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Abstract 

This paper presents pp-mess-sim, an object-oriented 
discrete-event simulation environment for evaluating 
multicomputer networks. The simulator provides a 
toolboz of various network topologies, communication 
workloads, routing-switching algorithms, and router 
models. These router models can vary from high- 
level architectures t o  low-level specification of ac- 
tual devices. B y  decoupling individual parts of the 
code, pp-mess-sim enables independent code develop- 
ment and creates a flexible and extensible environ- 
ment for evaluating different aspects of network de- 
sign. Sample simulation experiments capitalize on this 
flezibility t o  compare routing-switching schemes under 
various application workloads. 

1 Introduction 

Message-passing multicomputers have emerged as 
a cost-effective platform for exploiting parallelism in 
applications. Multicomputers consist of processors 
joined by an interconnection network, where fast mes- 
sage exchange enables efficient cooperation between 
processing elements [l, 21. Router hardware connects 
an individual processing node to the interconnection 
fabric and manages traffic flowing through the node 
en route to other destinations. The router architec- 
ture greatly affects the ability of the interconnection 
network to deliver good communication performance 
to parallel applications. 

*The work reported in this paper was supported in part by 
the National Science Foundation under Grant MIP-9203895. 
Any opinions, findings, and conclusions or recommendations 
expressed in this paper are those of the authors and do not 
necessarily reflect the view of the NSF. 

Achieving good overall system performance re- 
quires matching application communication require- 
ments with a suitable network design. Networks can 
employ a wide range of topologies, routing algorithms, 
switching schemes, and flow control policies. Applica- 
tion characteristics directly impact these design deci- 
sions by determining the quantity and frequency of 
inter-node communication. While modeling provides 
a cost-effective way to explore design issues, analyti- 
cal models often impose simplifying assumptions that 
degrade the accuracy of the evaluation. On the other 
hand, monitoring an actual system can capture the 
effects of low-level design choices, but this restricts 
experimentation with different router policies since it 
can be prohibitively expensive and time-consuming to 
change these features. 

Instead, an extensible simulation environment can 
provide an extensible framework for evaluating multi- 
computer networks. While many simulation toolkits 
can flexibly model local and wide area networks [3], 
few simulators sufficiently capture the characteris- 
tics of multicomputer networks. In contrast to 
LANs/WANs, multicomputers typically employ reg- 
ular network topologies that facilitate efficient, flexi- 
ble routing schemes. Tighter coupling between nodes 
enables multicomputer designers to consider more di- 
verse switching schemes and flow-control policies. In 
addition, mapping concurrent applications across mul- 
tiple nodes generates unique communication patterns 
and requirements in multicomputer networks [4-61. 

This paper presents pp-mess-sim (point-to-point 
message simulator), a flexible simulation environment 
for evaluating multicomputer routers [7]. Imple- 
mented in C++, pp-mess-sim is an object-oriented 
discrete-event simulator that provides a toolbox of 
primitives for various network topologies, commu- 
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nication workloads, routing algorithms, and router 
models. Router models may vary from high-level 
architectures to low-level specification of actual de- 
vices, allowing incremental investigation of implemen- 
tation approaches and design enhancements. By en- 
forcing strict boundaries between these components, 
pp-mess-sim facilitates multi-factor experiments that 
independently explore network design issues. 

The next section describes how application traffic 
patterns impact the suitability of router design op- 
tions; the components of pp-mess-sim derive directly 
from these main architectural parameters, as shown 
in Section 3. The simulator supports a broad spec- 
trum of routing and switching schemes by decou- 
pling them from network topologies and router mod- 
els, as described in Section 4. Section 5 discusses how 
pp-mess-sim constructs diverse communication work- 
loads and performance metrics. This framework en- 
ables the flexible evaluation of a variety of multicom- 
puter router models, as described in Section 6. Sample 
simulation experiments capitalize on this flexibility to 
compare routing-switching combinations under a vari- 
ety of application workloads. Section 7 concludes the 
paper with a discussion of future pp-mess-sim enhance- 
ments. 

2 Motivation 

This section overviews the major architectural is- 
sues in multicomputer network design to motivate the 
need for a flexible simulation environment. The se- 
lection of these parameters impacts both the cost and 
performance of the design. Router performance is fur- 
ther influenced by the characteristics of the applied 
communication workload. 

