
IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 12, DECEMBER 1995 1405

A Reservation-Based Algorithm for Scheduling Both
Periodic and Aperiodic Real-Time Tasks

Kang G. Shin, Fellow, IEEE, and Yi-Chieh Chang, Member, IEEE

Abstract-This paper considers the problem of scheduling both
periodic and aperiodic tasks in real-time systems. A new, called
reservation-based (RB), algorithm is proposed for ordering the
execution of red-time tasks. This algorithm can guarantee all
periodic-task deadlines while minimizing the probability of miss-
ing aperiodic-task deadlines. Periodic tasks are scheduled accord-
ing to the rate monotonic priority algorithm (RMPA), and aperi-
odic tasks are scheduled by utilizing the processor time left un-
used by periodic tasks in each unit cycle. The length, u, of a unit
cycle is defined as the greatest common divisor of all task periods,
and a task is assumed to be invoked at the beginning of a unit
cycle. For a set S of periodic tasks, the RB algorithm reserves a
fraction Rs of processor time in each unit cycle for executing
aperiodic tasks without missing any periodic-task deadline. The
probability of meeting aperiodic-task deadlines is proved to be a
monotonic increasing function of RP We derive the value of Rs
that maximizes the processor time reservable for the execution of
aperiodic tasks without missing any periodic-task deadline. We
also show that if the ratio of the computation time to the deadline
of each aperiodic task is bounded by Rs, the RB algorithm can
meet the deadlines of all periodic and aperiodic tasks. Our analy-
sis and simulation results show that the RB algorithm outper-
forms all other scheduling algorithms in meeting aperiodic-task
deadlines.

Index Terms-Real-time systems, task scheduling, periodic and
aperiodic tasks, deadline guarantees.

I. INTRODUCTION

CHEDULING both periodic and aperiodic tasks in real-time S systems is a much more difficult problem than scheduling
periodic or aperiodic tasks alone 111, [2] , [3], [4]. Two com-
mon approaches to servicing aperiodic tasks are polling and
background processing. In the polling approach, a periodic
polling task is invoked at regular intervals and services any
pending aperiodic task. If there are no aperiodic tasks pending,
then the polling task will be suspended until its next period.
Since aperiodic-task arrivals are not coordinated with the in-
vocation of a polling task, an aperiodic task may suffer a long
delay if it arrives right after the polling task is suspended. In
the background processing approach, each aperiodic task is
serviced as a background process whenever the processor is
idle, but giving low priority to the background process makes
the response time of aperiodic tasks neither predictable nor
guaranteeable.

Manuscript received Mar. 11, 1993; revised Sept. 3, 1994.
K.G. Shin is with Real-Time Computing Laboratory, Department of Elec-

trical Engineering and Computer Science, The University of Michigan, Ann
Arbor, MI 48 109-2122. e-mail: kgshin@eecs.umich.edu.

Y.-C. Chang is with Quicktum Design Systems, Inc., Mountain View,
Calif.

To order reprints of this article, e-mail: transactions@computer.org, and
reference IEEECS Log Number C9.5136.

To improve the response time of aperiodic tasks while guar-
anteeing periodic-task deadlines, Lehoczky et al. proposed the
priority exchange (PE) and deferrable server (DS) algorithms
[2] . In the PE algorithm, a high-priority periodic task is as-
signed to service aperiodic tasks. To improve the processor
utilization, the aperiodic task server can exchange its priority
with lower-priority periodic tasks whenever there are no aperi-
odic tasks to be serviced. In the DS algorithm, the aperiodic-
task server will retain its allocated processor time even when
there are no pending aperiodic tasks, so it is also referred to as
a bandwidth preserving algorithm. The authors of [2] showed
that both algorithms can improve the average wait and re-
sponse time of aperiodic tasks over the polling and back-
ground process approaches. Sprunt et al. proposed the ex-
tended priority exchange (EPE) algorithm based on the PE and
DS algorithms to improve aperiodic task response times when
the worst-case periodic load is high and little or no unused
processor time is left for the aperiodic task server [3].

Based on the concepts similar to the PE and EPE algorithms,
Lehoczky and Ramos-Thuel [5] proposed an optimal algorithm
for scheduling soft aperiodic tasks in fixed-priority preemptive
systems. Their approach, called the slack stealing algorithm,
does not create any periodic server to service aperiodic tasks. It
instead creates a passive task, called the slack stealer, which,
when prompted for service, attempts to make time for servicing
aperiodic tasks by “stealing” all the available processing time
from periodic tasks without missing any periodic-task deadline.
They then proved that the slack stealing algorithm is optimal in
the sense that all available processing time will be exploited for
servicing aperiodic tasks while guaranteeing periodic-task dead-
lines. However, in order to exploit all processing time left un-
used by a given set of periodic tasks, the slack stealing algorithm
uses a trial ancterror method to find the solution iteratively, and
such an algorithm will consume a significant amount of time to
find an optimal solution.

One difficulty in scheduling aperiodic tasks (in the presence
of periodic tasks) is the lack of prior knowledge of their arrival
times and deadlines. One can guarantee aperiodic tasks by
treating them as periodic tasks with their minimum interarrival
time being equal to their period. However, such a solution will
severely under-utilize processor cycles, because the minimum
interarrival time is usually much smaller than the correspond-
ing average value. The problem of under-utilizing processor
cycles can be eased somewhat by requiring any two aperiodic
tasks to be separated by a prespecified minimum p . Mok [l]
showed that aperiodic tasks can be guaranteed if p is large
enough, but did not discuss the case when this condition does
not hold.

0018-9340/95$04.00 0 1995 IEEE

mailto:kgshin@eecs.umich.edu
mailto:transactions@computer.org

1406 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 12, DECEMBER 1995

The main goal of this paper is to propose a new, called res-
ervation-based (RB), algorithm that can guarantee all peri-
odic-task deadlines while minimizing the probability of miss-
ing aperiodic-task deadlines. Moreover, an upper bound of the
ratio of the execution time to the deadline of each aperiodic
task is derived and used to guarantee both periodic and aperi-
odic task deadlines. Under the RB algorithm, periodic tasks
are scheduled according to the rate monotonic priority algo-
rithm (RMPA) [6]. Aperiodic tasks are assumed to have lower
priority than periodic tasks and are scheduled by utilizing the
processor time available after scheduling periodic tasks in each
unit cycle. The length, u, of a unit cycle is defined as the great-
est common divisor of all task periods [7]. The processor utili-
zation, U(i), in unit cycle i by a given set of periodic tasks is
calculated by dividing the processor time used in that unit cy-
cle by u. For a given set S of periodic tasks, the RB algorithm
reserves a fraction Rs of each unit cycle for aperiodic tasks
without missing any periodic-task deadline. The key feature of
the RB algorithm is that at least a fraction Rs of each unit cycle
is “reserved”-without missing any periodic-task deadline-
for aperiodic tasks, such that most, if not all, of aperiodic tasks
can still be guaranteed to complete in time even if they are
given lower priority than periodic tasks. If there are no aperi-
odic tasks to be serviced, then RS can be set to zero, thus de-
generating the RB algorithm to the original RMPA. The value
of Rs is found to greatly influence the probability of meeting
aperiodic-task deadlines even when the average processor
utilization by periodic tasks is fixed. For example, let the pe-
riod and computation time of periodic task zl be 3 and 1.5 unit
cycles, respectively. This task can be scheduled by either allo-
cating 1.0 and 0.5 in the first and second unit cycles, or 0.5 in
each unit cycle. However, if an aperiodic task vi with compu-
tation time of 1.0 unit cycle and deadline of 2 unit cycles ar-
rives after starting the execution of q, then the fxst scheduling
scheme can only allocate 0.5 unit cycle for vl, thus missing its
deadline. By contrast, the second scheduling scheme will be
able to allocate 1.0 unit cycle to vl, thus meeting its deadline.
One of the most important issues in the RB algorithm is, there-
fore, to derive the relation between Rs and the probability of
guaranteeing aperiodic tasks. Since the probability of meeting
the deadlines of aperiodic tasks is a monotonic increasing
function of Rs, we will derive the least upper bound of Rs, de-
noted as Rlub, without missing any periodic-task deadline in a
given task set S. Rs also influences the processor utilization
achievable while meeting the deadlines of all tasks.

