5 3  = 5 4  = 0.001, = 0.002, 
respectively. Comparing these two figures, we can find 
that the direction of terminal constraint has effects on 
the result. Figure 3 shows the result when the terminal 
constraint is 11 Z ( T )  I)= 2.7 x The horizontal axis 
is t f ,  and the vertical axis is the CSD. 
Simulation 2: We study the effect of the direction of 
the initial condition. We would simply change the initial 
condition from x(0) = [0,10,0, 0IT in the previous sim- 
ulation to x(0) = [0, O , l O , O ] T .  The terminal constraint 

Figure 1: Initial condition: [O,lO,O,O];  terminal constraints: 
[0.001, 0.001, 0.001, 0.0021 

Figure 2: Initial condition: [0,10,0,0]; terminal constraints: 
[0.002, 0.001, 0.001, 0.0011 

Figure 3: Initial condition: [0,10,0,0]; terminal constraints: 
11 T ( T )  II= 2.7 x mission time: 116.7 seconds 
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Figure 4: Initial condition: [O,O,lO,O]; terminal constraints: 
11 qq I[= 2.7 x io-* 

Figure 5: Mission time: 105 seconds 

is in norm form. Figure 4 shows a much lower CSD as 
compared to Figure 3. 
Simulation 3: We change the altitude from lOOOft to 
9OOft where the disturbance starts, i.e., changed the mis- 
sion time from 116.7 seconds to 105 seconds. Figure 5 
shows the relationship of the CSD versus the controller 
failure time when the mission time is 105 seconds. As 
expected, the CSD is much shorter compared to Figure 
3.  
Simulation 4: The last factor that will determine the 
CSD is the control law K.  Usually, the farther away the 
poles from the imaginary axis, the quicker the control 
response. But it is restricted by the control signal. Fig- 
ure 6 shows the CSD when the poles of the system are 
moved from 0.14 z t  0.14; to 0.2 f 0.2i. As the control is 
more powerful in this case, the CSD can be much larger 
as compared to Figure 3. 

3.3 Analysis 
From the above simulation results, multivariable sys- 
tems are found to be very complex. Even with the given 
initial condition, terminal constraint, mission time and 
control law, the CSD is not a monotonic function of 
t f .  What makes the analysis more complicated is that 
the initial condition itself is a random vector; so is the 
mission time because the disturbance can occur at any 
time with any magnitude and direction. We can use a 
random variable to capture the behavior of CSD. We 

Figure 6: Changing control law 

can also consider the initial condition and mission time 
as random variables whose distribution can be derived 
from field tests. Simulation can then be performed to 
derive the distribution of CSD corresponding to a fixed 
initial condition and mission time. The distribution can 
be described by the probability density function (pdf) or 
the moments (usually first and second, i.e., the expec- 
tation and the variance) of the random variable. The 
Chi-square test can be used to determine the fit of a 
distribution to the experimental and simulation data. 
We will see later that for some applications, only the 
mean and variance are required. 

4 Reliability Analysis w i t h  CSD Knowledge 

The CSD information can help us analyze the system 
reliability. Suppose we have n identical processors to run 
n copies of the same task and vote on these redundant 
results. If a majority of the processors produce correct 
results, then the system works correctly; otherwise, the 
system is in vulnerable state. Figure 7 shows our semi- 
Markov model for evaluating the system reliability. 

I- D - 

Figure 7: The NMR reliability model of a real-time control 
system 

In this figure, Fi denotes the state that i processors 
produce erroneous results. V represents the vulnerable 
state when more than a half of the processors failed to 
produce correct results. Conventional reliability mod- 
els do not include this vulnerable state. As soon as 
a majority of the processors fail, the whole system is 
considered to have failed. However, as we have seen in 
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the previous sections, this is not true for real-time con- 
trol systems where “system inertia” protects the system 
from crashing immediately upon failure of a majority of 
processors. Incorporation of this inertia or CSD infor- 
mation into reliability analysis introduces a new state or 
vulnerable st ate. 