2.1 Topology 

The choice of network topology affects multicom- 
puter performance and implementation complexity. 
By defining the connections between processing nodes, 
the topology determines the number of communica- 
tion links at  each node and how far a packet must 
travel to reach its destination. This impacts both the 
complexity of network wiring and the achievable com- 
munication bandwidth in the system [8,9]. Many mul- 
ticomputers employ the k-ary n-cube family of topolo- 
gies, with k nodes along each of n dimensions [8]. Cur- 
rently pp-mess-sim supports k-ary n-cube topologies, 
square meshes, and wrapped hexagonal meshes. 

Logical topologies can be built on top of the physi- 
cal network by providing multiple virtual channels on 

each physical link. These logical resources may be em- 
ployed to prevent communication deadlocks [lo] and 
improve network throughput [ll]. Additionally, they 
can be used to separate traffic with different character- 
istics or performance requirements. Although virtual 
channels improve router flexibility, they also affect 
network speed and implementation complexity [12]. 
Since these trade-offs greatly influence communication 
performance, pp-mess-sim can vary the number of vir- 
tual channels in the network. 

2.2 Routing and Switching 

Switching and routing schemes have significant in- 
fluence on router performance and implementation 
complexity. The switching scheme impacts perfor- 
mance by determining the link and buffer resources 
a packet consumes. Traditional packet switching re- 
quires incoming packets to buffer completely before 
transmission to a subsequent node can begin. In con- 
trast, cut-through switching schemes, such as virtual 
cui-through [13] and wormhole [14], try to forward 
incoming packets directly to an idle output link. If 
the outgoing link is busy, virtual cut-through switch- 
ing buffers the packet, whereas a blocked wormhole 
packet stalls pending access to the link. While first- 
generation multicomputers employed packet switch- 
ing, most contemporary routers utilize cut-through 
switching for lower latency and reduced buffer space 
requirements [2]. 

The routing algorithm determines which nodes a 
packet traverses to reach its destination. Oblivious 
routing generates a single, deterministic outgoing link 
for an incoming packet, whereas adaptive schemes 
can incorporate prevailing network conditions into the 
routing decision. By considering multiple outgoing 
links, adaptive algorithms can increase the likelihood 
of cut-through at intermediate nodes and can bal- 
ance the load on the network. Additionally, adaptive 
schemes may also consider nonminimal paths in the 
hope of circumventing network congestion or faulty 
links. When the algorithm must select from multiple 
output links at  a node, the actual route chosen may 
depend on the order in which the algorithm considers 
these candidate links. 

Each routing and switching policy is best suited for 
traffic with particular characteristics and performance 
requirements. Wormhole switching achieves low la- 
tency without requiring packet buffers, but virtual 
cut-through and packet switching may achieve larger 
throughput at  high loads. Similarly, adaptive routing 
can reduce end-to-end delay, but out-of-order packet 
arrival can complicate protocol processing at the re- 
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ceiving node. Opportunities for adaptive routing vary 
depending on the topology, the distance a packet must 
travel, and network congestion. To study these effects, 
p p- m ess-si m supports virtual cut-through, wormhole, 
and packet switching, as well as hybrid schemes, each 
under a variety of routing algorithms. 

2.3 Router Architecture 

While routing and switching determine how each 
packet flows through the network, the router at each 
node determines how the individual link and buffer 
resources are accessed. The router implements queue- 
ing, arbitration, and flow-control policies to manage 
resource contention. These policies determine the 
complexity of the router, as well as overall network 
performance. Thus, a crucial aspect of interconnec- 
tion network design is determining the size, speed, and 
structure of internal components. 

A particular router design may queue packets at the 
input links, the output links, and the interface to the 
local node. Depending on the structure and place- 
ment of these buffers, packets may incur significant 
queueing delay [15]. When several queues vie for a re- 
source, the router invokes an arbitration policy, such 
as round-robin or a priority-based scheme, to select the 
winner. Closely tied to both queueing and arbitration 
is flow control, which affects latency and throughput 
by limiting the rate at which packets travel through 
the network. Flow control can occur anywhere from 
the byte level at the physical link to the message level 
in the software and can influence both communication 
latency and network throughput. 

