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Abstract-This paper considers the problem of scheduling both 
periodic and aperiodic tasks in real-time systems. A new, called 
reservation-based (RB), algorithm is proposed for ordering the 
execution of red-time tasks. This algorithm can guarantee all 
periodic-task deadlines while minimizing the probability of miss- 
ing aperiodic-task deadlines. Periodic tasks are scheduled accord- 
ing to the rate monotonic priority algorithm (RMPA), and aperi- 
odic tasks are scheduled by utilizing the processor time left un- 
used by periodic tasks in each unit cycle. The length, u, of a unit 
cycle is defined as the greatest common divisor of all task periods, 
and a task is assumed to be invoked at the beginning of a unit 
cycle. For a set S of periodic tasks, the RB algorithm reserves a 
fraction Rs of processor time in each unit cycle for executing 
aperiodic tasks without missing any periodic-task deadline. The 
probability of meeting aperiodic-task deadlines is proved to be a 
monotonic increasing function of RP We derive the value of Rs 
that maximizes the processor time reservable for the execution of 
aperiodic tasks without missing any periodic-task deadline. We 
also show that if the ratio of the computation time to the deadline 
of each aperiodic task is bounded by Rs, the RB algorithm can 
meet the deadlines of all periodic and aperiodic tasks. Our analy- 
sis and simulation results show that the RB algorithm outper- 
forms all other scheduling algorithms in meeting aperiodic-task 
deadlines. 

Index Terms-Real-time systems, task scheduling, periodic and 
aperiodic tasks, deadline guarantees. 

I. INTRODUCTION 

CHEDULING both periodic and aperiodic tasks in real-time S systems is a much more difficult problem than scheduling 
periodic or aperiodic tasks alone 111, [ 2 ] ,  [3], [4]. Two com- 
mon approaches to servicing aperiodic tasks are polling and 
background processing. In the polling approach, a periodic 
polling task is invoked at regular intervals and services any 
pending aperiodic task. If there are no aperiodic tasks pending, 
then the polling task will be suspended until its next period. 
Since aperiodic-task arrivals are not coordinated with the in- 
vocation of a polling task, an aperiodic task may suffer a long 
delay if it arrives right after the polling task is suspended. In 
the background processing approach, each aperiodic task is 
serviced as a background process whenever the processor is 
idle, but giving low priority to the background process makes 
the response time of aperiodic tasks neither predictable nor 
guaranteeable. 
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To improve the response time of aperiodic tasks while guar- 
anteeing periodic-task deadlines, Lehoczky et al. proposed the 
priority exchange (PE) and deferrable server (DS) algorithms 
[ 2 ] .  In the PE algorithm, a high-priority periodic task is as- 
signed to service aperiodic tasks. To improve the processor 
utilization, the aperiodic task server can exchange its priority 
with lower-priority periodic tasks whenever there are no aperi- 
odic tasks to be serviced. In the DS algorithm, the aperiodic- 
task server will retain its allocated processor time even when 
there are no pending aperiodic tasks, so it is also referred to as 
a bandwidth preserving algorithm. The authors of [2]  showed 
that both algorithms can improve the average wait and re- 
sponse time of aperiodic tasks over the polling and back- 
ground process approaches. Sprunt et al. proposed the ex- 
tended priority exchange (EPE) algorithm based on the PE and 
DS algorithms to improve aperiodic task response times when 
the worst-case periodic load is high and little or no unused 
processor time is left for the aperiodic task server [3]. 

Based on the concepts similar to the PE and EPE algorithms, 
Lehoczky and Ramos-Thuel [5]  proposed an optimal algorithm 
for scheduling soft aperiodic tasks in fixed-priority preemptive 
systems. Their approach, called the slack stealing algorithm, 
does not create any periodic server to service aperiodic tasks. It 
instead creates a passive task, called the slack stealer, which, 
when prompted for service, attempts to make time for servicing 
aperiodic tasks by “stealing” all the available processing time 
from periodic tasks without missing any periodic-task deadline. 
They then proved that the slack stealing algorithm is optimal in 
the sense that all available processing time will be exploited for 
servicing aperiodic tasks while guaranteeing periodic-task dead- 
lines. However, in order to exploit all processing time left un- 
used by a given set of periodic tasks, the slack stealing algorithm 
uses a trial ancterror method to find the solution iteratively, and 
such an algorithm will consume a significant amount of time to 
find an optimal solution. 

One difficulty in scheduling aperiodic tasks (in the presence 
of periodic tasks) is the lack of prior knowledge of their arrival 
times and deadlines. One can guarantee aperiodic tasks by 
treating them as periodic tasks with their minimum interarrival 
time being equal to their period. However, such a solution will 
severely under-utilize processor cycles, because the minimum 
interarrival time is usually much smaller than the correspond- 
ing average value. The problem of under-utilizing processor 
cycles can be eased somewhat by requiring any two aperiodic 
tasks to be separated by a prespecified minimum p .  Mok [ l ]  
showed that aperiodic tasks can be guaranteed if p is large 
enough, but did not discuss the case when this condition does 
not hold. 
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The main goal of this paper is to propose a new, called res- 
ervation-based (RB), algorithm that can guarantee all peri- 
odic-task deadlines while minimizing the probability of miss- 
ing aperiodic-task deadlines. Moreover, an upper bound of the 
ratio of the execution time to the deadline of each aperiodic 
task is derived and used to guarantee both periodic and aperi- 
odic task deadlines. Under the RB algorithm, periodic tasks 
are scheduled according to the rate monotonic priority algo- 
rithm (RMPA) [6]. Aperiodic tasks are assumed to have lower 
priority than periodic tasks and are scheduled by utilizing the 
processor time available after scheduling periodic tasks in each 
unit cycle. The length, u, of a unit cycle is defined as the great- 
est common divisor of all task periods [7]. The processor utili- 
zation, U(i),  in unit cycle i by a given set of periodic tasks is 
calculated by dividing the processor time used in that unit cy- 
cle by u. For a given set S of periodic tasks, the RB algorithm 
reserves a fraction Rs of each unit cycle for aperiodic tasks 
without missing any periodic-task deadline. The key feature of 
the RB algorithm is that at least a fraction Rs of each unit cycle 
is “reserved”-without missing any periodic-task deadline- 
for aperiodic tasks, such that most, if not all, of aperiodic tasks 
can still be guaranteed to complete in time even if they are 
given lower priority than periodic tasks. If there are no aperi- 
odic tasks to be serviced, then RS can be set to zero, thus de- 
generating the RB algorithm to the original RMPA. The value 
of Rs is found to greatly influence the probability of meeting 
aperiodic-task deadlines even when the average processor 
utilization by periodic tasks is fixed. For example, let the pe- 
riod and computation time of periodic task zl be 3 and 1.5 unit 
cycles, respectively. This task can be scheduled by either allo- 
cating 1.0 and 0.5 in the first and second unit cycles, or 0.5 in 
each unit cycle. However, if an aperiodic task vi with compu- 
tation time of 1.0 unit cycle and deadline of 2 unit cycles ar- 
rives after starting the execution of q, then the fxst scheduling 
scheme can only allocate 0.5 unit cycle for vl, thus missing its 
deadline. By contrast, the second scheduling scheme will be 
able to allocate 1.0 unit cycle to vl, thus meeting its deadline. 
One of the most important issues in the RB algorithm is, there- 
fore, to derive the relation between Rs and the probability of 
guaranteeing aperiodic tasks. Since the probability of meeting 
the deadlines of aperiodic tasks is a monotonic increasing 
function of Rs, we will derive the least upper bound of Rs, de- 
noted as Rlub, without missing any periodic-task deadline in a 
given task set S. Rs also influences the processor utilization 
achievable while meeting the deadlines of all tasks. 

