
PP-MESS-SIM: A Simulator for Evaluating
Multicomputer Interconnection Networks *

Jennifer Rexford, James Dolter, Wu-chang Feng, and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, MI 48109-2122

{ j rexford, j dolt er, wuchang , kgshin}@eecs .umich.edu

Abstract

This paper presents pp-mess-sim, an object-oriented
discrete-event simulation environment for evaluating
multicomputer networks. The simulator provides a
toolboz of various network topologies, communication
workloads, routing-switching algorithms, and router
models. These router models can vary from high-
level architectures t o low-level specification of ac-
tual devices. B y decoupling individual parts of the
code, pp-mess-sim enables independent code develop-
ment and creates a flexible and extensible environ-
ment for evaluating different aspects of network de-
sign. Sample simulation experiments capitalize on this
flezibility t o compare routing-switching schemes under
various application workloads.

1 Introduction

Message-passing multicomputers have emerged as
a cost-effective platform for exploiting parallelism in
applications. Multicomputers consist of processors
joined by an interconnection network, where fast mes-
sage exchange enables efficient cooperation between
processing elements [l, 21. Router hardware connects
an individual processing node to the interconnection
fabric and manages traffic flowing through the node
en route to other destinations. The router architec-
ture greatly affects the ability of the interconnection
network to deliver good communication performance
to parallel applications.

*The work reported in this paper was supported in part by
the National Science Foundation under Grant MIP-9203895.
Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the view of the NSF.

Achieving good overall system performance re-
quires matching application communication require-
ments with a suitable network design. Networks can
employ a wide range of topologies, routing algorithms,
switching schemes, and flow control policies. Applica-
tion characteristics directly impact these design deci-
sions by determining the quantity and frequency of
inter-node communication. While modeling provides
a cost-effective way to explore design issues, analyti-
cal models often impose simplifying assumptions that
degrade the accuracy of the evaluation. On the other
hand, monitoring an actual system can capture the
effects of low-level design choices, but this restricts
experimentation with different router policies since it
can be prohibitively expensive and time-consuming to
change these features.

Instead, an extensible simulation environment can
provide an extensible framework for evaluating multi-
computer networks. While many simulation toolkits
can flexibly model local and wide area networks [3],
few simulators sufficiently capture the characteris-
tics of multicomputer networks. In contrast to
LANs/WANs, multicomputers typically employ reg-
ular network topologies that facilitate efficient, flexi-
ble routing schemes. Tighter coupling between nodes
enables multicomputer designers to consider more di-
verse switching schemes and flow-control policies. In
addition, mapping concurrent applications across mul-
tiple nodes generates unique communication patterns
and requirements in multicomputer networks [4-61.

This paper presents pp-mess-sim (point-to-point
message simulator), a flexible simulation environment
for evaluating multicomputer routers [7]. Imple-
mented in C++, pp-mess-sim is an object-oriented
discrete-event simulator that provides a toolbox of
primitives for various network topologies, commu-

84
1080-24lX/95 $4.00 Q 1995 IEEE

http://umich.edu

nication workloads, routing algorithms, and router
models. Router models may vary from high-level
architectures to low-level specification of actual de-
vices, allowing incremental investigation of implemen-
tation approaches and design enhancements. By en-
forcing strict boundaries between these components,
pp-mess-sim facilitates multi-factor experiments that
independently explore network design issues.

The next section describes how application traffic
patterns impact the suitability of router design op-
tions; the components of pp-mess-sim derive directly
from these main architectural parameters, as shown
in Section 3. The simulator supports a broad spec-
trum of routing and switching schemes by decou-
pling them from network topologies and router mod-
els, as described in Section 4. Section 5 discusses how
pp-mess-sim constructs diverse communication work-
loads and performance metrics. This framework en-
ables the flexible evaluation of a variety of multicom-
puter router models, as described in Section 6. Sample
simulation experiments capitalize on this flexibility to
compare routing-switching combinations under a vari-
ety of application workloads. Section 7 concludes the
paper with a discussion of future pp-mess-sim enhance-
ments.

