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A Coordinated Location Policy for Load Sharing in 
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Abstract-Uneven task arrivals in a hypercube-connected mul- 
ticomputer may temporarily overload some nodes while leaving 
others underloaded. This problem can be solved or alleviated by 
load sharing (LS); that is, some of the tasks arriving at over- 
loaded nodes, called overflow tasks, are transferred to under- 
loaded nodes. One important issue in LS is to locate underloaded 
nodes to which the overflow tasks can be transferred. This is 
termed the location policy. Any efficient location policy should 
distribute the overflow tasks to the entire system instead of 
‘dumping’ them on a few underloaded nodes. To reduce the over- 
head for collecting state information and transferring tasks, each 
node is required to maintain the state information of only those 
nodes in its proximity, called a buddy set. Several location poli- 
cies-random probing, random selection, preferred lists, and 
bidding algorithm-are analyzed and compared for hypercube- 
connected multicomputer systems. Under the random-selection 
and preferred-list policies, an overloaded node can select, without 
probing other nodes, an underloaded node within its buddy set, 
while under the random probing policy and the bidding algorithm 
the overloaded node needs to probe other nodes before transfer- 
ring the overflow task. Task colZision(s) is said to occur if two or 
more overflow tasks are transferred (almost) simultaneously to 
the same underloaded node. The performances of these location 
policies are analyzed and compared in terms of the average num- 
ber of task collisions. Our analysis shows that use of preferred 
lists allows the overflow tasks to be shared more evenly through- 
out the entire hypercube than the other two location policies. 

Index Terms-Load sharing, hypercube-connected multicom- 
puters, location policy, buddy sets, preferred lists, random prob- 
ing and selection, bidding algorithm. 

I. INTRODUCTION 

HE hypercube topology has drawn considerable attention T as a multicomputer architecture due mainly to its regular- 
ity, potential for fault-tolerance, and scalability over a useful 
range [l], [2], [3]. Thus, a large number of autonomous com- 
puters or computing nodes can be connected in hypercube 
structure to exploit these features. Various research issues in 
hypercube multicomputers have been addressed, such as fault- 
tolerant routing and broadcasting [4], [5] and subcube alloca- 
tion [6]. However, very little on workload distribu- 
tionhedistribution to meet certain requirements in hypercube 
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multicomputers has been reported in the open literature. The 
hypercube multicomputer considered in this paper is different 
from most commercial hypercubes in that it is a stand-alone 
machine, not a backend or attached machine. In other words, it 
is a general multicomputer in which nodes are connected with 
the binary hypercube topology. So, each node in this system is 
independent of others and tasks (user programs) arrive di- 
rectly l at different nodes, while in most commercial hyper- 
cubes only a host computerlnode receives external tasks and 
distributes them to processing nodes. In such a hypercube- 
connected multicomputer, bursty task arrivals may temporarily 
overload some nodes while leaving others underloaded. One 
way to alleviate this problem is load sharing (LS); those tasks 
arriving at overloaded nodes, called “overflow tasks,” are 
transferred to underloaded nodes in order to meet certain re- 
quirements, e.g., task deadlines. 

An important issue associated with LS is to locate under- 
loaded nodes efficiently so that each overloaded node can 
offload its overflow tasks with minimal delay. A location pol- 
icy is responsible for resolving this issue. Many location poli- 
cies have been proposed and analyzed, but in general, the lo- 
cation policies that collect more state information are shown to 
outperform those without collecting any state information. 
There are two different approaches to collecting state informa- 
tion: l )  on a regular basis and 2) only when a node needs to 
transfer some of its tasks, or when a node is ready to receive 
tasks. In this paper, we will call the first approach state- 
collection (SC) [7] and the second approach state probing 
(SP) [8], [9], [lo], [ l l ] .  In the SC method, each node collects 
and maintains the state information of other nodes, regardless 
whether the information will be used or not, so that an over- 
loaded node can transfer its tasks without incurring any prob- 
ing delay. Hence, a fixed amount of state-collection overhead 
will be induced to the system even when no task needs to be 
transferred. In the SP method, on the other hand, the over- 
loaded node needs to probe other nodes to find a potential 
receiver before transferring its tasks, thus incurring delays to 
the tasks to be transferred. But no state-collection overhead 
will incur when there are no tasks to be transferred. 

The SP location policies have been studied extensively. 
Two commonly-used methods are probing [8] and bidding [9], 
[lo], [ 121, [ 131. Under the probing method [8], an overloaded 
node selects a node (candidate receiver) and checks whether or 
not the node can share its load. If it can, the overloaded node 
will transfer an overflow task to that node; otherwise, it will 
probe another node. The communication overhead for probing 
nodes was shown to depend only on the number of probes re- 

1. Instead of going through a host node/computer. 
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gardless of system size. However, probing nodes is inefficient, 
because not only it will introduce an additional delay in com- 
pleting the tasks to be transferred, but also the overloaded 
node may not be able to locate a receiver within a pre- 
specified number of probes if there are only a few underloaded 
nodes in the system. In case a bidding algorithm [9], [lo], 
[121, [131 is used, an overloaded node broadcasts a request for 
bids. Three to four rounds of messages have to be generated 
and exchanged before an overflow task is actually transferred. 
If an underloaded node’s bid is accepted by more than one 
overloaded node and if the underloaded node can accept only 
one overflow task, then the rest of the overloaded nodes must 
start another round of bidding. This bidding process usually 
causes excessive communication delays to the tasks to be 
transferred. To reduce the number of messages in the bidding 
algorithm, Ni et al. proposed a draping algorithm by allowing 
underloaded nodes to initiate the drafting process [ l l ] .  This 
algorithm is shown to reduce the number of messages ex- 
changed to about one third of that of a bidding algorithm. 
However, when an underloaded node is chosen by more than 
one overloaded node, it may not be able to accept tasks from 
all overloaded nodes and complete them in time. 

In the SC location policy, each node needs to collect and 
maintain the state information of other nodes, so that when a 
node becomes overloaded, it can transfer its overflow tasks 
without probing other nodes, thus eliminating the probing de- 
lay in the execution of overflow tasks. Although the SC loca- 
tion policy can minimize the task-transfer delay, it will incur a 
fixed amount of state-collection overhead. Thus, how to re- 
duce/minimize the state-collection overhead in the SC location 
policy is an important design issue. We considered this prob- 
lem first in [ 7 ] .  The state-collection overhead was reduced by 
requiring each node to collect and maintain the state informa- 
tion of only a small set of nodes in its physical proximity, 
called a buddy set. This overhead was reduced further by using 
thresholds to determine the load state. For example, three 
thresholds, denoted as TH,, THf, and TH,, were used to define 
the load state (queue length, QL) of a node. A node is said to 
be underloaded (U-state) if QL I TH,, medium-loaded 
(M-state) if TH, < QL I THf, fully loaded (F-state) if THf < 

QL I TH,, and overloaded (V-state) if QL > TH,. Whenever a 
node becomes fully loaded (underloaded) due to the arrival 
and/or transfer (completion) of tasks, it will multicast its 
change of state to all the other nodes in its buddy set. Every 
node that receives this information will update its state infor- 
mation by eliminating the fully-loaded node from, or adding 
the underloaded node to, its ordered list (called a preferred 
list) of available receivers. An overloaded node can then se- 
lect, without probing other nodes, the first available node from 
its preferred list. 