The RB algorithm increases the number of aperiodic tasks
that can be completed in time while guaranteeing all periodic
tasks. Since each periodic task is assumed to be invoked at the
beginning of a unit cycle’ and may have different release times
and periods, there may be more tasks invoked in some time
intervals than others. For example, U(i) in Fig. 1 varies widely:
the processor utilization by periodic tasks is 100% from unit
cycle 15 to 18, while it is only 50% from unit cycle 25 to 28.
The large variation of U(i) is not desirable in any real-time
system, because the probability of meeting an aperiodic-task

1. Instead of the beginning of the corresponding task period, a commonly-
used assumption.

deadline depends not only on its deadline but also on its arrival
time. Since the variation of U(i) results from the RMPA, an al-
ternative scheme must be used to reduce the variation of U(i).
Surprisingly, even dynamic-priority scheduling algorithms, such
as the ealiestdeadline-first (EDF) algorithm, are not suitable for
scheduling both periodic and aperiodic tasks. (More on this will
be discussed in Section V.) Under the RMPA, a low-priority task
cannot preempt a hgh-priority task. Since aperiodic tasks are
given the lowest priority and hence cannot preempt any of peri-
odic tasks, their deadlines cannot be guaranteed by the EDF al-
gorithm. On the other hand, if aperiodic tasks are assigned
higher priority than periodic tasks, some of the periodic tasks
may miss their deadlines as a result of preemption by higher-
priority aperiodic tasks; this may cause more deadline misses of
the subsequent invocations of periodic tasks. By contrast, the RB
algorithm reduces the variation of U(i) in each unit cycle and
makes more processor cycles available for the execution of ape-
riodic tasks. By reserving a fraction, Rs < Rlub, of each unit cycle
for a given set S of periodic tasks, one can increase the chance of
meeting the deadlines of aperiodic tasks without missing any
periodic-task deadline.

The RB algorithm differs from the PE, DS, or EPE algo-
rithm in that it does not create any periodic server to handle
aperiodic tasks and its main objective is to maximize the prob-
ability of guaranteeing aperiodic tasks without missing any
periodic-task deadline. The RB algorithm may allocate the
same amount of processing time as the slack stealing algorithm
to service aperiodic tasks, but it is much simpler than the slack
stealing algorithm. Section V presents a detailed comparison
between the FS3 algorithm and other related approaches.

T J m t cyr lca

Fig. I. Processor utilization with U = 0.6 and Rs = 0.0.

The rest of this paper is organized as follows. Seition I1
states the problem and reviews some related results of [6].
Section I11 presents the RB algorithm and an analytic model
for its performance evaluation. The performance of the RB
algorithm is evaluated via both simulations and analytic
modeling in Section IV. We derive in Section V an upper
bound of ratio of the execution time to the deadline of an ape-
riodic task with which all of periodic and aperiodic tasks can
be guaranteed. The paper concludes with Section VI.

SHIN AND CHANG: A RESERVATION-BASED ALGORITHM FOR SCHEDULING BOTH PERIODIC AND APERIODIC REAL-TIME TASKS 1407

11. RESERVATION OF A FRACTION OF PROCESSOR TIME

We want to guarantee all periodic tasks by using the RMPA
while maximizing the probability of meeting aperiodic-task
deadlines. For convenience, some of the basic definitions in
161 are re-introduced before presenting the RB algorithm.

Let aperiodic task vi be represented by a three tuple (aj, Ci,
Di), where ai is its releasdmival time, Ci its execution time,
and Dj its deadline relative to ai, all measured in unit cycles (Ci
can be a fraction of a unit cycle but Di is a multiple of unit
cycles). If there are more than one aperiodic task to be exe-
cuted, they are scheduled according to the FCFS policy. A
periodic task z, is assumed to be released at the beginning2 of a
unit cycle with a deadline equal to one task period after its
release. Since the period and the first release time of a periodic
task may be different from those of other periodic tasks, there
may be more task releases during some time intervals than
others. So, we represent zi with a three tuple (ri, Ci, Ti), where
ri is the first release time of zi, Ci its execution time, and Ti its
period. Thejth invocation of zi is released at ri + (j - 1) Ti and
ends at ri + jT. Thus, Ti is measured from the beginning
(ri + (j - 1) Ti) to the end (ri + jTi) of the jth invocation. Let
S = { T I , zz, . . ., G,} denote a set of m periodic tasks. All peri-
odic tasks are assumed to be known a priori to the designer
and the priority of a periodic task is determined by its period;
the shorter the period the higher its priority. Although every
periodic task is assumed to arrive at the beginning of a unit
cycle, its computation time does not have to be aligned with
unit-cycle boundaries. All periodic and aperiodic tasks can be
preempted at any time. Since real-time tasks are usually stored
in main memory before putting the system in operation, the
time to switch between tasks is assumed negligible. Also, note
that the computation time of both periodic and aperiodic tasks
is the time the processor needs to execute the task with 100%
devotion to it. Obviously, if the processor is interrupted before
completing a task, the total time to complete the task will be
greater than its computation time.

Since periodic tasks are known in advance, they are sched-
uled according to the RMPA. Using the same notation in [6] ,
the processor utilization, U , by S is

The major cycle, T,, for S is the least common multiple of all
task periods in S measured in number of unit cycles. For ex-
ample, the ith major cycle starts at t = (i - l)T, and ends at
t = iT,, i 2 1. Equation (1) gives the average processor utili-
zation over one major cycle by the periodic tasks in S. Let
si= [(i - l)u, iu) denote the ith unit cycle within a major cycle.
The processor utilization in si, denoted by U(i), is calculated
by dividing the processor busy time in si by u. So, the unused

2. This is more general than the usual assumption that all periodic tasks are
released at the beginning of their respective periods.

(used) processor time in si is u(1 - U(i)) (uU(i)) . From (1) and
the definition of U(i) , we get

Because whether the deadline of an aperiodic task can be
met or not depends on its arrival time,3 it is not sufficient to
analyze the probability of meeting aperiodic-task deadlines by
using U alone. For example, consider the average processor
utilization over N unit cycles for different time intervals in Fig.
2 while changing N from 2 to 20. Although U = 0.6, the aver-
age processor utilization over a small N, such as N < 6, can be
as high as 100% or as low as 1%. Thus, the probability of
guaranteeing the aperiodic tasks with deadlines < 6 unit cycles
will greatly depend on their arrival times. The difference be-
tween the maximum and minimum average processor utiliza-
tion during N unit cycles reduces to within 30% of each other
when N > 13.

1.1

o n

N 0"eT

Average
C Y U 0.6 1 Maximum average U over N unit cyclea A-

"tilhatio" Minimum aversse U over N unit cycles 8

o.4 t 1

N

Fig. 2. Variation of average processor utilization during N unit cycles
(U = 0.6, Rs = 0.0).

As mentioned earlier, the fraction of processor time re-
served in each unit cycle will greatly affect the probability of
meeting aperiodic-task deadlines even when U is fixed. The
importance of reserving a fraction of processor time to meet
aperiodic-task deadlines can be seen from the example in Fig.
3 (assuming u = 1.0). Let q = (0, 1.5, 3) and q = (0, 0.5, 5).
As shown in Fig. 3, for an aperiodic task v3 = (0, 0.6, 2) only
the third scheduling scheme can allocate 0.6 to complete v3
before its deadline, while all three scheduling schemes guaran-
tee the deadlines of TI and 2,. However, if the deadline of v3 is
3 instead of 2, it will be guaranteed by all three scheduling
schemes. In this case, even if the execution time of v3 is in-
creased to 1.0, it will still be guaranteed by all three schedul-
ing schemes. After reserving a fraction, Rs, of the processor
time, the fraction of processor time available in each unit cycle
after scheduling all periodic tasks will be greater than, or equal
to, Rs.

3. And other parameters like its execution time and deadline.

1408 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO 12, DECEMBER 1995

T i =3 T2=5 cl=i 5 c2=05 rejected, or transferred to some other node if the task can be
guaranteed in that node. (Incorporation of RB scheduling into
load shmng is an interesting problem that warrants further
investigation. See more on this in Section VI.) Upon comple-
tion of an aperiodic task, periodic tasks will be scheduled ac-
cording to the RMPA if there are no more aperiodic tasks
waiting in the queue; otherwise, the RB algorithm will be used
to process the remaining aperiodic tasks.

Under the RB algonthm, U(z) 5 1 - RX for all z after schedul-
ing penodic tasks according to the RMPA. To analyze the per-
formance of the RB algorithm, we must know the probability

T I ‘1 ’2 ‘1 ‘1 22 T~ distnbuhon of apenodic-task deadlines. The probability of guar-
anteing an aperiodic task v, = (al, C,, 0,) is the probability of allo- ‘2

cahng processor time 2 C, after a, but before or on a, + D, - C,.
Thus, the deadline distnbution of aperiodic tasks is a main factor
that detemnes the performance of the RB algorithm. To im-

0 Derivation of the processor utilization in each unit cycle
after scheduling a given set S of periodic tasks, and the
relation between RS and the probability of meeting aperi-
odic-task deadlines.

1 0

0 5

i o i 1 I 2
“ ‘1 ‘1 ‘2 ‘1

‘ 2
(a)

1 0

0 5

2

(b)

0 7

7 10 1 1 12 plementthem algonthm, onemustconsider:
‘1 T1 ‘2 ‘1 ‘1 T2
‘2

(C)

Fig 3 Three scheduling schemes with different reservation fracuons

Consider the previous example shown in Fig. 3, where no
time is reserved in s1 and s2, while 0.5 unit cycle is reserved in
s2 in Fig. 3b, and 0.3 unit cycle is reserved in each unit cycle
in Fig. 3c. The shaded box in Fig. 3 indicates the fraction of
the time the processor is busy. The first two schemes cannot
guarantee v3 = {3, 0.6, 2}, but the third scheme can allocate
0.6 unit cycle for the third aperiodic task and meet its deadline.
Note that reserving a fraction of each unit cycle does not ak-
ways guarantee aperiodic tasks. For example, the first and sec-
ond scheduling schemes can guarantee an aperiodic task
v4= (1, 1.0,2), but not the third scheme even though Rs= 0.3.