2 Motivation

This section overviews the major architectural is-
sues in multicomputer network design to motivate the
need for a flexible simulation environment. The se-
lection of these parameters impacts both the cost and
performance of the design. Router performance is fur-
ther influenced by the characteristics of the applied
communication workload.

2.1 Topology

The choice of network topology affects multicom-
puter performance and implementation complexity.
By defining the connections between processing nodes,
the topology determines the number of communica-
tion links at each node and how far a packet must
travel to reach its destination. This impacts both the
complexity of network wiring and the achievable com-
munication bandwidth in the system [8,9]. Many mul-
ticomputers employ the k-ary n-cube family of topolo-
gies, with k nodes along each of n dimensions [8]. Cur-
rently pp-mess-sim supports k-ary n-cube topologies,
square meshes, and wrapped hexagonal meshes.

Logical topologies can be built on top of the physi-
cal network by providing multiple virtual channels on

each physical link. These logical resources may be em-
ployed to prevent communication deadlocks [lo] and
improve network throughput [ll]. Additionally, they
can be used to separate traffic with different character-
istics or performance requirements. Although virtual
channels improve router flexibility, they also affect
network speed and implementation complexity [12].
Since these trade-offs greatly influence communication
performance, pp-mess-sim can vary the number of vir-
tual channels in the network.

2.2 Routing and Switching

Switching and routing schemes have significant in-
fluence on router performance and implementation
complexity. The switching scheme impacts perfor-
mance by determining the link and buffer resources
a packet consumes. Traditional packet switching re-
quires incoming packets to buffer completely before
transmission to a subsequent node can begin. In con-
trast, cut-through switching schemes, such as virtual
cui-through [13] and wormhole [14], try to forward
incoming packets directly to an idle output link. If
the outgoing link is busy, virtual cut-through switch-
ing buffers the packet, whereas a blocked wormhole
packet stalls pending access to the link. While first-
generation multicomputers employed packet switch-
ing, most contemporary routers utilize cut-through
switching for lower latency and reduced buffer space
requirements [2].

The routing algorithm determines which nodes a
packet traverses to reach its destination. Oblivious
routing generates a single, deterministic outgoing link
for an incoming packet, whereas adaptive schemes
can incorporate prevailing network conditions into the
routing decision. By considering multiple outgoing
links, adaptive algorithms can increase the likelihood
of cut-through at intermediate nodes and can bal-
ance the load on the network. Additionally, adaptive
schemes may also consider nonminimal paths in the
hope of circumventing network congestion or faulty
links. When the algorithm must select from multiple
output links at a node, the actual route chosen may
depend on the order in which the algorithm considers
these candidate links.

Each routing and switching policy is best suited for
traffic with particular characteristics and performance
requirements. Wormhole switching achieves low la-
tency without requiring packet buffers, but virtual
cut-through and packet switching may achieve larger
throughput at high loads. Similarly, adaptive routing
can reduce end-to-end delay, but out-of-order packet
arrival can complicate protocol processing at the re-

85

ceiving node. Opportunities for adaptive routing vary
depending on the topology, the distance a packet must
travel, and network congestion. To study these effects,
p p- m ess-si m supports virtual cut-through, wormhole,
and packet switching, as well as hybrid schemes, each
under a variety of routing algorithms.

2.3 Router Architecture

While routing and switching determine how each
packet flows through the network, the router at each
node determines how the individual link and buffer
resources are accessed. The router implements queue-
ing, arbitration, and flow-control policies to manage
resource contention. These policies determine the
complexity of the router, as well as overall network
performance. Thus, a crucial aspect of interconnec-
tion network design is determining the size, speed, and
structure of internal components.

A particular router design may queue packets at the
input links, the output links, and the interface to the
local node. Depending on the structure and place-
ment of these buffers, packets may incur significant
queueing delay [15]. When several queues vie for a re-
source, the router invokes an arbitration policy, such
as round-robin or a priority-based scheme, to select the
winner. Closely tied to both queueing and arbitration
is flow control, which affects latency and throughput
by limiting the rate at which packets travel through
the network. Flow control can occur anywhere from
the byte level at the physical link to the message level
in the software and can influence both communication
latency and network throughput.