The main goal of this paper is to design, and analyze the 
performance of, the SC and SP location policies with respect 
to their ability of solving the coordination and congestion 
problems. The coordination problem arises when more than 
one overloaded nodes attempt to (almost) simultaneously 
transfer overflow tasks to one underloaded node, and the con- 
gestion problem occurs when many overloaded nodes are lo- 

cated in a physical proximity. Specifically, we will develop a 
systematic method of constructing preferred lists for the SC 
method and prove that this method minimizes the probability 
of more than one overloaded node transferring overflow tasks 
to an underloaded node and distributes the overflow tasks in a 
buddy set over many different buddy sets, rather than over- 
loading the nodes in its own buddy set. That is, this method 
solves both the coordination and congestion problems. Since 
we have already shown in [7] that the use of preferred lists 
works well in handling task deadlines, we would like to show 
that the new method of constructing the preferred lists can also 
be used for improving average system response time. Based on 
modeling and simulations, the SC location policy with the pre- 
ferred lists is found to outperform the SP location policies, 
such as bidding and drafting algorithms, when the system is 
medium-loaded. But the SP location policies perform slightly 
better than the SC location policy when the system is lightly 
loaded. The difference between SC and SP location policies is 
negligible when the system is heavily loaded. 

The rest of this paper is organized as follows. In Section 11, 
we propose to solve the coordination and congestion problems 
by systematically constructing the preferred lists. Using the 
number of task collisions as a yardstick, the performance of 
the SC method with the proposed solutions to the coordination 
and congestion problems is evaluated in Secton 111. In Section 
IV, the proposed SC location policy is compared with random 
selection, probing, bidding, and drafting policies. The paper 
concludes with Section V. 

11. CONSTRUCTION OF PREFERRED LISTS 
AND BUDDY SETS 

A. Advantages and Problems of the SC Method 

The fundamental difference between the SC and SP location 
policies lies in that the state information is collected on a 
regular basis in the SC method while in the SP method it is 
collected only when a node needs to transfer some of its tasks 
or when a node is ready to receive tasks. So, the advantage of 
the SC method is to reduce the task-transfer delay by making 
the state information available on a regular basis with a fixed 
state-collection overhead. On the other hand, the advantage of 
the SP method is to eliminate the state-collection overhead 
when no task needs to be transferred, but adds a probing delay 
to the execution of the tasks to be transferred. Since most of 
the SP location policies are well-known and studied exten- 
sively elsewhere, we will focus on the design and analysis of a 
SC location policy. 

Since a fixed amount of state-collection overhead is im- 
posed by the SC method, it is essential to design an SC loca- 
tion policy which minimizes this overhead. It is also necessary 
to coordinate task transfers to avoid the effect of ‘dumping’ 
tasks on the same underloaded node, as stated in the Introduc- 
tion. Thus, we must design an SC location policy to 1) mini- 
mize the overhead for collecting/maintaining state information 
and 2) resolve the coordination and congestion problems. Our 
solution is to design an SC location policy with the features of 
state-change broadcasting, buddy sets, and preferred lists. Note 
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that the details on how to set thresholds for state-change 
broadcasting and how to design buddy sets were treated in [7]. 

Any good location policy must be the result of resolving the 
following two issues. First, when the number of overloaded 
nodes is less than, or equal to, the number of underloaded 
nodes, no more than one overloaded node should be allowed to 
select the same underloaded node as a receiver. Simultaneous 
selection of an underloaded node by multiple overloaded 
nodes results from lack of coordination among them (hence the 
coordination problem [ 141). Specifically, n tusk collisions are 
said to occur if n + 1 overflow tasks are sent (almost) simulta- 
neously to an underloaded node.2 Second, to minimize the 
task-transfer delay, the buddy set of a node is composed of 
those nodes in its physical proximity (e.g., those nodes one or 
two hops away). The overloaded nodes in a buddy set should 
be able to transfer their overflow tasks to the nodes in different 
buddy sets such that those tasks arriving at overloaded nodes 
within a hot region-a region where the number of overloaded 
nodes is greater than that of underloaded nodes--can be 
shared by the entire system, not just by those nodes in the same 
buddy set. (Formation of hot region(s) with an excessive num- 
ber of overflow tasks causes the congestion problem.) 

Despite their importance, neither the coordination problem 
nor the congestion problem was addressed in [7]. These prob- 
lems can, of course, be resolved easily if every overloaded 
node knows the receivers of other overloaded nodes. It is, 
however, practically impossible to equip every overloaded 
node with this knowledge, because each overloaded node is 
required to communicate with all the other overloaded nodes 
before transferring an overflow task to an underloaded node. 
This will not only introduce excessive communication traffic, 
but also a significant delay in completing the tasks to be trans- 
ferred, thus offsetting any benefit to be gained from LS. One 
must therefore establish a rule for each overloaded node to 
select a receiver among possibly multiple underloaded nodes 
while minimizing the probability of more than one overloaded 
node simultaneously transferring overflow tasks to the same 
underloaded node. For example, consider Fig. 1, where nodes 
0, 3, and 5 are overloaded and all other nodes are underloaded. 
Unless properly coordinated, these three overloaded nodes 
may choose node I as the receiver, thus overloading node 1 
and leaving the other nodes underloaded. Similarly, the con- 
gestion problem is illustrated in Fig. 2. Suppose nodes 0, 1, 2, 
4, and 8 are in the same buddy set and three of them are over- 
loaded (shaded circles), then they should transfer overflow 
tasks to the nodes outside of the buddy set. This problem can 
be resolved if the overloaded nodes select receivers using their 
preferred lists. As shown in Fig. 3, the overflow tasks within a 
hot region can be shared by the underloaded nodes outside of 
the region, thus spreading the overflow tasks over the entire 
system. 

The congestion problem can be solved by designating each 
node in an n-cube as the kth preferred node of one and only 
one other node. In such a case, since each node is designated 

2 .  This is to reflect the severity of the coordination problem. For example, 
sending three tasks to a node would be severer than sending two tasks to the 
node. 

as the most preferred node of one and only one other node, the 
probability of an underloaded node being selected for task 
transfer by more than one overloaded node becomes very 
small. Moreover, to enable the entire system to share overflow 
tasks, the most preferred receiver of each node in a buddy set 
must also belong to a different buddy set. Since an overloaded 
node is most likely to transfer a task to its most preferred re- 
ceiver, the overloaded nodes in a buddy set will spread their 
overflow tasks over many different buddy sets, thus solving the 
congestion problem. Note that the preferred list used in [7] is 
only one of a class of equivalent ways to construct the pre- 
ferred lists. In this paper, we will treat this problem formally 
and derive the best way for constructing the preferred lists to 
resolve the coordination and congestion problems. For nota- 
tional convenience, we will henceforth call this method the 
preferred-list SC (PLSC) location policy. 