These internal router policies affect network perfor- 
mance by coordinating resource sharing amongst com- 
peting packets. When traffic patterns heavily load cer- 
tain input or output links, these policies significantly 
impact network delay and achievable throughput. Iso- 
lating potential bottlenecks in the network design re- 
quires detailed performance metrics that capture the 
utilization of internal router resources. The simulator 
decouples router policies from the network topology, 
routing-switching schemes, communication workloads, 
and data collection to enable a broad range of experi- 
ments on different router models. 

3 Simulator Structure 

The simulator’s structure reflects the important de- 
sign issues outlined in Section 2. The main compo- 
nents of pp-mess-sim are a set of C++ classes support- 
ing: input specification (Spec), network topologies 

(Net), communication patterns (Workload), routing 
and switching policies (Ralg), and particular router 
models (Node). These components export clean and 
powerful interfaces to enable independent code devel- 
opment without sacrificing flexibility. The simulator 
can easily incorporate new topologies, routing algo- 
rithms, node models, traffic patterns, and data collec- 
tion routines. 

3.1 Input Specification 

Simulation experiments are specified through a 
high-level language, as shown in the example in Fig- 
ure 1. This language allows users to specify the 
range of experiments necessary to explore the large 
design space of multicomputer networks. The sim- 
ulator parses an input file written in this language 
at run-time to initialize the experiment parameters. 
Input specification is supported by a lexical analyzer 
generator (flex) and a parser generator (GNU bison). 
These generators output C code, which is linked with 
the rest of the pp-mess-sim code during compilation. 

The Spec grammar includes blocks for selecting 
the experiment parameters for each of the other 
pp-mess-sim modules and can be easily be extended 
to incorporate new simulation parameters. The sam- 
ple experiment in Figure 1 involves an 8-ary 2-cube 
(8 x 8 torus) network that carries a mixture of time- 
constrained and best-effort traffic, with different traf- 
fic characteristics and performance requirements [16]. 
As shown in lines 18 and 30 of Figure 1, the time- 
constrained packets use packet switching and oblivi- 
ous routing on a single virtual channel (channel 0), 
while the best-effort traffic employs two virtual chan- 
nels (channels 1 and 2) for wormhole routing. 

3.2 Network Creation 

Given the topology parameters in lines 1-6 of Fig- 
ure 1, the simulator first creates the 8-ary 2-cube 
Net topology. The Net class includes various func- 
tions for identifying and translating node addresses, 
link identifiers, and virtual channels; this insulates 
the Node and Ralg modules from the details of the 
specific network topology. As part of Net creation, 
pp-mess-sim generates each of the 64 router Nodes. 
Each node then instantiates its internal components, 
such as queues or arbiters, with their own simulation 
events and associated event handlers. The simulator 
uses an associative string map, initialized by the spec- 
ification file, to assign internal router parameters. For 
example, line 41 selects a priority arbiter to govern 
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1 - topology begin 
2 - select kary-ncube; 26 - arrival Uniform(lOO.0,100.0); 
3 - size 8; 27 - length Uniform(10.0,lO.O); 
4 - dimension 2; 28 - target HopUnifom(0.2,0.7,0.1); 
5 - channels 3; 29 - routing-spec begin 
6 - end 30 - routing ps-oblivious(0); 
7 -  31 - order random; 
8 - node default begin 
9 - tasks 2; 33 - history histogram(0,1000,50); 

25 - task time-constr begin 

32 - end 

10 - select task time-constr 1; 34 - packets 2000; 
11 - end 35 - drop 200; 
12 - 36 - end 

14 - arrival IegativeExpntl(400.00); 38 - general begin 
15 - length LengthDiscrete(0.7,16,0.3,512); 39 - random seed 1353625084; 
16 - target IodeUniformO; 40 - parameter RX: :ack-xmit-time 1; 
17 - routing-spec begin 41 - parameter TX::arbiter priority; 
18 - routing ~h-oblivious(l,2); 42 - output e4-mix-400.00.out; 
19 - order dimorder; 43 - errors e4-mix-400.00.err; 
20 - end 44 - results e4-mix,400.00.results; 
21 - history latency; 45 - debug e4-mix-400.00.debug; 
22 - packets 2000; 46 - end 
23 - drop 200; 
24 - end 

13 - task default begin 37 - 

Figure 1 : Example simulation specification 

access to the outgoing links; this arbiter favors vir- 
tual channel 0 over the two wormhole virtual channels 
to better serve the time-constrained traffic. In parsing 
the input file, Spec creates an entry in the string map 
with the key “TX::arbiter” and value “priority.” 