These internal router policies affect network perfor-
mance by coordinating resource sharing amongst com-
peting packets. When traffic patterns heavily load cer-
tain input or output links, these policies significantly
impact network delay and achievable throughput. Iso-
lating potential bottlenecks in the network design re-
quires detailed performance metrics that capture the
utilization of internal router resources. The simulator
decouples router policies from the network topology,
routing-switching schemes, communication workloads,
and data collection to enable a broad range of experi-
ments on different router models.

3 Simulator Structure

The simulator’s structure reflects the important de-
sign issues outlined in Section 2. The main compo-
nents of pp-mess-sim are a set of C++ classes support-
ing: input specification (Spec), network topologies

(Net), communication patterns (Workload), routing
and switching policies (Ralg), and particular router
models (Node). These components export clean and
powerful interfaces to enable independent code devel-
opment without sacrificing flexibility. The simulator
can easily incorporate new topologies, routing algo-
rithms, node models, traffic patterns, and data collec-
tion routines.

3.1 Input Specification

Simulation experiments are specified through a
high-level language, as shown in the example in Fig-
ure 1. This language allows users to specify the
range of experiments necessary to explore the large
design space of multicomputer networks. The sim-
ulator parses an input file written in this language
at run-time to initialize the experiment parameters.
Input specification is supported by a lexical analyzer
generator (flex) and a parser generator (GNU bison).
These generators output C code, which is linked with
the rest of the pp-mess-sim code during compilation.

The Spec grammar includes blocks for selecting
the experiment parameters for each of the other
pp-mess-sim modules and can be easily be extended
to incorporate new simulation parameters. The sam-
ple experiment in Figure 1 involves an 8-ary 2-cube
(8 x 8 torus) network that carries a mixture of time-
constrained and best-effort traffic, with different traf-
fic characteristics and performance requirements [16].
As shown in lines 18 and 30 of Figure 1, the time-
constrained packets use packet switching and oblivi-
ous routing on a single virtual channel (channel 0),
while the best-effort traffic employs two virtual chan-
nels (channels 1 and 2) for wormhole routing.

3.2 Network Creation

Given the topology parameters in lines 1-6 of Fig-
ure 1, the simulator first creates the 8-ary 2-cube
Net topology. The Net class includes various func-
tions for identifying and translating node addresses,
link identifiers, and virtual channels; this insulates
the Node and Ralg modules from the details of the
specific network topology. As part of Net creation,
pp-mess-sim generates each of the 64 router Nodes.
Each node then instantiates its internal components,
such as queues or arbiters, with their own simulation
events and associated event handlers. The simulator
uses an associative string map, initialized by the spec-
ification file, to assign internal router parameters. For
example, line 41 selects a priority arbiter to govern

86

1 - topology begin
2 - select kary-ncube; 26 - arrival Uniform(lOO.0,100.0);
3 - size 8; 27 - length Uniform(10.0,lO.O);
4 - dimension 2; 28 - target HopUnifom(0.2,0.7,0.1);
5 - channels 3; 29 - routing-spec begin
6 - end 30 - routing ps-oblivious(0);
7 - 31 - order random;
8 - node default begin
9 - tasks 2; 33 - history histogram(0,1000,50);

25 - task time-constr begin

32 - end

10 - select task time-constr 1; 34 - packets 2000;
11 - end 35 - drop 200;
12 - 36 - end

14 - arrival IegativeExpntl(400.00); 38 - general begin
15 - length LengthDiscrete(0.7,16,0.3,512); 39 - random seed 1353625084;
16 - target IodeUniformO; 40 - parameter RX: :ack-xmit-time 1;
17 - routing-spec begin 41 - parameter TX::arbiter priority;
18 - routing ~h-oblivious(l,2); 42 - output e4-mix-400.00.out;
19 - order dimorder; 43 - errors e4-mix-400.00.err;
20 - end 44 - results e4-mix,400.00.results;
21 - history latency; 45 - debug e4-mix-400.00.debug;
22 - packets 2000; 46 - end
23 - drop 200;
24 - end

13 - task default begin 37 -

Figure 1 : Example simulation specification

access to the outgoing links; this arbiter favors vir-
tual channel 0 over the two wormhole virtual channels
to better serve the time-constrained traffic. In parsing
the input file, Spec creates an entry in the string map
with the key “TX::arbiter” and value “priority.”

