
Analysis and Implementation of Hybrid Switching

Kang G. Shin and Stuart W. Daniel

RealLTime Computing Labor at ory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, Michigan 48109-2122

E-Mail Address: { kgshiqstuart d}@eecs .umich.edu

Abstract

The switching scheme of a point-to-point network de-
termines how packets flow through each node, and is
a primary element in determining the network’s per-
formance. In this paper, we present and evaluate a
new switching scheme called hybrid switching. Hy-
brid switching dynamically combines both virtual cut-
through and wormhole switching to provide higher
achievable throughput than wormhole alone, while sig-
nificantly reducing the buffer space required at inter-
mediate nodes when compared to virtual cut-through.
This scheme is motivated by a comparison of virtual
cut-through and wormhole switching through cycle-level
simulations, and then evaluated using the same meth-
ods. To show the feasibility of hybrid switching, as well
as to provide a common base for simulating and im-
plementing a variety of switching schemes, we have de-
signed SPIDER, a communication adapter built around
a custom ASIC, the Programmable Routing Controller
(PRC) .

1 Introduction
The effectiveness of a parallel or distributed system is
often determined by its communication network. Many
distributed and parallel applications require the network
to provide low latency communications in order to oper-
ate efficiently, while others may require the network to
handle a large amount of traffic. In addition, the bur-
den placed on the host to handle communication-related
activities should be minimized.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery.To copy othelwise, or to republish, requires
a fee and/or specific permjssion.
ISCA ‘95, Santa Margherita Ligure Italy
0 1995 ACM 0-89791 -698-0/95/0006...$3.50

One of the key factors that determines how well
a point-to-point network meets applications’ require-
ments in these areas is its switching scheme(s). Worm-
hole [l] and virtual cut-through [2] switching are two
common schemes for forwarding packets through a
point-to-point interconnection network. Both are “cut-
th rough switching schemes that decrease packet laten-
cies by immediately forwarding incoming packets to idle
output links. In this paper, we compare the impact of
each scheme upon packet latency, the maximum net-
work throughput, and the resources required for buffer-
ing packets at intermediate nodes. Based on this evalu-
ation, we then propose and evaluate a “hybrid” switch-
ing scheme that combines the salient features of both
schemes.

1.1 Background

Virtual cut-through and wormhole switching differ in
how they handle packets that cannot immediately pro-
ceed to the next node because the appropriate output
links are busy with other traffic. Virtual cut-through
switching buffers blocked packets at the local node, re-
leasing the incoming link(s), but wormhole switching
stalls the packet in the network, while holding any links
the packet has acquired. Since packets never buffer at
intermediate nodes, nodes only handle packets destined
for them. Stalling the packet in the network, however,
consumes network resources to “store” the packet, effec-
tively dilating the packet’s length. Virtual cut-through,
on the other hand, minimizes the network bandwidth
consumed by packets, but uses memory and control re-
sources at intermediate nodes to store blocked packets.

In this paper, virtual cut-through and wormhole
switching are shown to have their strengths and weak-
nesses. Virtual cut-through switching provides bet-
ter throughput and lower latencies at heavy loads at
the cost of buffering in-transit packets, while wormhole
switching only requires few small buffers and completely
isolates nodes from in-transit packets. One alterna-

21 1

http://umich.edu

tive to improving wormhole switching’s performance at
higher loads would be to selectavely buffer blocked pack-
ets; this would free some network resources sooner while
still isolating nodes from much of the in-transit traffic.

Virtual cut-through and wormhole switching are
both cut-through switching schemes, but their per-
formance may differ drastically under different traf-
fic loads. For low traffic loads, the latencies of both
schemes are almost identical. This is because in a
lightly-loaded network the probability of blocking is
very small and the latency is then determined primarily
by the length of the packet and the link transmission
time. As the traffic load increases, however, the prob-
ability of blocking increases, as does the likelihood of
blocking other packets. Consequently, networks that use
wormhole switching generally saturate from contention
well before they exhaust their bandwidth [3,4]. The ef-
fects of this contention can be reduced by increasing the
number of virtual channels per physical link [4]. Since
either wormhole or virtual cut-through switching may
yield shorter packet latencies, depending on the network
traffic and the number of hops the packet must travel,
i t is advantageous t o support both switching schemes
in order t o adapt to a wider range of circumstances.
Furthermore, a network which can dynamically switch
from one scheme to the other can respond to the offered
traffic load and the needs of the system’s applications.