(a). Two collisions 

W 

Fig. I ,  Coordination problem. 
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Order of preference 
No 
N1 
N2 
N3 

N4 
.v5 

N7 
N8 
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NlO 
N ,  1 
N 1 2  

N ,  3 
N , ,  
N1. 
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1 2 3 4 5 6 
1 2  4 8 6 1 0  
0 3 5 9 7 1 1  
3 0 6 1 0  4 8 
2 1 7 1 1  5 9 
5 6 0 1 2  2 1 4  
4 7 1 1 3  3 1 5  
7 4 2 1 4  0 1 2  
6 5 3 1 5  1 1 3  
9 10 12 0 14 2 
8 11 13 1 15 3 

11 8 14 2 12 0 
10 9 15 3 13 1 
13 14 8 4 10 6 
12 15 9 5 11 7 
15 12 10 6 8 4 
14 13 11 7 9 5 

qJJ” 10 

Fig. 2. Congestion problem 

Fig. 3. Solution to the congestion problem. 

B. Construction of a Preferred List 

DEFINITION 1. An n-dimensional binary hypercube, Q, is de- 
fined recursively as follows: 

1 )  Qo is a trivial graph with one node, and 
2 )  Q, = K2 x Qfi-l, where Kz is a complete graph with two 

nodes and x is the product operation on two graphs [Z5]. 

The address of a Q2 can be represented by a sequence of bi- 
nary digits and two *s, where * represents either 0 or 1. For 
example, the address b,-l ... bz** represents a QZ formed by 
the four nodes, b,-l ... b200, b,-l ... bzOl, b,-~ ... b210, b,-l ... 
b211. Let the address of node i (denoted by NJ be i,-~i,,-~ ... io, 

I k  be the unit vector in which all but kth bit (which is set to 1)  
are 0, and 0 denote the bitwise EXCLUSIVE-OR operation. 
For example, every node, N,, of a Q, has n nodes within one 
hop, and the addresses of these n nodes can be obtained from 
N,@Ikfork=O,  ..., n -  1. 

Since the cost of transferring a task increases with the dis- 
tance between the sender and receiver, it is natural for the 
sender N, to explore the nodes within one hop first, then the 
nodes within two hops, and so on. For convenience, the nodes 
within one hop of N, are said to be in the first component 
group of N,’s preferred list, the nodes within two hops are in 
the second component group, and in general, the nodes within 
m hops are in the mth component group of N;s preferred list. 

The nodes in all component groups of N,’s preferred list are 
ordered as defined below. 

DEFINITION 2. Let in-lin-z ... io be the address of N,, then 

1)The nodes in the first component group are ordered as 
( ( i , -~ in-~  ... io) o I,};::-’. 

2)  The nodes in the second component group are ordered 
as{(in-li f l-2. . . iO)OI,01k} ( j =  1, ..., n - 2 , O a n d j +  1 
I k l n -  1). 

3 )  The nodes in the third component group are ordered as 
{ ( i , - ~ i ~ - ~  . .. io) 0 I, 0 I ,@ I, ) ( j = 1 ,  . . . , n - 3, 0, j + 1 5 
k I n - 2 , a n d k +  1 5 ,  S n -  1). 

4) In general, the nodes in the kth (k i n) component group 
are ordered as ... io) 0 I,, 0 Z J 2  ... 0 I,, ) ( j l  = 1 ,  

..., n - k , 0 , j l + 1 1 j z 5 n - k + 1 ; . . , a n d j k - l +  l l j k 5  
n - 1). 

7 8 9 10 11 12 13 14 15 
12 3 5 9 14 13 11 7 15 
13 2 4 8 15 12 10 6 14 
14 1 7 11 12 15 9 5 13 
15 0 6 10 13 14 8 4 12 
8 7 1 13 10 9 15 3 11 
9 6 0 12 11 8 14 2 10 

10 5 3 15 8 11 13 1 9 
11 4 2 14 9 10 12 0 8 
4 1 1 1 3  1 6  5 3 1 5  7 
5 1 0 1 2  0 7 4 2 1 4  6 
6 9 1 5  3 4 7 I 1 3  5 
7 8 1 4  2 5 6 0 1 2  4 
0 1 5  9 5 2 1 7 1 1  3 
1 1 4  8 4 3 0 0 1 0  2 
2 1 3 1 1  7 0 3 5 9 1 
3 1 2 1 0  6 1 2  4 8 0 

As an example, the preferred lists of all nodes in a four-cube 
are presented in Fig. 4. Once each node’s preferred list is con- 
structed, its buddy set can be formed by any required number 
of nodes counting from the top of its preferred list. (Note that 
the issue of determining the size of a buddy set has already 
been addressed in [7].) An overloaded node can then select an 
underloaded node from its buddy set based on the order of 
preference determined above. This selection can easily be im- 
plemented with a pointer to the first underloaded node in the 
node’s preferred list. If, albeit rare, an overloaded node cannot 
find any underloaded node from its buddy set, all of its tasks 
will be executed locally. 

1 
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In what follows, we show that the above preferred lists can 
solve both the coordination and congestion problems. 

THEOREM 1. Each node in an n-cube will be selected as the 
kth preferred node by one and only one other node for  k = 

The proof of this theorem follows from Definition 2. Since 
the nodes in the first component group of each node are de- 
termined by ( ( i n - l i n - 2  ... io) 8 I]};::-', the result of EXCLU- 

SIVE-ORing a node's address with Il is unique for j = 0, ..., 
n - 1. Moreover, the ordering of the nodes in the second and 
higher component groups is essentially derived from that of 
the first component group nodes. So, a node will be selected as 
the kth preferred node by one and only one other node for 
k =  1, ..., N. 

Since each node in a Qn will be selected as the most pre- 
ferred node by one and only one other node, the probability of 
an underloaded node being selected by more than one over- 
loaded node is very small, thereby solving the coordination 
problem. 

Before presenting Theorem 2 ,  it is necessary to consider 
one special feature of hypercube structure, Le., there does not 
exist any cycle which is composed of an odd number of nodes. 
For example, let the sequence of nodes NO, N I ,  . . ., Nk be part 
of a cycle, where N, and N,+l are adjacent to each other for 
i = 0, ..., k - 1. Using the 8 operation for 0 I i I k - 1, this 
sequence of nodes can be represented as follows: N,+I = N, 8 
I,, and N,+2 = N,+l 8 Iq = N, 8 I, 8 Iq for 0 I p ,  q I n - 1. Then 
it is easy to show that N,+l is one hop away from No, and N,+2 is 
either two hops away from No if p f q, or is equal to No if 
p = q. Repeating this procedure, N1+3 = No 8 I, 8 Iq 8 I ,  is 
either one hop away from No if any two of p ,  q, r are equal, or 
three hops away from NO if p ,  q, r are all distinct integers. 
Generally, one can show that N, ,  will be an odd (even) number 
of hops away from No if j is odd (even). In order to form a cy- 
cle, the start and end nodes must be one hop away from each 
other, so j can only be an odd number, thus making the total 
number of nodes in a cycle even. 

THEOREM 2 .  The most preferred node of each node in a buddy 
set must come from a different buddy set if the buddy set 

size is no greater than (z), where n is the dimension of the 

hypercube. 