As nodes are created, pp-mess-sim queries the string
map to retrieve the parameter values; if no string
is present the parameter is initialized with a de-
fault value defined in the Node code. To pro-
vide more control over router features, the string
parameters can identify specific nodes or devices
(virtual channels) in the network. For example,
“node(lO)::dev(8): :TX: :xmit-time 100)’ would assign a
large transmission delay for outgoing virtual channel 8
at node 10. Parameters without node and device num-
bers apply to all nodes and devices, as in lines 40 and
41 in Figure 1. This flexibility enables pp-mess-sim to
model heterogeneous and even faulty networks, with
a range of link speeds and router features.

3.3 Communication Patterns

Once pp-mess-sim constructs the network, the
Workload module initializes the communication pat-
terns for the experiment. In pp-mess-sim, traffic pat-
terns are generated by a collection of independent
“tasks,)) which are mapped onto individual nodes in

the network to represent application behavior. As
part of task creation, pp-mess-sim binds each task to
a node and schedules its first packet creation event.
For example, lines 8-11 of Figure 1 assign two in-
dependent tasks to each node in the network; ev-
ery node instantiates one time-constrained and one
“default” best-effort task. Since routing and switch-
ing policies significantly impact multicomputer per-
formance, the tasks may adopt different routing-
switching schemes, tailored to application communi-
cation demands. By changing task characteristics and
mappings, the pp-mess-sim user can compose the di-
verse communication patterns necessary for realistic
network evaluation.

4 Routing and Switching Algorithms

Tuning a network design requires evaluating a va-
riety of router architectures and routing-switching
schemes. The simulator facilitates such experimen-
tation by decoupling these schemes (Ralg) from the
router models (Node) and the network topologies
(Net). This functional separation allows the user
to easily implement new routing-switching algorithms
without changing the node models.

4.1 Routing-Switching Instructions

Routers implement routing and switching in various
ways, closely tied with internal timing and arbitration,
but every device proceeds through common operations
to service an incoming packet. The routing algorithm
support in pp-mess-sim identifies these phases and rep-
resents them outside of the router model. Invoked
after packet header collection, the routing algorithm
interacts with the Node using a series of routing-
switching instructions until they agree upon a suitable
routing-switching decision. This allows the high-level
routing algorithm to make its decisions based on feed-
back from the device, without low-level knowledge of
the router architecture. Similarly, while the router
model must accept commands from the routing algo-
rithm, the router need not know how this algorithm
selects the sequence of operations. This decoupling is
instrumental in supporting multiple routing-switching
schemes across a collection of router models.

On each interaction with the router, the algorithm
generates a routing-switching instruction consisting of
an ordered list of outgoing virtual channels and a can-
didate switching decision for the router’s considera-
tion. The list of virtual channels encapsulates the
routing options generated by the algorithm, while the
candidate switching decision helps the router decide
whether to buffer, stall, drop, or forward the packet.
The router examines each instruction and determines
whether or not the output channel(s) can satisfy the
request; if necessary, the router tries to reserve any
internal resources necessary to successfully complete
the operation. For example, the algorithm may ask
the router to reserve a single outgoing channel from
a list of channels on a shortest-path route. If all of
these channels are busy, the router may reject this re-
quest, requiring the algorithm to suggest an alternate
way to service the packet (e.g., buffering the packet
at the current node). The algorithm and the router
model continue this request-response handshake until
they agree on a common routing-switching decision.

The routing-switching instructions transcend event
processing in the discrete-event simulation. For exam-
ple, Ralg may instruct the Node to stall the incom-
ing packet until one of its candidate output channels
becomes available. If all of these channels are busy
with other traffic, the Node cannot immediately re-
spond to this instruction. When some later simulation
event frees one of the channels, the Node may then
try to reserve this channel and continue its interaction
with Ralg. This allows the Node to invoke channel
allocation policies transparent to the routing instruc-
tions. Similarly, detailed router models may capture

delay in acquiring internal buffer resources; such mod-
els may proceed through multiple simulation events
before responding to a routing instruction. The hand-
shake between Ralg and Node hides the low-level
timing details of the router model and, thus, allows
the construction of generic routing algorithms.

