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Abstract 

The switching scheme of a point-to-point network de- 
termines how packets flow through each node, and is 
a primary element in determining the network’s per- 
formance. In this paper, we present and evaluate a 
new switching scheme called hybrid switching. Hy- 
brid switching dynamically combines both virtual cut- 
through and wormhole switching to  provide higher 
achievable throughput than wormhole alone, while sig- 
nificantly reducing the buffer space required at  inter- 
mediate nodes when compared to virtual cut-through. 
This scheme is motivated by a comparison of virtual 
cut-through and wormhole switching through cycle-level 
simulations, and then evaluated using the same meth- 
ods. To show the feasibility of hybrid switching, as well 
as to provide a common base for simulating and im- 
plementing a variety of switching schemes, we have de- 
signed SPIDER, a communication adapter built around 
a custom ASIC, the Programmable Routing Controller 
(PRC) . 

1 Introduction 
The effectiveness of a parallel or distributed system is 
often determined by its communication network. Many 
distributed and parallel applications require the network 
to provide low latency communications in order to oper- 
ate efficiently, while others may require the network to  
handle a large amount of traffic. In addition, the bur- 
den placed on the host to handle communication-related 
activities should be minimized. 
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One of the key factors that determines how well 
a point-to-point network meets applications’ require- 
ments in these areas is its switching scheme(s). Worm- 
hole [l] and virtual cut-through [2] switching are two 
common schemes for forwarding packets through a 
point-to-point interconnection network. Both are “cut- 
th rough switching schemes that decrease packet laten- 
cies by immediately forwarding incoming packets to idle 
output links. In this paper, we compare the impact of 
each scheme upon packet latency, the maximum net- 
work throughput, and the resources required for buffer- 
ing packets at intermediate nodes. Based on this evalu- 
ation, we then propose and evaluate a “hybrid” switch- 
ing scheme that combines the salient features of both 
schemes. 

1.1 Background 

Virtual cut-through and wormhole switching differ in 
how they handle packets that cannot immediately pro- 
ceed to the next node because the appropriate output 
links are busy with other traffic. Virtual cut-through 
switching buffers blocked packets at  the local node, re- 
leasing the incoming link(s), but wormhole switching 
stalls the packet in the network, while holding any links 
the packet has acquired. Since packets never buffer at 
intermediate nodes, nodes only handle packets destined 
for them. Stalling the packet in the network, however, 
consumes network resources to “store” the packet, effec- 
tively dilating the packet’s length. Virtual cut-through, 
on the other hand, minimizes the network bandwidth 
consumed by packets, but uses memory and control re- 
sources at intermediate nodes to store blocked packets. 

In this paper, virtual cut-through and wormhole 
switching are shown to  have their strengths and weak- 
nesses. Virtual cut-through switching provides bet- 
ter throughput and lower latencies at  heavy loads at 
the cost of buffering in-transit packets, while wormhole 
switching only requires few small buffers and completely 
isolates nodes from in-transit packets. One alterna- 
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tive to  improving wormhole switching’s performance at 
higher loads would be to  selectavely buffer blocked pack- 
ets; this would free some network resources sooner while 
still isolating nodes from much of the in-transit traffic. 

Virtual cut-through and wormhole switching are 
both cut-through switching schemes, but their per- 
formance may differ drastically under different traf- 
fic loads. For low traffic loads, the latencies of both 
schemes are almost identical. This is because in a 
lightly-loaded network the probability of blocking is 
very small and the latency is then determined primarily 
by the length of the packet and the link transmission 
time. As the traffic load increases, however, the prob- 
ability of blocking increases, as does the likelihood of 
blocking other packets. Consequently, networks that use 
wormhole switching generally saturate from contention 
well before they exhaust their bandwidth [3,4]. The ef- 
fects of this contention can be reduced by increasing the 
number of virtual channels per physical link [4]. Since 
either wormhole or virtual cut-through switching may 
yield shorter packet latencies, depending on the network 
traffic and the number of hops the packet must travel, 
i t  is advantageous t o  support both switching schemes 
in order t o  adapt to  a wider range of circumstances. 
Furthermore, a network which can dynamically switch 
from one scheme to  the other can respond to  the offered 
traffic load and the needs of the system’s applications. 