PROOF. Since the numbers of nodes in the first and second 

component groups of a node's preferred list are (?) and (z), 
respectively, the buddy set of size I will consist of only 

the nodes in the first or second component group. This theo- 
rem is proved in the following two steps. 

Step 1. Any two nodes in the first or second component group 
cannot be adjacent to each other, otherwise one can form a 
cycle with an odd number of nodes, thus violating the feature 
of hypercube structure mentioned above. Since the most pre- 
ferred node of a node is within one hop, a node in the first or 

1, ..., N ( N = 2 " ) .  U 

(8 

second component group cannot select another node in the 
same component group as its most preferred node. 

Step 2. Each node in the first component group will be ad- 
jacent to some other nodes in the second component group, 
but these adjacent nodes will not select each other as their 
most preferred nodes if the buddy set size is not greater than 

(;) for the following reason. As stated earlier, the most pre- 

ferred node of a first component group node will be in the 
first component group of the most preferred node. Accord- 
ing to Definition 2 ,  the first component group of the most 
preferred node is the last component group to be considered 
in generating the second component group for each node. 

Since there are (7) nodes in the first component group, if the 

buddy set size is not greater than (z), then only the first 

(;) - (7) nodes in the second component group will be in- 

cluded in the buddy set. Thus, none of the first component 
group nodes in a given node's preferred list will select any 
node in the second component group which is included in its 

If the system load is well-balanced, the probability of a 
node staying in V-state is much smaller than in U-state because 
of the assumed system stability. So, an overloaded node is 
most likely to transfer a task to its most preferred node; the 
overloaded nodes in a buddy set will spread their ovefflow 
tasks over many different buddy sets instead of overloading 
the nodes in the buddy set, thus solving the congestion prob- 
lem. As concluded in [7 ] ,  buddy sets with 10 to 15 nodes per- 

form well in most cases, so the buddy set size of (;) in Theo- 

rem 2 will not alter the usefulness of preferred lists in practice 
for any Qn, n > 5 .  

From Definition 2, the frst component group nodes are ordered 
as { ( i w l i p 2  ... io) o 4 )  . One can generate another set of pre- 
ferred lists by changing the incrementing sequence of index j .  
(There are n! ways of ordering the nodes in the first component 
group.) However, the resulting preferred lists will also retain the 
properties of Theorems 1 and 2,  making them indistinguishable 
from the ones already generated according to Definition 2 .  

buddy set as the most preferred node. U 

111. DERIVATION OF NUMBER OF 
TASK COLLISIONS IN PLSC 

We now want to analyze and derive the performance of the 
PLSC location policy in terms of task collisions. A good loca- 
tion policy should be able to transfer overflow tasks from 
overloaded nodes to underloaded nodes in such a way that 
each underloaded node may not exceed its capacity (e.g., in 
meeting deadlines) due to transferred tasks; otherwise, some of 
the underloaded nodes may become overloaded and need to 
retransfer some of their received tasks, thus possibly increas- 
ing the network traffic and the task-transfer delay without im- 
proving system performance. 

1 
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So, we will develop a model using the number of task colli- 
sions to analyze the goodness of a location policy. Specifi- 
cally, if n + 1 overflow tasks are sent simultaneously to an 
underloaded node, n task collisions will result. This quantifi- 
cation of task collision is to reflect the severity of the coordi- 
nation problem. We want to devise a location policy so that 
each overloaded node may find an underloaded receiver with- 
out any conflict with other overloaded nodes. Although accep- 
tance of more than one overflow task at a time may not neces- 
sarily make an underloaded node overloaded, the average re- 
sponse time in such a case will be larger than the case in which 
each overloaded node can find an underloaded node that is not 
chosen by any other overloaded node. For example, if an un- 
derloaded node can complete only one overflow task in time, 
then all but one transferred task will miss their deadlines or 
must be retransferred. In such a case, it is the best location 
policy that results in no task collision at all. 

The performance of a location policy strongly depends on 
the number of task collisions, especially if every underloaded 
node is required not to overload itself at any time by receiving 
transferred tasks from other nodes. To meet this requirement, 
one has to use a location policy that results in no task collision. 

Let the capacity of an underloaded node be defined as the 
maximum number of tasks that a node can receive without 
overloading itself. If the number of underloaded nodes is al- 
ways greater than, or equal to, the number of overloaded 
nodes, then the total number of overflow tasks is less than the 
combined capacities of all underloaded nodes. One can show 
that the necessary and sufficient condition to guarantee each 
underloaded node not to exceed its capacity by receiving trans- 
ferred tasks is to avoid task collisions. Since each underloaded 
node can accept at least one task, it will not exceed its capacity 
when there is no task collision (each underloaded node will 
receive at most one task at a time). As soon as an underloaded 
node receives a transferred task, it will update and multicast its 
load state to the nodes in its buddy set. If there are task colli- 
sions, some of the underloaded nodes may receive more trans- 
ferred tasks than their capacity, thus needing to retransfer some 
of the received tasks. So, to guarantee each underloaded node 
not to exceed its capacity is to avoid task collisions. 

In the rest of this section, we will derive the number of task 
collisions for the proposed location policy as a function of the 
total number of nodes and the number of overloaded nodes. 

To simplify the analysis, we assume that only U- or V- 
state nodes exist in the system. We will show later that this 
analysis can be easily extended to the case with F-state nodes. 
The conditions that result in no task collision are stated in the 
following two lemmas. 

LEMMA 1. If at most two nodes in a Q2 are overloaded, there 
will be no task collision in the Q2. 

PROOF. If there is only one overloaded node in a Qz, this node 
will transfer an overflow task to its most preferred node 
which is underloaded. If there are two overloaded nodes in 
the Q2, these two nodes will both select their most or second 
preferred nodes to be the receivers. In either case, no task 
collision will occur according to Theorem 1 .  U 

Note that without using a preferred list, there is a 50% 
chance that two overloaded nodes will simultaneously transfer 
tasks to the same underloaded node in a Q2, thus resulting in 
one task collision. Let N = 2" and k be the number of over- 
loaded nodes in a Qz. From Lemma 1, the number of ways 
these k overloaded nodes can be distributed in the system 
without resulting in any task collision is: 

N / 4  ) ( 4 ) k - z i ( i ) i  
N / 4 - k + i ,  i, k - 2 i  1 

i = O  

For convenience, let A(N, k )  = 

k-2i i N / 4  
r w  

A ( N 9 k ) =  ( N / 4 - k + i ,  i, k-2i)(?) (4) ' 

i=O 

Equation (1) can be explained as follows. Let x and y be the 
numbers of Qzs in an n-cube that have one or two overloaded 
nodes, respectively. Then, x + y I 2"2 (= N/4) and 2x + y = k 
when k I 2"' for x = 0, ..., rk/21, y = k - 2x. The number of 
ways of distributing k overloaded nodes in the system without 
causing any task collision is the same as that of choosing x + y 
Q2s out of the total number of Q2s (N/4) in a Q,,, thus yielding 

the (:!:) term in (1). Since there are many possible combi- 

nations of x and y, we need to sum them. Furthermore, the 
number of ways of assigning the overloaded nodes to the se- 
lected Qzs is obtained from the binomial formula, thus giving 

the [i)k-2i[i)i term in (1). 