To address these tradeoffs, Section 4 introduces and
evaluates a hybrid switching scheme which balances the
use of network resources against the use of memory re-
sources for storing blocked packets. This hybrid scheme
decides whether to buffer or stall blocked packets based
on a field within the routing header; this field identifies
the number of links the packet can hold while stalling in
the network. If this threshold is exceeded, the blocked
packet buffers.

To demonstrate the feasibility of supporting multi-
ple schemes on a single platform, Section 2 describes
SPIDER, a front-end communication interface that sup-
ports a wide range of routing and switching schemes
In Section 3 , we compare the performance of virtual
cut-through and wormhole switching operating on SPI-
DER. This comparison focuses on three metrics: the
mean communication latency, the memory resources re-
quired by each scheme, and the maximum achievable
throughput of the network. In Section 4 , we introduces
hybrid switching and evaluate it relative to both vir-
tual cut-through and wormhole switching. The paper
concludes with Section 5, which summarizes our main
contributions and future directions.

2 A Flexible Router Architec-
ture

In order to isolate and take advantage of the differences
in performance between cut-through switching schemes,
we have developed SPIDER (Scalable Point-to-Point In-
ferface DrzvER) [5,6], a communication adapter that
implements multiple switching schemes. SPIDER is
microprogrammable with a wide range of routing and
switching schemes, providing an ideal platform for ex-
perimenting with and comparing routing and switching
schemes.

2.1 Existing R o u t e r Archi tectures

Several routers that use wormhole switching have been
developed [l, 7-91, In general, the design of these routers
has emphasized speed and simplicity, with the routing
algorithm hardwired into the system. Each router only
supports a small number of links, allowing a crossbar
to be used to transfer data without internal blocking.
Furthermore, the short internode distances allow flow
control and parallel internode links t o be efficiently im-
plemented. The Vulcan Switch chip [lo] uses an inter-
esting variation, by adding a central, dynamically allo-
cated queue to the switching element. This queue im-
proves throughput by buffering “chunks” of packets in
the blocking switch, rather than buffering the flits in
several different switches and blocking those channels.

Virtual cut-through routers typically provide better
throughput under heavy loads a t the cost of increased
buffer requirements. The Mayfly Post Office [ll], uses
several (hardwired) routing algorithms and provides an
internal buffer for packets that cannot cut through, but
only supports virtual cut-through switching. It uses a
shared internal bus to transfer packets between ports
and also to and from the buffer pool. The Chaos
router [12] also provides an internal buffer for packets,
but this buffer is much smaller ~ the router deroutes
packets to avoid blocking or dropping them.

2.2 SPIDER

SPIDER is designed to support multiple switch-
ing schemes, including store-and-forward, virtual cut-
through, and wormhole switching. Supporting the first
two schemes requires that the node be able to buffer
several packets simultaneously so that packets can be
received without blocking. SPIDER provides this us-
ing a demand-driven, time-multiplexed memory inter-
face that shares memory bandwidth between all active
injection and reception ports. Similarly, cut-through
switching schemes require a high-bandwidth switch for
transferring data between incoming and outgoing chan-
nels. In SPIDER, this is provided by a demand-slotted,

212

t i m e d iv i s ion-mul t ip lexed (TDM) bus with bandwidth
equal to the physical links. Access to the bus is regu-
lated by a binary priority-tree arbiter [13,14].

2.3 SPIDER Components

AS shown in Figure 1, SPIDER manages bidirectional
communication with up to four neighboring nodes, with
three virtual channels [4] on each unidirectional link.
The programmable routing controller (PRC), a 231-pin,
1.3 x 1.5 cm custom integrated circuit, is the corner-
stone of SPIDER [5,6,13]. The 12 T r a n s m i t t e r Fe tch
U n i t s (TFUs) control packet transmission, while the 4
microprogrammable routing engines coordinate packet
reception. Each routing engine performs low-level rout-
ing and switching operations for a single incoming link,
with the three virtual channels sharing the custom pro-
cessor. The N e t w o r k In ter face T r a n s m i t t e r s (NI TXs)
and N e t w o r k I n t e r f a c e Rece ivers (NI RXs) perform the
necessary interleaving of virtual channels to and from
the physical links, on a word-by-word basis'. The net-
work interface (NI) performs the media access and flow
control on four pairs of AMD TAXI chips [15]; these
TAXI transmitters and receivers control the physical
links, providing a low-cost fiber-optic communication
fabric.