To address these tradeoffs, Section 4 introduces and 
evaluates a hybrid switching scheme which balances the 
use of network resources against the use of memory re- 
sources for storing blocked packets. This hybrid scheme 
decides whether to  buffer or stall blocked packets based 
on a field within the routing header; this field identifies 
the number of links the packet can hold while stalling in 
the network. If this threshold is exceeded, the blocked 
packet buffers. 

To demonstrate the feasibility of supporting multi- 
ple schemes on a single platform, Section 2 describes 
SPIDER, a front-end communication interface that sup- 
ports a wide range of routing and switching schemes 
In Section 3 ,  we compare the performance of virtual 
cut-through and wormhole switching operating on SPI- 
DER. This comparison focuses on three metrics: the 
mean communication latency, the memory resources re- 
quired by each scheme, and the maximum achievable 
throughput of the network. In Section 4 ,  we introduces 
hybrid switching and evaluate it relative to both vir- 
tual cut-through and wormhole switching. The paper 
concludes with Section 5, which summarizes our main 
contributions and future directions. 

2 A Flexible Router Architec- 
ture 

In order to isolate and take advantage of the differences 
in performance between cut-through switching schemes, 
we have developed SPIDER (Scalable  Point-to-Point In- 
ferface DrzvER) [5,6], a communication adapter that  
implements multiple switching schemes. SPIDER is 
microprogrammable with a wide range of routing and 
switching schemes, providing an ideal platform for ex- 
perimenting with and comparing routing and switching 
schemes. 

2.1 Existing R o u t e r  Archi tectures  

Several routers that  use wormhole switching have been 
developed [l, 7-91, In general, the design of these routers 
has emphasized speed and simplicity, with the routing 
algorithm hardwired into the system. Each router only 
supports a small number of links, allowing a crossbar 
to  be used to  transfer data  without internal blocking. 
Furthermore, the short internode distances allow flow 
control and parallel internode links t o  be efficiently im- 
plemented. The Vulcan Switch chip [lo] uses an inter- 
esting variation, by adding a central, dynamically allo- 
cated queue to the switching element. This queue im- 
proves throughput by buffering “chunks” of packets in 
the blocking switch, rather than buffering the flits in 
several different switches and blocking those channels. 

Virtual cut-through routers typically provide better 
throughput under heavy loads a t  the cost of increased 
buffer requirements. The Mayfly Post Office [ll], uses 
several (hardwired) routing algorithms and provides an 
internal buffer for packets that  cannot cut through, but 
only supports virtual cut-through switching. It uses a 
shared internal bus to  transfer packets between ports 
and also to  and from the buffer pool. The Chaos 
router [12] also provides an internal buffer for packets, 
but this buffer is much smaller ~ the router deroutes 
packets to  avoid blocking or dropping them. 

2.2 SPIDER 

SPIDER is designed to  support multiple switch- 
ing schemes, including store-and-forward, virtual cut- 
through, and wormhole switching. Supporting the first 
two schemes requires that the node be able to  buffer 
several packets simultaneously so that packets can be 
received without blocking. SPIDER provides this us- 
ing a demand-driven, time-multiplexed memory inter- 
face that  shares memory bandwidth between all active 
injection and reception ports. Similarly, cut-through 
switching schemes require a high-bandwidth switch for 
transferring data  between incoming and outgoing chan- 
nels. In SPIDER, this is provided by a demand-slotted, 
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t i m e  d iv i s ion-mul t ip lexed  (TDM) bus with bandwidth 
equal to the physical links. Access to the bus is regu- 
lated by a binary priority-tree arbiter [13,14]. 

2.3 SPIDER Components 

AS shown in Figure 1, SPIDER manages bidirectional 
communication with up to  four neighboring nodes, with 
three virtual channels [4] on each unidirectional link. 
The programmable routing controller (PRC), a 231-pin, 
1.3 x 1.5 cm custom integrated circuit, is the corner- 
stone of SPIDER [5,6,13]. The 12 T r a n s m i t t e r  Fe tch  
U n i t s  (TFUs) control packet transmission, while the 4 
microprogrammable routing engines coordinate packet 
reception. Each routing engine performs low-level rout- 
ing and switching operations for a single incoming link, 
with the three virtual channels sharing the custom pro- 
cessor. The N e t w o r k  In ter face  T r a n s m i t t e r s  (NI  TXs) 
and N e t w o r k  I n t e r f a c e  Rece ivers  (NI RXs) perform the 
necessary interleaving of virtual channels to and from 
the physical links, on a word-by-word basis'. The net- 
work interface (NI) performs the media access and flow 
control on four pairs of AMD TAXI chips [15]; these 
TAXI transmitters and receivers control the physical 
links, providing a low-cost fiber-optic communication 
fabric. 