LEMMA 2. Ifall four nodes in a Q2 are overloaded but none of 
the nodes in its most preferred Q2 is overloaded, no task 
collision will occur to this Q2. 

PROOF. Even if all four nodes are overloaded in a Q2, each of 
them will find a receiver from its most preferred Qz. Since 
none of the nodes in the latter Q2 is overloaded, no task 
collision will occur. U 

From Lemma 2, the number of ways k overloaded nodes can 
be distributed over N nodes without any task collision is 

where 1 is the number of groups each with four overloaded 

nodes, N' = N - 81, and k' = k - 41. The first term ( N i 4 )  in 

(2 )  is the number of ways of selecting overloaded Qzs out of 

I 
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the total N14 Qzs. The rest of overloaded nodes, k’ = k - 41, can 
be distributed among the rest of nodes, N ’ = N - 81, as shown 
in (1). 

Combining ( I )  and (2 ) ,  the probability, PO, of no task colli- 
sion given Nand k, can be calculated by: 

where N’ = N - 8t, k‘ = k - 41. 

THEOREM 3 .  At least three nodes must be overloaded to result 
in task collisions, and these three nodes must include a 
node, and both its first and second preferred nodes; other- 
wise, no task collision will occur. 

PROOF. If the number of overloaded nodes is less than three, or 
if there are three overloaded nodes distributed over at least 
two different Qzs, then no collision will occur according to 
Lemma 1. If all three overloaded nodes reside in the same 
Q2, one can show that these three nodes must include a node 
and both its first and second preferred nodes, and in such a 
case, a task collision will always occur. 
Since there is no duplication of nodes in a preferred list, a 
node and its first and second preferred nodes must all be 
different. Since there are only four different ways to choose 
three out of the four nodes in a Qz, each of these choices 
must include a node and its first and second preferred 
nodes. 
The last part of this proof is to show that if a node and its 
most and second preferred nodes are overloaded, a task 
collision will always occur. According to Definition 2, the 
most and second preferred nodes of N, are ... io 0 IO 
and iLl iC2 ... io 0 Z1. Since all these nodes are overloaded, 
each of them will try to transfer a task to an underloaded 
node in its preferred list. It is easy to show that N, will trans- 
fer an overflow task to node iCliC2 ... io 0 12, while node i, 
l in_2 ... io 0 Io (Nf’s most preferred node) will transfer an 
overflow task to node i,lin-2 ... io 0 IO 0 ZI, and node ifl-]in-2 
... io 0 ZI (N,’s second preferred node) will transfer an over- 
flow task to node in-liL2 ... io 0 ZI 0 ZO. Since IO 0 I1 = 
ZI 0 Zo, the most and second preferred nodes of Nf, will si- 
multaneously transfer tasks to the same node i,lin_z ... io@ ZO 
0 I ] ,  thus resulting in a task collision. U 

COROLLARY 1. If the number of overloaded nodes is greater 
than three and includes the pattern described in Theorem 3, 
task collisions will always occur; otherwise, no collision 
will occur. 

Task collision will occur with the following patterns of 
overloaded nodes, or combinations thereof 

Pattern 1 : three overloaded nodes in a Q2 

Pattern 2: four overloaded nodes in a Q2 whose most pre- 
ferred Q2 has one overloaded node 

==> one task collision. 

==> one task collision. 
Pattern 3 :  four overloaded nodes in a Q2 whose most pre- 
ferred Q2 has two overloaded nodes 

==> two task collisions. 

Given Nand k, the probability of resulting in a task collision 
is given by 

where N ’  = N - 4, N ”= N - 8, k ’= k - 3 ,  and k “= k - 5. 
The first (second) term in (4) is the number of ways to select 
one Q2 out of the total N14 Q2s and distribute three (four) 
overloaded nodes in this Qz times the number of ways to dis- 
tribute the rest of overloaded nodes without any task collision. 
Since three, five, and six overloaded nodes are required in 
patterns 1 to 3 ,  respectively, the assignment to each of these 
patterns will consume a corresponding number of overloaded 
nodes (three, five, or six) out of the total number of overloaded 
nodes in the above equation. 

When two or more task collisions occur, all combinations of 
these patterns need to be considered. For example, C collisions 
can result from any combination of a groups of pattern 1, b 
groups of pattern 2, and c groups of pattern 3 ,  such that a + b 
+ 2c = I, and a, h, c E (0, 1, ..., 4 .  Given Nand the number, I, 
of collisions, the following algorithm determines the total 
number of combinations of these patterns. 

For t,,, = 1 to 1 do 

for i = 0 to do 

for j = tre, - 2i to 0 do 
Patternl <- j ;  
Pattern2 <- tre, - 2i - j ;  
Pattern, <- i; 
No,,, <- Patternl X 3 + Pattern2 x 5 + 
Pattern? x 6 ;  
j <- j - 1; 

enddo 
i < - i + l  

end-do 
end-do 

Although many combinations of the above three patterns 
can result in the same number of task collisions, they may re- 
quire a different number of overloaded nodes which was given 
as Never in the above algorithm. Once combinations of these 
patterns are determined, the probability of resulting in L task 
collisions, denoted by Pc, can be calculated by: 

c( a )( b )( c )( a,b,c 
N l 4  N / 4 - ( 1  N l 4 - u - b  u + b + c  , , (N, ,kT)  

( 5 )  nllo,b.c p ,=  

where 1 = 1, ..., tre,, N ’= N - 44 and k ’= k - No,,,. 
It should be noted that in the above analysis only U- and 

V- state nodes are considered. Equations (4) to ( 5 )  can be 
easily modified to derive task collisions in the presence of F- 
state nodes. Let f and k be the number of nodes in F- and V- 

I 
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state, respectively. One can add f to k as the total number of 
V-state nodes and apply (5).  The actual number of task colli- 
sions will be [Wf  + k>I2 times Equation (5) ,  because a task 
collision will occur only when two V-state nodes simultane- 
ously send tasks to the same U-state node. 

0 Pi(k) : probability of i task collisions when there are k 

0 pd') : probability for the ith overloaded node to find an 
overloaded nodes 

underloaded node within five probes. 

A. Probing Policy 

IV. COMPARATIVE PERFORMANCE EVALUATION 

The performance of the PLSC location policy is compared 
against the SP location policies, such as the probing, bidding, 
and drafting algorithms. In order to show the advantages of 
PLSC location policy, a similar approach without using the 
preferred list, called random selection, is also considered. The 
random selection3 policy is exactly the same as the proposed 
location policy except that it does not use preferred lists. Since 
each node collects, via state-change multicasts, the state in- 
formation of other nodes in its buddy set, a V-state node can 
randomly select one of the U-state nodes and transfer an 
overflow task to that node. Note that this is a typical location 
policy when a node's LS is restricted to its neighboring nodes. 
Moreover, the performance achieved from this method can be 
used for comparison with the approach of using the preferred 
lists. Under the probing policy, on the other hand, a V-state 
node will randomly probe the nodes in its buddy set to find a 
receiver. The V-state node will transfer an overflow task to the 
node it probed if it happens to be underloaded; otherwise, it 
will repeat the probing process with another node, up to a total 
of five probes. The reason for using up to five probes is based 
on the finding in 181. The buddy set size is chosen to be 10, 
since the performance improvement by increasing the buddy 
set size beyond 10 was shown to be insignificant [7]. 

