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Abstract - Multicast is a fundamental issue in distributed 
computing and networking, especially for recent applica- 
tions such as audio and video transmission. The min- 
imal cost route selection problem for multicasting is an 
NP-complete problem even for regular network topologies 
such as meshes and hypercubes. We therefore present a 
simple heuristic algorithm for multicast route selection in 
arbitrarily-connected point-to-point communication net- 
works. Several other heuristics have been presented for 
finding the minimal multicast route, but most of them are 
global in the sense that the source uses global cost in- 
formation to  construct a multicast tree. Our algorithm 
does not require the use of global cost information; it uses 
cost information only from neighboring nodes as it pro- 
ceeds which makes it more practical from an implementa- 
tion point of view. The performance of the algorithm is 
analyzed through empirical comparisons and is shown to 
perform a well against algorithms which use global infor- 
mation. 

I. INTRODUCTION 
The recent emergence of multimedia and cooperative 

computing in distributed systems provides a new incen- 
tive to system designers to include support for multicast, 
or one-to-many, communication. In this mode of commu- 
nication, a single source node in a system sends identical 
messages to  multiple destinations. Single-destination (uni- 
cast) messaging and broadcast to the entire network are 
both special cases of multicast. 

A fundamental issue in multicast communication is 
the determination of an efficient message route, commonIy 
known as multicast routing. A widely-used approach in 
solving the multicast routing problem requires tree con- 
struction. Popularity of the tree-based approach arises due 
to the ability to  potentially share many links in transmit- 
ting the message to  the destination set. Also data repli- 
cation is minimized; messages must be replicated only at 
forking nodes. This is in contrast to multicast achieved 
through multiple unicast operations, requiring a copy of 
the message for every operation. 

Regardless of the method used to construct the mul- 
ticast tree, most algorithms attempt to optimize tree con- 
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struction for minimal cost. Total tree cost is generally de- 
fined as the sum of costs of all edges in the multicast tree. 
The problem of finding the least cost tree is the Steiner 
tree problem in graphs. It is formulated as follows [l]: 
GIVEN: 

An undirected network G = (V, E ,  c )  and a nonempty set 
of destinations D ,  where V and E are the set of vertices 
and edges of the network, respectively, and c is a cost 
function associated with each edge in G. 

A subnetwork T G ( D )  of G such that: 
i) there is a path between every pair of nodes in D c V ,  

and 
ii) the total cost, CeETG(D) c ( e ) ,  is minimized over all 

possible trees. 

The vertices included in the final solution that are 
not members of D are called Steiner nodes. Finding a 
Steiner tree is known to be NP-complete in the most gen- 
eral case [2]. Due to the wide application of Steiner trees, 
however, several heuristic algorithms have been developed 
which construct near-optimal multicast trees. Many of 
these suffer the drawback that the source node must main- 
tain global cost information for the entire network [3-51 
which may be impractical from an implementation stand- 
point. 

It is important, therefore, to have the ability to con- 
struct good (i.e., near-optimal) Steiner trees without using 
global information. We present a simple heuristic algo- 
rithm to construct a multicast tree using local information 
at each node. It is shown through empirical comparisons 
that the algorithm produces results near those of global 
algorithms. 

The remainder of this paper is organized as follows. 
Section I1 presents a brief overview of several heuristics for 
the Steiner tree problem applicable to multicast routing 
in point-to-point communication networks. Our localized 
heuristic algorithm is described in detail in Section 111. 
Section IV presents results of simulations to gauge the per- 
formance of the algorithm against the optimal Steiner tree 
solution as well as other representative heuristics. Finally, 
the paper concludes with Section V. 