The RB algorithm increases the number of aperiodic tasks 
that can be completed in time while guaranteeing all periodic 
tasks. Since each periodic task is assumed to be invoked at the 
beginning of a unit cycle’ and may have different release times 
and periods, there may be more tasks invoked in some time 
intervals than others. For example, U(i)  in Fig. 1 varies widely: 
the processor utilization by periodic tasks is 100% from unit 
cycle 15 to 18, while it is only 50% from unit cycle 25 to 28. 
The large variation of U(i) is not desirable in any real-time 
system, because the probability of meeting an aperiodic-task 

1. Instead of the beginning of the corresponding task period, a commonly- 
used assumption. 

deadline depends not only on its deadline but also on its arrival 
time. Since the variation of U(i) results from the RMPA, an al- 
ternative scheme must be used to reduce the variation of U(i). 
Surprisingly, even dynamic-priority scheduling algorithms, such 
as the ealiestdeadline-first (EDF) algorithm, are not suitable for 
scheduling both periodic and aperiodic tasks. (More on this will 
be discussed in Section V.) Under the RMPA, a low-priority task 
cannot preempt a hgh-priority task. Since aperiodic tasks are 
given the lowest priority and hence cannot preempt any of peri- 
odic tasks, their deadlines cannot be guaranteed by the EDF al- 
gorithm. On the other hand, if aperiodic tasks are assigned 
higher priority than periodic tasks, some of the periodic tasks 
may miss their deadlines as a result of preemption by higher- 
priority aperiodic tasks; this may cause more deadline misses of 
the subsequent invocations of periodic tasks. By contrast, the RB 
algorithm reduces the variation of U(i) in each unit cycle and 
makes more processor cycles available for the execution of ape- 
riodic tasks. By reserving a fraction, Rs < Rlub, of each unit cycle 
for a given set S of periodic tasks, one can increase the chance of 
meeting the deadlines of aperiodic tasks without missing any 
periodic-task deadline. 

The RB algorithm differs from the PE, DS, or EPE algo- 
rithm in that it does not create any periodic server to handle 
aperiodic tasks and its main objective is to maximize the prob- 
ability of guaranteeing aperiodic tasks without missing any 
periodic-task deadline. The RB algorithm may allocate the 
same amount of processing time as the slack stealing algorithm 
to service aperiodic tasks, but it is much simpler than the slack 
stealing algorithm. Section V presents a detailed comparison 
between the FS3 algorithm and other related approaches. 

T J m t  cyr lca  

Fig. I. Processor utilization with U = 0.6 and Rs = 0.0. 

The rest of this paper is organized as follows. Seition I1 
states the problem and reviews some related results of [6].  
Section I11 presents the RB algorithm and an analytic model 
for its performance evaluation. The performance of the RB 
algorithm is evaluated via both simulations and analytic 
modeling in Section IV. We derive in Section V an upper 
bound of ratio of the execution time to the deadline of an ape- 
riodic task with which all of periodic and aperiodic tasks can 
be guaranteed. The paper concludes with Section VI. 
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11. RESERVATION OF A FRACTION OF PROCESSOR TIME 

We want to guarantee all periodic tasks by using the RMPA 
while maximizing the probability of meeting aperiodic-task 
deadlines. For convenience, some of the basic definitions in 
161 are re-introduced before presenting the RB algorithm. 

Let aperiodic task vi be represented by a three tuple (aj, Ci, 
Di), where ai is its releasdmival time, Ci its execution time, 
and Dj its deadline relative to ai, all measured in unit cycles (Ci 
can be a fraction of a unit cycle but Di is a multiple of unit 
cycles). If there are more than one aperiodic task to be exe- 
cuted, they are scheduled according to the FCFS policy. A 
periodic task z, is assumed to be released at the beginning2 of a 
unit cycle with a deadline equal to one task period after its 
release. Since the period and the first release time of a periodic 
task may be different from those of other periodic tasks, there 
may be more task releases during some time intervals than 
others. So, we represent zi with a three tuple (ri, Ci, Ti), where 
ri is the first release time of zi, Ci its execution time, and Ti its 
period. Thejth invocation of zi is released at ri + ( j - 1) Ti and 
ends at ri + jT. Thus, Ti is measured from the beginning 
(ri + ( j - 1) Ti)  to the end (ri + jTi)  of the jth invocation. Let 
S = { T I ,  zz, . . ., G,} denote a set of m periodic tasks. All peri- 
odic tasks are assumed to be known a priori to the designer 
and the priority of a periodic task is determined by its period; 
the shorter the period the higher its priority. Although every 
periodic task is assumed to arrive at the beginning of a unit 
cycle, its computation time does not have to be aligned with 
unit-cycle boundaries. All periodic and aperiodic tasks can be 
preempted at any time. Since real-time tasks are usually stored 
in main memory before putting the system in operation, the 
time to switch between tasks is assumed negligible. Also, note 
that the computation time of both periodic and aperiodic tasks 
is the time the processor needs to execute the task with 100% 
devotion to it. Obviously, if the processor is interrupted before 
completing a task, the total time to complete the task will be 
greater than its computation time. 

Since periodic tasks are known in advance, they are sched- 
uled according to the RMPA. Using the same notation in [6] ,  
the processor utilization, U ,  by S is 

The major cycle, T,, for S is the least common multiple of all 
task periods in S measured in number of unit cycles. For ex- 
ample, the ith major cycle starts at t = (i - l)T, and ends at 
t = iT,, i 2 1. Equation (1) gives the average processor utili- 
zation over one major cycle by the periodic tasks in S. Let 
si= [(i - l)u, iu) denote the ith unit cycle within a major cycle. 
The processor utilization in si, denoted by U(i), is calculated 
by dividing the processor busy time in si by u. So, the unused 

2. This is more general than the usual assumption that all periodic tasks are 
released at the beginning of their respective periods. 

(used) processor time in si is u(1 - U(i))  (uU(i)) .  From (1) and 
the definition of U(i) ,  we get 

Because whether the deadline of an aperiodic task can be 
met or not depends on its arrival time,3 it is not sufficient to 
analyze the probability of meeting aperiodic-task deadlines by 
using U alone. For example, consider the average processor 
utilization over N unit cycles for different time intervals in Fig. 
2 while changing N from 2 to 20. Although U = 0.6, the aver- 
age processor utilization over a small N, such as N < 6, can be 
as high as 100% or as low as 1%. Thus, the probability of 
guaranteeing the aperiodic tasks with deadlines < 6 unit cycles 
will greatly depend on their arrival times. The difference be- 
tween the maximum and minimum average processor utiliza- 
tion during N unit cycles reduces to within 30% of each other 
when N > 13. 

1.1 

o n  

N 0"eT 

Average 
C Y U  0.6 1 Maximum average U over N unit cyclea A- 

"tilhatio" Minimum aversse U over N unit cycles 8 

o.4 t 1 

N 

Fig. 2. Variation of average processor utilization during N unit cycles 
(U = 0.6, Rs = 0.0). 

As mentioned earlier, the fraction of processor time re- 
served in each unit cycle will greatly affect the probability of 
meeting aperiodic-task deadlines even when U is fixed. The 
importance of reserving a fraction of processor time to meet 
aperiodic-task deadlines can be seen from the example in Fig. 
3 (assuming u = 1.0). Let q = (0, 1.5, 3) and q =  (0, 0.5, 5). 
As shown in Fig. 3, for an aperiodic task v3 = (0, 0.6, 2) only 
the third scheduling scheme can allocate 0.6 to complete v3 
before its deadline, while all three scheduling schemes guaran- 
tee the deadlines of TI and 2,. However, if the deadline of v3 is 
3 instead of 2, it will be guaranteed by all three scheduling 
schemes. In this case, even if the execution time of v3 is in- 
creased to 1.0, it will still be guaranteed by all three schedul- 
ing schemes. After reserving a fraction, Rs, of the processor 
time, the fraction of processor time available in each unit cycle 
after scheduling all periodic tasks will be greater than, or equal 
to, Rs. 

3. And other parameters like its execution time and deadline. 
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T i  =3 T2=5 cl=i 5 c2=05 rejected, or transferred to some other node if the task can be 
guaranteed in that node. (Incorporation of RB scheduling into 
load shmng is an interesting problem that warrants further 
investigation. See more on this in Section VI.) Upon comple- 
tion of an aperiodic task, periodic tasks will be scheduled ac- 
cording to the RMPA if there are no more aperiodic tasks 
waiting in the queue; otherwise, the RB algorithm will be used 
to process the remaining aperiodic tasks. 