There is also an upper bound of R in order to guarantee the
deadlines of all periodic tasks in S. To see this, consider the
third scheduling scheme in Fig. 3c; if RS = 0.4 from s1 to s3,
then only 30% of a unit cycle can be allocated to % before its
next invocation, thus missing the deadline. When U is fixed,
the value of Rs will affect the probability of guaranteeing ape-
riodic tasks with short deadlines and may not affect the tasks
with long deadlines. For example, consider the average proc-
essor utilization over 2 I N I 20 unit cycles with Rs = 0.3, the
maximum and minimum U(i) are found to be 70% and 1%,
respectively, for N < 6, while they were 100% and 1%, re-
spectively, for the example in Fig. 2. However, the difference
between the maximum and minimum U(i) is about the same in
Fig. 2 for N > 12. Since reserving a fraction of each unit cycle
does not change U , the value of Rs has less effects on the frac-
tion of time that can be allocated to aperiodic tasks with long
deadlines.

Recall that in the RB algorithm, periodic tasks are sched-
uled according to the RMPA. If there are no aperiodic task
arrivals, there is no need to reserve any fraction of time in each
unit cycle. However, upon arrival of an aperiodic task at a
node, the node will check its available processor time based on
the RB algorithm. If the task can be completed in time by the
node, it will be scheduled locally; otherwise, this task will be

0 Determination of the value of Rs that maximizes the
probability of meeting aperiodic-task deadlines without
missing any periodic-task deadline.

* The distribution of aperiodic-task deadlines for perform-
ance analysis.

All of these will be discussed in detail in the following
sections.

m. THE RB ALGORITHM AND ITS
PERFORMANCE MODEL

In this section, we will first introduce the RB algorithm and
then derive the processor utilization.

Recall that a periodic task T, = (r,, C,, T,) is assumed to ar-
rive at the beginning of a unit cycle, but c, need not be aligned
with unit cycle boundaries. Consider a periodic task set
S = {T, , %, ..., T,}. Since by definition all periodic tasks must
be released at least once in a major cycle, the first release time
of the tasks in S ranges from 0 to T,, - 1 (measured in unit
cycles) and U(i) will repeat the same pattern after the second
major cycle, i.e., U(i + TmC) = U(i + nT,,) for all n > 1.
Moreover, the authors of [SI and [9] proved that even if some
of periodic tasks are released after the second major cycle, we
only need to consider the first two major cycles with a schedul-
ing algorithm which does not leave any processor idle as long
as there are tasks ready for execution. Note that U(i) in the
first major cycle may not be equal to U(i + Tmc) for some i,
because the periodic tasks with r, > i may not have been re-
leased at the corresponding time in the first major cycle. Zhu
et al. [9] proved that by creating imaginative task instances in
the first major cycle it is sufficient to consider the first two
major cycles for the derivation of U(i).

The m periodic tasks in S are sorted in ascending order of
their periods, such that TI < T2 < . . . < T,. In the RB algorithm,
the initial value of U(i) is set to Rs for i = 0, 1, . . . , 2TmC. After

SHIN AND CHANG: A RESERVATION-BASED ALGORITHM FOR SCHEDULING BOTH PERIODIC AND APERIODIC REAL-TIME TASKS 1409

scheduling all periodic tasks, Rs is subtracted from U(i). Since
at most 1 - Rs fraction of time in each unit cycle can be allo-
cated to periodic tasks, Rs is the minimum available fraction of
time in each unit cycle after scheduling all periodic tasks in S.
If the current invocation of a task cannot be completed before
its next invocation, the task set is unschedulable and the RB
algorithm terminates.

RB Algorithm

for i = 0 to 2Tm, U (i) := Rs;
for i = 1 to 1.91 do

for s, = t, to 2Tm, do
schedulefime := C,;

while schedulefime > 0 do
.- .- si;

F(s ’) := (1 - U(s’))u;
if schedulefime 5 F(s ’) then

u (s‘) := U (s’) -+ schedulefime/u;
schedulefime := 0;

if F (s ’) > 0 then
else

schedulefime := schedulefime - F (s’)
U (s ‘) : = U(s ’) t F (s ’) / u

endif
s‘ := s‘ + r;
if s’ 2 s, + T, then stop (the task set is unschedulable);

endif
end-do
s, := s, -t T,

enddo
enddo
for i = 0 to 2Tm, U (i) := U (i) - Rs;

The RB algorithm schedules the periodic tasks in S accord-
ing to the RMPA while reserving a fraction Rs of each unit
cycle for aperiodic tasks. In the RMPA, the task with the
shortest period, zl, is scheduled first, starting from its first re-
lease time rl . The scheduled time for zl (“schedule-time”) is
first set to C1 and then the available processor time at rl
(denoted as F(s’)) is compared with q ’ s scheduled time. If
F(s’) 2 schedule-time, the schedule-time will be added to
uU(s’) and 2, is scheduled; otherwise, F(s’) is subtracted from
schedule-time and s’ is incremented by one. The above proce-
dure continues until schedule-time becomes 0.

The complexity of the RB algorithm can be easily analyzed
as follows. In each major cycle, q will be invoked TJTi times
and for each invocation of zi we need to adjust U(i) for the
period of at most Ti unit cycles (because Z, must be completed
within one period after its release). Thus, the maximum total
number of unit cycles during which the utilization needs to be
adjusted for scheduling z, is simply TJTi X Ti = Tmc. As a re-
sult, the complexity of the RB algorithm for a set of m tasks is
mTm, or O(m) (as T,, is a finite constant for any given task
set). In Section 1II.C we will derive the optimal value of RS
thereby eliminating the need to try many different values of RS
in order to achieve the best performance. This is in sharp con-
trast to the EPE or slack stealing algorithms where one must
try many different values of Rs before finding the optimal utili-
zation by aperiodic tasks.

Note that T, is dependent on the periods of tasks in S and
might grow exponentially if the periods are not harmonic. Han
and Lin [lo] have shown that by adding a distance constraint
to the periodic tasks, it is possible to specialize a task set so

that the task set may be schedulable when the density of the
specialized task set is less than 1 . They have also shown that
the specialized task set contains solely multiples of a period,
and hence, T, will not increase exponentially with the periods
of the periodic task set.

A. Processor Utilization by a Set S of Periodic Tasks
In order to derive the relation between Rs and the probabil-

ity of meeting aperiodic-task deadlines, we need to derive U(i).
From [6] , if U I m(2l” - 1) for a set S of m periodic tasks, S is
guaranteed to be schedulable, but on average a task set is
schedulable for up to 88% utilization [ll]. Suppose S is
schedulable and let q, . . ., z, be the tasks in S sorted in ascend-
ing order of their periods. After r1 is scheduled, V(i) can be
calculated as follows. If C1 < u(1 - Rs) then

U(ri+ nTl) = Cl/u, n = 0, 1 ,2 , . . .
If C1 > u(1- Rs), then

U(i +nT,) = 1 - Rs,

i = q , q +1, ..., r, + - - 1
iU(l“%,i

Similarly, V(i) can be calculated after scheduling 7, j = 2,
. . . , k. Consider the nth invocation of 5. Since S is schedulable,
there must be a sufficient processing time available for execut-
ing z;. during the period from unit cycle rj + (n - 1) T j to unit
cycle rj + n T j . Let 4, be the number of unit cycles needed to
execute 3 at its nth invocation and F(i) be the available proc-
essor time in unit cycle i. For convenience, let Aj be the total
available processor time during the period from unit cycle rj +
(n - 1) Z j to unit cycle rj + (n - 1) Ti + e,, and Aj’ be the total
available processor time during the period from unit cycle rj +
(n - 1) Ti to unit cycle rj + (n - 1) Ti + en - 1. Then,

rj+(n-l)T,+!, r j+(n-l)q+ln-l

A . = c F(i)andAj= c F(i),n=0,1 ,..., 00.

If Cju < 1 - U(rj + n q) then U(ri + nl;) = U(i + nTj) + Cju,

n = 0, 1 ,
If Cjlu > 1 - U(rj + nTj) then

U(i + n q) = 1 - Rs,

i = r j , ..., rj +ln - 1

i=rj+(n-l)Tj i=rj+(n-l)q

Ai - A i
= U(rj +1, +nq)+- , n = O , l ,

U

The calculated values of U(i) for a task set with U = 0.6 and

1410 IEE

Rs = 0.3 is plotted in Fig. 4. From these figures, it is found that
over many unit cycles, the processor is under-utilized or un-
used even though the average processor utilization (v) is
around 60%. This observation justifies the need of reserving a
certain fraction of each unit cycle to improve the overall proc-
essor utilization. Another interesting result found in the FG3
algorithm is that the variation of U(i) decreases as Rs in-
creases, thus making U(i) closer to U. As a result, the prob-
ability of meeting aperiodic-task deadlines will depend Zess on
their arrival time (see Fig. 4). Recall that when no processor
time was reserved, U(i) was as high as 100% in some unit cy-
cles, and thus, the probability of guaranteeing aperiodic tasks
depended heavily on their deadlines as well as on their arrival
times (see Figs. 1 and 2).

unit ‘YClra

Fig. 4. Processor utilization with U = 0.6 and Rs = 0.3.