SPIDER treats outbound virtual channels (NI TXs) 
as individually reservable resources, allowing the device 
to support a variety of routing and switching schemes 
through flexible control over channel allocation policies. 
The reservation status unit handles requests from arriv- 
ing packets to reserve or relinquish NI TXs, providing 
low-level support for both connection-oriented and con- 
nectionless transfer on each virtual channel. An arriv- 
ing packet can invoke a variety of policies for selecting 
and reserving outbound channels. Upon receiving the 
header bytes from the incoming channel, the routing en- 
gine decides whether to  buffer, stall, forward, or drop 
the packet, based on its microcode' and the packet's 
routing header. A routing engine can respond to net- 
work congestion by basing its routing decision on the 
reservation status of the outgoing virtual channels. By 
reserving multiple NI  TXs, the PRC can forward an in- 
coming packet to  several output links simultaneously, al- 
lowing SPIDER to support efficient broadcast and mul- 
ticast algorithms. 

The host controls channel reservations for any packet 
stored in the buffer memory by assigning the packet 
to a particular TFU.  The host transmits a packet by 

'To reduce the package size of the PRC, a pair of outgoing 
links shares a single set of pins; internally, the PRC operates at 
30 MHz, twice the link speed, to serve each outgoing link at its 
full  rate. 

'Each routing engine has a 256-instruction control store. Mi- 
croprograms for typical routing-switching schemes require about 
60 to  70 instructions to implement. 

feeding this TFU with page tags that each include the 
address of an outgoing page and the number of words 
on the page. Likewise, the host equips each NI RX with 
pointers to free pages in the memory, for storing arriving 
packets. The control interface also provides read access 
to an event queue that logs page-level activities on each 
channel. 

2.4 Basic Operation 

To illustrate the interaction between the host, SPIDER. 
and the network, consider how a message travels from 
the source node, cuts through an intermediate node, and 
arrives at the destination node. 
Transmission: When an application requests the host 
to transmit a m e s s a g e  to another node, the host dis- 
assembles the message into multiple packe ts ,  where a 
packet consists of one or more (possibly non-contiguous) 
pages.  Using the control interface, the host feeds page 
tags to the appropriate TFU to initiate packet transmis- 
sion. After reserving the NI TX, the TFU fetches the 
32-bit data words from each page. During this memory 
transfer, the PRC transparently accumulates a 32-bit 
cyclic redundancy code (CRC) for error detection. Af- 
ter sending the last data word of the packet, the TFU 
transmits a 32-bit timestamp, read from a counter on 
the PRC, followed by the CRC; the timestamp values 
facilitate clock synchronization and computation of end- 
to-end packet latencies. The NI TX transmits each of 
these words to the TAXI transmitter a byte  at  a time; 
the TAXI device converts each byte into a string of bats 
for transmission on the serial link. 
Cut-through: Packet reception begins when data ar- 
rives at a TAXI receiver. The receiving NI  RX initially 
forwards data to its routing engine until it  has accumu- 
lated enough header words to make a routing decision 
for the packet. If the packet is destined for a subse- 
quent node, the routing engine can try to forward the 
packet directly to the next node by reserving an NI TX. 
If the routing engine is able to establish a cut-through, 
the engine then sends the data it has accumulated to 
that transmitter and configures the NI RX to forward 
subsequent data words directly to the reserved NI TX,  
bypassing the routing engine entirely. When the packet 
has cleared the node, the NI  RX automatically recon- 
figures itself to forward the next packet header to the 
routing engine. 
Reception/Buffering: When SPIDER stores the 
packet at the local node, however, the routing engine 
configures the NI RX to directly buffer the packet, reac- 
cumulating the CRC as the data words travel to the 
memory interface. SPIDER writes these words into 
pages in the buffer memory and logs the arrival (and 
size) of each page in the PRC event queue. At the 
end of the final page of the packet, SPIDER appends 
the packet with a receive timestamp and logs a packet- 
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Figure 1: SPIDER 

1250 

arrival event indicating the outcome of the CRC check. 
If the packet has reached its destination, the host re- 
assembles the pages into a packet and the packets into 
a message. Otherwise, the host schedules the packet for 
transmission to  the subsequent node in its route. 