FIND: 

11. HEURISTICS FOR MULTICAST 
ROUTING 

Since the performance of a distributed system de- 
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pends greatly on the e@ciency of the message routing 
method, the Steiner tree problem is especially relevant. 
Karp [2] showed, however, that finding a Steiner tree in 
an arbitrary graph with arbitrary costs is an NP-complete 
problem. Furthermore, the problem remains NP-complete 
even in the cases where all edge costs are equal, the graph 
is bipartite, or the graph is planar. It is strongly NP- 
complete if rectilinear distances on a plane are used to 
represent cost, and strongly NP-hard if Euclidean distance 
in a plane is used. There are, however, some special cases 
of the rectilinear Steiner tree where polynomial time algo- 
rithms are available [6]. Finding a minimal multicast tree 
in parallel computers with regular topologies, such as 2-D 
meshes and hypercubes, is also an NP-complete problem 
[ 5 ] .  Several exact algorithms for solving the Steiner tree 
problem are available, though with exponential complexity 

As a result of the exponential complexity of exact al- 
gorithms, many heuristic algorithms have been developed, 
a few of which are discussed below. For a more complete 
survey of existing heuristics and exact algorithms, readers 
are referred to  papers by Winter [9,10] and Salama [ll], 
and the text by Hwang e t  al. [I]. 

One of the most widely-recognized heuristics is the 
KMB algorithm [3] which belongs to the class of algorithms 
known as distance network heuristics. It consists of finding 
the distance network for the source, s ,  and all U E D.  
This is a graph whose edges are the minimum distances 
(costs) between each pair of nodes. Then some minimum 
spanning tree (MST) algorithm (e.g., Prim [12]) is run on 
this network to  find the MST of the distance network. This 
tree, T’, is then mapped back into the original network 
such that each edge of To is replaced by the corresponding 
shortest path in the original network, G. Finally, an MST 
is found in the subnetwork induced by To in G and pruned 
to remove all nodes U with degree 1 where U 6 { D ,  s } .  

Two other “classic” algorithms are the shortest path 
heuristic (SPH) [13] and the average distance heuristic 
(ADH) [14], each of which claim slightly better perfor- 
mance than KMB. The SPH algorithm works simply by 
starting with the source and adding to the tree, Ts, a 
shortest path to the next closest node in the destination 
set until all nodes in D have been reached. It is possible to 
improve the algorithm by finding an MST in G using the 
vertices of Ts, similar to the last steps of the KMB algo- 
rithm 1141. ADH incrementally connects subtrees together 
through a central (Steiner) node by a shortest path. The 
algorithm begins with Is1 + ID1 subtrees of one node each 
and the central nodes are chosen through an appropriate 
meamre that appears in several forms in the literature. 

Another, more recent, approach to multicast routing 
is to address the potentially dynamic nature of multicast 
connections. The idea is to reduce the cost of recomputing 
new trees each time a node is added to or deleted from 
the destination set assuming relatively frequent additions 
and deletions. One method, called na.ive multicast rout- 
ing simply finds a shortest path from the source to each 

~ 1 ,  7,81. 

destination to be added and uses the nodes in the route 
as Steiner nodes. Performance is claimed to exceed that of 
KMB [15]. The weighted greedy algorithm uses a weighted 
function to add a new node to the multicast tree via a 
shortest path either from the source or another node al- , 

ready in the tree, depending on the weighting [16]. It is 
also noted, however, that performance is substantially de- 
graded after several modifications to the destination set 
without full reconfiguration of the multicast tree. 

In light of the interest in developing multicast pro- 
tocols for multimedia-type applications such as audio and 
video transmission, some attention is now given to rout- 
ing algorithms that, can meet the time constraints inherent 
in these types of applications. The constrained multicast 
tree algorithm [4] hllows the basic steps of the KMB algo- 
rithm while restricting addition of nodes to those which do 
not cause deadline violations. The Tenet group proposed 
the constrained Bellman-Ford algorithm [17] which finds 
independent shortest paths from a source to a set of des- 
tinations until the longest constraint is violated. Shortest 
paths are based on the Bellman-Ford single-source shortest 
path algorithm [IS]. 