4.2 Selection Functions

The simulator also includes Net support to min-
imize the dependency of the routing-switching algo-
rithms on the underlying network topology. While
some routing algorithms depend on a particular topol-
ogy, most schemes require only high-level information
about the various output links at each node. The Net
selection functions categorize and rank these links,
based on certain routing primitives; Ralg uses these
functions to generate a list of possible directions for a
packet to travel. For example, given the current node
and the packet’s destination, the selection functions
can identify which output links lie on a minimal path
or, alternatively, which links would deflect the packet
away from a shortest-path route.

Routing algorithm performance also depends on the
order the router considers the set of output directions.
Hence, the selection functions also rank the set of out-
put links, returning an ordered list of candidate out-
going links. For example, line 19 in Figure 1 assigns
a dimension-order ranking to the default best-effort
packets. This requires a packet to complete all hops
in one direction before proceeding to the next dimen-
sion. In contrast, the time-constrained packets con-
sider their output links in a random order. Net also
includes a selection function that ranks links according
to how far the packet must still travel in each direction;
this link ordering improves a packet’s chance of con-
sidering multiple outgoing links at future nodes in its
route. Another selection function orders output links
according to network congestion, giving preference to
links with fewer busy virtual channels; this balances
traffic load amongst the outgoing links. These selec-
tion functions, coupled with the routing-switching in-
structions, enable pp-mess-sim to model a wide range
of routing-switching algorithms on a variety of net-
work topologies.

Existing schemes include both oblivious and adap-
tive shortest-path routing for wormhole, virtual cut-
through, and packet switching, with several selection
functions. The user can also specify various nonmin-
imal routing algorithms for virtual cut-through and
wormhole switching. The simulator includes several
deadlock-free wormhole routing algorithms, with vary-
ing degrees of adaptivity [17]. In addition to tra-

ditional routing and switching schemes, sequences of
routing-switching instructions can generate hybrid al-
gorithms that incorporate both virtual cut-through
and wormhole switching, depending on the underly-
ing router conditions. The generality of the routing-
switching instructions and the selection functions sig-
nificantly reduces the difficulty of adding new algo-
rithms to pp-mess-sim.

5 Communication Workloads

Network traffic patterns and performance require-
ments vary significantly across different applications.
Hence, pp-mess-sim provides flexible support for gen-
erating communication patterns and collecting perfor-
mance statistics. The Workload module insulates
the rest of the simulator from the details of the traffic
generation and data collection by handling all func-
tions related to packet creation and reception. To
better evaluate network policies, each Node also mon-
itors the utilization of its internal resources during the
course of the simulation.

5.1 Traffic Generation

The simulator generates traffic patterns as a collec-
tion of tasks with varying characteristics. Because the
packet characteristics in an actual network depend on
the application or protocol software, pp-mess-sim al-
lows the derivation of packet length and interarrival
times from a variety of stochastic processes, including
uniform, exponential, geometric, normal, and discrete
distributions. Since many network protocols enforce
limits on packet size, the length distributions may be
trimmed to enforce upper and lower bounds on packet
length. In Figure 1, time-constrained tasks generate
periodic, fixed-length packets, while default best-effort
tasks create packets according to a Poisson process.
Using the discrete distribution of packet lengths, 70%
of the best-effort packets are short, while the remain-
ing are long; such bimodal distributions are common
in multicomputer applications [5] .

Application constructs also impact the selection of
a target destination node for each packet. Line 28
of Figure 1 assigns a hop-uniform target distribution
to the time-constrained task. In this example, 20%
of packets have destinations just one hop away, while
70% travel two hops, and the remaining packets tra-
verse three hops. While the hop-uniform distribution
captures spheres of communication locality, the node-
uniform distribution in line 16 represents a random

permutation, with uniform random selection of de5
tination nodes. To capture the communication be-
havior of scientific applications, target destinations
may stem from common permutations, such as matrix-
transpose (dimension-reversal) , bit-complement , and
bit-reversal. The simulator also includes a destination-
discrete distribution, where all packets are destined for
a certain subset of nodes, to generate “hot-spots” of
heavily-utilized nodes and links; common multicom-
puter constructs, such as synchronization or multicast
operations, may induce such non-uniform traffic.