Under the RB algonthm, U(z) 5 1 - RX for all z after schedul- 
ing penodic tasks according to the RMPA. To analyze the per- 
formance of the RB algorithm, we must know the probability 

T I  ‘1 ’2 ‘1 ‘1 22 T~ distnbuhon of apenodic-task deadlines. The probability of guar- 
anteing an aperiodic task v, = (al, C,, 0,) is the probability of allo- ‘2 

cahng processor time 2 C, after a, but before or on a, + D, - C,. 
Thus, the deadline distnbution of aperiodic tasks is a main factor 
that detemnes the performance of the RB algorithm. To im- 

0 Derivation of the processor utilization in each unit cycle 
after scheduling a given set S of periodic tasks, and the 
relation between RS and the probability of meeting aperi- 
odic-task deadlines. 

1 0  

0 5  

i o  i 1 I 2 
“ ‘1 ‘1 ‘2 ‘1 

‘ 2  
(a) 

1 0  

0 5  

2 

(b) 

0 7  

7 10 1 1  12 plementthem algonthm, onemustconsider: 
‘1 T1 ‘2 ‘1 ‘1 T2 
‘2 

( C )  

Fig 3 Three scheduling schemes with different reservation fracuons 

Consider the previous example shown in Fig. 3, where no 
time is reserved in s1 and s2, while 0.5 unit cycle is reserved in 
s2 in Fig. 3b, and 0.3 unit cycle is reserved in each unit cycle 
in Fig. 3c. The shaded box in Fig. 3 indicates the fraction of 
the time the processor is busy. The first two schemes cannot 
guarantee v3 = {3, 0.6, 2}, but the third scheme can allocate 
0.6 unit cycle for the third aperiodic task and meet its deadline. 
Note that reserving a fraction of each unit cycle does not ak- 
ways guarantee aperiodic tasks. For example, the first and sec- 
ond scheduling schemes can guarantee an aperiodic task 
v4= (1, 1.0,2), but not the third scheme even though Rs= 0.3. 

There is also an upper bound of R in order to guarantee the 
deadlines of all periodic tasks in S. To see this, consider the 
third scheduling scheme in Fig. 3c; if RS = 0.4 from s1 to s3, 
then only 30% of a unit cycle can be allocated to % before its 
next invocation, thus missing the deadline. When U is fixed, 
the value of Rs will affect the probability of guaranteeing ape- 
riodic tasks with short deadlines and may not affect the tasks 
with long deadlines. For example, consider the average proc- 
essor utilization over 2 I N I 20 unit cycles with Rs = 0.3, the 
maximum and minimum U(i) are found to be 70% and 1%, 
respectively, for N < 6, while they were 100% and 1%, re- 
spectively, for the example in Fig. 2. However, the difference 
between the maximum and minimum U(i) is about the same in 
Fig. 2 for N > 12. Since reserving a fraction of each unit cycle 
does not change U ,  the value of Rs has less effects on the frac- 
tion of time that can be allocated to aperiodic tasks with long 
deadlines. 

Recall that in the RB algorithm, periodic tasks are sched- 
uled according to the RMPA. If there are no aperiodic task 
arrivals, there is no need to reserve any fraction of time in each 
unit cycle. However, upon arrival of an aperiodic task at a 
node, the node will check its available processor time based on 
the RB algorithm. If the task can be completed in time by the 
node, it will be scheduled locally; otherwise, this task will be 

0 Determination of the value of Rs that maximizes the 
probability of meeting aperiodic-task deadlines without 
missing any periodic-task deadline. 

* The distribution of aperiodic-task deadlines for perform- 
ance analysis. 

All of these will be discussed in detail in the following 
sections. 

m. THE RB ALGORITHM AND ITS 
PERFORMANCE MODEL 

In this section, we will first introduce the RB algorithm and 
then derive the processor utilization. 

Recall that a periodic task T, = (r,,  C,, T,) is assumed to ar- 
rive at the beginning of a unit cycle, but c, need not be aligned 
with unit cycle boundaries. Consider a periodic task set 
S = {T, ,  %, ..., T,}. Since by definition all periodic tasks must 
be released at least once in a major cycle, the first release time 
of the tasks in S ranges from 0 to T,, - 1 (measured in unit 
cycles) and U(i) will repeat the same pattern after the second 
major cycle, i.e., U(i  + TmC) = U(i  + nT,,) for all n > 1. 
Moreover, the authors of [SI and [9] proved that even if some 
of periodic tasks are released after the second major cycle, we 
only need to consider the first two major cycles with a schedul- 
ing algorithm which does not leave any processor idle as long 
as there are tasks ready for execution. Note that U(i)  in the 
first major cycle may not be equal to U(i  + Tmc) for some i, 
because the periodic tasks with r, > i may not have been re- 
leased at the corresponding time in the first major cycle. Zhu 
et al. [9] proved that by creating imaginative task instances in 
the first major cycle it is sufficient to consider the first two 
major cycles for the derivation of U(i).  

The m periodic tasks in S are sorted in ascending order of 
their periods, such that TI  < T2 < . . . < T,. In the RB algorithm, 
the initial value of U(i)  is set to Rs for i = 0, 1, . . . , 2TmC. After 
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scheduling all periodic tasks, Rs is subtracted from U(i). Since 
at most 1 - Rs fraction of time in each unit cycle can be allo- 
cated to periodic tasks, Rs is the minimum available fraction of 
time in each unit cycle after scheduling all periodic tasks in S. 
If the current invocation of a task cannot be completed before 
its next invocation, the task set is unschedulable and the RB 
algorithm terminates. 

RB Algorithm 

for i = 0 to 2Tm, U ( i )  := Rs; 
for i = 1 to 1.91 do 

for s, = t, to 2Tm, do 
schedulefime := C,; 

while schedulefime > 0 do 
.- .- si;  

F(s ’ )  := (1 - U(s’))u;  
if schedulefime 5 F(s ’ )  then 

u (s‘) := U (s’) -+ schedulefime/u; 
schedulefime := 0; 

if F ( s ’ ) >  0 then 
else 

schedulefime := schedulefime - F (s’) 
U ( s ‘ ) : =  U(s ’ )  t F ( s ’ ) / u  

endif 
s‘ := s‘ + r; 
if s’ 2 s, + T, then stop (the task set is unschedulable); 

endif 
end-do 
s, := s, -t T, 

enddo 
enddo 
for i = 0 to 2Tm, U ( i )  := U ( i )  - Rs; 

The RB algorithm schedules the periodic tasks in S accord- 
ing to the RMPA while reserving a fraction Rs of each unit 
cycle for aperiodic tasks. In the RMPA, the task with the 
shortest period, zl, is scheduled first, starting from its first re- 
lease time rl .  The scheduled time for zl (“schedule-time”) is 
first set to C1 and then the available processor time at rl 
(denoted as F(s’)) is compared with q ’ s  scheduled time. If 
F(s’) 2 schedule-time, the schedule-time will be added to 
uU(s’) and 2, is scheduled; otherwise, F(s’) is subtracted from 
schedule-time and s’ is incremented by one. The above proce- 
dure continues until schedule-time becomes 0. 

The complexity of the RB algorithm can be easily analyzed 
as follows. In each major cycle, q will be invoked TJTi times 
and for each invocation of zi we need to adjust U(i) for the 
period of at most Ti unit cycles (because Z, must be completed 
within one period after its release). Thus, the maximum total 
number of unit cycles during which the utilization needs to be 
adjusted for scheduling z, is simply TJTi X Ti = Tmc. As a re- 
sult, the complexity of the RB algorithm for a set of m tasks is 
mTm, or O(m) (as T,, is a finite constant for any given task 
set). In Section 1II.C we will derive the optimal value of RS 
thereby eliminating the need to try many different values of RS 
in order to achieve the best performance. This is in sharp con- 
trast to the EPE or slack stealing algorithms where one must 
try many different values of Rs before finding the optimal utili- 
zation by aperiodic tasks. 

Note that T,  is dependent on the periods of tasks in S and 
might grow exponentially if the periods are not harmonic. Han 
and Lin [lo] have shown that by adding a distance constraint 
to the periodic tasks, it is possible to specialize a task set so 

that the task set may be schedulable when the density of the 
specialized task set is less than 1 .  They have also shown that 
the specialized task set contains solely multiples of a period, 
and hence, T,  will not increase exponentially with the periods 
of the periodic task set. 