The two delay-constrained algorithms mentioned 
above require global information at the source to make 
decisions based on costs of links throughout the network. 
In a large network t,his may be impractical, and as a result, 
local algorithms are necessary to improve the feasibility of 
multicasting in a large network. The nearest neighbor algo- 
rithm, for example, transfers the message from the source 
to the destination closest to i t ,  along with the responsi- 
bility for all other destinations. This process is continued 
until all destinations have received the message [19]. Note 
that although routing responsibility travels with the mes- 
sage, it may still be necessary to maintain widespread cost 
information. 

In this paper we present an algorithm that uses only 
local cost information a t  each node. Each node uses a 
greedy strategy to incrementally build the multicast tree 
that is based on lowest cost among incident links. The per- 
formance of the algorithm is similar to some of the classic 
Steiner tree heuristics described above. The simplicity of 
the algorithm, which will become apparent in Section 111, 
also highlights to its utility. 

111. A LOCALIZED MULTICAST ROUTING 
ALGORITHM 

The localized multicast (LMC) algorithm arises 
from the observation that Prim’s spanning tree algorithm 
[12] and Dijkstra’s shortest path algorithm [20] use essen- 
tially the same type of greedy strategy. The only difference 
between these two is the main subroutine embedded in the 
algorithms. If we modify this subroutine to distinguish 
between destination nodes and non-destination nodes, 
the result is a multicast tree routing algorithm which 
generalizes the methods of both Prim and Dijkstra. 
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Multicast (G, s, D )  
1 
2 d[v] = CO 

3 ~ [ v ]  = N I L  
4 d [s ]  = 0 
5 s=O 
6 Q = V  
7 whileQ # 0 do 
8 u=Pop-Min( Q) 
9 
10 
11 
12 i f v # S  
13 

for each vertex v E V do 

s = s U ( U }  

for each vertex v E Adj[u] 
if d[v] > I~(u)d[u] + w(u, U )  

d[v] = I D ( U ) d [ U ]  + w(u 
14 .[VI = U 

Fig. 1: Localized multicast routing algorithm 

A. Algorithm Details 
For our purposes, the communication network is 

modeled as an undirected graph G = (V, E) where V is 
a set of processor nodes and E is the set of communication 
links. We assume that the cost W ( U ,  U) is non-negative for 
each link ( u , ~ )  E E. Given a source s E V and a set of 
destinations D c V such that s @ D ,  a multicast route is 
a subtree of G rooted at s ,  which contains all nodes from 
D ,  and whose leaves consist of nodes from D.  

To distinguish nodes as being in the destination set, 
we define an indicator function, 1, as follows. 
Definition: Given a set D c V ,  the indicator function 
Io  : V c-) ( 0 , l )  of D is defined as I D @ )  = 0 if U E D ,  and 
l i f u @ D .  

The LMC algorithm, shown in Fig. 1, maintains a 
subset S of vertices whose path from the source has already 
been determined. It repeatedly selects the vertex U E V - 
S with the minimum key value d[u ] .  The key represents 
the shortest-path estimate from either the source or the 
destinations found so far. The selected vertex is inserted 
into S ,  and all edges leaving U are relaxed. We maintain 
a priority queue Q that contains all the vertices in V - S 
sorted by their d values. The pointer .[U] points to the 
parent node of u in the multicast tree. 

Lines 1-6 initialize the algorithm so that all nodes 
except the source have key values of infinity and parent 
nodes are yet undetermined. In addition, the priority 
queue Q is created and filled. The indicator function is 
used in line 11 so that the incremental distance is zeroed 
if U is a destination. That is, from a destination, the only 
cost incurred is the additional link cost, not the accumu- 
lated cost. This causes the destination node to behave 
like a new ‘source’. The reason for this is that any nodes 
reached from a destination node incur only an incremental 
additional cost since we must absorb the cost for reaching 
the destination anyway. The for loop in lines 10-14 relaxes 
the edges leaving the current node by adjusting the key val- 
ues and resetting the parents if necessary. The condition 
in line 12 ensures that cycles in the tree are avoided by 
preventing consideration of an adjacent node whose route 

has already been determined. Note that LMC constructs 
a spanning tree rooted at s for the whole graph G. A mul- 
ticast routing tree from s to D is obtained by trimming 
this tree so that all leaves are destination nodes. 