FS is the state when the system actually crashed. 
Suppose the CSD is equal to D, and the sojourn time 
in state V is T .  If T > D, the system moves from state 
V to state FS; otherwise, it moves from state V to safe 
state F(n-l)p 

The SURE package [13] is used in our reliability anal- 
ysis. SURE is a reliability analysis tool for ultra-reliable 
systems. It uses a fast bounding theorem based on 
means and variances to compute the upper and lower 
bounds of system unreliability. Two types of transitions 
are identified in SURE. The first type is exponentially- 
distributed with a slow rate, which represents compo- 
nent failures. The second type is much faster but can 
have an arbitrary distribution. This type of transitions 
usually describes the recovery process. Since the tran- 
sition from state “V” to state “FS” is much faster as 
compared to component failures (whether independent 
or correlated), it belongs to the second type. SURE re- 
quires that the recovery transitions be fast compared to 
the mission time and the inter-failure interval. 

There are two ways to describe a fast transition, each 
based on a theorem. One theorem requires the informa- 
tion in terms of means and variances, and the other re- 
quires the information in terms of means and percentiles. 
So, when we derive the distribution from experimen- 
tal data, we can just compute the required information 
instead of the exact distribution. The reasons for our 
choice SURE over other reliability modeling packages 
are that (1) the information it requires is easy to obtain; 
(2) it can handle complicated recovery mechanisms; (3) 
it does not depend on any particular modeling philoso- 
phy or structure. 

1 
...-- A ...... 4 dmploxupporbcmd 

A-A dmpkloworbound 
x .  -.... x TMRu-rbound 
x - x  TMRlwortaund 
U ......U 5MR upprbmund 
0-U 5MR lwsrbound 

10 30 50 70 80 110 

Time(secs) 

Figure 8: Unreliability during the mission 

As an example, let’s consider the B737 control system 

again. The mission time is 116.7 seconds for landing. 
Suppose the independent failure rate is 10-7/second, 
the correlated failure rate is 10-g/second. Suppose that 
when a common cause event occurs, there is an equal 
chance for a component to fail, or not to fail. The recov- 
ery rate is 0.5/second. From the simulation described in 
Section 3, we can obtain the mean and variance of CSD 
as 5 seconds, and 5 seconds’, respectively. 

The unreliability as a function of time is plotted in 
Figure 8. The Y axis is in logarithmic scale. From this 
figure, we can see that a simplex system is less reliable 
by more than 2 orders of magnitude than TMR and 
5MR systems. On the other hand, there is almost no 
difference between TMR and 5MR for this example. 

, we get 
a different result as shown in Figure 9. In this example, 
a simplex system has a better lower bound than the 
redundant systems since the correlated failure rate is 
higher and the redundancy increases the possibility of 
more component failures in the system. 

If we change the correlated failure rate to  

vnren~m,qi E+ 

1W 

Time(secs) 

Figure 9: Unreliability during the mission with a different 
correlated failure rate 

If we use the conventional reliability modeling tech- 
nique without considering the effect of CSD, we would 
have gotten the TMR unreliability in Figure 10 (corre- 
lated failure rate=10-6). We can see that our unrelia- 
bility estimation is about one order of magnitude lower. 

5 Conclusion 

The main contribution of this paper is the treatment of 
CSD as a random variable and utilization of this infor- 
mation for more accurate modeling of system reliability. 

Even when we treat the CSD as a random variable, wc 
would like it to have a small variance around the mean. 
We tried to minimize the condition number of the system 
by applying an appropriate control law. Some work has 
been done on this subject. For example, Roppenecker 
[14] proposed a parametric expression for the controller 
gain matrix to make numerical analysis possible. Efforts 
have been made [15-171 to improve the performance of 
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Figure 10: TMR unreliability during the mission 

optimizing the feedback matrix gain and the condition 
number of a closed-loop system. But even with these 
methods, a highly-conditioned original system cannot 
have a low condition number through a constant ma- 
trix feedback. This is why a random variable has to  be 
used to represent the CSD. For a system with a small 
condition number, the CSD would not depend on the 
initial condition very much. Thus, the field test for the 
distribution of initial condition is not needed. 

In this paper, we did not address how to get the field 
data for the disturbance or how the engine control be- 
haves when the computer controller fails. These are 
questions that are still under study. Shooman [18] sur- 
veyed EM1 effects on airplanes. Since most of the data 
were derived from pilots’ experiences, they were not very 
precise and most of the results were qualitative. F’urther- 
more, no conclusion could be drawn on how the aircraft 
engines behave in the presence of an EMI. This needs 
to be studied further and is currently being explored at 
the NASA Langley Research Center. 

Finally, we applied the CSD information to the evalu- 
ation of system reliability, showing significant improve- 
ments in accuracy. 
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