SPIDER treats outbound virtual channels (NI TXs)
as individually reservable resources, allowing the device
to support a variety of routing and switching schemes
through flexible control over channel allocation policies.
The reservation status unit handles requests from arriv-
ing packets to reserve or relinquish NI TXs, providing
low-level support for both connection-oriented and con-
nectionless transfer on each virtual channel. An arriv-
ing packet can invoke a variety of policies for selecting
and reserving outbound channels. Upon receiving the
header bytes from the incoming channel, the routing en-
gine decides whether to buffer, stall, forward, or drop
the packet, based on its microcode' and the packet's
routing header. A routing engine can respond to net-
work congestion by basing its routing decision on the
reservation status of the outgoing virtual channels. By
reserving multiple NI TXs, the PRC can forward an in-
coming packet to several output links simultaneously, al-
lowing SPIDER to support efficient broadcast and mul-
ticast algorithms.

The host controls channel reservations for any packet
stored in the buffer memory by assigning the packet
to a particular TFU. The host transmits a packet by

'To reduce the package size of the PRC, a pair of outgoing
links shares a single set of pins; internally, the PRC operates at
30 MHz, twice the link speed, to serve each outgoing link at its
full rate.

'Each routing engine has a 256-instruction control store. Mi-
croprograms for typical routing-switching schemes require about
60 to 70 instructions to implement.

feeding this TFU with page tags that each include the
address of an outgoing page and the number of words
on the page. Likewise, the host equips each NI RX with
pointers to free pages in the memory, for storing arriving
packets. The control interface also provides read access
to an event queue that logs page-level activities on each
channel.

2.4 Basic Operation

To illustrate the interaction between the host, SPIDER.
and the network, consider how a message travels from
the source node, cuts through an intermediate node, and
arrives at the destination node.
Transmission: When an application requests the host
to transmit a m e s s a g e to another node, the host dis-
assembles the message into multiple packe ts , where a
packet consists of one or more (possibly non-contiguous)
pages. Using the control interface, the host feeds page
tags to the appropriate TFU to initiate packet transmis-
sion. After reserving the NI TX, the TFU fetches the
32-bit data words from each page. During this memory
transfer, the PRC transparently accumulates a 32-bit
cyclic redundancy code (CRC) for error detection. Af-
ter sending the last data word of the packet, the TFU
transmits a 32-bit timestamp, read from a counter on
the PRC, followed by the CRC; the timestamp values
facilitate clock synchronization and computation of end-
to-end packet latencies. The NI TX transmits each of
these words to the TAXI transmitter a byte at a time;
the TAXI device converts each byte into a string of bats
for transmission on the serial link.
Cut-through: Packet reception begins when data ar-
rives at a TAXI receiver. The receiving NI RX initially
forwards data to its routing engine until it has accumu-
lated enough header words to make a routing decision
for the packet. If the packet is destined for a subse-
quent node, the routing engine can try to forward the
packet directly to the next node by reserving an NI TX.
If the routing engine is able to establish a cut-through,
the engine then sends the data it has accumulated to
that transmitter and configures the NI RX to forward
subsequent data words directly to the reserved NI TX,
bypassing the routing engine entirely. When the packet
has cleared the node, the NI RX automatically recon-
figures itself to forward the next packet header to the
routing engine.
Reception/Buffering: When SPIDER stores the
packet at the local node, however, the routing engine
configures the NI RX to directly buffer the packet, reac-
cumulating the CRC as the data words travel to the
memory interface. SPIDER writes these words into
pages in the buffer memory and logs the arrival (and
size) of each page in the PRC event queue. At the
end of the final page of the packet, SPIDER appends
the packet with a receive timestamp and logs a packet-

213

Figure 1: SPIDER

1250

arrival event indicating the outcome of the CRC check.
If the packet has reached its destination, the host re-
assembles the pages into a packet and the packets into
a message. Otherwise, the host schedules the packet for
transmission to the subsequent node in its route.