As nodes are created, pp-mess-sim queries the string 
map to  retrieve the parameter values; if no string 
is present the parameter is initialized with a de- 
fault value defined in the Node code. To pro- 
vide more control over router features, the string 
parameters can identify specific nodes or devices 
(virtual channels) in the network. For example, 
“node( lO)::dev( 8): :TX: :xmit-time 100)’ would assign a 
large transmission delay for outgoing virtual channel 8 
at node 10. Parameters without node and device num- 
bers apply to all nodes and devices, as in lines 40 and 
41 in Figure 1. This flexibility enables pp-mess-sim to 
model heterogeneous and even faulty networks, with 
a range of link speeds and router features. 

3.3 Communication Patterns 

Once pp-mess-sim constructs the network, the 
Workload module initializes the communication pat- 
terns for the experiment. In pp-mess-sim, traffic pat- 
terns are generated by a collection of independent 
“tasks,)) which are mapped onto individual nodes in 

the network to represent application behavior. As 
part of task creation, pp-mess-sim binds each task to 
a node and schedules its first packet creation event. 
For example, lines 8-11 of Figure 1 assign two in- 
dependent tasks to each node in the network; ev- 
ery node instantiates one time-constrained and one 
“default” best-effort task. Since routing and switch- 
ing policies significantly impact multicomputer per- 
formance, the tasks may adopt different routing- 
switching schemes, tailored to application communi- 
cation demands. By changing task characteristics and 
mappings, the pp-mess-sim user can compose the di- 
verse communication patterns necessary for realistic 
network evaluation. 

4 Routing and Switching Algorithms 

Tuning a network design requires evaluating a va- 
riety of router architectures and routing-switching 
schemes. The simulator facilitates such experimen- 
tation by decoupling these schemes (Ralg) from the 
router models (Node) and the network topologies 
(Net). This functional separation allows the user 
to easily implement new routing-switching algorithms 
without changing the node models. 



4.1 Routing-Switching Instructions 

Routers implement routing and switching in various 
ways, closely tied with internal timing and arbitration, 
but every device proceeds through common operations 
to service an incoming packet. The routing algorithm 
support in pp-mess-sim identifies these phases and rep- 
resents them outside of the router model. Invoked 
after packet header collection, the routing algorithm 
interacts with the Node using a series of routing- 
switching instructions until they agree upon a suitable 
routing-switching decision. This allows the high-level 
routing algorithm to make its decisions based on feed- 
back from the device, without low-level knowledge of 
the router architecture. Similarly, while the router 
model must accept commands from the routing algo- 
rithm, the router need not know how this algorithm 
selects the sequence of operations. This decoupling is 
instrumental in supporting multiple routing-switching 
schemes across a collection of router models. 

On each interaction with the router, the algorithm 
generates a routing-switching instruction consisting of 
an ordered list of outgoing virtual channels and a can- 
didate switching decision for the router’s considera- 
tion. The list of virtual channels encapsulates the 
routing options generated by the algorithm, while the 
candidate switching decision helps the router decide 
whether to buffer, stall, drop, or forward the packet. 
The router examines each instruction and determines 
whether or not the output channel(s) can satisfy the 
request; if necessary, the router tries to reserve any 
internal resources necessary to successfully complete 
the operation. For example, the algorithm may ask 
the router to reserve a single outgoing channel from 
a list of channels on a shortest-path route. If all of 
these channels are busy, the router may reject this re- 
quest, requiring the algorithm to suggest an alternate 
way to service the packet (e.g., buffering the packet 
at the current node). The algorithm and the router 
model continue this request-response handshake until 
they agree on a common routing-switching decision. 

The routing-switching instructions transcend event 
processing in the discrete-event simulation. For exam- 
ple, Ralg may instruct the Node to stall the incom- 
ing packet until one of its candidate output channels 
becomes available. If all of these channels are busy 
with other traffic, the Node cannot immediately re- 
spond to this instruction. When some later simulation 
event frees one of the channels, the Node may then 
try to reserve this channel and continue its interaction 
with Ralg. This allows the Node to invoke channel 
allocation policies transparent to the routing instruc- 
tions. Similarly, detailed router models may capture 

delay in acquiring internal buffer resources; such mod- 
els may proceed through multiple simulation events 
before responding to a routing instruction. The hand- 
shake between Ralg and Node hides the low-level 
timing details of the router model and, thus, allows 
the construction of generic routing algorithms. 