- 

3 Comparing Wormhole and Vir- 
tual Cut-through Switching 

To evaluate the performance of SPIDER and also to  
more accurately compare the performance of the vari- 
ous routing and switching schemes, we have developed a 
cycle-level discrete-event simulator [13,16]. Written in 
C++, this simulator accurately models the flow of the 
individual bytes of packets through SPIDER. This cap- 
tures features such as the low-level flow control, bus ar- 
bitration delays, and microcode execution time. While 
the simulator does not model the actual protocol soft- 
ware executing on the host, it does capture the effects 
of these protocols on packets that  buffer a t  intermediate 
nodes. 

This section presents the results of a set of experi- 
ments that  vary the packet generation rate while hold- 
ing other parameters constant. At each node, the inter- 
arrival time of packets for transmission conformed to a 
negative exponential distribution. Packet destinations 
were uniformly distributed across all of the nodes (ex- 
cept where otherwise specified). The simulations also 
used a fixed packet size of 64 bytes (except where spec- 
ified). 

To focus the experiments on the switching scheme, 
all packets use a static, dimension-ordered routing 
scheme [17]. Furthermore, most of the simulations use 
an unwrapped square mesh topology where only one 
virtual channel per link is required to  prevent deadlock 
under wormhole switching. This allows the switching 
schemes to  be compared with the same number of vir- 
tual channels. 

1500 I '  ' ' I '  ' I 

i t  
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Figure 2: Packet delivery latencies for virtual cut- 
through and wormhole switching. 

To collect the da ta ,  the network was first placed into 
a steady state and data  collected for 2000 packets a t  
each node. For latency, the standard error of the mean 
is less than 5 cycles for the 95% confidence interval on all 
traffic loads. When the network is saturated, however, 
this steady state cannot be achieved. 

3.1 Latency 
In Figure 2 ,  the mean packet latency is shown as a func- 
tion of the link utilization, which is given as a percentage 
of the  m a x i m u m  capacity of the network's physical links. 
When the offered load is low, the average packet latency 
is the same under both switching schemes. Wormhole, 
however, reaches saturation under lighter loads than vir- 
tual cut-through due to  contention for channels, result- 
ing in a dramatic increase in the mean packet latency. 
Saturation occurs a t  a link utilization of 0.2 in this ex- 
periment. Other experiments have shown that  these 
trends are not significantly affected by packet length or 
the topology of the network. 
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Figure 3: Rate of in-transit packet arrival 

3.2 In-transit Load 
While virtual cut-through can support a greater traffic 
load than wormhole, it also buffers packets at  intermedi- 
ate nodes. Each packet that buffers at  a node consumes 
memory resources for its storage and control resources 
to process the header. Under wormhole switching, on 
the other hand, nodes only handle those packets des- 
tined for them. 

The relative costs of the two schemes are illustrated 
for a node-uniform traffic load on an unwrapped 8 x 8 
square mesh in Figure 3.  This figure shows the average 
rate (in packets per cycle, per node) of packets buffer- 
ing at  a node using virtual cut-through switching. This 
rate is composed of two components: the “in-transit” 
rate and the “destination” rate. The former is the av- 
erage rate of packets that are destined for other nodes 
buffering at a node, while the latter is the average rate 
of packets buffering at a node that are destined for that 
node. The in-transit rate is the region between the des- 
tination rate (the lower curve) and the total rate of pack- 
ets buffering (the higher curve). At low loads, almost all 
packets successfully cut through and the in-transit ar- 
rival rate is very low. As the load increases, the proba- 
bility of cut-through also drops, resulting in an increased 
in-transit packet arrival rate. When the network is in 
or near saturation, the arrival rate of in-transit pack- 
ets surpasses the rate of packet generation. In this case, 
the load on the host for buffering and rescheduling these 
packets is severe. 

3.3 Maximum Achievable Throughput 
Wormhole and virtual cut-through switching are af- 
fected differently by packet distance. This can be di- 
rectly shown by varying the average number of hops that 
packets travel. This was accomplished through a hop- 
uniform destination mapping, where every packet trav- 
els the same number of hops. In order to spread traffic 
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Figure 4: Maximum throughput for wormhole switching 
under a hop-uniform traffic load. 

uniformly through the network, a wrapped 8 x 8 square 
mesh (torus) is used with two virtual channels per link 
(the minimum to prevent deadlock under dimension- 
ordered routing). 