-

3 Comparing Wormhole and Vir-
tual Cut-through Switching

To evaluate the performance of SPIDER and also to
more accurately compare the performance of the vari-
ous routing and switching schemes, we have developed a
cycle-level discrete-event simulator [13,16]. Written in
C++, this simulator accurately models the flow of the
individual bytes of packets through SPIDER. This cap-
tures features such as the low-level flow control, bus ar-
bitration delays, and microcode execution time. While
the simulator does not model the actual protocol soft-
ware executing on the host, it does capture the effects
of these protocols on packets that buffer a t intermediate
nodes.

This section presents the results of a set of experi-
ments that vary the packet generation rate while hold-
ing other parameters constant. At each node, the inter-
arrival time of packets for transmission conformed to a
negative exponential distribution. Packet destinations
were uniformly distributed across all of the nodes (ex-
cept where otherwise specified). The simulations also
used a fixed packet size of 64 bytes (except where spec-
ified).

To focus the experiments on the switching scheme,
all packets use a static, dimension-ordered routing
scheme [17]. Furthermore, most of the simulations use
an unwrapped square mesh topology where only one
virtual channel per link is required to prevent deadlock
under wormhole switching. This allows the switching
schemes to be compared with the same number of vir-
tual channels.

1500 I ' ' ' I ' ' I

i t

0 0 0.1 02 0 3 0.4 0 5
Link utilization

Figure 2: Packet delivery latencies for virtual cut-
through and wormhole switching.

To collect the da ta , the network was first placed into
a steady state and data collected for 2000 packets a t
each node. For latency, the standard error of the mean
is less than 5 cycles for the 95% confidence interval on all
traffic loads. When the network is saturated, however,
this steady state cannot be achieved.

3.1 Latency
In Figure 2 , the mean packet latency is shown as a func-
tion of the link utilization, which is given as a percentage
of the m a x i m u m capacity of the network's physical links.
When the offered load is low, the average packet latency
is the same under both switching schemes. Wormhole,
however, reaches saturation under lighter loads than vir-
tual cut-through due to contention for channels, result-
ing in a dramatic increase in the mean packet latency.
Saturation occurs a t a link utilization of 0.2 in this ex-
periment. Other experiments have shown that these
trends are not significantly affected by packet length or
the topology of the network.

214

OW75, 0010 I

0.W60 4 w

i

0.15 0.30 0.45 0.60
0 woo

0.W
Link Llilizalion

Figure 3: Rate of in-transit packet arrival

3.2 In-transit Load
While virtual cut-through can support a greater traffic
load than wormhole, it also buffers packets at intermedi-
ate nodes. Each packet that buffers at a node consumes
memory resources for its storage and control resources
to process the header. Under wormhole switching, on
the other hand, nodes only handle those packets des-
tined for them.

The relative costs of the two schemes are illustrated
for a node-uniform traffic load on an unwrapped 8 x 8
square mesh in Figure 3. This figure shows the average
rate (in packets per cycle, per node) of packets buffer-
ing at a node using virtual cut-through switching. This
rate is composed of two components: the “in-transit”
rate and the “destination” rate. The former is the av-
erage rate of packets that are destined for other nodes
buffering at a node, while the latter is the average rate
of packets buffering at a node that are destined for that
node. The in-transit rate is the region between the des-
tination rate (the lower curve) and the total rate of pack-
ets buffering (the higher curve). At low loads, almost all
packets successfully cut through and the in-transit ar-
rival rate is very low. As the load increases, the proba-
bility of cut-through also drops, resulting in an increased
in-transit packet arrival rate. When the network is in
or near saturation, the arrival rate of in-transit pack-
ets surpasses the rate of packet generation. In this case,
the load on the host for buffering and rescheduling these
packets is severe.

3.3 Maximum Achievable Throughput
Wormhole and virtual cut-through switching are af-
fected differently by packet distance. This can be di-
rectly shown by varying the average number of hops that
packets travel. This was accomplished through a hop-
uniform destination mapping, where every packet trav-
els the same number of hops. In order to spread traffic

p 0008

1

3

I a 0006
6

0 p 0004 ; 1 0002
00 20 4 0 6 0 n o

0 000

Figure 4: Maximum throughput for wormhole switching
under a hop-uniform traffic load.

uniformly through the network, a wrapped 8 x 8 square
mesh (torus) is used with two virtual channels per link
(the minimum to prevent deadlock under dimension-
ordered routing).