4.2 Selection Functions 

The simulator also includes Net support to min- 
imize the dependency of the routing-switching algo- 
rithms on the underlying network topology. While 
some routing algorithms depend on a particular topol- 
ogy, most schemes require only high-level information 
about the various output links at  each node. The Net 
selection functions categorize and rank these links, 
based on certain routing primitives; Ralg uses these 
functions to generate a list of possible directions for a 
packet to travel. For example, given the current node 
and the packet’s destination, the selection functions 
can identify which output links lie on a minimal path 
or, alternatively, which links would deflect the packet 
away from a shortest-path route. 

Routing algorithm performance also depends on the 
order the router considers the set of output directions. 
Hence, the selection functions also rank the set of out- 
put links, returning an ordered list of candidate out- 
going links. For example, line 19 in Figure 1 assigns 
a dimension-order ranking to the default best-effort 
packets. This requires a packet to complete all hops 
in one direction before proceeding to the next dimen- 
sion. In contrast, the time-constrained packets con- 
sider their output links in a random order. Net also 
includes a selection function that ranks links according 
to how far the packet must still travel in each direction; 
this link ordering improves a packet’s chance of con- 
sidering multiple outgoing links at future nodes in its 
route. Another selection function orders output links 
according to network congestion, giving preference to 
links with fewer busy virtual channels; this balances 
traffic load amongst the outgoing links. These selec- 
tion functions, coupled with the routing-switching in- 
structions, enable pp-mess-sim to model a wide range 
of routing-switching algorithms on a variety of net- 
work topologies. 

Existing schemes include both oblivious and adap- 
tive shortest-path routing for wormhole, virtual cut- 
through, and packet switching, with several selection 
functions. The user can also specify various nonmin- 
imal routing algorithms for virtual cut-through and 
wormhole switching. The simulator includes several 
deadlock-free wormhole routing algorithms, with vary- 
ing degrees of adaptivity [17]. In addition to tra- 



ditional routing and switching schemes, sequences of 
routing-switching instructions can generate hybrid al- 
gorithms that incorporate both virtual cut-through 
and wormhole switching, depending on the underly- 
ing router conditions. The generality of the routing- 
switching instructions and the selection functions sig- 
nificantly reduces the difficulty of adding new algo- 
rithms to pp-mess-sim. 

5 Communication Workloads 

Network traffic patterns and performance require- 
ments vary significantly across different applications. 
Hence, pp-mess-sim provides flexible support for gen- 
erating communication patterns and collecting perfor- 
mance statistics. The Workload module insulates 
the rest of the simulator from the details of the traffic 
generation and data collection by handling all func- 
tions related to packet creation and reception. To 
better evaluate network policies, each Node also mon- 
itors the utilization of its internal resources during the 
course of the simulation. 

5.1 Traffic Generation 

The simulator generates traffic patterns as a collec- 
tion of tasks with varying characteristics. Because the 
packet characteristics in an actual network depend on 
the application or protocol software, pp-mess-sim al- 
lows the derivation of packet length and interarrival 
times from a variety of stochastic processes, including 
uniform, exponential, geometric, normal, and discrete 
distributions. Since many network protocols enforce 
limits on packet size, the length distributions may be 
trimmed to enforce upper and lower bounds on packet 
length. In Figure 1, time-constrained tasks generate 
periodic, fixed-length packets, while default best-effort 
tasks create packets according to a Poisson process. 
Using the discrete distribution of packet lengths, 70% 
of the best-effort packets are short, while the remain- 
ing are long; such bimodal distributions are common 
in multicomputer applications [5 ] .  

Application constructs also impact the selection of 
a target destination node for each packet. Line 28 
of Figure 1 assigns a hop-uniform target distribution 
to the time-constrained task. In this example, 20% 
of packets have destinations just one hop away, while 
70% travel two hops, and the remaining packets tra- 
verse three hops. While the hop-uniform distribution 
captures spheres of communication locality, the node- 
uniform distribution in line 16 represents a random 

permutation, with uniform random selection of de5 
tination nodes. To capture the communication be- 
havior of scientific applications, target destinations 
may stem from common permutations, such as matrix- 
transpose (dimension-reversal) , bit-complement , and 
bit-reversal. The simulator also includes a destination- 
discrete distribution, where all packets are destined for 
a certain subset of nodes, to generate “hot-spots” of 
heavily-utilized nodes and links; common multicom- 
puter constructs, such as synchronization or multicast 
operations, may induce such non-uniform traffic. 