Figure 4 shows the maximum throughput (in pack- 
ets per cycle) of wormhole switching as a function of 
the hop count of packets. Using wormhole switching, 
the network saturates under a lighter link load as the 
packet distance increases. This is due to increased 
contention: packets are traveling more hops, and thus 
stalling more links when blocked. This has a snowball 
effect: blocked packets stall more links, and block other 
packets that may then block still other links. The overall 
effect, therefore, is to degrade the maximum achievable 
throughput. 

Virtual cut-through switching does not exhibit this 
behavior, as it uses memory resources and not network 
resources to stall blocked packets. Its peak throughput 
is dependent upon the link load and not upon packet 
distance, 

The maximum throughput of a network using worm- 
hole switching can be increased by adding virtual chan- 
nels [4], or by significantly enlarging the number of flits 
buffered at each node. Adding virtual channels on each 
link, on the other hand, improves throughput by allow- 
ing packets to “bypass” stalled packets. The primary 
cost is in the increased complexity of the crossbar con- 
necting the reception channels to the transmission chan- 
nels - either the size of the crossbar must be increased, 
or the arbitration becomes more complex [18]. Giving 
each virtual channel a flit buffer large enough to hold 
one packet should significantly improve throughput - 
each blocked packet only stalls a single link. Similarly, 
buffers capable of holding half of a packet’s flits will pre- 
vent blocked packets from stalling more than two links. 

There are significant differences in the performance 
of wormhole and virtual cut-through switching under 
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different traffic loads. Wormhole switching requires 
fewer buffers than virtual cut-through, but its maxi- 
mum throughput is relatively limited and dependent on 
packet distance. At heavy loads, virtual cut-through 
(as predicted) outperforms wormhole, but the cost of 
buffering in-transit packets can cancel out the perfor- 
mance gains. The following section presents a hybrid 
switching scheme that  addresses the shortcomings of 
both schemes. 

4 Evaluating Hybrid Switching 
This section examines how hybrid switching provides 
a level of performance that  bridges the gap between 
virtual cut-through and wormhole switching. We eval- 
uate hybrid switching’s performance relative to these 
schemes using the same metrics as the previous section. 

4.1 Hybrid §witching 
A “hybrid” switching scheme dynamically combines 
wormhole and virtual cut-through switching, using both 
network and memory resources to  store blocked pack- 
ets. There are a number of potential hybrid switch- 
ing schemes that  meet this requirement. To implement 
these schemes efficiently, however, the switching deci- 
sions should be based on information available in the 
packet header or a t  the local node. 

In Section 3.3, we saw that increasing the number of 
links held by packets degraded the throughput achiev- 
able with wormhole switching. One method for improv- 
ing wormhole’s performance under heavier loads would 
be to  relieve contention by buffering packets that  can- 
not advance yet are stalling several links behind them. 
This scheme would avoid the long “tails” of stalled links 
held by blocked packets, reducing contention. Such a 
switching scheme would dynamically combine virtual 
cut-through and wormhole switching to  provide im- 
proved packet latencies and a higher achievable through- 
put  than wormhole alone, without buffering packets as 
often as virtual cut-through. 

The hybrid algorithm used in the remainder of this 
paper decides whether to  buffer or stall blocked packets 
based on a field within the routing header; this field 
identifies the number of links the packet can hold while 
stalling in the network. If this threshold is exceeded, 
the blocked packet buffers. The system can dynamically 
vary this threshold depending on the packet’s needs or 
the current network load by changing the initial value 
of this header field. 

Implementing the scheme is simple: a field in the 
routing header is set to h when the packet is generated 
and then decremented after every hop until it reaches 
0. While h > 0, the packet will stall if blocked. Once 
h == 0,  the packet buffers when blocked. Buffering the 
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Figure 5: Packet delivery latencies for hybrid and worm- 
hole switching. 

packet resets h to its initial value. Virtual cut-through 
and wormhole switching can be viewed as special cases 
of this algorithm: wormhole switching is equivalent to  
hybrid switching with h = CO, while hybrid switching 
with h = 0 effectively implements virtual cut-through 
switching. 