B. Probability of Completing an Aperiodic Task in Time

The probability of meeting the deadline of an aperiodic task
vu= (a,, C,, 0,) is the probability that Ca is less than, or equal
to, the total available processor time during the interval
[a,, a, t DJ. For convenience of discussion, C, is assumed to
be exponentially distributed with mean p. (A similar argument
can be made when C, has a different distribution.) Then,

where

D=D,, 0

Din,
= P(D)(l-e-@D),

D=Dmi,

(3)

F is the average available processor time in the interval
[a,, a , t D,] for scheduling only aperiodic tasks. D,,, (D-) is

E TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 12, DECEMBER 1995

the minimum (maximum) task deadline (more on the deadline
distribution will be discussed in Section IV). P(D) is the prob-
ability density function of task deadlines.

We are interested in deriving a condition under which
P(Ca 5 FD,) is maximized. From (3) , it is easy to see that
the probability of meeting aperiodic-task deadlines is a mono-
tonic increasing function of F. When U is fixed, reserving a
fraction of each unit cycle will increase the utilization (or de-
crease F) in those unit cycles during which the processor was
under-utilized or unused as shown in Fig. 4. Since the prob-
ability of completing an aperiodic task in time is increased
(decreased) by increasing (decreasing) F, the increase in the
probability of guaranteeing aperiodic tasks in these unit cycles
with an increased F must be greater than the decrease in the
probability of guaranteeing aperiodic tasks in those unit cycles
with a decreased F.

Intuitively, the probability of guaranteeing aperiodic tasks is
a monotonic increasing function of Rs. However, this is not
clear when a large increase of F in a time interval causes
small decreases of F in several other time intervals. So, we
have the following theorem.
THEOREM 1. The probability of guaranteeing aperiodic tasks

is a monotonic increasing function of Rs.

PROOF. Let 6 be the average available fraction of time over a
time interval, say I,. If Fi < R, after reserving a fraction Rs
of each unit cycle the average available fraction of time
over I1 becomes F,‘= R. Since U is fixed over a major cy-
cle, increasing the available fraction of processor time in Z1
will cause the available fraction of processor time to de-
crease over some other intervals in which the average avail-
able fractions of time were used to be greater than Rs
(before the reservation). Let IJi, IJ2 , . . . , I lk be those inter-
vals and

be the average available fractions of processor time over
these intervals before (after) reserving the processor time as
shown in Fig. 5. (Note that the distance between ZJ, and I1
is larger for a larger k as shown in Fig. 5.) Then, we have
4 +E;=,?, = q’+C:=,<:. 5: = 5, - R if 5, 2 2R, and
-

= R if 3, < 2 R f o r e = 1, ..., k.

Note that the increase of e’ in ZI causes many decreases of
the available fraction of processor time in intervals

each of these A 5 , s will contribute to 61 So,

4 = 16 - 6’1 = Cf=l@JI. Also, note that the decreases of
the available processor time over intervals ZJi , Z,2, . . . , ZJ,
due to the increase of 6’ will occur first on ZJl , then Z J 2 ,
and so on, because in the RB algorithm the task’s scheduled
time is shifted to an adjacent unit cycle first. Thus, it is suf-
ficient to consider the following three cases.

SHIN AND CHANG: A RESERVATION-BASED ALGORITHM FOR SCHEDULING BOTH PERIODIC AND APERIODIC REALTIME TASKS 141 1

Fra In of the unused
,PU time

-

Fig. 5 . The variation of the available processor time over some time intervals
after reserving a fraction Rs of processor time in each unit cycle.

Case 1. Consider the variation of q, in Zj , first. For nota-

tional convenience, let $') be the available processor time
in ZI when only A q , is considered, Le., assuming OjL = 0

for e = 2, ..., k. We then have 5'') = 6 +f i j , . The varia-

tion of the probability of guaranteeing an aperiodic task v,=
(a,, Ca, D,) is computed by:

p,(c, 5: 6 D,)-p,

Note that the negative result of the

P(D,)(e-fi(' jDa - e - f i D a) indicates the probability of

guaranteeing aperiodic tasks is increased after reserving RS

because 6"' > 4. So, the increased probability of guaran-

teeing the task is P(0,) e-f iDa - e-M Da while the re-

duced probability of guaranteeing the task is
1 -w'

(
. The net change is:

So, A P(')(guarantee v,) > 0.
Case 2. Consider only the variation of the available proces-
sor time in intervals Zjl and Zjz . For notational conven-

ience, let q(*) = q(') + GjZ . The net change in the prob-

ability of guaranteeing v, is

&)(guarantee va =

1. p(D,)(1- e- f i (z)Du -

Since < , &2)(guarantee v,) > 0.

Case 3. Generally, consider the variations of the available
processor time in intervals l j , to l j , , and let A q , = q, - <:
and 6") = e("-') + A q l . The net change in the probability

of guaranteeing v, is

@)(guarantee v,) =

P P ,)(1 - e -@,Du)(- e-pq(')Da -

Since q(') < 5, AP(')(guarantee v,) > 0 for 4 = 1, . . ., k.

As a result, the increase in the probability of guaranteeing
aperiodic tasks by increasing F in ZI will always be greater
than the total reduced probability of guaranteeing aperiodic

tasks in I] , , . . . , Zj , . Since 1 - e-@', is a monotonic increas-
ing function of A?, , the increase in the probability of guar-
anteeing aperiodic tasks is a monotonic increasing function

In practice, the decreases of the available processor time
over some intervals may result from the increases of the
available processor time over a multiple number of intervals
instead of only one interval Il as discussed above. However,
we can always identify the decreases of the available proc-
essor time over those intervals as a result of the increase of
the available processor time in a particular interval. Apply-
ing the same argument, we can conclude that the increase in
the probability of guaranteeing aperiodic tasks is a mono-

-

of Rs.

tonic increasing function of Rs.

C. Deriving the Least Upper Bound of Rs
Since (3) is a monotonic increasing function of Rs, we would

like to derive its least upper bound Rid, without missing any
periodic-task deadline. Note that use of Rid not only maximizes
the probability of guaranteeing aperiodic tasks but also maxi- . - - -

mizes the processor utilization by both periodic and aperiodic

tribution to solving the problem of scheduling both periodic and
aperiodic tasks for real-time systems, because the only method
reported in the literature to find this bound is based on trial and
error, i.e., gradually increasing Rs until the periodic task set be-
comes unschedulable. In the rest of this subsection, we will show
how to derive Rld systematically.

1 -
- - P (D ,) (l - e - N D a) (e - f l D 1 a - e -~cDa

) + (
>.

- 1 tasks. Moreover, analytic derivation of Rld is an important con-

From the initial condition we have E < R and

F , < % .
2 R, thus

1412 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 12, DECEMBER 1995

Consider the case of two periodic tasks, as shown in Fig. 6a,
71 = (C1, T I) and z2 = (Cz, Tz), and let Tl < T2 and q2,1 = T2 mod
Tl . As discussed in [6], the critical instant occurs when a task
is released simultaneously with all other higher-priority tasks.
So, the most difficult situation in scheduling % occurs when it
is released at the same time as zl. It was shown in 161 that the
maximum U occurs when C1 = Tz - TI L T21T11, leading to

[+ICl +e2
T2

u m a x =

Thus;

m
- max

However, the Rs derived from the above formula is the most
pessimistic bound, because when q2,1 > 0, zl does not neces-

sarily use all - C, in T2 unit cycles. In fact, the last invoca-

tion of zl before the second invocation of q can only use up to
a fraction, 1 - Rlub = U,,, of processor time if C1 > q2,1 U-.
The following expressions can be used to calculate Rid for the
case of two periodic tasks.

121

u m a x =

T2

(4)

The Rlub derived from (5) is the least upper bound of Rs with-
out missing any periodic-task deadline (because U,, + &, =
1). So, it is impossible to reserve a fraction, Rs 2 R I ~ , of proc-
essor time at the critical instant. Also, both periodic tasks can
be guaranteed because the U,, derived from (4) is the maxi-
mum utilization needed for these two tasks at the critical in-
stant. Although it is possible to reserve Rs higher than && at a
non-critical instant, Rs must be reduced to Rl& when a critical
instant occurs; otherwise, one of the periodic tasks will miss its
deadline. Thus, Rlub is the maximum fraction of processor time
that can be reserved for aperiodic tasks without missing any
periodic-task deadline at any instant.