A. Processor Utilization by a Set S of Periodic Tasks 
In order to derive the relation between Rs and the probabil- 

ity of meeting aperiodic-task deadlines, we need to derive U(i). 
From [6] ,  if U I m(2l” - 1) for a set S of m periodic tasks, S is 
guaranteed to be schedulable, but on average a task set is 
schedulable for up to 88% utilization [ll].  Suppose S is 
schedulable and let q, . . ., z, be the tasks in S sorted in ascend- 
ing order of their periods. After r1 is scheduled, V(i) can be 
calculated as follows. If C1 < u( 1 - Rs) then 

U(ri+ nTl) = Cl/u, n = 0, 1 ,2 ,  . . . 
If C1 > u(1- Rs), then 

U(i  +nT,)  = 1 - Rs, 

i = q , q  +1, ..., r, + - - 1  
iU(l“%,i 

Similarly, V(i) can be calculated after scheduling 7, j = 2, 
. . . , k. Consider the nth invocation of 5. Since S is schedulable, 
there must be a sufficient processing time available for execut- 
ing z;. during the period from unit cycle rj + (n - 1 )  T j  to unit 
cycle rj + n T j .  Let 4, be the number of unit cycles needed to 
execute 3 at its nth invocation and F(i) be the available proc- 
essor time in unit cycle i. For convenience, let Aj be the total 
available processor time during the period from unit cycle rj + 
(n  - 1) Z j  to unit cycle rj + (n - 1) Ti + e,, and Aj’ be the total 
available processor time during the period from unit cycle rj + 
(n  - 1) Ti to unit cycle rj + (n - 1) Ti + en - 1. Then, 

rj+(n-l)T,+!, r j+(n-l)q+ln-l  

A .  = c F(i)andAj= c F(i),n=0,1 ,..., 00. 

If Cju < 1 - U(rj + n q )  then U(ri + nl;) = U(i + nTj) + Cju, 

n = 0, 1 ,  .... 
If Cjlu > 1 - U(rj + nTj) then 

U(i  + n q )  = 1 - Rs, 

i = r j ,  ..., rj +ln - 1  

i=rj+(n-l)Tj i=rj+(n-l)q 

Ai - A i  
= U(rj +1, +nq)+- , n = O , l ,  .... 

U 

The calculated values of U(i) for a task set with U = 0.6 and 
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Rs = 0.3 is plotted in Fig. 4. From these figures, it is found that 
over many unit cycles, the processor is under-utilized or un- 
used even though the average processor utilization (v) is 
around 60%. This observation justifies the need of reserving a 
certain fraction of each unit cycle to improve the overall proc- 
essor utilization. Another interesting result found in the FG3 
algorithm is that the variation of U(i) decreases as Rs in- 
creases, thus making U(i)  closer to U. As a result, the prob- 
ability of meeting aperiodic-task deadlines will depend Zess on 
their arrival time (see Fig. 4). Recall that when no processor 
time was reserved, U(i) was as high as 100% in some unit cy- 
cles, and thus, the probability of guaranteeing aperiodic tasks 
depended heavily on their deadlines as well as on their arrival 
times (see Figs. 1 and 2). 

unit ‘YClra 

Fig. 4. Processor utilization with U = 0.6 and Rs = 0.3. 

B. Probability of Completing an Aperiodic Task in Time 

The probability of meeting the deadline of an aperiodic task 
vu= (a,, C,, 0,) is the probability that Ca is less than, or equal 
to, the total available processor time during the interval 
[a,, a, t DJ. For convenience of discussion, C, is assumed to 
be exponentially distributed with mean p. (A similar argument 
can be made when C, has a different distribution.) Then, 

where 

D=D,, 0 

Din, 
= P(D)(l-e-@D), 

D=Dmi, 

(3) 

F is the average available processor time in the interval 
[a,, a ,  t D,] for scheduling only aperiodic tasks. D,,, (D-) is 
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the minimum (maximum) task deadline (more on the deadline 
distribution will be discussed in Section IV). P(D) is the prob- 
ability density function of task deadlines. 

We are interested in deriving a condition under which 
P(Ca 5 FD,) is maximized. From (3) ,  it is easy to see that 
the probability of meeting aperiodic-task deadlines is a mono- 
tonic increasing function of F. When U is fixed, reserving a 
fraction of each unit cycle will increase the utilization (or de- 
crease F )  in those unit cycles during which the processor was 
under-utilized or unused as shown in Fig. 4. Since the prob- 
ability of completing an aperiodic task in time is increased 
(decreased) by increasing (decreasing) F,  the increase in the 
probability of guaranteeing aperiodic tasks in these unit cycles 
with an increased F must be greater than the decrease in the 
probability of guaranteeing aperiodic tasks in those unit cycles 
with a decreased F.  

Intuitively, the probability of guaranteeing aperiodic tasks is 
a monotonic increasing function of Rs. However, this is not 
clear when a large increase of F in a time interval causes 
small decreases of F in several other time intervals. So, we 
have the following theorem. 
THEOREM 1. The probability of guaranteeing aperiodic tasks 

is a monotonic increasing function of Rs. 

PROOF. Let 6 be the average available fraction of time over a 
time interval, say I,.  If Fi < R, after reserving a fraction Rs 
of each unit cycle the average available fraction of time 
over I1 becomes F,‘= R.  Since U is fixed over a major cy- 
cle, increasing the available fraction of processor time in Z1 
will cause the available fraction of processor time to de- 
crease over some other intervals in which the average avail- 
able fractions of time were used to be greater than Rs 
(before the reservation). Let IJi, IJ2 , . . . , I lk  be those inter- 
vals and 

be the average available fractions of processor time over 
these intervals before (after) reserving the processor time as 
shown in Fig. 5. (Note that the distance between ZJ, and I1 
is larger for a larger k as shown in Fig. 5.) Then, we have 
4 +E;=,?, = q’+C:=,<:. 5: = 5, - R if 5, 2 2R, and 
- 

= R  if 3, < 2 R  f o r e =  1, ..., k. 

Note that the increase of e’ in ZI causes many decreases of 
the available fraction of processor time in intervals 

each of these A 5 , s  will contribute to 61 So, 

4 = 16 - 6’1 = Cf=l@JI. Also, note that the decreases of 
the available processor time over intervals ZJi , Z,2, . . . , ZJ, 
due to the increase of 6’ will occur first on ZJl , then Z J 2 ,  
and so on, because in the RB algorithm the task’s scheduled 
time is shifted to an adjacent unit cycle first. Thus, it is suf- 
ficient to consider the following three cases. 
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Fra In of the unused 
,PU time 

- 

Fig. 5 .  The variation of the available processor time over some time intervals 
after reserving a fraction Rs of processor time in each unit cycle. 

Case 1. Consider the variation of q, in Zj ,  first. For nota- 

tional convenience, let $') be the available processor time 
in ZI when only A q ,  is considered, Le., assuming OjL = 0 

for e = 2, ..., k. We then have 5'') = 6 +f i j , .  The varia- 

tion of the probability of guaranteeing an aperiodic task v,= 
(a,, Ca, D,) is computed by: 

p,(c, 5: 6 D,)-p, 

Note that the negative result of the 

P( D,)( e-fi(' jDa - e - f i D a )  indicates the probability of 

guaranteeing aperiodic tasks is increased after reserving RS 

because 6"' > 4. So, the increased probability of guaran- 

teeing the task is P( 0,) e-f iDa - e-M Da while the re- 

duced probability of guaranteeing the task is 
1 -w' 

( 
. The net change is: 

So, A P(')(guarantee v,) > 0. 
Case 2. Consider only the variation of the available proces- 
sor time in intervals Zjl and Zjz . For notational conven- 

ience, let q(*) = q(') + GjZ . The net change in the prob- 

ability of guaranteeing v, is 

&)(guarantee va = 

1. p(D,)(1- e- f i ( z )Du  - 

Since < , &2)(guarantee v,) > 0. 

Case 3. Generally, consider the variations of the available 
processor time in intervals l j ,  to l j ,  , and let A q ,  = q, - <: 
and 6") = e("-') + A q l  . The net change in the probability 

of guaranteeing v, is 

@)(guarantee v,) = 

P P ,  )( 1 - e -@,Du)( - e-pq(')Da - 

Since q(') < 5, AP(')(guarantee v,) > 0 for 4 = 1, . . ., k.  