In the bidding algorithm, a V-state node will broadcast a 
request-for-bid message to all other nodes, and U-state nodes 
will reply with their bids. If every U-state node replies with 
the same bid, the V-state node will randomly accept one of the 
bids received-which is similar to the random selection policy. 
However, if U-state nodes have different load states (so dif- 
ferent bids), the U-state node with the least workload (highest 
bid) will be selected by all V-state nodes, so some of the 
transferred tasks have to be retransferred if the total number of 
overflow tasks received exceeds the capacity of this U-state 
node. In the drafting algorithm, two more messages will be 
exchanged between the U-state and V-state nodes to avoid 
"dumping" overflow tasks to the same U-state node. That is, 
the U-state node can inform the rest of V-state nodes of its 
refusal (in being their receiver) when it moves into state F, 
thus avoiding the need of task retransfer. 

The coordination problem is analyzed when V-state nodes 
are randomly distributed in the system. It is necessary to intro- 
duce the following notation: 

Under this policy, an overloaded node randomly probes up 
to five nodes and transfers an overflow task to the first under- 
loaded node found during the probing process [8]. Since the 
number of messages exchanged in the probing policy is inde- 
pendent of the physical location of the nodes involved, this 
policy works best when the entire system is probed. 

Our goal is to guarantee each V-state node to find a U-state 
node when the number of overloaded nodes is not greater than 
that of underloaded nodes in the system. To meet this goal, 
whenever a U-state node accepts an overflow task, it will ref- 
use, even if it is still underloaded, to accept any more overflow 
tasks unless it is instructed otherwise. If a V-state node cannot 
find a U-state node which has not yet received any overflow 
task within five probes, it  can either process this task locally or 
transfer this task to one of the U-state nodes which had al- 
ready accepted an overflow task. In either case, a task collision 
is considered to have occurred in our model. The probability 
that each of k, overloaded nodes can find an underloaded node 
is given by: 

+ k  - j  N-f-k,? 

Pd') = c 5[fi+7] j = l  N - i  
i=l 

i-l f +k,s - j + m - l  N- f -k,T - m + l  
P d " ' ) = i [ F  N - j  ] N-i 

i=l 

for m = 1, ..., k,. Then the probability, P,, ( kJ ,  of c, = m(l I m 

I k,J can be calculated as: 

i=l 

(7) 

Although &=E: iPi(k,J can be calculated with (6), the 

nested summations in these equations require a prohibitive 
amount of computation. The required computation can be re- 

f :  total number of fully loaded nodes in the system 

0 kh : average number of overloaded nodes in a buddy set 
o o: size of a buddy set 

k, : total number of overloaded nodes in the system I = ]  

(<) c, : (average) number of task collisions duced significantly if there is one representative, approximate 
value (e.g., average value) for all PJ')s. Equation (6) can then 
be simplified as 3. Among underloaded nodes. 
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for i = 1, ..., k,T. To get a better approximate, j can be set to 
k.42, or Pi’) can be replaced by the average value of all these 
terms. Comparison between the approximate and simulation 
(exact) results for 6- and 8- cubes is summarized in Table I. 
The approximation with the average value is shown to be close 
to the simulation results except when the number of over- 
loaded nodes reaches N12. In such a case, the median-value 
approximation works better. One explanation of this result is 
that when the number of overloaded approaches Nl2, the last 
few overloaded nodes are almost impossible to find under- 
loaded nodes, because most of the underloaded nodes are 
marked as unavailable after they were probed by the over- 
loaded nodes. Thus, using the average value to represent the 
collision probability for every underloaded node will increase 
the collision probability. Note that even when the number of 
overloaded nodes is approaching Nl2, for most overloaded 
nodes it is still possible to probe another underloaded node 
unless most of the underloaded nodes have already been 
probed and labeled as unavailable. So, the median-value works 
better than the average value when the number of overloaded 
nodes approaches N12. 

Although (6 )  is derived in a sequential manner, it gives the 
same result as when all overloaded nodes execute the probing 
procedure in parallel. Suppose an underloaded node receives 
more than one probe at the same time, then this node should 
reply to only one probe when it is in U-state, whereas it must 
reply to all other probe requests when it is in F- or V- state; 
otherwise, this node may receive more than one overflow task 
and become overloaded. So, although different nodes run the 
probing procedure concurrently in practice, the probability of 
probe collisions remains the same as the case when the probing 
is done sequentially by the V-state nodes. 

B. Random Selection 

Under this policy, an overloaded node randomly selects one 
of the underloaded nodes within its buddy set. A collision will 
occur only when the buddy sets of two overloaded nodes 
overlap. Since this method is considered only to show the ad- 
vantages of the PLSC location policy, the candidate receiver 
nodes are assumed to be in the same buddy set. So, the first 
step is to determine the intersection of two buddy sets. Accord- 
ing to [7], buddy sets of 10 to 15 nodes yield good results, and 
thus the intersection of any two nodes’ buddy sets can be ap- 
proximated under the assumption that each node’s buddy set is 
formed with only its immediate neighbors. 

THEOREM 4. The number of ways the buddy sets of any two 

nodes overlap is [t), and there are only two nodes in the 

intersection of the two overlapping buddy sets. 

PROOF. If the buddy set of a node is composed of only its im- 
mediate neighbors, then the nodes in a node io’s buddy set 
can be determined by io 0 I,, (0 I p I n - 1) according to 
Definition 2 .  The buddy sets of nodes io 0 Ij  0 Zk (0 Ij I n 

- 1 andj  + 1 I k 5 n - 1) will overlap with node io’s buddy 
set when p = j or p = k, because (io 0 Ij 0 4)  0 I k  = io 0 Zj. 

So, there are a total of [;) ways two buddy sets overlap, and 

there are only two nodes in their intersection, Le., when p = 
j and p = k. U 

TABLE I 
TASK COLLISIONS UNDER THE RANDOM PROBING POLICY 

\ Eval. methods 

Overloaded n o A  

\ 
2 

6 

10 

14 

18 

22 

26 

28 

30 

32 

, Eval. methods 

\\ 

Overloaded nodes , 

10 

20 

40 

70 

80 

90 

100 

110 

120 

125 

simulation 

0.000 

0.000 

0.007 

0.074 

0.293 

0.997 

2.532 

3.710 

5.288 

7.252 

approximation 

(median) 

0.0000 

6.573e-05 

0.0038 

0.0419 

0.2271 

0.7773 

1.7381 

2.6857 

4.4459 

6.9511 

N = 64 

simulation 

0.000 

0.001 

0.027 

1.070 

2.354 

4.653 

8.323 

13.803 

21.625 

26.348 

approximation 

(average) 

0.0000 

6.573e-05 

0.0038 

0.0419 

0.2297 

0.8709 

2.5484 

4.0582 

6.3214 

9.5599 

i approximation approximation 

(median) 

3.131e-06 

0.0004 

0.0318 

0.8793 

1.6096 

3.2155 

6.5668 

11.8384 

20.1099 

25.4312 

(average) 

3.131e-06 

0.0004 

0.0318 

1.0298 

2.3334 

4.7855 

9.1233 

16.3212 

27.7301 

35.5508 

N = 256 

THEOREM 5. The number of ways the buddy sets of k nodes 
overlap is 2(n - k + I )  for k = 3, . . ., n, and there is only 
one node in the intersection of these k buddy sets. 