Since the calculation of U,, depends on itself, we must
resort to an iterative approach to finding the final value of
illmux. Initially, U,, is set to 1 and (4) is used to calculate a
new UmcIx. Then, the newly-calculated U,, is used as the
initial value of the next iteration. The difference between this
value of U,, and its final value will be reduced by 1IT2 at
each iteration. When Tz > 1, U,, is shown to converge to its
final value only in a few iterations. If T2 = 1, U,, = U =

Cl/Tl + CzlT2, there is no need to use (4) to calculate UmUx.
The more iterations are used in the calculation of U,,, the
closer the computed U,, will be to its final value, but the
U,, calculated at each iteration will always be greater than
Its f ind value. Thus, Rlub = 1 - U,, computed at any itera-
tion can guarantee all periodic tasks. In fact, even if Tz = 2,
R1& is shown to get close to 95% of its final value within
four iterations.

%? a
4.1 $3.1 ---
e-- e---

I I I I I ... I I I

0 TI T, 2T1 2Tz 3T1 ?/Ti .TTI T3
r, 7, r* rr 72 TI h 71 3

2

3

(c)

Fig. 6. IIlustration of deriving RI& for two and three periodic tasks.

For the case of three periodic tasks, the approach to finding
Rld is more complicated than the two-task case. As shown in
Fig. 6b and Fig. 6c, the critical'instant occurs at the second

r, i

invocation of % or z3. If ' '' ' > U , we need to con-

sider the instant of the second invocation of 7,; otherwise, we
only need to consider the instant of the second invocation of
5. If both cases need to be considered, (4) and (5) can be used
to find U,, at the first critical instant. The U,, at the second
critical instant can be computed by deriving the exact amount
of processor time needed for the xth invocation of zl and yth

T2

invocation of 22, where x = - and y = - . Rlub is then kl kl
computed simply by subtracting the maximum utilization at the
critical instant from 1.

At the second critical instant as shown in Fig. 6b and Fig.
6c, one has to find the exact utilization required by the xth
invocation of 71 and yth invocation of zz before the second
invocation of z3. Obviously, if C1 < q3,1 U,,, the total compu-

SHIN AND CHANG: A RESERVATION-BASED ALGORITHM FOR SCHEDULING BOTH PERIODIC AND APERIODIC REAL-TIME TASKS 1413

Algorithm 1

c* u := c Ti ; v,,, := 1; U i L := 0;
i=l

If r31~~+c2 > U then
use Eqs. (4) and (5) to find U,,, at the second invocation of r z ;
repeat the above four times;
uti, := I%,,;

endif
for k = 3 to m do

r% if E!=, -&- > U then do
for j = 1 to k - 1 qk,i := Tk mod Ti;
for e = 1 to 4 do

CET := Et=, [$IC;;
use Eqs. (4) and (5) to find the exact computation time of the [%Ith invocation of 71.
CET := CET+ the exact computation time of the [%Ith invocation of 71.
fori = 2 to 6 - 1 do

find the exact computation time of the [% I t h invocation of r,.
CET := CET+ the exact computation time of the \$Ith invocation of r,.

end-do
u,,, := =;

Tk
end-do
if U,,, > U% then U$,!z := Umax;

tation time needed for all three periodic tasks before the sec-
I m l 1 - 1

ond invocation of z3 will be I$)c1 +[$Jc2 + C3 + C, . 0th-

erwise, the total computation time will be

+ l:]C2 + C3 + q3,1 U,, . To find the exact utiliza-

tion by z2, we have to know if q3,2 > q3,1. If q3.2 > q3.1 as shown
in Fig. 6b, the time available for executing r2 from unit cycle
yT2 to T3 is equal to the remaining processor time available
after executing rl. However, if q3,2 < q3,1 as shown in Fig. 6c,
there may not have any time available for the execution of z2
from unit cycles yT2 to T3, or the available time will be at most
q3,2 U,,, instead of all the time available from unit cycle xT,
to T3 as shown in Fig. 6c. Thus, the total computation time
needed for these three tasks from unit cycle 0 to T3 can be cal-
culated accordingly.

Generally, Rlub for a set of m periodic tasks (Cl, T I) , ...,
(C,, T,) can be derived by Algorithm I (see next page). Let
TI < T2 e . . . < T, and assume all tasks are released at time 0.

The Rlub derived from Algorithm 1 is the least upper bound
of Rs as reasoned below. No periodic tasks will miss their
deadlines if a fraction, Rlub = 1 - U,,, of each unit cycle is
reserved, where U,, is the maximum processor utilization by
periodic tasks. Note that when all periodic tasks are released at
the same time, say time 0, the critical instant occurs at the sec-
ond invocation of zi i > 1. Since the U,, derived from Algo-

rithm l is the maximum utilization at one of these critical in-
stants, all periodic tasks will be completed before their next
invocation after reserving a fraction, Rlub = 1 - Umm, of each
unit cycle. Thus, the Rlub derived from the above algorithm is
the least upper bound of Rs.

The complexity of Algorithm 1 is O(m2). This is based on
the observation that there are m - 1 critical instants to be con-
sidered, i.e., at the second invocation of each z, for i = 2, ...,
m. At each of these critical instants, one needs to consider up
to k - 1 tasks for k = 2, . . ., m. Note that a constant number (4)
of iterations is used in Algorithm 1 to calculate U,, at each
critical instant, so the iteration loop only contributes a constant
factor in the complexity of this algorithm.

D. Calculating the Probability of Meeting Aperiodic Task
Deadlines

Substituting the Rlub derived from (5) into (3), one can
maximize the probability of guaranteeing aperiodic tasks, be-
cause P(C, I F D ~) is a monotonic increasing function of R ~ .

Since the deadlines of aperiodic tasks are not known until their
actual arrival, P(D) in (3) can be calculated and the probability
of guaranteeing aperiodic tasks can then be derived from (3).
However, any a priori performance evaluation requires the
distribution of aperiodic-task deadlines. A uniform or expo-
nential distribution of deadlines has been commonly used [12],
[13], [14]. In case an exponential distribution is used, ran-
domly-generated deadlines are close to their mean value, and

thus, the variation of deadlines is not large. The probability of
guaranteeing aperiodic tasks is closely related to the distribu-
tion of deadlines. Considering the fact that the distribution of
aperiodic-task deadlines is application-dependent, one can let

where Dmin is the minimal deadline of an aperiodic task, a is
an integer number, and X is a random variable uniformly dis-
tributed in [0, 11. As stated earlier, Ci is assumed to be expo-
nentially distributed with mean p.

The deadline distribution in (6) allows us to adjust the con-
trol parameters, D,,, and a, to choose an appropriate range of
deadlines for aperiodic tasks. Dmin serves a purpose similar bo
the minimal separation p in [11. By varying Dmin, one can con-
trol the worst-case probability of missing deadlines, thus guar-
anteeing the deadlines up to any acceptable level.

, L (1 + a X) Ci 1 determines the range of deadlines; a large a
will generally result in a wide range of distribution. Since it is
assumed that X is uniformly distributed and Ci is exponentially
distributed, the range of deadlines is a composite function of
uniform and exponential distributions. Using (6) to specify the
deadline of each aperiodic task can avoid the drawbacks of
assuming either a loose bound or a tight bound of deadiines.
Moreover, the randomly-generated deadlines are uniformly
distributed in the range determined by L (1 + a X) Ci 1, and
thus, the deadlines are more evenly distributed in a specified
range than the exponential distribution. To be consistent with
the case of periodic tasks where the deadlines are equal to the
task period (an integer number of unit cycles), the deadlines of
aperiodic tasks are truncated to be integer numbers
(represented in unit cycles) in (6).

Considering D, = Dmi, as an example, we get

P (o a = Dmin 1

P(D, = Dfi , + 1)

l+a
=P((l+dY)C, 21)P

1414 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 12, DECEMBER 1995

I L
When C, ~1-,--), (1 + a X, C, is always less

l+a l+a
than 2. So, the probability of D , = D,,, + 1 is (1 + ax) C, >
1, thus giving the first term in (8). When C, E [2/(1 + a), 2),
De = Dmi, + 1 if (1 + ax> Ca E [1, 2); this is the second term in
(8). When Ca > 2, D, is always greater than D,,, + 1. Gener-
ally, for P(Da = D,,, + k) , k = 2, . . . , D,,, we get:

P(D, = D ~ * + k) =

k + l
P (k < (l + a) C a < k + l) P -<C, < k

L + U

-(- 1+- e
aJ(I

From (6), the deadline of an aperiodic task is generated
based on its execution time which was randomly-generated
from an exponential distribution. The effect of Dmi, and a on
the probability of guaranteeing an aperiodic task will be dis-
cussed in the next section.

If C, < 1, the second term in (6) is always less than 1,
l+a

thus giving the first term in (7). If 1/(1 + a) < Ca < 1.0, then D ,
is equal to D,,, when (1 + a X) C, < 1.0. Since X
is a uniformly-distributed random variable in [0, 11,

1 P((1 + d) C , < 1) = - (1 / C, - l), thus giving the second term
a

in (7). If C, > 1.0, D, is always greater than Dmin. Similarly,
P(D, = Dmin + 1) can be shown as:

w. THE RB ALGORITHM FOR HARD
REAL-TIME SYSTEMS

Missing any critical-task deadline in a hard real-time system
may lead to catastrophe [15], [16], [17]. Since all periodic
tasks are guaranteed under the RMPA part of the RB algo-
rithm, we only need to consider aperiodic tasks. However, due
to their random-arrival nature, aperiodic tasks cannot always
be guaranteed without imposing some restrictions on their b e
havior. The following theorem defines an upper bound of the
ratio of the computation time to deadline of each aperiodic
task in order to guarantee all aperiodic tasks with the RMPA.