As a result, the increase in the probability of guaranteeing 
aperiodic tasks by increasing F in ZI will always be greater 
than the total reduced probability of guaranteeing aperiodic 

tasks in I ] ,  , . . . , Zj ,  . Since 1 - e-@', is a monotonic increas- 
ing function of A?, , the increase in the probability of guar- 
anteeing aperiodic tasks is a monotonic increasing function 

In practice, the decreases of the available processor time 
over some intervals may result from the increases of the 
available processor time over a multiple number of intervals 
instead of only one interval Il as discussed above. However, 
we can always identify the decreases of the available proc- 
essor time over those intervals as a result of the increase of 
the available processor time in a particular interval. Apply- 
ing the same argument, we can conclude that the increase in 
the probability of guaranteeing aperiodic tasks is a mono- 

- 

of Rs. 

tonic increasing function of Rs. 

C. Deriving the Least Upper Bound of Rs 
Since (3) is a monotonic increasing function of Rs, we would 

like to derive its least upper bound Rid, without missing any 
periodic-task deadline. Note that use of Rid not only maximizes 
the probability of guaranteeing aperiodic tasks but also maxi- . -  - -  

mizes the processor utilization by both periodic and aperiodic 

tribution to solving the problem of scheduling both periodic and 
aperiodic tasks for real-time systems, because the only method 
reported in the literature to find this bound is based on trial and 
error, i.e., gradually increasing Rs until the periodic task set be- 
comes unschedulable. In the rest of this subsection, we will show 
how to derive Rld systematically. 

1 - 
- - P ( D , ) ( l - e - N D a ) ( e - f l D  1 a - e -~cDa  

) + ( 
>. 

- 1 tasks. Moreover, analytic derivation of Rld is an important con- 

From the initial condition we have E < R and 

F , < % .  
2 R, thus 
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Consider the case of two periodic tasks, as shown in Fig. 6a, 
71 = (C1, T I )  and z2 = (Cz, Tz), and let Tl < T2 and q2,1 = T2 mod 
Tl .  As discussed in [6], the critical instant occurs when a task 
is released simultaneously with all other higher-priority tasks. 
So, the most difficult situation in scheduling % occurs when it 
is released at the same time as zl. It was shown in 161 that the 
maximum U occurs when C1 = Tz - TI L T21T11, leading to 

[+ICl +e2 
T2 

u m a x  = 

Thus; 

m 
- max 

However, the Rs derived from the above formula is the most 
pessimistic bound, because when q2,1 > 0, zl does not neces- 

sarily use all - C, in T2 unit cycles. In fact, the last invoca- 

tion of zl before the second invocation of q can only use up to 
a fraction, 1 - Rlub = U,,, of processor time if C1 > q2,1 U-. 
The following expressions can be used to calculate Rid for the 
case of two periodic tasks. 

121 

u m a x  = 

T2 

(4) 

The Rlub derived from (5)  is the least upper bound of Rs with- 
out missing any periodic-task deadline (because U,, + &, = 
1). So, it is impossible to reserve a fraction, Rs 2 R I ~ ,  of proc- 
essor time at the critical instant. Also, both periodic tasks can 
be guaranteed because the U,, derived from (4) is the maxi- 
mum utilization needed for these two tasks at the critical in- 
stant. Although it is possible to reserve Rs higher than && at a 
non-critical instant, Rs must be reduced to Rl& when a critical 
instant occurs; otherwise, one of the periodic tasks will miss its 
deadline. Thus, Rlub is the maximum fraction of processor time 
that can be reserved for aperiodic tasks without missing any 
periodic-task deadline at any instant. 

Since the calculation of U,, depends on itself, we must 
resort to an iterative approach to finding the final value of 
illmux. Initially, U,, is set to 1 and (4) is used to calculate a 
new UmcIx. Then, the newly-calculated U,, is used as the 
initial value of the next iteration. The difference between this 
value of U,, and its final value will be reduced by 1IT2 at 
each iteration. When Tz > 1, U,, is shown to converge to its 
final value only in a few iterations. If T2 = 1, U,, = U = 

Cl/Tl + CzlT2, there is no need to use (4) to calculate UmUx. 
The more iterations are used in the calculation of U,,, the 
closer the computed U,, will be to its final value, but the 
U,, calculated at each iteration will always be greater than 
Its f ind value. Thus, Rlub = 1 - U,, computed at any itera- 
tion can guarantee all periodic tasks. In fact, even if Tz = 2,  
R1& is shown to get close to 95% of its final value within 
four iterations. 

%? a 
4.1 $3.1 --- 
e-- e--- 

I I I I I  ... I I  I 

0 TI T, 2T1 2Tz 3T1 ?/Ti .TTI T3 
r, 7, r* rr 72 TI h 71 3 

2 

3 

( c )  

Fig. 6. IIlustration of deriving RI& for two and three periodic tasks. 

For the case of three periodic tasks, the approach to finding 
Rld is more complicated than the two-task case. As shown in 
Fig. 6b and Fig. 6c, the critical'instant occurs at the second 

r, i 

invocation of % or z3. If ' '' ' > U ,  we need to con- 

sider the instant of the second invocation of 7,; otherwise, we 
only need to consider the instant of the second invocation of 
5. If both cases need to be considered, (4) and (5) can be used 
to find U,, at the first critical instant. The U,, at the second 
critical instant can be computed by deriving the exact amount 
of processor time needed for the xth invocation of zl and yth 

T2 

invocation of 22, where x =  - and y =  - . Rlub is then kl kl 
computed simply by subtracting the maximum utilization at the 
critical instant from 1. 

At the second critical instant as shown in Fig. 6b and Fig. 
6c, one has to find the exact utilization required by the xth 
invocation of 71 and yth invocation of zz before the second 
invocation of z3. Obviously, if C1 < q3,1 U,,, the total compu- 
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Algorithm 1 

c* u := c Ti ;  v,,, := 1; U i L  := 0; 
i=l 

If r31~~+c2 > U then 
use Eqs. (4) and (5) to find U,,, at the second invocation of r z ;  
repeat the above four times; 
uti, := I%,,; 

endif 
for k = 3 to m do 

r% if E!=, -&- > U then do 
for j = 1 to k - 1 qk,i := Tk mod Ti; 
for e =  1 to 4 do 

CET := Et=, [$IC;; 
use Eqs. (4) and (5) to find the exact computation time of the [%Ith  invocation of 71. 
CET := CET+ the exact computation time of the [%Ith invocation of 71. 
fori = 2 to 6 -  1 do 

find the exact computation time of the [ % I t h  invocation of r,. 
CET := CET+ the exact computation time of the \$Ith invocation of r,. 

end-do 
u,,, := =; 

Tk 
end-do 
if U,,, > U% then U$,!z := Umax; 

tation time needed for all three periodic tasks before the sec- 
I m l  1 - 1  

ond invocation of z3 will be I$)c1 +[$Jc2 + C3 + C, . 0th- 

erwise, the total computation time will be 

+ l:]C2 + C3 + q3,1 U,, . To find the exact utiliza- 

tion by z2, we have to know if q3,2 > q3,1. If q3.2 > q3.1 as shown 
in Fig. 6b, the time available for executing r2 from unit cycle 
yT2 to T3 is equal to the remaining processor time available 
after executing rl. However, if q3,2 < q3,1 as shown in Fig. 6c, 
there may not have any time available for the execution of z2 
from unit cycles yT2 to T3, or the available time will be at most 
q3,2 U,,, instead of all the time available from unit cycle xT, 
to T3 as shown in Fig. 6c. Thus, the total computation time 
needed for these three tasks from unit cycle 0 to T3 can be cal- 
culated accordingly. 

Generally, Rlub for a set of m periodic tasks (Cl, T I ) ,  ..., 
(C,, T,) can be derived by Algorithm I (see next page). Let 
TI < T2 e . . . < T, and assume all tasks are released at time 0. 

The Rlub derived from Algorithm 1 is the least upper bound 
of Rs as reasoned below. No periodic tasks will miss their 
deadlines if a fraction, Rlub = 1 - U,,, of each unit cycle is 
reserved, where U,, is the maximum processor utilization by 
periodic tasks. Note that when all periodic tasks are released at 
the same time, say time 0, the critical instant occurs at the sec- 
ond invocation of zi i > 1. Since the U,, derived from Algo- 

rithm l is the maximum utilization at one of these critical in- 
stants, all periodic tasks will be completed before their next 
invocation after reserving a fraction, Rlub = 1 - Umm, of each 
unit cycle. Thus, the Rlub derived from the above algorithm is 
the least upper bound of Rs. 