Figure 4 shows the maximum throughput (in pack-
ets per cycle) of wormhole switching as a function of
the hop count of packets. Using wormhole switching,
the network saturates under a lighter link load as the
packet distance increases. This is due to increased
contention: packets are traveling more hops, and thus
stalling more links when blocked. This has a snowball
effect: blocked packets stall more links, and block other
packets that may then block still other links. The overall
effect, therefore, is to degrade the maximum achievable
throughput.

Virtual cut-through switching does not exhibit this
behavior, as it uses memory resources and not network
resources to stall blocked packets. Its peak throughput
is dependent upon the link load and not upon packet
distance,

The maximum throughput of a network using worm-
hole switching can be increased by adding virtual chan-
nels [4], or by significantly enlarging the number of flits
buffered at each node. Adding virtual channels on each
link, on the other hand, improves throughput by allow-
ing packets to “bypass” stalled packets. The primary
cost is in the increased complexity of the crossbar con-
necting the reception channels to the transmission chan-
nels - either the size of the crossbar must be increased,
or the arbitration becomes more complex [18]. Giving
each virtual channel a flit buffer large enough to hold
one packet should significantly improve throughput -
each blocked packet only stalls a single link. Similarly,
buffers capable of holding half of a packet’s flits will pre-
vent blocked packets from stalling more than two links.

There are significant differences in the performance
of wormhole and virtual cut-through switching under

21 5

different traffic loads. Wormhole switching requires
fewer buffers than virtual cut-through, but its maxi-
mum throughput is relatively limited and dependent on
packet distance. At heavy loads, virtual cut-through
(as predicted) outperforms wormhole, but the cost of
buffering in-transit packets can cancel out the perfor-
mance gains. The following section presents a hybrid
switching scheme that addresses the shortcomings of
both schemes.

4 Evaluating Hybrid Switching
This section examines how hybrid switching provides
a level of performance that bridges the gap between
virtual cut-through and wormhole switching. We eval-
uate hybrid switching’s performance relative to these
schemes using the same metrics as the previous section.

4.1 Hybrid §witching
A “hybrid” switching scheme dynamically combines
wormhole and virtual cut-through switching, using both
network and memory resources to store blocked pack-
ets. There are a number of potential hybrid switch-
ing schemes that meet this requirement. To implement
these schemes efficiently, however, the switching deci-
sions should be based on information available in the
packet header or a t the local node.

In Section 3.3, we saw that increasing the number of
links held by packets degraded the throughput achiev-
able with wormhole switching. One method for improv-
ing wormhole’s performance under heavier loads would
be to relieve contention by buffering packets that can-
not advance yet are stalling several links behind them.
This scheme would avoid the long “tails” of stalled links
held by blocked packets, reducing contention. Such a
switching scheme would dynamically combine virtual
cut-through and wormhole switching to provide im-
proved packet latencies and a higher achievable through-
put than wormhole alone, without buffering packets as
often as virtual cut-through.

The hybrid algorithm used in the remainder of this
paper decides whether to buffer or stall blocked packets
based on a field within the routing header; this field
identifies the number of links the packet can hold while
stalling in the network. If this threshold is exceeded,
the blocked packet buffers. The system can dynamically
vary this threshold depending on the packet’s needs or
the current network load by changing the initial value
of this header field.

Implementing the scheme is simple: a field in the
routing header is set to h when the packet is generated
and then decremented after every hop until it reaches
0. While h > 0, the packet will stall if blocked. Once
h == 0, the packet buffers when blocked. Buffering the

Y

5 750 -

a
$ 500
4

b
m

cn
-

250 1
-Virtual cut-through

-h=2

i -Wormhole

0 ‘ i
0.0 0 1 0.2 0 3 0.4 0.5

Link utilization

Figure 5: Packet delivery latencies for hybrid and worm-
hole switching.

packet resets h to its initial value. Virtual cut-through
and wormhole switching can be viewed as special cases
of this algorithm: wormhole switching is equivalent to
hybrid switching with h = CO, while hybrid switching
with h = 0 effectively implements virtual cut-through
switching.