THEOREM 2. All aperiodic tasks v,, for i = 1, ..., k can be
guaranteed by the RMPA (i.e,, Rs = 0) if

SHIN AND CHANG: A RESERVATION-BASED ALGORITHM FOR SCHEDULING BOTH PERIODIC AND APERIODIC REAL-TIME TASKS 1415

- - L.
U , = c- I 1 - U,, , and min Di 2 T,,, V i , where U,,

i=l Di
is derived from Algorithm 1.

PROOF. Consider the case of one aperiodic task. Let D, < Tme
Even if C,/D, I 1 - U, this task may not be guaranteed if it
arrives at those unit cycles with 100% utilization by peri-
odic tasks as shown in Fig. l. For example, suppose an
aperiodic task arrives at the 16th unit cycle and with D, = 4.
Since the system is 100% utilized by periodic tasks from
unit cycles 16 to 20, this task cannot be guaranteed no mat-
ter how small CJD, is. However, if D, 2 T,,, the system can
always allocate up to a fraction, 1 - U, of the processor time
for this task, regardless of the time of its arrival.

It is straightforward to apply the above argument to the case
with an arbitrary number of aperiodic tasks, and thus, the
theorem follows. CI
Let us define the total processor utilization by periodic and

aperiodic tasks as UT = U + U,. Note that periodic tasks are
known u priori and preallocated before their actual release.
The problem of the RMPA is two-fold. First, the deadlines of
all aperiodic tasks have to be greater than, or equal to, the
major cycle of a given set of periodic tasks. This is unrealistic
because the deadlines of aperiodic tasks are not known until
they actually arrive. Moreover, T, for a given set of periodic
tasks may be very long, thus severely limiting the number of
aperiodic tasks that can be guaranteed. The second problem is
that the set of aperiodic tasks that can be guaranteed will de-
pend on the set of periodic tasks already scheduled, because
the processor utilization, U, by periodic tasks may vary from
one set of periodic tasks to another. TQ avoid the second
problem, a set of aperiodic tasks must be chosen based on the
set of periodic tasks with the highest processor utilization, thus
severely reducing the average processor utilization.

In contrast to the RMPA, in the RB algorithm the set of
aperiodic tasks that can be guaranteed depends only on Rs, and
we have the following theorem.
THEOREM 3. All aperiodic tasks vi, for i = 1, ..., k, can be

guaranteed by the RB algorithm by resewing a fraction,
Rs # 0, of the processor time if

Ci
k

u a = cx 5 Rs 9

i=l

where k is the number of aperiodic tusks queued for execution.

PROOF. This theorem is proved by induction.
1) When k = 1. Since a fraction, Rs, of processor time is re-

served in each unit cycle for aperiodic tasks, regardless
of its arrival time an aperiodic task can be allocated up to
Rs D1 2 C1 of processor time for its execution, so the
theorem follows.

2) When k = 2. Consider the (worst) case when both v1 =
(a l , C1, D l) and v2 = (a l , C2, D2) arrive at the same time.
For convenience, assume D1 < D2 and vl is scheduled to
execute first. Since v1 is scheduled first, the processor

time that can be allocated to v2 is Rs D2 - C1 and this has
to be greater than, or equal to, C2. From the condition of

Theorem 3, we get - +- I R, . Multiplying D2 on

both sides, we get

Cl c2

4 D2

Since D2 > D 1 , the above inequality still holds for RsD,
- C1 2 C2, thus proving the theorem.

3) Assume the theorem holds for k = n. Consider the worst
case when all of these n + 1 tasks arrive at the same time.
For convenience, let D1 < 0 2 < ... D, < Dn+l and the
tasks are scheduled in the sequence of { 71, Z2, . . ., 70,

T,,+~}. From the condition of Theorem 3, we get xi=, 4 C: R, . Multiplying Dn+l on both sides, we get
n+l C1

Since D,, > D, > ... D1, the above expression can be
written as:

RsDn+l- C ci 2 cn+l.
i=l

Thus, all of these n + 1 tasks can be guaranteed. 0
The chief advantage of employing the RB algorithm in hard

real-time systems is that aperiodic tasks can always be guaran-
teed as long as the combined utilization by all aperiodic tasks
is less than the reserved fraction, Rs, of processor time.
Moreover, the Rlub derived from Algorithm 1 is shown to be
the maximum (or optimal) Rs that can be reserved without
missing any periodic-task deadline. Thus, by reserving a frac-
tion, Rlub, of processor time for aperiodic tasks, the RB algo-
rithm becomes an optimal solution to the problem of schedul-
ing both periodic and aperiodic tasks in hard real-time sys-
tems. By contrast, the Rh4PA requires an additional, unrealis-
tic restriction, Di > T,,, V i , to get the same result as the RB
algorithm.

V. COMPARATIVE ANALYSIS OF RB ALGORITHM

The RB algorithm is intended for use in scheduling both
periodic and aperiodic real-time tasks to meet their deadlines.
In order to show its advantages and limits, we analyze and
compare the RB algorithm against the other methods using a
concept (similar to ours) of reserving a fraction of the proces-
sor time for aperiodic tasks, such as the PE, DS, or slack
stealing algorithms.

A. Performance Analysis
The RMPA is chosen as part of the RB algorithm to sched-

ule periodic tasks. Aperiodic tasks are scheduled according to
the FCFS policy by using the reserved (solely for aperiodic

1416 EEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 12, DECEMBER 1995

tasks) and unused4 processor time in each unit cycle.
The performance of the RB algorithm is also evaluated by

simulation and compared with the analytic results. Since the
value of Rlub derived analytically in Section III is used to re-
serve the processor time, we want to know how close Rld is to
the average Rovg = 1 - U, because the processor utilization
cannot exceed 100%. The ratio of Rlub to 1 - U is plotted in
Fig. 7. The total processor utilization is the sum of Rlh and U,
also shown in this figure. Note that Rlub can be as high as 95%
of the R,, when U < 0.5. Even when U is as high as 0.95, R I ~
is still about 60% of Ravg. Since R1d is very close to R,, the
total processor utilization remains almost constant at 97% re-
gardless of the processor utilization by periodic tasks.

\

10 c

Fig. 7. Ratio of Rlub to Rrivg(= 1 - u) and the total processor utilization

t 0 0001

I
11 0.1 0.2 n.n 0.4 0.5 0.R

le-06

C:PU r r s r r ~ a t i ~ i i tnne (R)

Fig. 8. Probability of missing aperiodic-task deadlines vs. processor reserva-
tion (U = 0.4, Dmin = 5).

As shown in Fig. 8, the probability of missing aperiodic-
task deadlines is found to decrease as Rs increases. as expected
from Theorem 1. Increasing the value of a: reduces the prob-

4. More precisely, allocated to, but unused by, periodic tasks. This happens
because one might use the worst-case execution times of periodic tasks when
scheduling them.

ability of missing aperiodic-task deadlines. The effect of in-
creasing D,i, for aperiodic tasks can be seen in Fig. 8. The
probability of missing a deadline can be reduced to as small as
lo4 when U = 0.4, Dmi, = 5, and the processor time is maxi-
mally reserved (Le., Rs = Rlub) in each unit cycle (Fig. 8). The
effects of varying Dmin and Rs on the probability of missing
deadlines is also studied. It is found that the probability of
missing aperiodic-task deadlines increases as U increases.
Thus, U must be kept below a certain level in order to reduce
the probability of missing aperiodic-task deadlines to a pre-
specified acceptable level.

B. Comparison With Other Related Work

The concept of reserving a fraction of processor time for
aperiodic tasks has also been considered by others. For exam-
ple, Lehoczky et al. proposed the priority exchange (PE) and
deferrable server (DS) algorithms [2] to improve the response
times of aperiodic tasks while guaranteeing periodic-task
deadlines.

The objective in the PE and DS algorithms is to improve the
response times of aperiodic tasks, while the objective in the
€33 algorithm is to enhance the probability of meeting their
deadlines. (Hence the latter is cognizant of the deadlines of
aperiodic tasks,) Due to this difference in objectives, the peri-
odic server for aperiodic tasks in the PE and DS algorithms
can significantly improve the response times of aperiodic tasks
as reported in [2] but not necessarily improve the probability
of guaranteeing aperiodic tasks. The periodic server in the PE
and DS algorithms is scheduled according to the RMPA with
the rest of regular periodic tasks. In order not to miss the
deadline of any periodic task, this server can only be allocated
up to a fraction, Rlub, of time in each unit cycle. Recall that Rlub
is the maximum fraction of time that can be reserved for aperi-
odic tasks without missing any periodic-task deadline. Moreo-
ver, as reported in 121, the period of this server cannot be too
long because aperiodic tasks may otherwise need to wait for a
Pong time if its arrival does not coincide with the beginning of
the periodic server. Due to these two restrictions, the maxi-
mum time that can be allocated to the periodic server is Rlub x /
T,, where T, is the period of this server. So, only aperiodic
tasks with computation time less than Rlub x T, and deadline
longer than T, can be guaranteed. Obviously, this is an unde-
sirable restriction in scheduling aperiodic tasks. Sprunt et al.
[3J later proposed the extended priority exchange (EPE) al-
gorithm based on the PE and DS algorithms to improve the
response times of aperiodic tasks when the worst-case periodic
load is high and little processor time is left for the aperiodic
task server. However, the aforementioned basic restrictions on
the periodic server still exist, because the capability of guaran-
teeing aperiodic tasks is limited by the short period of the
server which is necessary to ensure the short response times of
aperiodic tasks.