The complexity of Algorithm 1 is O(m2). This is based on 
the observation that there are m - 1 critical instants to be con- 
sidered, i.e., at the second invocation of each z, for i = 2, ..., 
m. At each of these critical instants, one needs to consider up 
to k - 1 tasks for k = 2, . . ., m. Note that a constant number (4) 
of iterations is used in Algorithm 1 to calculate U,, at each 
critical instant, so the iteration loop only contributes a constant 
factor in the complexity of this algorithm. 

D. Calculating the Probability of Meeting Aperiodic Task 
Deadlines 

Substituting the Rlub derived from ( 5 )  into (3), one can 
maximize the probability of guaranteeing aperiodic tasks, be- 
cause P( C, I F D ~ )  is a monotonic increasing function of R ~ .  

Since the deadlines of aperiodic tasks are not known until their 
actual arrival, P(D) in (3) can be calculated and the probability 
of guaranteeing aperiodic tasks can then be derived from (3). 
However, any a priori performance evaluation requires the 
distribution of aperiodic-task deadlines. A uniform or expo- 
nential distribution of deadlines has been commonly used [12], 
[13], [14]. In case an exponential distribution is used, ran- 
domly-generated deadlines are close to their mean value, and 



thus, the variation of deadlines is not large. The probability of 
guaranteeing aperiodic tasks is closely related to the distribu- 
tion of deadlines. Considering the fact that the distribution of 
aperiodic-task deadlines is application-dependent, one can let 

where Dmin is the minimal deadline of an aperiodic task, a is 
an integer number, and X is a random variable uniformly dis- 
tributed in [0, 11. As stated earlier, Ci is assumed to be expo- 
nentially distributed with mean p. 

The deadline distribution in (6) allows us to adjust the con- 
trol parameters, D,,, and a, to choose an appropriate range of 
deadlines for aperiodic tasks. Dmin serves a purpose similar bo 
the minimal separation p in [ 11. By varying Dmin, one can con- 
trol the worst-case probability of missing deadlines, thus guar- 
anteeing the deadlines up to any acceptable level. 

, L (1 + a X) Ci 1 determines the range of deadlines; a large a 
will generally result in a wide range of distribution. Since it is 
assumed that X is uniformly distributed and Ci is exponentially 
distributed, the range of deadlines is a composite function of 
uniform and exponential distributions. Using (6) to specify the 
deadline of each aperiodic task can avoid the drawbacks of 
assuming either a loose bound or a tight bound of deadiines. 
Moreover, the randomly-generated deadlines are uniformly 
distributed in the range determined by L (1 + a X) Ci 1, and 
thus, the deadlines are more evenly distributed in a specified 
range than the exponential distribution. To be consistent with 
the case of periodic tasks where the deadlines are equal to the 
task period (an integer number of unit cycles), the deadlines of 
aperiodic tasks are truncated to be integer numbers 
(represented in unit cycles) in (6). 

Considering D, = Dmi, as an example, we get 

P ( o a  = Dmin 1 

P(D, = Dfi ,  + 1) 

l+a 
=P((l+dY)C, 21)P 
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I L  
When C, ~1-,--), (1 + a X, C, is always less 

l+a l+a 
than 2. So, the probability of D ,  = D,,, + 1 is (1 + ax) C, > 
1, thus giving the first term in (8). When C, E [2/(1 + a), 2), 
De = Dmi, + 1 if (1 + ax> Ca E [ 1, 2); this is the second term in 
(8). When Ca > 2, D,  is always greater than D,,, + 1. Gener- 
ally, for P(Da = D,,, + k) ,  k = 2, . . . , D,,, we get: 

P(D, = D ~ *  + k) = 

k + l  
P ( k < ( l + a ) C a  < k + l ) P  -<C, < k  

L + U  

-( - 1+- e 
aJ( I 

From (6), the deadline of an aperiodic task is generated 
based on its execution time which was randomly-generated 
from an exponential distribution. The effect of Dmi, and a on 
the probability of guaranteeing an aperiodic task will be dis- 
cussed in the next section. 

If C, < 1, the second term in (6) is always less than 1, 
l+a 

thus giving the first term in (7). If 1/(1 + a) < Ca < 1.0, then D ,  
is equal to D,,, when (1 + a X) C, < 1.0. Since X 
is a uniformly-distributed random variable in [0, 11, 

1 P( (1 + d ) C ,  < 1) = - (1 / C, - l), thus giving the second term 
a 

in (7). If C, > 1.0, D, is always greater than Dmin. Similarly, 
P(D, = Dmin + 1) can be shown as: 

w. THE RB ALGORITHM FOR HARD 
REAL-TIME SYSTEMS 

Missing any critical-task deadline in a hard real-time system 
may lead to catastrophe [15], [16], [17]. Since all periodic 
tasks are guaranteed under the RMPA part of the RB algo- 
rithm, we only need to consider aperiodic tasks. However, due 
to their random-arrival nature, aperiodic tasks cannot always 
be guaranteed without imposing some restrictions on their b e  
havior. The following theorem defines an upper bound of the 
ratio of the computation time to deadline of each aperiodic 
task in order to guarantee all aperiodic tasks with the RMPA. 

THEOREM 2. All aperiodic tasks v,, for i = 1, ..., k can be 
guaranteed by the RMPA (i.e,, Rs = 0)  if 
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- -  L. 
U ,  = c- I 1 - U,, , and min Di 2 T,,, V i ,  where U,, 

i=l Di 
is derived from Algorithm 1. 

PROOF. Consider the case of one aperiodic task. Let D, < Tme 
Even if C,/D, I 1 - U, this task may not be guaranteed if it 
arrives at those unit cycles with 100% utilization by peri- 
odic tasks as shown in Fig. l. For example, suppose an 
aperiodic task arrives at the 16th unit cycle and with D, = 4. 
Since the system is 100% utilized by periodic tasks from 
unit cycles 16 to 20, this task cannot be guaranteed no mat- 
ter how small CJD, is. However, if D, 2 T,,, the system can 
always allocate up to a fraction, 1 - U, of the processor time 
for this task, regardless of the time of its arrival. 

It is straightforward to apply the above argument to the case 
with an arbitrary number of aperiodic tasks, and thus, the 
theorem follows. CI 
Let us define the total processor utilization by periodic and 

aperiodic tasks as UT = U + U,. Note that periodic tasks are 
known u priori and preallocated before their actual release. 
The problem of the RMPA is two-fold. First, the deadlines of 
all aperiodic tasks have to be greater than, or equal to, the 
major cycle of a given set of periodic tasks. This is unrealistic 
because the deadlines of aperiodic tasks are not known until 
they actually arrive. Moreover, T,  for a given set of periodic 
tasks may be very long, thus severely limiting the number of 
aperiodic tasks that can be guaranteed. The second problem is 
that the set of aperiodic tasks that can be guaranteed will de- 
pend on the set of periodic tasks already scheduled, because 
the processor utilization, U, by periodic tasks may vary from 
one set of periodic tasks to another. TQ avoid the second 
problem, a set of aperiodic tasks must be chosen based on the 
set of periodic tasks with the highest processor utilization, thus 
severely reducing the average processor utilization. 

In contrast to the RMPA, in the RB algorithm the set of 
aperiodic tasks that can be guaranteed depends only on Rs, and 
we have the following theorem. 
THEOREM 3. All aperiodic tasks vi, for i = 1, ..., k,  can be 

guaranteed by the RB algorithm by resewing a fraction, 
Rs # 0, of the processor time if 

Ci 
k 

u a  = cx 5 Rs 9 

i=l 

where k is the number of aperiodic tusks queued for execution. 

PROOF. This theorem is proved by induction. 
1) When k = 1. Since a fraction, Rs, of processor time is re- 

served in each unit cycle for aperiodic tasks, regardless 
of its arrival time an aperiodic task can be allocated up to 
Rs D1 2 C1 of processor time for its execution, so the 
theorem follows. 