5.2 Packet Statistics

The simulator associates performance metrics with
each task to make data collection more flexible. These
packet statistics allow the user to study various com-
munication patterns with different performance re-
quirements. Since the behavior of the simulated net-
work changes over time, performance metrics are ex-
tremely sensitive to the interval of data collection. Ac-
curate measures of steady-state performance require
both a sufficient warm-up period and a reasonable
averaging interval. In pp-mess-sim the tasks proceed
through three distinct phases: priming the empty net-
work, collecting performance data, and draining the
system of any remaining packets.

To prime the network, each task on each node must
deliver a certain minimum number of packets to their
destinations before any data collection commences.
The user may configure a different number of “warm-
up” packets for each type of task through the “drop”
field in the task specification (as in lines 23 and 35
of Figure 1). After all tasks have completed their re-
quired “warm-up” packets, each task accumulates per-
formance data until the required number of its packets
have completed service (as specified in lines 22 and 34
of Figure 1). The task continues to generate packets
until every task in the network has completed data
collection. Then, all tasks stop creating packets and
the simulator executes any remaining events to handle
traffic left in the system; this serves as a precaution
to identify possible communication deadlocks.

During the data collection phase, each task accu-
mulates performance statistics as its packets reach
their destinations. The simulator provides an extensi-
ble mechanism for collecting packet statistics for each
task. As a packet travels through the simulated net-
work, the router model maintains a history list that
records significant events during the packet’s journey.
For example, if a packet cuts through an intermediate
node, the location, time, and event (e.g., Cut) are ap-
pended to the history list. When the packet arrives at

89

its destination node, the data collection routine pro-
cesses the list to extract the desired performance met-
rics.

With help from the router model, the data collec-
tion routines can accumulate a wide variety of per-
formance statistics. The timestamps on the history
records indicate the end-to-end latency of the packet,
as well as the components of this delay. Logging the
event type allows the collection routines to evaluate
the routing and switching decisions that occurred for
each packet. Existing history collection routines cap-
ture end-to-end delay statistics (e.g., mean, variance,
minimum, and maximum), packet cut-through proba-
bilities, and latency histograms. For example, in Fig-
ure 1 the best-effort default tasks collect basic latency
metrics (line 21), while the time-constrained tasks cap-
ture a histogram of latency data to estimate the prob-
ability distribution of packet delay (line 33).

Since performance may vary with communication
distance, these routines also maintain separate statis-
tics based on the number of hops a packet travels.
Tasks may also select a null collection routine; this
avoids accumulating unnecessary performance data for
any “background” traffic in the system. The hi5
tory collection mechanism also allows for simple ex-
tensions for additional performance metrics. Adding
customized entries to the history list can create a fairly
detailed list, allowing the collection routines to recon-
struct the behavior of the packet and the network.

5.3 Router Statistics

Pinpointing weaknesses and bottlenecks in a router
design requires detailed information about how inter-
nal features perform in operation. While the history-
list approach is suitable for collecting packet statis-
tics, it is unnatural for capturing fine-grain informa-
tion about resource usage in the router. Instead, each
pp-mess-sim router model accumulates statistics for its
outgoing channels, internal buses, and packet buffers
throughout the data collection phase of the simulation.
By maintaining separate statistics for each node, the
user can investigate the impact of non-uniform com-
munication patterns on resource usage across all nodes
in the network.

Each node model accumulates this data whenever a
simulation event models access to an internal resource.
The Node maintains a single object that updates
these statistics in response to simulation events. For
example, if an event models the use of an internal bus,
the Node updates its count of active bus cycles. Mon-
itoring resource usage through the simulation events
also enables the Node to compute average queue

lengths for any buffers in the router design. When
a simulation event augments or depletes a buffer, the
statistics object records the time and the size of the
buffer; this allows the Node to maintain the time-
average of the queue length. Using these statistics,
along with the history-lists, pp-mess-sim can gather
detailed information about network performance.