The requirements for supporting hybrid switching are
not much greater than those for supporting wormhole or
virtual cut-through switching alone. When a router re-
ceives a packet, it must be able to determine how many
hops the packet has traveled. If the link reservation fails,
the router can then choose to buffer the packet. Due to
the reduced in-transit load, the buffer requirements for
hybrid switching are significantly reduced compared to
virtual cut-through switching.

In the following simulations, all packets use the same
dimension-order routing as in Section 3. As before, the
simulations use a fixed packet size of 64 bytes, except
where indicated otherwise.

4.2 Latency

In Figure 2, we saw that wormhole switching saturates
from contention well before virtual cut-through, result-
ing in dramatically increased latencies. By preventing
blocked packets from holding more than h links, hybrid
switching decreases contention. The effects are shown in
Figure 5 , which compares the average packet latencies

for wormhole switching, hybrid switching with h = 1,
hybrid switching with h = 2, and virtual cut-through
switching.

At very low loads, with a low probability of blocking,
the mean latencies of the schemes are similar. Once
this probability rises, however, hybrid switching pro-
vides lower packet latencies than wormhole switching.
As h decreases, the network can handle a higher offered
load without saturating. Higher values of h will resem-

21 6

D
0 z 0.0020 -

m
c
.-
- 0.0010 -

00 0.1 0.2 0.3 0.4 0.5
0.0000

Link utilization

Figure 6: In-transit packet load for virtual cut-through
and hybrid switching.

ble pure wormhole switching more closely - saturating
at lower offered loads. These trends also hold over a
range of packet sizes and network topologies.

4.3 In-transit Load
One of the primary advantages of wormhole switching is
that i t completely insulates nodes from in-transit traffic;
the cost, however, is the consumption of network band-
width by blocked packets. Virtual cut-through switch-
ing utilizes the network’s bandwidth more efficiently,
but can require nodes to handle large amounts of in-
transit traffic (as shown in Section 3). By only buffer-
ing some blocked packets, hybrid switching significantly
reduces this load.

A comparison of the in-transit load for hybrid switch-
ing and virtual cut-through switching is shown in Fig-
ure 6. This graph shows the arrival rate of in-transit
packets for a range of offered loads. Even at low loads,
with a very high probability of cut-through, hybrid
switching significantly reduces the rate of in-transit traf-
fic when compared to virtual cut-through. As the of-
fered load increases, the probability of cut-through de-
creases and the in-transit load increases. At high loads,
virtual cut-through switching uses at least h + 1 times
more memory resources than the hybrid scheme, since
the hybrid algorithm allows packets to buffer a t most
once every h + 1 hops. The actual reduction in buffer-
ing is often larger. For example, a packet traveling five
hops using virtual cut-through may buffer up to four
times, while hybrid with h = 2 will only buffer it at
most once.

4.4 Maximum Achievable Throughput
Figure 7 shows the maximum achieved throughput

(in packet-hops per cycle) as a function of the number of
hops traveled by each packet. As in Figure 4, the applied

traffic load is hop-uniform - every packet travels the
same number of hops. The maximum throughput is
only shown for those distances greater than h - when
each packet travels h hops or less, hybrid switching is
indistinguishable from wormhole switching.

Unlike wormhole switching and virtual cut-through,
however , the maximum throughput for hybrid switching
increases with the number of hops packets travel. This
phenomenon can be explained by examining the pro-
portion of packets in each case that have traveled more
than h hops without buffering. As the average number
of hops traveled by each packet increases, the percentage
of packets that are willing to buffer if blocked increases.
This alleviates contention in the network, preventing
early saturation.

Hybrid switching with h = 1 resembles wormhole
switching with a large, packet-sized buffer on each vir-
tual channel, since both prevent blocked packets from
stalling more than one virtual channel. Unlike worm-
hole, however, blocked packets do not always stall a
link - if they are using more than h channels, they will
buffer, freeing the channels for other packets.

In systems with large buffers for packets (such as
SPIDER) and wrapped topologies, hybrid switching
may use all of the virtual channels in the network.
While packets that will stall when blocked must uti-
lize deadlock-free routing schemes, packets where h has
reached 0 may take advantage of available channels
without regard t o preventing deadlock, since they will
buffer if blocked. This increases the probability of cut-
through for packets by considering channels that could
not otherwise be used.