2) When k = 2. Consider the (worst) case when both v1 = 
(a l ,  C1,  D l )  and v2 = ( a l ,  C2, D2) arrive at the same time. 
For convenience, assume D1 < D2 and vl is scheduled to 
execute first. Since v1 is scheduled first, the processor 

time that can be allocated to v2 is Rs D2 - C1 and this has 
to be greater than, or equal to, C2. From the condition of 

Theorem 3, we get - +- I R, . Multiplying D2 on 

both sides, we get 

Cl c2 

4 D2 

Since D2 > D 1 ,  the above inequality still holds for RsD, 
- C1 2 C2, thus proving the theorem. 

3) Assume the theorem holds for k = n. Consider the worst 
case when all of these n + 1 tasks arrive at the same time. 
For convenience, let D1 < 0 2  < ... D, < Dn+l and the 
tasks are scheduled in the sequence of { 71, Z2, . . ., 70,  

T,,+~}. From the condition of Theorem 3, we get xi=, 4 C: R, . Multiplying Dn+l on both sides, we get 
n+l C1 

Since D,, > D, > ... D1,  the above expression can be 
written as: 

RsDn+l- C ci 2 cn+l. 
i=l 

Thus, all of these n + 1 tasks can be guaranteed. 0 
The chief advantage of employing the RB algorithm in hard 

real-time systems is that aperiodic tasks can always be guaran- 
teed as long as the combined utilization by all aperiodic tasks 
is less than the reserved fraction, Rs, of processor time. 
Moreover, the Rlub derived from Algorithm 1 is shown to be 
the maximum (or optimal) Rs that can be reserved without 
missing any periodic-task deadline. Thus, by reserving a frac- 
tion, Rlub, of processor time for aperiodic tasks, the RB algo- 
rithm becomes an optimal solution to the problem of schedul- 
ing both periodic and aperiodic tasks in hard real-time sys- 
tems. By contrast, the Rh4PA requires an additional, unrealis- 
tic restriction, Di > T,,, V i ,  to get the same result as the RB 
algorithm. 

V. COMPARATIVE ANALYSIS OF RB ALGORITHM 

The RB algorithm is intended for use in scheduling both 
periodic and aperiodic real-time tasks to meet their deadlines. 
In order to show its advantages and limits, we analyze and 
compare the RB algorithm against the other methods using a 
concept (similar to ours) of reserving a fraction of the proces- 
sor time for aperiodic tasks, such as the PE, DS, or slack 
stealing algorithms. 

A. Performance Analysis 
The RMPA is chosen as part of the RB algorithm to sched- 

ule periodic tasks. Aperiodic tasks are scheduled according to 
the FCFS policy by using the reserved (solely for aperiodic 
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tasks) and unused4 processor time in each unit cycle. 
The performance of the RB algorithm is also evaluated by 

simulation and compared with the analytic results. Since the 
value of Rlub derived analytically in Section III is used to re- 
serve the processor time, we want to know how close Rld is to 
the average Rovg = 1 - U, because the processor utilization 
cannot exceed 100%. The ratio of Rlub to 1 - U is plotted in 
Fig. 7. The total processor utilization is the sum of Rlh and U, 
also shown in this figure. Note that Rlub can be as high as 95% 
of the R,, when U < 0.5. Even when U is as high as 0.95, R I ~  
is still about 60% of Ravg. Since R1d is very close to R,, the 
total processor utilization remains almost constant at 97% re- 
gardless of the processor utilization by periodic tasks. 

\ 

10 c 

Fig. 7. Ratio of Rlub to Rrivg(= 1 - u) and the total processor utilization 
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Fig. 8. Probability of missing aperiodic-task deadlines vs. processor reserva- 
tion (U = 0.4, Dmin = 5). 

As shown in Fig. 8, the probability of missing aperiodic- 
task deadlines is found to decrease as Rs increases. as expected 
from Theorem 1. Increasing the value of a: reduces the prob- 

4. More precisely, allocated to, but unused by, periodic tasks. This happens 
because one might use the worst-case execution times of periodic tasks when 
scheduling them. 

ability of missing aperiodic-task deadlines. The effect of in- 
creasing D,i, for aperiodic tasks can be seen in Fig. 8. The 
probability of missing a deadline can be reduced to as small as 
lo4 when U = 0.4, Dmi, = 5, and the processor time is maxi- 
mally reserved (Le., Rs = Rlub) in each unit cycle (Fig. 8). The 
effects of varying Dmin and Rs on the probability of missing 
deadlines is also studied. It is found that the probability of 
missing aperiodic-task deadlines increases as U increases. 
Thus, U must be kept below a certain level in order to reduce 
the probability of missing aperiodic-task deadlines to a pre- 
specified acceptable level. 

B. Comparison With Other Related Work 

The concept of reserving a fraction of processor time for 
aperiodic tasks has also been considered by others. For exam- 
ple, Lehoczky et al. proposed the priority exchange (PE) and 
deferrable server (DS) algorithms [2] to improve the response 
times of aperiodic tasks while guaranteeing periodic-task 
deadlines. 

The objective in the PE and DS algorithms is to improve the 
response times of aperiodic tasks, while the objective in the 
€33 algorithm is to enhance the probability of meeting their 
deadlines. (Hence the latter is cognizant of the deadlines of 
aperiodic tasks,) Due to this difference in objectives, the peri- 
odic server for aperiodic tasks in the PE and DS algorithms 
can significantly improve the response times of aperiodic tasks 
as reported in [2] but not necessarily improve the probability 
of guaranteeing aperiodic tasks. The periodic server in the PE 
and DS algorithms is scheduled according to the RMPA with 
the rest of regular periodic tasks. In order not to miss the 
deadline of any periodic task, this server can only be allocated 
up to a fraction, Rlub, of time in each unit cycle. Recall that Rlub 
is the maximum fraction of time that can be reserved for aperi- 
odic tasks without missing any periodic-task deadline. Moreo- 
ver, as reported in 121, the period of this server cannot be too 
long because aperiodic tasks may otherwise need to wait for a 
Pong time if its arrival does not coincide with the beginning of 
the periodic server. Due to these two restrictions, the maxi- 
mum time that can be allocated to the periodic server is Rlub x / 
T,, where T, is the period of this server. So, only aperiodic 
tasks with computation time less than Rlub x T, and deadline 
longer than T, can be guaranteed. Obviously, this is an unde- 
sirable restriction in scheduling aperiodic tasks. Sprunt et al. 
[3J later proposed the extended priority exchange (EPE) al- 
gorithm based on the PE and DS algorithms to improve the 
response times of aperiodic tasks when the worst-case periodic 
load is high and little processor time is left for the aperiodic 
task server. However, the aforementioned basic restrictions on 
the periodic server still exist, because the capability of guaran- 
teeing aperiodic tasks is limited by the short period of the 
server which is necessary to ensure the short response times of 
aperiodic tasks. 

It should be noted that the slack stealing algorithm proposed 
by Lehoczky and Ramos-Thuel [5] is shown to be optimal for 
scheduling soft aperiodic tasks in fixed-priority preemptive 
systems. In this algorithm, the slack stealer does not create a 
periodic server for aperiodic tasks. It instead creates a passive 
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task which, when prompted for service, attempts to make time 
for servicing aperiodic tasks by “stealing” all the available 
processing time from periodic tasks without missing any peri- 
odic-task deadline. They proved that the slack stealing algo- 
rithm is optimal in the sense that all available processing time 
will be exploited for servicing aperiodic tasks while meeting 
all periodic-task deadlines. 

The basic concept behind the slack stealing algorithm is 
similar to the derivation of RIub in the RB algorithm. As shown 
in Fig. 7, the derived Rhb is close to, or higher than, 95% of 
Rovg when U is less than 50% and can still be as high as 80% of 
R, when U is 80%. But in the slack stealing algorithm, one 
needs to gradually increase the processor time that can be re- 
served without missing any periodic-task deadline until the 
optimal solution is found. However, in the RB algorithm, this 
optimal solution can be derived systematically using Algo- 
rithm l .  The preliminary results of the RB algorithm was also 
reported at the 1991 Real-Time Systems Architecture Work- 
shop [18], while the slack stealing algorithm was presented a 
year later at the 1992 Real-Time System Symposium. 