The requirements for supporting hybrid switching are 
not much greater than those for supporting wormhole or 
virtual cut-through switching alone. When a router re- 
ceives a packet, it must be able to  determine how many 
hops the packet has traveled. If the link reservation fails, 
the router can then choose to  buffer the packet. Due to  
the reduced in-transit load, the buffer requirements for 
hybrid switching are significantly reduced compared to  
virtual cut-through switching. 

In the following simulations, all packets use the same 
dimension-order routing as in Section 3. As before, the 
simulations use a fixed packet size of 64 bytes, except 
where indicated otherwise. 

4.2 Latency 

In Figure 2,  we saw that  wormhole switching saturates 
from contention well before virtual cut-through, result- 
ing in dramatically increased latencies. By preventing 
blocked packets from holding more than h links, hybrid 
switching decreases contention. The effects are shown in 
Figure 5 ,  which compares the  average packet latencies 

for wormhole switching, hybrid switching with h = 1, 
hybrid switching with h = 2,  and virtual cut-through 
switching. 

At very low loads, with a low probability of blocking, 
the mean latencies of the schemes are similar. Once 
this probability rises, however, hybrid switching pro- 
vides lower packet latencies than wormhole switching. 
As h decreases, the network can handle a higher offered 
load without saturating. Higher values of h will resem- 
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Figure 6: In-transit packet load for virtual cut-through 
and hybrid switching. 

ble pure wormhole switching more closely - saturating 
at lower offered loads. These trends also hold over a 
range of packet sizes and network topologies. 

4.3 In-transit Load 
One of the primary advantages of wormhole switching is 
that  i t  completely insulates nodes from in-transit traffic; 
the cost, however, is the consumption of network band- 
width by blocked packets. Virtual cut-through switch- 
ing utilizes the network’s bandwidth more efficiently, 
but can require nodes to  handle large amounts of in- 
transit traffic (as shown in Section 3).  By only buffer- 
ing some blocked packets, hybrid switching significantly 
reduces this load. 

A comparison of the in-transit load for hybrid switch- 
ing and virtual cut-through switching is shown in Fig- 
ure 6. This graph shows the arrival rate of in-transit 
packets for a range of offered loads. Even at low loads, 
with a very high probability of cut-through, hybrid 
switching significantly reduces the rate of in-transit traf- 
fic when compared to  virtual cut-through. As the of- 
fered load increases, the probability of cut-through de- 
creases and the in-transit load increases. At high loads, 
virtual cut-through switching uses at least h + 1 times 
more memory resources than the hybrid scheme, since 
the hybrid algorithm allows packets to buffer a t  most 
once every h + 1 hops. The actual reduction in buffer- 
ing is often larger. For example, a packet traveling five 
hops using virtual cut-through may buffer up to  four 
times, while hybrid with h = 2 will only buffer it at 
most once. 

4.4 Maximum Achievable Throughput 
Figure 7 shows the maximum achieved throughput 

(in packet-hops per cycle) as a function of the number of 
hops traveled by each packet. As in Figure 4, the applied 

traffic load is hop-uniform - every packet travels the 
same number of hops. The maximum throughput is 
only shown for those distances greater than h - when 
each packet travels h hops or less, hybrid switching is 
indistinguishable from wormhole switching. 

Unlike wormhole switching and virtual cut-through, 
however , the maximum throughput for hybrid switching 
increases with the number of hops packets travel. This 
phenomenon can be explained by examining the pro- 
portion of packets in each case that  have traveled more 
than h hops without buffering. As the average number 
of hops traveled by each packet increases, the percentage 
of packets that  are willing to  buffer if blocked increases. 
This alleviates contention in the network, preventing 
early saturation. 

Hybrid switching with h = 1 resembles wormhole 
switching with a large, packet-sized buffer on each vir- 
tual channel, since both prevent blocked packets from 
stalling more than one virtual channel. Unlike worm- 
hole, however, blocked packets do not always stall a 
link - if they are using more than h channels, they will 
buffer, freeing the channels for other packets. 

In systems with large buffers for packets (such as 
SPIDER) and wrapped topologies, hybrid switching 
may use all of the virtual channels in the network. 
While packets that  will stall when blocked must uti- 
lize deadlock-free routing schemes, packets where h has 
reached 0 may take advantage of available channels 
without regard t o  preventing deadlock, since they will 
buffer if blocked. This increases the probability of cut- 
through for packets by considering channels that could 
not otherwise be used. 