It should be noted that the slack stealing algorithm proposed
by Lehoczky and Ramos-Thuel [5] is shown to be optimal for
scheduling soft aperiodic tasks in fixed-priority preemptive
systems. In this algorithm, the slack stealer does not create a
periodic server for aperiodic tasks. It instead creates a passive

SHIN AND CHANG: A RESERVATION-BASED ALGORITHM FOR SCHEDULING BOTH PERIODIC AND APERIODIC REAL-TIME TASKS 1417

task which, when prompted for service, attempts to make time
for servicing aperiodic tasks by “stealing” all the available
processing time from periodic tasks without missing any peri-
odic-task deadline. They proved that the slack stealing algo-
rithm is optimal in the sense that all available processing time
will be exploited for servicing aperiodic tasks while meeting
all periodic-task deadlines.

The basic concept behind the slack stealing algorithm is
similar to the derivation of RIub in the RB algorithm. As shown
in Fig. 7, the derived Rhb is close to, or higher than, 95% of
Rovg when U is less than 50% and can still be as high as 80% of
R, when U is 80%. But in the slack stealing algorithm, one
needs to gradually increase the processor time that can be re-
served without missing any periodic-task deadline until the
optimal solution is found. However, in the RB algorithm, this
optimal solution can be derived systematically using Algo-
rithm l . The preliminary results of the RB algorithm was also
reported at the 1991 Real-Time Systems Architecture Work-
shop [18], while the slack stealing algorithm was presented a
year later at the 1992 Real-Time System Symposium.

We claim several important contributions via the develop-
ment and evaluation of the RB algorithm. First, we proposed
an analytic model to evaluate the performance of the RB al-
gorithm; this is in sharp contrast to most of the early work that
solely relies on simulations. Second, although the concept of
reserving a fraction of processor time for aperiodic tasks has
been proposed and used by others, the analytic approach de-
veloped in this paper is the first of the kind that treats the
problem of systematically deriving the maximum processor
time to be reserved for the execution of aperiodic tasks without
missing any periodic-task deadline. Moreover, we can derive
the least upper bound of Rs with Algorithm 1 before putting
the system in operation, thus incurring no scheduling overhead
at the time of arrival of each aperiodic task. (That is, there is
little on-line scheduling overhead for aperiodic tasks.) Third,
as proven in Theorem 3, all aperiodic tasks can be guaranteed
as long as their combined utilization is less than Rlub. If the
total number of aperiodic tasks waiting for execution is n, we
only need n divisions and n additions to determine whether a
newly-arrived aperiodic task can be guaranteed or not. This is
much faster than any other existing methods. Even if this re-
striction cannot be satisfied, the probability of guaranteeing
aperiodic tasks can still be maximized by reserving a fraction,
R,&, of the processor time in each unit cycle, because this
probability is shown to be a monotonically increasing function
of Rs 5 Rlub. Finally, the most important result of the RB al-
gorithm is the analytic derivation of Rlub. Since Rlub is fixed for
a given set S of periodic tasks and since it can be calculated a
priori, scheduling aperiodic tasks is more predictable than the
case when there is no knowledge of how much of the processor
time can be used for the execution of aperiodic tasks. Moreo-
ver, using the relationship Rlub = 1 - U,,, one can determine
whether S is schedulable or not without actually employing the
RMPA. As shown by Liu and Layland [6], if the utilization by
a set of periodic tasks is less than log 2 then the task set is al-
ways schedulable, but if the utilization is greater than log 2
then the task set may, or may not, be schedulable. For exam-

ple, if the RIub derived from Algorithm 1 is not positive for a
given set of periodic tasks, the task set is not schedulable un-
der the RMPA, because the task set requires utilization greater
than 100% at each critical instant.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a new algorithm to schedule both periodic and
aperiodic real-time tasks. Periodic tasks are scheduled accord-
ing to the RMPA and their deadlines are guaranteed if the task
set is schedulable (or U < log 2) as specified in [6]. Aperiodic
tasks are scheduled by utilizing the reserved and unused (by
periodic tasks) processor time in each unit cycle. We have
shown that the value of Rs greatly affects the probability of
guaranteeing aperiodic tasks even when the processor utiliza-
tion is fixed. The relation between RS and the probability of
guaranteeing aperiodic tasks is established for the case when
the execution time of aperiodic tasks is exponentially-
distributed. The least upper bound of RS (Rlub) is derived for
this case. Since the probability of guaranteeing an aperiodic
task is a monotonic increasing function of Rs, this probability
is maximized when we reserve a fraction, Rlub, of each unit
cycle. Moreover, if the utilization by aperiodic tasks is re-
stricted to below &,, all aperiodic tasks can be guaranteed by
the RB algorithm as discussed in Theorem 3, regardless of
their arrival time and their required computation time. Thus,
the RB algorithm can be used to schedule both periodic and
aperiodic tasks in a hard real-time system as long as Theorem 3
is satisfied.

The RB algorithm proposed in this paper suggests many
interesting issues that warrant further investigation. Some of
these issues are briefly discussed below. First, if the task
switching time is not negligible, this overhead in the RB al-
gorithm may affect the derivation of Generally, the num-
ber of task switchings increases when a fraction, Rs, of a unit
cycle is reserved, as aperiodic tasks will preempt periodic
tasks during its reserved period of time. If this number in-
creases as Rs is increased, then the probability of guaranteeing
aperiodic tasks will no longer be a monotonic increasing func-
tion of Rs. Instead, there may exist an optimal Rs < Rlub, be-
cause increasing Rs will increase the switching overhead, thus
reducing the amount of processor time to be allocated for the
execution of aperiodic tasks. Thus, one needs to derive a
bound for the task switching overhead as a function of Rs.

Second, when U < 70%, it is possible to have more than one
aperiodic task waiting for execution. A good scheduling algo-
rithm may improve the probability of guaranteeing aperiodic
tasks, but, as discussed in Section V, the EDF policy does not
necessarily perform better than the FCFS policy. It is therefore
desirable to find a simple algorithm which can satisfy the
condition of Theorem 3 while incurring minimal scheduling
overhead. This situation can be seen by the following example.
If there are k aperiodic tasks waiting for execution and their

combined utilization E,=,- is less than Rlub, then these tasks

can be guaranteed according to Theorem 3. However, if an
early-arrived task a is scheduled to its completion using a

k c, .

* I

1418 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 12, DECEMBER 1995

fraction, Rlub, of processor time, an aperiodic task arriving later
but before the task a’s completion with a shorter deadline than
task a may miss its deadline, even when their combined utili-
zation is less than Rlub. This phenomenon can be explained as

k c. C.
follows. Since c. < Rlub, we have < RLub, Vi. But, if

one of the tasks, say a, is allocated up to a fraction, Rlub, of
processor time during the first few unit cycles, this task has, in
fact, utilized the processor time more than it is supposed to,

i.e., the ratio of - over the Do unit cycles. So, if another

aperiodic task, say b, arrives before the completion of a, task b
may not be able to meet its deadline even when

- + - < Rlub, because task a has consumed all the reserved

fraction of processor time before its completion.
A simple adaptive RB algorithm may be used to resolve the

above problem. If each of these tasks is allocated up to a frac-

tion, 2, Vi, of processor time in each unit cycle, all of these

tasks can be guaranteed, regardless of the order of their arrival.

In other words, when a fraction - of processor time is re-

served for each of these tasks, all of them can be guaranteed as
long as their combined utilization is less than Rid. However,
the model for analyzing the probability of guaranteeing aperi-
odic tasks needs to be modified since each aperiodic task may
have a different Rf instead of a constant R l ~ . Also, the
switching overhead will be much higher in the adaptive RB
algorithm as many aperiodic tasks will be executed in the same
unit cycle during their reserved period. How to construct an
analytic model to evaluate the probability of guaranteeing
aperiodic tasks as well as the switching overhead of the adap-
tive RB algorithm needs further investigation.

Third, it is practically important to extend the RB algorithm
to multiprocessor/distributed systems. For example, consider a
distributed system with N nodes. Since each node has its own
set of periodic tasks assigned a priori and aperiodic tasks ar-
riving randomly, it is desirable to schedule these tasks so that a
maximum number of aperiodic tasks in the entire system may
be guaranteed without missing any periodic-task deadline.
Obviously, it is impossible to obtain an optimal global solution
by simply combining N independent nodes, each with an opti-
mal local scheduling algorithm. Due to the variation of U(i) as
shown in Fig. 1, an aperiodic task that cannot be guaranteed on
one node might be guaranteed on another node. Thus, one way
to solve the above problem for a distributed system is to use
the concept of load sharing (LS) as proposed in [19]. There are
many issues to be resolved before LS is employed along with
the RB algorithm to achieve an optimal global scheduling al-
gorithm in distributed systems. For example, we must explore
ways of collecting state information and the type of state in-
formation to be collected. If a node cannot guarantee an aperi-
odic task, then when and where to transfer this aperiodic task
in order to meet its deadline is the main issue. Another related
question is “should only aperiodic tasks be transferred or even

1=1 Di Di

C U

D U

ca ‘b

Ob

C.