PROOF. From Theorem 4, if the buddy sets of k nodes overlap, 
these nodes must contain a node io and the nodes which are 
two hops away from node io. One can choose the first k - 1 
nodes as io, io 0 I,, 0 I,, io 0 I,, 0 Zb, ..., and io 0 I,, 0 IJ, 
where a,  b, ..., x, and p are distinct integers between 0 and 
n - 1 (both 0 and n - 1 inclusive). Then these k - 1 nodes 
will have a common node, io 0 I,,, in their buddy sets. There 
are n - k + 1 other nodes, io 0 I,, 0 Zk, 0 I k I n - 1, k # p ,  

1 
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-. Eval. methods 

'.\ 
.. 

Overloaded node\ 
10 
20 
40 
70 
90 
100 
110 
120 
125 

a, b, ..., x, whose buddy sets contain the same node, io 0 I,,. 
So, there are n - k + 1 ways the buddy sets of k nodes inter- 
sect at node io 0 I,,. Similarly, one can show that there are n 
- k + 1 nodes, io 0 I, 0 Ik, 0 I: k I: n - 1, k # q, a, b, ..., x, 

whose buddy sets intersect, at node io 0 I,, those of nodes 
io, io 0 I, 0 Ia, io 0 I, 0 I,, io ... , and io 0 I, 0 Ix,  where p # 

q. So, there are 2 (n  - k + 1) ways the buddy sets of k nodes 

Once the intersection of buddy sets is determined, one can 
calculate the average number of collisions when an under- 
loaded node is selected each time in a buddy set as: 

overlap. U 

simulation 

0.184 
0.793 
3.489 
11.469 
20.503 
25.947 
32.705 
40.113 
44.314 

-1 1 
(9) I) 

1 
where cz = (T) / N, c, = c,-~ x G, 3 I: j I: o. Note that if 

buddy set size is greater than the hypercube's dimension, a 
node's buddy set must contain nodes which are two or more 
hops away. Even in such a case, the above equation can be 
used to get approximate results, or the coefficients c,s need to 
be adjusted to get the exact value of c,. Again, it should be 
noted that in the above analysis only U-state and V-state 
nodes are considered. One can follow the same procedure de- 
scribed at the end of Section I11 to calculate the task collisions 
in the presence of F-state nodes. Table I1 shows the numbers 
of task collisions obtained from the simulation and calculated 
by using (9). 

C. Bidding and Drafting Algorithms 

In the bidding algorithm, an overloaded node will request 
bids from all underloaded nodes, and it will choose a node 
with the least workload. Since no task can be transferred be- 
fore a bid is accepted and acknowledged, no task collisions 
will result in this method. However, if there are more than one 
overloaded node in the system, a large number of requestheply 
messages will be generated in order to pair each overloaded 
node with a different underloaded node. So, we will use the 
total number of messages generated in the bidding algorithm to 
compare it with the SC and SP policies. 

Let U,, and V, be the number of underloaded and overloaded 
nodes at time t ,  and m be the total number of messages gener- 
ated in the bidding process. To simplify the analysis, we re- 
strict that the overloaded nodes can transfer only one task at a 
time. Thus, if an overloaded node with v tasks to be trans- 
ferred, it needs to get v acceptable bids in v different rounds. 
Similarly, an underloaded node will accept one task in each 
round, and each underloaded node may have a different ca- 
pacity before becoming fully loaded. Let T, be the total num- 
ber of overflow tasks in the overloaded nodes and Tu be the 
combined capacity of all underloaded nodes. Since LS works 
best when the system is lightly to medium-loaded, without loss 
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of generality, we can assume Tu > T,. 

TABLE I1 
TASK COLLISIONS UNDER THE RANDOM SELECTION POLICY 

. Eval. methods 

Overloaded n o d A  
2 
4 
6 
10 
14 
18 
22 
26 
30 
32 

\ simulation 

0.021 
0.100 
0.248 
0.797 
1.651 
2.919 
4.677 
7.034 
9.944 
11.605 

approximation 

0.0161 
0.0988 
0.2527 
0.7934 
1.6821 

2.9700 
4.7178 
6.9956 
9.8844 
11.5857 

Y = 64, buddy set=lO. 

approximation 

0.1809 
0.7849 
3.4081 
11.5345 
20.3685 
26.0039 
32.5518 
40.0947 
44.266 

iifference (%) 

- 23.2 
- 1.1 

1.9 
- 0.4 

1.8 
1.7 
0.9 

- 0.5 
0.6 

- 0.2 

difference (%) 

- 0.3 
- 1.0 
- 2.3 

0.6 
- 0.6 

0.4 
- 0.5 
- 0.1 
- 0.1 

N = 256, buddy set=lO 

The total number of rounds necessary for the bidding proc- 
ess is then T,. The total number of requestheply messages is 
calculated as follows. In the first round, U,, + V, broadcast 
messages will be generated and at the end of the first round U,, 
and V, may remain unchanged or reduced by one. Similarly, in 
the second round, U ,  + V,, or U, + V,, - 1, or U ,  + V, - 2 
broadcast messages will be generated and at the end of the 
second round, U,, and V,, may remain unchanged or reduced by 
one. In the last round, only two messages (in the best case) will 
be generated and T, will become zero. So, we have the follow- 
ing equations. When T,, = V,, 

L 

When Tu > T, > V,,, 

or 
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In (1 1) and (12), the actual value of m depends on the dis- 
tribution of the overflow tasks. When all the overflow tasks 
reside in one overloaded node, m is equal to an upper bound of 
(12). If the overflow tasks are evenly distributed among the 
overloaded nodes, m is close to a lower bound of (1 1). 

In the drafting algorithm, underloaded nodes will initiate the 
drafting process and the procedure is the same as the bidding 
algorithm. Thus, the total number of messages generated in the 
drafting process can also be derived from (10) to (12). Note 

nodes is close to 0.5 N, the number of collisions of the pro- 
posed location policy with preferred lists is about 30% of that 
of the random selection policy and 60% of that of the probing 
policy. When there is no F-state node, the probing policy per- 
forms as well as the preferred-list policy except when k ap- 
proaches Nl2. However, when the number of F-state nodes 
increases, the task collisions resulted from probing increase 
much faster than the preferred-list policy. As shown in Fig. 7, 
the probing results in more collisions than the preferred-list 

that the actual number of m derived from (10) to (12) depends policy in all cases. 
on the actual distribution of the overflow tasks and the capac- 
ity of underloaded nodes. Thus, although m can be derived 
from these equations for both bidding and drafting algorithms, 
the actual value of m in the drafting algorithm will be much 
smaller than that of the bidding algorithm, as discussed in [ 1 I]. 
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Fig. 5. Comparison of different location policies for N = 256. 