6 Router Models

By defining strict interfaces between individual
parts of the code, pp-mess-sim insulates the Node
module from the Net, Ralg, and Workload modules.
This extensible framework allows additional Node
modules to be developed without changing any of the
other modules. In addition, this support enables indi-
vidual Node models to focus completely on internal
policies for queueing, arbitration, and flow control.

6.1 Node Modules

The simulator includes a cycle-level model of SPI-
DER [MI, a network router for point-to-point dis-
tributed systems. SPIDER coordinates bidirectional
communication with up to four neighboring nodes,
with three virtual channels on each physical link. A
demand-driven TDM bus connects the incoming and
outgoing links, with microprogrammable engines im-
plementing the routing-switching schemes for arriving
packets; the Ralg routing programs mimic the be-
havior of these programmable devices. The SPIDER
Node model facilitates precise performance evalua-
tion by capturing the low-level details of flow con-
trol, resource arbitration, and microcode execution.
Run-time specification of interface speeds and inter-
nal buffer sizes has been instrumental in tuning the
router design and implementation.

While the SPIDER Node module effectively rep-
resents a specific router design, exploring alternative
architectures requires more robust models. Hence,
pp-mess-sim includes a configurable, high-level model
for examining techniques and performance trends in
router architecture. This “virtual” router (v-router)
supports various queueing, arbitration, and flow-
control policies. Since the v-router model captures
less detail than the SPIDER model, v-router experi-
ments can efficiently consider a broader range of sim-
ulation parameters before testing specific options on
a more detailed model. The v-router simulations
often execute an order of magnitude faster for vir-
tual cut-through and packet switching experiments by
modeling only the head and tail flits in each packet;

90

wormhole switching simulations typically execute 50%
faster, since the v-router does not model low-level tim-
ing details. The support provided by Net, Ralg, and
Workload allow pp-mess-sim to run the same experi-
ments on both router models.

6.2 Sample Experiments

The simulator’s flexibility enables a broad range of
experiments evaluating multicomputer router designs.
Figure 2 shows the performance of various switch-
ing schemes using static routing on an 8 x 8 square
mesh of v-router Nodes carrying 16-flit packets; ex-
periments using the SPIDER model showed similar
trends. The graphs plot the mean packet latency as a
function of the average link utilization for two traffic
patterns. As expected, virtual cut-through switching
consistently outperforms packet switching, since vir-
tual cut-through traffic often avoids buffering delay at
intermediate nodes. At low loads, wormhole switching
performs extremely well for both traffic patterns.

However, the relative performance of virtual cut-
through and wormhole switching varies significantly
between Figure 2(a) and 2(b). Under uniform random
traffic, the two switching schemes exhibit compara-
ble performance at low loads; however, network con-
tention limits wormhole throughput at higher loads.
By removing blocked packets from the network, vir-
tual cut-through and packet switching consume net-
work bandwidth proportional to the offered load. In
contrast, a blocked wormhole packet stalls in the net-
work until its outgoing channel becomes available; this
stalled packet may then block other traffic destined for
different output links.

Despite channel contention, wormhole switching ex-
cels for the matrix-transpose permutation. This effect
occurs because matrix-transpose traffic, coupled with
dimension-order routing, limits harmful contention
between packets heading to different parts of the net-
work. In a square mesh, the matrix-transpose permu-
tation requires node (c, d) to communicate with node
(d , c). With dimension-order routing, each packet
starting on row d proceeds in the x-direction to node
(d , d) , before traveling in the y-direction to reach the
destination node. As a result, source nodes in row
d inject packets that use the same row and column
links. Although a blocked wormhole packet may still
restrict other traffic from entering a node, this traffic
must ultimately traverse the same links as the stalled
packet; buffering the blocked packet cannot alleviate
this contention.