5.2 Packet Statistics 

The simulator associates performance metrics with 
each task to make data collection more flexible. These 
packet statistics allow the user to study various com- 
munication patterns with different performance re- 
quirements. Since the behavior of the simulated net- 
work changes over time, performance metrics are ex- 
tremely sensitive to the interval of data collection. Ac- 
curate measures of steady-state performance require 
both a sufficient warm-up period and a reasonable 
averaging interval. In pp-mess-sim the tasks proceed 
through three distinct phases: priming the empty net- 
work, collecting performance data, and draining the 
system of any remaining packets. 

To prime the network, each task on each node must 
deliver a certain minimum number of packets to their 
destinations before any data collection commences. 
The user may configure a different number of “warm- 
up” packets for each type of task through the “drop” 
field in the task specification (as in lines 23 and 35 
of Figure 1). After all tasks have completed their re- 
quired “warm-up” packets, each task accumulates per- 
formance data until the required number of its packets 
have completed service (as specified in lines 22 and 34 
of Figure 1). The task continues to generate packets 
until every task in the network has completed data 
collection. Then, all tasks stop creating packets and 
the simulator executes any remaining events to handle 
traffic left in the system; this serves as a precaution 
to identify possible communication deadlocks. 

During the data collection phase, each task accu- 
mulates performance statistics as its packets reach 
their destinations. The simulator provides an extensi- 
ble mechanism for collecting packet statistics for each 
task. As a packet travels through the simulated net- 
work, the router model maintains a history list that 
records significant events during the packet’s journey. 
For example, if a packet cuts through an intermediate 
node, the location, time, and event (e.g., Cut) are ap- 
pended to the history list. When the packet arrives at 
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its destination node, the data collection routine pro- 
cesses the list to extract the desired performance met- 
rics. 

With help from the router model, the data collec- 
tion routines can accumulate a wide variety of per- 
formance statistics. The timestamps on the history 
records indicate the end-to-end latency of the packet, 
as well as the components of this delay. Logging the 
event type allows the collection routines to evaluate 
the routing and switching decisions that occurred for 
each packet. Existing history collection routines cap- 
ture end-to-end delay statistics (e.g., mean, variance, 
minimum, and maximum), packet cut-through proba- 
bilities, and latency histograms. For example, in Fig- 
ure 1 the best-effort default tasks collect basic latency 
metrics (line 21), while the time-constrained tasks cap- 
ture a histogram of latency data to estimate the prob- 
ability distribution of packet delay (line 33). 

Since performance may vary with communication 
distance, these routines also maintain separate statis- 
tics based on the number of hops a packet travels. 
Tasks may also select a null collection routine; this 
avoids accumulating unnecessary performance data for 
any “background” traffic in the system. The hi5 
tory collection mechanism also allows for simple ex- 
tensions for additional performance metrics. Adding 
customized entries to the history list can create a fairly 
detailed list, allowing the collection routines to recon- 
struct the behavior of the packet and the network. 

5.3 Router Statistics 

Pinpointing weaknesses and bottlenecks in a router 
design requires detailed information about how inter- 
nal features perform in operation. While the history- 
list approach is suitable for collecting packet statis- 
tics, it is unnatural for capturing fine-grain informa- 
tion about resource usage in the router. Instead, each 
pp-mess-sim router model accumulates statistics for its 
outgoing channels, internal buses, and packet buffers 
throughout the data collection phase of the simulation. 
By maintaining separate statistics for each node, the 
user can investigate the impact of non-uniform com- 
munication patterns on resource usage across all nodes 
in the network. 

Each node model accumulates this data whenever a 
simulation event models access to an internal resource. 
The Node maintains a single object that updates 
these statistics in response to simulation events. For 
example, if an event models the use of an internal bus, 
the Node updates its count of active bus cycles. Mon- 
itoring resource usage through the simulation events 
also enables the Node to compute average queue 

lengths for any buffers in the router design. When 
a simulation event augments or depletes a buffer, the 
statistics object records the time and the size of the 
buffer; this allows the Node to maintain the time- 
average of the queue length. Using these statistics, 
along with the history-lists, pp-mess-sim can gather 
detailed information about network performance. 