D. Comparison of Performance of Different Location 
Policies 

The performances of different location policies are com- 
pared in terms of the number of task collisions, number of 
rounds to offload overflow tasks, and communication over- 
head. A Q8 is used for this comparison. 

The numbers of task collisions under the preferred list, ran- 
dom selection, and probing policies are plotted in Figs. 5-7. 
Generally, the number of task collisions increases with the 
number of overloaded nodes in all of the three location poli- 
cies. When the number of overloaded nodes is less than 0.15 
N, there is no significant difference in the number of collisions 
among the three. However, when the number of overloaded 

10 20 30 40 50 60 70 80 90 100 110 

Number of overloaded nodes 

Fig. 6 .  Task collisions in three location policies (fully loaded nodes = 50) 

It is important to observe that use of preferred lists requires 
no extra state information as compared to the random selection 
policy, but the number of task collisions resulting from the 
latter policy is more than three times that of the proposed pol- 
icy. This result indicates the importance of coordinating over- 
loaded nodes to locate underloaded nodes, which has been 
overlooked in existing local LS methods. 

Task collisions under the probing policy are another inter- 
esting issue. The number of collisions is found to increase as 
the number of probes decreases. When only two (instead of 
five) probes are used, this policy results in even more colli- 
sions than the random selection policy. The number of colli- 
sions can be reduced by increasing the number of probes, 
which, in turn, increases the probing delay. (Note that two 
messages, one request and one reply, need to be exchanged for 
each probe.) Since an overloaded node cannot transfer an 
overflow task before locating an underloaded node, the prob- 
ing delay will prolong the completion of the tasks to be trans- 
ferred. It is shown in [8] that the delay resulting from using 
more than five probes outweighs the benefit that might be 
gained by transferring a task from an overloaded node to an 
underloaded node. 
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Fig. 7. Comparison of the number of rounds needed to offload the surplus 
tasks in three location policies. 
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The advantage of using preferred lists becomes more pro- 
nounced as the system gets congested. To see this tendency 
more clearly, suppose overloaded nodes are concentrated in an 
area forming a hot region. Table I11 shows the case when every 
node in a subcube is overloaded, where one to two Q4s and 

one to four QSS are considered in 6- and 8- cubes, respectively. 
An interesting result can be found in Table 111: Both the ran- 
dom selection and probing policies result in more collisions 
than the case when overloaded nodes are randomly distributed 
throughout the system. This indicates that both the random 
selection and probing policies cannot handle the congestion 
problem effectively. Unsurprisingly, the location policy with 
preferred lists has resulted in no collision at all in these cases, 
because if all the nodes in a subcube are overloaded, they will 
transfer their overflow tasks to the underloaded nodes in an- 
other subcube, thus eliminating the possibility of task collision. 

TABLE IV 
THE NUMBER OF TASK COLLISIONS IN OVERLOADED BUDDY SETS 

N = 64 

Average number of task collisions 

Strategies 

random selection 

random probing 

ureferred lists 

I random probing 14.11 

ureferred lists 1 t:,": 1 :::: 1 8.0 I 
In Table IV, overloaded nodes are assumed to be concen- 

trated in one to four buddy sets ("overloaded buddy sets"), 
where the address of the node whose buddy set is overloaded 
is given at the bottom row. Two collisions will always result if 
every node in a buddy set is overloaded. The first collision 
occurs, because the node with the overloaded buddy set will 
not be able to find any underloaded node to transfer an over- 
flow task. A second collision occurs due to the nodes in the 
overloaded buddy set as proved in Theorem 3. The location 
policy with preferred lists always results in less task collisions, 
except for one overloaded buddy set under the random probing 
policy which results in slightly less collisions. Note that in case 
the system is congested, (9) needs to be adjusted to calculate 
the number of task collisions under the random probing and 
selection policies, because these equations are derived under 
the assumption that the overloaded nodes are randomly dis- 
tributed throughout the system. 

1 
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Fig. 8. Comparison of the number of tasks transferred in different location 
policies. 

The number of rounds used to offload the overflow tasks is 
plotted in Fig. 7. It is clear that the preferred-list policy re- 
quires the least number of rounds when k > 40. The number of 
tasks actually transferred is plotted in Fig. 8 as a function of k .  
It should be noted that in both the probing and drafting algo- 
rithms, there is no retransfer of “collided” tasks, so the number 
of actually transferred tasks is equal to the number of over- 
loaded nodes, assuming that each overloaded node has only 
one overflow task. Under all other policies the number of 
transferred tasks is always greater than the number of overflow 
tasks, but the preferred-list policy still performs best. 

Note, however, that it is not fair to consider only the num- 
ber of transferred tasks as the performance measure of a loca- 
tion policy, because under the probing and drafting policies 
many control messages need to be exchanged before transfer- 
ring each overflow task. So, it is desirable to compare the per- 
formance of different location policies based on a total number 
of messages exchanged as shown in Fig. 9. The time to transfer 
a task is assumed to be two, five, and 10 times of the time of 
exchanging a control message between U-state and V-state 
nodes. It is easy to see from Fig. 9 that the preferred-list policy 
results in the least number of messages. When the time to 
transfer a task becomes much longer than that of exchanging 
messages, the gap between the preferred list, probing and 
drafting policies decreases. It is found that as long as the time 
to transfer a task is not greater than 20 times of that needed to 
exchange messages, the preferred-list policy will result in less 
communication delay than all the other policies. 
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Fig. 9. Comparison of the number of messages exchanged in different loca- 
tion policies. 

In a recent paper by Shivaratri and Krueger [16], two adap- 
tive probing methods were proposed to reduce the number of 
probes in the SP method by keeping the probe history of other 
nodes. These methods can reduce the number of probes when 
the load state of the nodes in the system doesn’t change fre- 
quently. When the number of overloaded nodes approaches 
50% of the total number of nodes, these methods will perform 
very similar to the random probing, because the past probe 
history may not reflect the actual load state of the nodes at all. 

V. CONCLUSION 

We proposed and analyzed a new PLSC location policy for 
load sharing in hypercube-connected multicomputers based on 
state-change multicasts in each buddy set. The coordination 
and congestion problems are solved by systematically generat- 
ing and then equipping preferred lists with each node. The 
proposed location policy is shown to minimize the number of 
task collisions, and its superiority to other location policies 
becomes more pronounced when one or more hot regions are 
formed in the system. 

One potential application of the LS with the proposed loca- 
tion policy is the distribution and/or redistribution of tasks to 
meet timing constraints. Since each underloaded node will 
accept at most one task at a time from an overloaded node in 
our task collision model, a transferred task can be completed 
before its deadline with a high probability. However, the pro- 
posed algorithm which generates preferred lists only works on 
hypercube topology, it is desirable to generalize this algorithm 

1 
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for other interconnection topologies. For example, on a bus 
connected distributed system, such as the Ethernet, a binary 
address code can be assigned to each node. Then, the same 
algorithm can be used to generate the preferred lists and buddy 
sets to resolve the coordination and congestion problems. 
Generalizing this algorithm to other topologies is a worthy 
problem and warrants further investigation. 
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