4.5 Discussion
The simulations in this paper did not restrict the num-
ber of buffers a t each node. When the packet buffers are
implemented on the same die as the router, the num-
ber and size of the buffers is restricted. By buffering
fewer packets than virtual cut-through, hybrid switch-
ing reduces the buffer space needed. In addition, hybrid
switching schemes can take the available buffer space
into account when deciding whether to buffer or stall a
blocked packet. By buffering only packets that are cur-
rently holding several links and stalling others, hybrid
switching can effectively utilize limited buffers.

This section has evaluated only one variant of hy-
brid switching. Another promising hybrid scheme uses
a “credit” scheme to determine when to buffer a blocked
packet. Under this scheme, each packet header contains
a field indicating the maximum number of times i t can
be buffered - every time the packet buffers, the field
is decremented. Once this value reaches 0, the packet
will Etall in the network. This scheme allows packets to
stall more channels, but buffering other packets should
prevent network congestion. The combination of a re-

21 7

0 010 0 010 I

Hops

(a) Hybrid, h z 1
Hops

(b) Hybrid, h = 2

Figure 7: Maximum throughput under a hop-uniform traffic load.

striction on the number of times a packet can buffer
with h-hop hybrid switching also holds promise.

Hybrid switching also allows the system to dynami-
cally determine (on a per-packet or system-wide basis)
whether network or buffer resources are used to store
blocked packets. This can be implemented by setting
the initial value of h a t the source of the packet to re-
flect whether the packet should consume more network
or buffer resources when blocked. For example, large
packets that will be traversing a large number of links
may initially use larger values of h to reduce the num-
ber of times they buffer. On the other hand, systems
requiring high bandwidth can use smaller values of h to
shift the load to the network’s buffers.

Hybrid switching uses both network and memory re-
sources to store blocked packets, addressing the short-
comings of other cut-through switching schemes. Using
network resources to store the packets can often have a
snowball effect, creating contention throughout the net-
work that limits throughput. Schemes that use mem-
ory resources, on the other hand, increase the system’s
communication overhead. Through hybrid switching,
we attempt t o balance these concerns. Potentially, the
switching decision could be also based on the distance
still needs to travel, or the number of buffers available at
the local node. In addition, the decision could be time-
based: packets could stall for some small amount of time
i l blocked in the hopes of being able to cut through, and
then buffer. Alternately, packets that are blocked just
short of their final destination could block in the net-
work, while others that are blocked near their source
would buffer. This would keep packets from blocking in
the network more than once or twice.

5 Conclusions
The switching scheme used by a point-to-point network
is a major factor in determining the latency, through-
put, and overhead of communication. The various
cut-through switching schemes all improve latency over
store-and-forward switching (unless the network is sat-
urated), but each has its strengths and weaknesses.

As we have shown in this paper, virtual cut-through
does not limit the achievable network throughput but
does impose a significant load on nodes for storing and
retransmitting in-transit packets. Wormhole, on the
other hand, stalls blocked packets in the network and
does not require large buffers for blocked packets, it is
cheaper to implement. Its maximum throughput, how-
ever, is limited by contention for outgoing links.

In this paper, we have introduced the concept of hy-
brid switching, which dynamically chooses whether t o
buffer or stall blocked packets in order to balance re-
source consumption. Using SPIDER and its simulator
model, we plan to explore the potential of a number of
hybrid switching schemes. In particular, we plan to ex-
amine the effects of different communication patterns on
the switching schemes. Other investigations will com-
pare hybrid switching with wormhole switching in the
presence of packet-sized input buffers, fixed-size shared
buffers, and additional virtual channels.

The hybrid switching scheme presented in this pa-
per combines features of both wormhole and virtual
cut-through switching by buffering a small fraction of
blocked packets and limiting the number of links that
blocked packets can hold. This significantly reduces the
buffer requirements for in-transit packets when com-
pared to virtual cut-through, while providing higher
maximum throughput than wormhole switching. In this
manner, hybrid switching bridges the performance gap
between the other cut-through switching schemes.

21 8

Acknowledgements

The authors would like to acknowledge James Dolter’s
invaluable work in developing the simulator, as well as
Jennifer Rexford and Wu-Chang Feng for helping im-
prove it and for their discussions and insights.