6 Router Models 

By defining strict interfaces between individual 
parts of the code, pp-mess-sim insulates the Node 
module from the Net, Ralg, and Workload modules. 
This extensible framework allows additional Node 
modules to be developed without changing any of the 
other modules. In addition, this support enables indi- 
vidual Node models to focus completely on internal 
policies for queueing, arbitration, and flow control. 

6.1 Node Modules 

The simulator includes a cycle-level model of SPI- 
DER [MI, a network router for point-to-point dis- 
tributed systems. SPIDER coordinates bidirectional 
communication with up to four neighboring nodes, 
with three virtual channels on each physical link. A 
demand-driven TDM bus connects the incoming and 
outgoing links, with microprogrammable engines im- 
plementing the routing-switching schemes for arriving 
packets; the Ralg routing programs mimic the be- 
havior of these programmable devices. The SPIDER 
Node model facilitates precise performance evalua- 
tion by capturing the low-level details of flow con- 
trol, resource arbitration, and microcode execution. 
Run-time specification of interface speeds and inter- 
nal buffer sizes has been instrumental in tuning the 
router design and implementation. 

While the SPIDER Node module effectively rep- 
resents a specific router design, exploring alternative 
architectures requires more robust models. Hence, 
pp-mess-sim includes a configurable, high-level model 
for examining techniques and performance trends in 
router architecture. This “virtual” router (v-router) 
supports various queueing, arbitration, and flow- 
control policies. Since the v-router model captures 
less detail than the SPIDER model, v-router experi- 
ments can efficiently consider a broader range of sim- 
ulation parameters before testing specific options on 
a more detailed model. The v-router simulations 
often execute an order of magnitude faster for vir- 
tual cut-through and packet switching experiments by 
modeling only the head and tail flits in each packet; 
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wormhole switching simulations typically execute 50% 
faster, since the v-router does not model low-level tim- 
ing details. The support provided by Net, Ralg, and 
Workload allow pp-mess-sim to run the same experi- 
ments on both router models. 

6.2 Sample Experiments 

The simulator’s flexibility enables a broad range of 
experiments evaluating multicomputer router designs. 
Figure 2 shows the performance of various switch- 
ing schemes using static routing on an 8 x 8 square 
mesh of v-router Nodes carrying 16-flit packets; ex- 
periments using the SPIDER model showed similar 
trends. The graphs plot the mean packet latency as a 
function of the average link utilization for two traffic 
patterns. As expected, virtual cut-through switching 
consistently outperforms packet switching, since vir- 
tual cut-through traffic often avoids buffering delay at 
intermediate nodes. At low loads, wormhole switching 
performs extremely well for both traffic patterns. 

However, the relative performance of virtual cut- 
through and wormhole switching varies significantly 
between Figure 2(a) and 2(b). Under uniform random 
traffic, the two switching schemes exhibit compara- 
ble performance at low loads; however, network con- 
tention limits wormhole throughput at higher loads. 
By removing blocked packets from the network, vir- 
tual cut-through and packet switching consume net- 
work bandwidth proportional to the offered load. In 
contrast, a blocked wormhole packet stalls in the net- 
work until its outgoing channel becomes available; this 
stalled packet may then block other traffic destined for 
different output links. 

Despite channel contention, wormhole switching ex- 
cels for the matrix-transpose permutation. This effect 
occurs because matrix-transpose traffic, coupled with 
dimension-order routing, limits harmful contention 
between packets heading to different parts of the net- 
work. In a square mesh, the matrix-transpose permu- 
tation requires node (c, d )  to communicate with node 
(d ,  c). With dimension-order routing, each packet 
starting on row d proceeds in the x-direction to node 
(d ,  d) ,  before traveling in the y-direction to reach the 
destination node. As a result, source nodes in row 
d inject packets that use the same row and column 
links. Although a blocked wormhole packet may still 
restrict other traffic from entering a node, this traffic 
must ultimately traverse the same links as the stalled 
packet; buffering the blocked packet cannot alleviate 
this contention. 