4.5 Discussion 
The simulations in this paper did not restrict the num- 
ber of buffers a t  each node. When the packet buffers are 
implemented on the same die as the router, the num- 
ber and size of the buffers is restricted. By buffering 
fewer packets than virtual cut-through, hybrid switch- 
ing reduces the buffer space needed. In addition, hybrid 
switching schemes can take the available buffer space 
into account when deciding whether to  buffer or stall a 
blocked packet. By buffering only packets that  are cur- 
rently holding several links and stalling others, hybrid 
switching can effectively utilize limited buffers. 

This section has evaluated only one variant of hy- 
brid switching. Another promising hybrid scheme uses 
a “credit” scheme to determine when to  buffer a blocked 
packet. Under this scheme, each packet header contains 
a field indicating the maximum number of times i t  can 
be buffered - every time the packet buffers, the field 
is decremented. Once this value reaches 0,  the packet 
will Etall in the network. This scheme allows packets to 
stall more channels, but buffering other packets should 
prevent network congestion. The combination of a re- 
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Figure 7: Maximum throughput under a hop-uniform traffic load. 

striction on the number of times a packet can buffer 
with h-hop hybrid switching also holds promise. 

Hybrid switching also allows the system to dynami- 
cally determine (on a per-packet or system-wide basis) 
whether network or buffer resources are used to  store 
blocked packets. This can be implemented by setting 
the initial value of h a t  the source of the packet to re- 
flect whether the packet should consume more network 
or buffer resources when blocked. For example, large 
packets that  will be traversing a large number of links 
may initially use larger values of h to  reduce the num- 
ber of times they buffer. On  the other hand, systems 
requiring high bandwidth can use smaller values of h to 
shift the load to  the network’s buffers. 

Hybrid switching uses both network and memory re- 
sources to  store blocked packets, addressing the short- 
comings of other cut-through switching schemes. Using 
network resources to  store the packets can often have a 
snowball effect, creating contention throughout the net- 
work that  limits throughput. Schemes that use mem- 
ory resources, on the other hand, increase the system’s 
communication overhead. Through hybrid switching, 
we attempt t o  balance these concerns. Potentially, the 
switching decision could be also based on the distance 
still needs to  travel, or the number of buffers available at 
the local node. In addition, the decision could be time- 
based: packets could stall for some small amount of time 
i l  blocked in the hopes of being able to  cut through, and 
then buffer. Alternately, packets that  are blocked just 
short of their final destination could block in the net- 
work, while others that  are blocked near their source 
would buffer. This would keep packets from blocking in 
the network more than once or twice. 

5 Conclusions 
The switching scheme used by a point-to-point network 
is a major factor in determining the latency, through- 
put,  and overhead of communication. The various 
cut-through switching schemes all improve latency over 
store-and-forward switching (unless the network is sat- 
urated), but each has its strengths and weaknesses. 

As we have shown in this paper, virtual cut-through 
does not limit the achievable network throughput but 
does impose a significant load on nodes for storing and 
retransmitting in-transit packets. Wormhole, on the 
other hand, stalls blocked packets in the network and 
does not require large buffers for blocked packets, it is 
cheaper to  implement. Its maximum throughput, how- 
ever, is limited by contention for outgoing links. 

In this paper, we have introduced the concept of hy- 
brid switching, which dynamically chooses whether t o  
buffer or stall blocked packets in order to  balance re- 
source consumption. Using SPIDER and its simulator 
model, we plan to explore the potential of a number of 
hybrid switching schemes. In particular, we plan to  ex- 
amine the effects of different communication patterns on 
the switching schemes. Other investigations will com- 
pare hybrid switching with wormhole switching in the 
presence of packet-sized input buffers, fixed-size shared 
buffers, and additional virtual channels. 

The hybrid switching scheme presented in this pa- 
per combines features of both wormhole and virtual 
cut-through switching by buffering a small fraction of 
blocked packets and limiting the number of links that 
blocked packets can hold. This significantly reduces the 
buffer requirements for in-transit packets when com- 
pared to virtual cut-through, while providing higher 
maximum throughput than wormhole switching. In this 
manner, hybrid switching bridges the performance gap 
between the other cut-through switching schemes. 
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