B. Algorithm Operation 
We provide a detailed example to  show how the LMC 

works. Figure 2(a) shows the initial network with costs 
on each edge that may represent delay or link congestion. 
The initialization steps are shown in Fig. 2(b) and Figs. 
2(c-g) show the progression of the algorithm, with each 
branch added to  the tree shown in boldface on the network 
diagram. The final multicast tree is shown in Fig. 2(h), 
along with its cost. Nodes A and G are Steiner nodes as 
they are not members of D.  In this particular example the 
LMC was able to find the minimal Steiner tree. 

IV. PERFORMANCE COMPARISON 

We find the primary advantages of the localized mul- 
ticast algorithm to be threefold. First, it is not necessary 
that each node know link cost information throughout the 
network, only that of its links to neighboring nodes. Sec- 
ond, the algorithm’s operation is simple. The multicast 
route is constructed by visiting each node once and per- 
forming a link relaxation operation before moving to the 
next node. There is no need to compute auxiliary trees 
(KMB) or shortest paths at once through the network 
(SPH, ADH). This simplicity makes LMC attractive for 
actual implementation. Finally, our results for several ex- 
ample networks show that LMC performs comparably to 
other algorithms that use global information. We chose 
the DNH, SPH, and ADH algorithms for comparison be- 
cause they represent the basic techniques adopted by the 
majority of existing multicast algorithms. 

In the example in Section I11 (Fig. 2) the LMC al- 
gorithm’s solution was equivalent to  those obtained by the 
SPH and ADH algorithms. These also turned out to be op- 
timal solutions. The KMB, based on the DNH algorithm, 
reached a solution that was suboptimal by one cost unit. 
Generally, DNH algorithms perform worse than ADH and 
SPH algorithms [14] but there is no dominance relation- 
ship between them. That is, it is possible to construct 
examples where each outperforms the others. 

A 9-node example is shown in Fig. 3.  Note that 
in this case all global algorithms produce the same cost 
tree. LMC is also able to match this performance. None, 
however, found the minimal cost tree. A representative 
network from a set of randomly generated graphs is shown 
in Fig. 4. Here, again, all the global algorithms were 
able to find equal cost solutions, although their particular 
routes were not identical. Note that the LMC algorithm 
found an equivalent solution, which turned out to be the 
optimal solution. 
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s = F  
D = { B ,  
d[F] = 0 

Q = { E  

3- 

pa 
0 

I O  

F 

A 
10 

U =  D d[D] = O  

s =  { F , A , E , H , G , D )  
d[C] = 3 .[C] = U 
Q = { C , B }  

Fig. 2: Example network and algorithm operation 
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s = A  
C L M C  = 12 

C D N H  = 12  
C A D H  = 1 2  

C s p H  = 12  

CopT = 11 

Fig. 3: Cost comparison of various heuristics (avg. node 
degree = 2.7) 

V. CONCLUSIONS 
In this paper we presented a simple localized algo- 

rithm, LMC, for multicast routing in arbitrary topology 
networks. The most important features of LMC are its 
treatment of destination nodes as new sources and the fact 
that at each route selection step, nodes need only query 
their incident links for cost information. The algorithm 
performs close to other well-known algorithms which em- 
ploy global cost information regarding the entire network, 
as illustrated through several examples. Although the per- 
formance of LMC may not be equal to that of global algo- 
rithms in all cases, it  is better suited to actual implemen- 
tation in networks requiring support for multicast commu- 
nication. 

Currently we are performing a more complete eval- 
uation of LMC, which will include a more formal presen- 
tation and proof of its operation. In addition, we plan to 
extend its utility to real-time applications such as audio 
and video transmission. In these applications the link cost 
could be cast as link delay or network congestion in order 
to reserve multicast bandwidth on real-time channels [21]. 
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