Neither wormhole nor virtual cut-through switch- 
ing performs best in all situations. Similarly, traf- 

fic patterns significantly impact the performance of 
routing algorithms, as shown in Figure 3. These 
pp-mess-sim experiments evaluate wormhole switch- 
ing under both dimension-order and adaptive rout- 
ing; virtual cut-through simulations showed the same 
qualitative trends. The adaptive algorithm is a fully- 
adaptive minimal routing scheme that requires two 
virtual channels per link to prevent network dead- 
locks [17]; in these experiments, both routing algo- 
rithms employ a pair of virtual channels to enable 
fair performance comparisons. The dimension-order 
routing algorithm uses the extra virtual channel to  re- 
duce contention between packets traveling on the same 
link [ll]. 

Contrary to intuition, static routing consistently 
outperforms adaptive routing in Figure 3(a). In an 
8 x 8 square mesh, the bit-complement permutation 
requires source node (c, d )  to communicate with node 
(7 - c,7 - d).  As a result, all packets must even- 
tually cross both the middle row and the middle col- 
umn of the mesh, irrespective of the routing algorithm. 
Dimension-order routing tends to avoid the center of 
the network, where the middle row and column meet, 
by exhausting the x-direction before routing a packet 
in the y-direction. In contrast, adaptive algorithms 
try to  avoid the heavily-congested middle column (or 
row) by routing packets to more lightly-loaded rows 
(or columns); this ultimately pushes traffic closer to 
the congested center of the network. A local decision 
at one node causes a packet to travel a lightly-loaded 
link into a more congested region. 

In addition, the extra routing flexibility provided by 
adaptive algorithms allows source nodes to inject more 
packets, further increasing contention at  the middle 
of the network. Hence, in some situations, restricted 
routing flexibility can effectively limit the overuse of 
network resources. However, this effect varies with 
the network load and the underlying traffic pattern, 
as shown in Figure 3(b). This experiment considers 
bursty traffic, in contrast to the traditional Poisso- 
nian packet arrival process in Figure 3(a). The source 
nodes generate bursty traffic using a two-stage nor- 
mal distribution of packet interarrivals [4]. Packet 
interarrivals stem from two independent normal dis- 
tributions, with different means; sources randomly se- 
lect 80% of interarrivals from the distribution with the 
small mean. 

In Figure 3(b), the applied traffic load (x-axis) 
changes by varying the large mean, keeping the small 
mean fixed at 10 cycles. This generates relatively 
small packet interarrival times within a burst to cap- 
ture the transmission of a multi-packet message or a 
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Figure 2: Comparing switching schemes under dimension-order routing 

handful of related messages. Figures 3(a) and (b) ex- 
hibit similar trends at high loads, but bursty traffic 
limits the effectiveness of static routing at low net- 
work loads since packets in a burst are queued await- 
ing transmission. The adaptive algorithm helps dis- 
sipate bursts by capitalizing on multiple paths be- 
tween each source and destination, thus reducing the 
queueing delay at  the sending node. The simulator’s 
flexibility enables such experimentation with routing- 
switching schemes, router models, and communication 
workloads. 

7 Conclusions and Future Work 

Evaluating multicomputer router designs requires 
a flexible simulation framework. The object-oriented 
pp-mess-sim environment provides a toolkit for study- 
ing different network topologies, routing-switching 
schemes, and router models, under a variety of com- 
munication workloads. Well-defined interfaces be- 
tween the simulator components create an extensible 
environment that enables independent enhancements 
to the code. 

As part of ongoing work, additional features are 
continually added to the simulator. In particular, 
we are extending Workload to generate more re- 
alistic communication patterns through the use of 
complex arrival processes, application traces, and ac- 
curate communication models. These options will 
complement the existing probability distributions for 
packet length, inter-arrival times, and target destina- 
tion nodes. We are also investigating new routing- 

switching algorithms, using the various Ralg routing 
instructions and Net selection functions. 

To study general router design issues, we are ex- 
tending the v-router Node module to allow more 
control over internal router organization. With a 
diverse library of arbiters and buffer architectures, 
the v-router could construct a wider range of can- 
didate router designs. Ultimately, multicomputer 
performance depends on the interaction of these in- 
ternal router policies with the network topology, 
routing-switching schemes, and application workloads. 
Drawing on the Net, Ralg, and Workload sup- 
port, pp-mess-sim users could then compare candidate 
router architectures under the same network policies 
and application demands. 
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