We claim several important contributions via the develop- 
ment and evaluation of the RB algorithm. First, we proposed 
an analytic model to evaluate the performance of the RB al- 
gorithm; this is in sharp contrast to most of the early work that 
solely relies on simulations. Second, although the concept of 
reserving a fraction of processor time for aperiodic tasks has 
been proposed and used by others, the analytic approach de- 
veloped in this paper is the first of the kind that treats the 
problem of systematically deriving the maximum processor 
time to be reserved for the execution of aperiodic tasks without 
missing any periodic-task deadline. Moreover, we can derive 
the least upper bound of Rs with Algorithm 1 before putting 
the system in operation, thus incurring no scheduling overhead 
at the time of arrival of each aperiodic task. (That is, there is 
little on-line scheduling overhead for aperiodic tasks.) Third, 
as proven in Theorem 3, all aperiodic tasks can be guaranteed 
as long as their combined utilization is less than Rlub. If the 
total number of aperiodic tasks waiting for execution is n, we 
only need n divisions and n additions to determine whether a 
newly-arrived aperiodic task can be guaranteed or not. This is 
much faster than any other existing methods. Even if this re- 
striction cannot be satisfied, the probability of guaranteeing 
aperiodic tasks can still be maximized by reserving a fraction, 
R,&, of the processor time in each unit cycle, because this 
probability is shown to be a monotonically increasing function 
of Rs 5 Rlub. Finally, the most important result of the RB al- 
gorithm is the analytic derivation of Rlub. Since Rlub is fixed for 
a given set S of periodic tasks and since it can be calculated a 
priori, scheduling aperiodic tasks is more predictable than the 
case when there is no knowledge of how much of the processor 
time can be used for the execution of aperiodic tasks. Moreo- 
ver, using the relationship Rlub = 1 - U,,, one can determine 
whether S is schedulable or not without actually employing the 
RMPA. As shown by Liu and Layland [6], if the utilization by 
a set of periodic tasks is less than log 2 then the task set is al- 
ways schedulable, but if the utilization is greater than log 2 
then the task set may, or may not, be schedulable. For exam- 

ple, if the RIub derived from Algorithm 1 is not positive for a 
given set of periodic tasks, the task set is not schedulable un- 
der the RMPA, because the task set requires utilization greater 
than 100% at each critical instant. 

VI. CONCLUSIONS AND FUTURE WORK 

We proposed a new algorithm to schedule both periodic and 
aperiodic real-time tasks. Periodic tasks are scheduled accord- 
ing to the RMPA and their deadlines are guaranteed if the task 
set is schedulable (or U < log 2) as specified in [6]. Aperiodic 
tasks are scheduled by utilizing the reserved and unused (by 
periodic tasks) processor time in each unit cycle. We have 
shown that the value of Rs greatly affects the probability of 
guaranteeing aperiodic tasks even when the processor utiliza- 
tion is fixed. The relation between RS and the probability of 
guaranteeing aperiodic tasks is established for the case when 
the execution time of aperiodic tasks is exponentially- 
distributed. The least upper bound of RS (Rlub) is derived for 
this case. Since the probability of guaranteeing an aperiodic 
task is a monotonic increasing function of Rs, this probability 
is maximized when we reserve a fraction, Rlub, of each unit 
cycle. Moreover, if the utilization by aperiodic tasks is re- 
stricted to below &,, all aperiodic tasks can be guaranteed by 
the RB algorithm as discussed in Theorem 3, regardless of 
their arrival time and their required computation time. Thus, 
the RB algorithm can be used to schedule both periodic and 
aperiodic tasks in a hard real-time system as long as Theorem 3 
is satisfied. 

The RB algorithm proposed in this paper suggests many 
interesting issues that warrant further investigation. Some of 
these issues are briefly discussed below. First, if the task 
switching time is not negligible, this overhead in the RB al- 
gorithm may affect the derivation of Generally, the num- 
ber of task switchings increases when a fraction, Rs, of a unit 
cycle is reserved, as aperiodic tasks will preempt periodic 
tasks during its reserved period of time. If this number in- 
creases as Rs is increased, then the probability of guaranteeing 
aperiodic tasks will no longer be a monotonic increasing func- 
tion of Rs. Instead, there may exist an optimal Rs < Rlub, be- 
cause increasing Rs will increase the switching overhead, thus 
reducing the amount of processor time to be allocated for the 
execution of aperiodic tasks. Thus, one needs to derive a 
bound for the task switching overhead as a function of Rs. 

Second, when U < 70%, it is possible to have more than one 
aperiodic task waiting for execution. A good scheduling algo- 
rithm may improve the probability of guaranteeing aperiodic 
tasks, but, as discussed in Section V, the EDF policy does not 
necessarily perform better than the FCFS policy. It is therefore 
desirable to find a simple algorithm which can satisfy the 
condition of Theorem 3 while incurring minimal scheduling 
overhead. This situation can be seen by the following example. 
If there are k aperiodic tasks waiting for execution and their 

combined utilization E,=,- is less than Rlub, then these tasks 

can be guaranteed according to Theorem 3. However, if an 
early-arrived task a is scheduled to its completion using a 

k c, . 

* I  
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fraction, Rlub, of processor time, an aperiodic task arriving later 
but before the task a’s completion with a shorter deadline than 
task a may miss its deadline, even when their combined utili- 
zation is less than Rlub. This phenomenon can be explained as 

k c. C. 
follows. Since c. < Rlub, we have < RLub, Vi. But, if 

one of the tasks, say a, is allocated up to a fraction, Rlub, of 
processor time during the first few unit cycles, this task has, in 
fact, utilized the processor time more than it is supposed to, 

i.e., the ratio of - over the Do unit cycles. So, if another 

aperiodic task, say b, arrives before the completion of a, task b 
may not be able to meet its deadline even when 

- + - < Rlub, because task a has consumed all the reserved 

fraction of processor time before its completion. 
A simple adaptive RB algorithm may be used to resolve the 

above problem. If each of these tasks is allocated up to a frac- 

tion, 2, Vi, of processor time in each unit cycle, all of these 

tasks can be guaranteed, regardless of the order of their arrival. 

In other words, when a fraction - of processor time is re- 

served for each of these tasks, all of them can be guaranteed as 
long as their combined utilization is less than Rid. However, 
the model for analyzing the probability of guaranteeing aperi- 
odic tasks needs to be modified since each aperiodic task may 
have a different Rf  instead of a constant R l ~ .  Also, the 
switching overhead will be much higher in the adaptive RB 
algorithm as many aperiodic tasks will be executed in the same 
unit cycle during their reserved period. How to construct an 
analytic model to evaluate the probability of guaranteeing 
aperiodic tasks as well as the switching overhead of the adap- 
tive RB algorithm needs further investigation. 

Third, it is practically important to extend the RB algorithm 
to multiprocessor/distributed systems. For example, consider a 
distributed system with N nodes. Since each node has its own 
set of periodic tasks assigned a priori and aperiodic tasks ar- 
riving randomly, it is desirable to schedule these tasks so that a 
maximum number of aperiodic tasks in the entire system may 
be guaranteed without missing any periodic-task deadline. 
Obviously, it is impossible to obtain an optimal global solution 
by simply combining N independent nodes, each with an opti- 
mal local scheduling algorithm. Due to the variation of U(i) as 
shown in Fig. 1, an aperiodic task that cannot be guaranteed on 
one node might be guaranteed on another node. Thus, one way 
to solve the above problem for a distributed system is to use 
the concept of load sharing (LS) as proposed in [19]. There are 
many issues to be resolved before LS is employed along with 
the RB algorithm to achieve an optimal global scheduling al- 
gorithm in distributed systems. For example, we must explore 
ways of collecting state information and the type of state in- 
formation to be collected. If a node cannot guarantee an aperi- 
odic task, then when and where to transfer this aperiodic task 
in order to meet its deadline is the main issue. Another related 
question is “should only aperiodic tasks be transferred or even 
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periodic tasks should be considered for transfer?” For exam- 
ple, during bursty arrivals of aperiodic tasks at a particular 
node, it might be more beneficial to transfer some of periodic 
tasks to other nodes so that the node’s utilization by periodic 
tasks may be reduced in order to guarantee more aperiodic 
tasks locally. After the bursty arrivals die out, these periodic 
tasks can be transferred back to its original node. 

The foregoing problems are matters of our future inquiry. 
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