Di

ci
Di

periodic tasks should be considered for transfer?” For exam-
ple, during bursty arrivals of aperiodic tasks at a particular
node, it might be more beneficial to transfer some of periodic
tasks to other nodes so that the node’s utilization by periodic
tasks may be reduced in order to guarantee more aperiodic
tasks locally. After the bursty arrivals die out, these periodic
tasks can be transferred back to its original node.

The foregoing problems are matters of our future inquiry.

ACKNOWLEDGMENTS

The work reported in this paper was supported in part by
the Office of Naval Research under Grant N00014-J-92-1080
and the National Science Foundation under Grant MIP-
9203895. Any opinions, findings, conclusions, or recommen-
dations expressed in this paper are those of the authors and do
not necessarily reflect the view of the funding agencies.

REFERENCES
A. Mok, “Fundamental design problems of distributed systems for the
hard real-time environment,” PhD thesis, Massachusetts Institute of
Technology, 1983.
J.P. Lehoczky, L. Sha, and J.K. Strosnider, “Enhanced aperiodic re-
sponsiveness in hard real-time environments,” Proc. Eighth Real-Time
System Symp., pp. 261-270, 1987.
B. Sprunt, J. Lehoczky, and L. Sha, “Exploiting unused periodic time
for aperiodic service using the extened priority exchange algorithm,”
Proc. Ninth Real-Time System Symp., pp. 251-258, 1988.
K. Jeffay, R. Anderson, and C. Martel, “On optimal, non-preemptive
scheduling of periodic and sporadic tasks,” Technical Report TR-90-
019, a p t . of Computer Science, Univ. of North Carolina at Chapel
Hill, Apr. 1990.
J.P. Lehoczky and S. Ramos-Thuel, “An optimal algorithm for schedul-
ing soft-apefiodic tasks in fixed-priority preemptive systems,” Proc.
13th ReaGTime Systems Symp., pp. 110-123, 1992.
C.L. Ldu and J.W. Layland, “Scheduling algorithms for multiprogramming
in a hard real-time environment,” J. ACM, vol. 20, pp. 4641, Jan. 1973.
M.H. Woodbury and K.G. Shin, “Evaluation of the probablity of dy-
namic failure and processor utilization for real-time systems,” Proc.
Ninth Real-Time System Symp., pp. 222-231, 1988.
J.Y.-T. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic, real-time tasks,” Pelfonnance Evaluation, vol. 2,

J. Zhu, T.G. -Lewis, and 3.-Y. Colin, “Scheduling hard real-time con-
strained tasks on one processor,” Tech. Rep. #93-60-16, Computer Sci-
ence Dept., Oregon State Univ., June 1993.
C.-C. Han and K.-J. Lin, “Scheduling distance-constrained real-time
tasks,” Proc. 13th Real-Time System Symp., pp. 300-308, 1992.
J.P. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling
algorithm: Exact characterization and average case behavior,” Technical
report, Dept. of Statistics, Carnegie Mellon Univ., 1987.
J.A. Stankovic, K. Ramamritham, and S. Cheng, “Evaluation of a
flexible task scheduling algorithm for distributed hard real-time sys-
tems,” IEEE Transactions on Computers, vol. 34, pp, 1,130-1,143,
Dee. 1985.
K. Ramamritham, J.A. Stankovic, and W. Zhao, “Distributed scheduling
of tasks with deadlines and resource requirements,” IEEE Transactions
on Computers, vol. 38, pp. 1,110-1,123, Aug. 1989.
J. Hong, X. Tan, and D. Towsley, “A performance analysis of minimum
laxity and earliest deadline scheduling in a real-time system,’’ IEEE
Transactions on Computers, vol. 38, pp. 1,736-1,744, Dec. 1989.
K.G. Shin, C.M. Krishna, and Y.-H. Lee, “A unified method for evaluat-
ing real-time computer controllers and its application,” IEEE Trans. on
Auto. Contr., vol. 30, pp. 357-366, Apr. 1985.

pp. 237-250, 1982.

SHIN AND CHANG: A RESERVATION-BASED ALGORITHM FOR SCHEDULING BOTH PERIODIC AND APERIODIC REAL-TIME TASKS 1419

[16] D.W. J-einbaugh, “Guaranteed response times in a hard-real-time envi-
ronment,” IEEE Transactions on Software Engineering, vol. 6, pp. 85-
93, Jan. 1980.

[17] C.M. Krishna, K.G. Shin, and LS. Bhandari, “Processor tradeoffs in
distributed real-time systems,” IEEE Transactions on Computers, vol.
36, pp. 1,030-1,040, Sept. 1987.

[18] Y.-C. Chang and K.G. Shin, “Scheduling periodic tasks with considera-
tion of load sharing of aperiodic tasks,” Workshop on Architecture Sup-
porrfor Real-Time Sysrems, pp. 91-95, Dec. 1991.

[19] K.G. Shin and Y.-C. Chang, “Load sharing in distributed real-time
systems with state change broadcasts,” IEEE Transactions on Comput-
ers, vol. 38, pp. 1,1261,142, Aug. 1989.

Kang G. Shin received the BS degree in electronics
engineering from Seoul National University, Seoul,
Korea, in 1970 and both the MS and PhD degrees in
electrical engineering from Comell University, Ith-
aca, N.Y., in 1976 and 1978, respectively. From
1978 to 1982 he was on the faculty of Rensselaer
Polytechnic Institute, Troy, N.Y. He has held visit-
ing positions at the U.S. Air Force Flight Dynamics
Laboratory, AT&T Bell Laboratories, Computer
Science Division within the Department of Electri-
cal Engineering and Computer Science at the Uni-

versity of California at Berkeley, International Computer Science Institute,
Berkeley, Calif., and IBM T.J. Watson Research Center, Yorktown Heights,
N.Y. He also chaired the Computer Science and Engineering Division, EECS
Department,, The University of Michigan for three years beginning January
1991.

He is currently professor and director of the Real-Time Computing Labora-
tory, Department of Electrical Engineering and Computer Science, The Uni-
versity of Michigan, Ann Arbor. He has authoredkoauthored over 350 tech-
nical papers (more than 150 of these in archival journals) and numerous book
chapters in the areas of distributed real-time computing and control, fanlt-
tolerant computing, computer architecture, robotics and automation, and
intelligent manufacturing. He is currently writing jointly with C. M. Krishna a
textbook Real-Time Systems which is scheduled to be published by McGraw
Hill in 1996. In 1987, he received the Outstanding IEEE Transactions on
Automatic Control Paper Award for a paper on robot trajectory planning. In
1989, he also received the Research Excellence Award from The University
of Michigan. In 1985, he founded the Real-Time Computing Laboratory,
where he and his colleagues are currently building a 19-node hexagonal mesh
multicomputer, called HARTS, to validate various architectures and analytic
results in the area of distributed real-time computing.

He has also been applying the basic research results of real-time computing
to intelligent vehicle highway systems and manufacturing-related applica-
tions, ranging from the control of robots and machine tools to the develop-
ment of open architectures for manufacturing equipment and processes. Re-
cently, he has initiated research on the open-architecture information base for
machine tool controllers and middleware services for real-time fault-tolerant
embedded systems.

He is an E E E fellow, was the program chairman of the 1986 IEEE Real-
Time Systems Symposium (RTSS), the general chairman of the 1987 RTSS,
the guest editor of the 1987 August special issue of fEEE Transactions on
Computers on Real-Time Systems, a program cochair for the 1992 fnterna-
tional Conference on Parallel Processing, and served on numerous technical
program committees. He also chaired the IEEE Technical Committee on Real-
Time Systems during 1991-93, is a distinguished visitor of the IEEE Com-
puter Society, an editor of IEEE Transactions on Parallel and Distributed
Computing, and an area editor of International Journal of Time-Critical
Computing Systems.

Yi-Chieh Chang (S’84) received the BS and MS
degrees in electrical engineering from National
Taiwan University, Taipei, Republic of China, ip
1979 and 1984, respectively. He received his Phb
degree in electrical engineering and computer sci-
ence from the University of Michigan, Ann Arbor in
1991. He was an assistant professor in the Electrical
and Computer Engineering Department at the Uni-
versity of Texas at El Paso until May 1995. He is
now with Qnicktum Design Systems, Inc., Mountain
View, Calif. He has published more than 20 techni-

cal papers in the areas of reconfignrable fault-tolerant array processors, paral-
lel computer architecture, and distributed real-time systems. His research
interests include computer architecture, VLSI systems, parallel processing,
and distributed real-time systems.