The work reported in this paper was supported in
part by the National Science Foundation under Grant
MIP-9203895, and by the Office of Naval Research under
Grant N00014-92-J-1080. The opinions, findings and
conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect
the view of the funding agencies.

References

[9] D. Smitley, F. Hady, and D. Burns, “Hnet: A high-
performance network evaluation testbed,” Tech.
Rep. SRC-TR-9 1-049, Supercomputing Research
Center, Institute for Defense Analyses, December
1991.

[lo] C . B. Stunkel, D. G. Shea, B. Abali, M . M.
Denneau, P. H. Hochschild, D. J . Joseph, B. 9.
Nathanson, M. Tsao, and P. R. Varker, “Architec-
ture and implementation of Vulcan,” in Proc. Inter-
national Parallel Processing Symposium, pp. 268-
274, April 1994.

[ll] A. L. Davis, “Mayfly: A general-purpose, scalable,
parallel processing architecture,” Lisp and Sym-
bolic Computataon, vol. 5, pp. 7-47, May 1992.

[12] K. Bolding, S . 4 . Cheung, S.-E. Choi, C. Ebel-
ing, S. Hassoun, T. A. Ngo, and R. Wille, “The
Chaos router chip: Design and implementation of
an adaptive router,” in Proc. VLSI, September

W . J . Dally and C. L. Seitz, “The torus routing
chip,” Journal of Distributed Computing, vol. 1,
no. 3, pp. 187-196, 1986.

P. Kermani and L. Kleinrock, “Virtual cut- 1993.

[13] J . Dolter, A Programmable Routing Controller Sup-
porting Multi-mode Routing a n d Switching in Dis-
tributed Real-Time Systems. PhD thesis, University

through: A new computer communication switch-
ing technique,” Computer Networks, vol. 3,
pp. 267-286, September 1979.

J . Ngai and C. Seitz, “A framework for adaptive
routing in multicomputer networks,” in Symposium
on Parallel Algorithms and Architectures, pp. 1-9,
June 1989.

W. Dally, “Virtual-channel flow control,” IEEE
Trans. Parallel and Distributed Systems, vol. 3,
pp. 194-205, March 1992.

J . Dolter, S. Daniel, A. Mehra, J . Rexford,
W. Feng, and K. Shin, “SPIDER: Flexible and
efficient communication support for point-to-point
distributed systems,” in Proc. Int’l Conf. on Dis-
tributed Computing Systems, pp. 574-580, June
1994.

of Michigan, September 1993.

[14] A. Kovaleski, S. Ratheal, and F . Lombardi, “An
architecture and interconnection scheme for time-
sliced buses in real-time processing,” Proc. Real-
Time Systems Symposium, pp. 20-27, 1986.

[15] Advanced Micro Devices, 901 Thompson Place,
P.O. Box 3453, Sunnyvale CA 94088-3453,
Am79168/Am79169 TAXIem-275 Technical Man-
ual, ban-O.lm-l/93/0 17490a ed.

[16] J . Rexford, J . Dolter, W . Feng, and K. G. Shin,
“PP-MESS-SIM: A simulator for evaluating multi-
computer interconnection networks.” To appear in
Proc. Annual Simulation Symposium, April 1995.

S. Daniel, J . Rexford, J . Dolter, and K . Shin, “A
programmable routing controller for flexible com-
munications in point-to-point networks.” Submit-
ted to International Conference on Computer De-
sign, 1995.

S. Borkar, R. Cohn, e t al., “Supporting systolic and
memory communication in iWarp,” in Proc. Int’l
Symposium on Computer Archatecture, pp. 70-81,
1990.

[17] W. J . Dally and C. L. Seitz, “Deadlock-free mes-
sage routing in multiprocessor interconnection net-
works,” IEEE Trans. Computers, vol. C-36, no. 5,
pp. 547-553, May 1987.

[18] A. A. Chien, “A cost and speed model for k-ary
n-cube wormhole routers,” in Proc. Hot Intercon-
nects, August 1993.

W. J . Dally, J . A. S. Fiske, J . S. Keen, R. A. Lethin,
M. D. Noakes, P. R. Nuth, R . E. Davison, and
G. A. Fyler, “The Message-Driven Processor: A
multicomputer processing node with efficient mech-
anisms,” I E E E Micro, pp. 23-39, April 1992.

219