Neither wormhole nor virtual cut-through switch-
ing performs best in all situations. Similarly, traf-

fic patterns significantly impact the performance of
routing algorithms, as shown in Figure 3. These
pp-mess-sim experiments evaluate wormhole switch-
ing under both dimension-order and adaptive rout-
ing; virtual cut-through simulations showed the same
qualitative trends. The adaptive algorithm is a fully-
adaptive minimal routing scheme that requires two
virtual channels per link to prevent network dead-
locks [17]; in these experiments, both routing algo-
rithms employ a pair of virtual channels to enable
fair performance comparisons. The dimension-order
routing algorithm uses the extra virtual channel to re-
duce contention between packets traveling on the same
link [ll].

Contrary to intuition, static routing consistently
outperforms adaptive routing in Figure 3(a). In an
8 x 8 square mesh, the bit-complement permutation
requires source node (c, d) to communicate with node
(7 - c,7 - d). As a result, all packets must even-
tually cross both the middle row and the middle col-
umn of the mesh, irrespective of the routing algorithm.
Dimension-order routing tends to avoid the center of
the network, where the middle row and column meet,
by exhausting the x-direction before routing a packet
in the y-direction. In contrast, adaptive algorithms
try to avoid the heavily-congested middle column (or
row) by routing packets to more lightly-loaded rows
(or columns); this ultimately pushes traffic closer to
the congested center of the network. A local decision
at one node causes a packet to travel a lightly-loaded
link into a more congested region.

In addition, the extra routing flexibility provided by
adaptive algorithms allows source nodes to inject more
packets, further increasing contention at the middle
of the network. Hence, in some situations, restricted
routing flexibility can effectively limit the overuse of
network resources. However, this effect varies with
the network load and the underlying traffic pattern,
as shown in Figure 3(b). This experiment considers
bursty traffic, in contrast to the traditional Poisso-
nian packet arrival process in Figure 3(a). The source
nodes generate bursty traffic using a two-stage nor-
mal distribution of packet interarrivals [4]. Packet
interarrivals stem from two independent normal dis-
tributions, with different means; sources randomly se-
lect 80% of interarrivals from the distribution with the
small mean.

In Figure 3(b), the applied traffic load (x-axis)
changes by varying the large mean, keeping the small
mean fixed at 10 cycles. This generates relatively
small packet interarrival times within a burst to cap-
ture the transmission of a multi-packet message or a

91

SOO.0

250.0

H Mo.0

E 150.0
3 1cQ.o

-
3

2
50.0

0.0 0.2 0.4 0.6 0.8 0.00 0.05 0.10 0.15 0.20 0.25
UI* U l l i i b n WUUIhUon

(a) Uniform random traffic (b) Matrix transpose traffic

Figure 2: Comparing switching schemes under dimension-order routing

handful of related messages. Figures 3(a) and (b) ex-
hibit similar trends at high loads, but bursty traffic
limits the effectiveness of static routing at low net-
work loads since packets in a burst are queued await-
ing transmission. The adaptive algorithm helps dis-
sipate bursts by capitalizing on multiple paths be-
tween each source and destination, thus reducing the
queueing delay at the sending node. The simulator’s
flexibility enables such experimentation with routing-
switching schemes, router models, and communication
workloads.

7 Conclusions and Future Work

Evaluating multicomputer router designs requires
a flexible simulation framework. The object-oriented
pp-mess-sim environment provides a toolkit for study-
ing different network topologies, routing-switching
schemes, and router models, under a variety of com-
munication workloads. Well-defined interfaces be-
tween the simulator components create an extensible
environment that enables independent enhancements
to the code.

As part of ongoing work, additional features are
continually added to the simulator. In particular,
we are extending Workload to generate more re-
alistic communication patterns through the use of
complex arrival processes, application traces, and ac-
curate communication models. These options will
complement the existing probability distributions for
packet length, inter-arrival times, and target destina-
tion nodes. We are also investigating new routing-

switching algorithms, using the various Ralg routing
instructions and Net selection functions.

To study general router design issues, we are ex-
tending the v-router Node module to allow more
control over internal router organization. With a
diverse library of arbiters and buffer architectures,
the v-router could construct a wider range of can-
didate router designs. Ultimately, multicomputer
performance depends on the interaction of these in-
ternal router policies with the network topology,
routing-switching schemes, and application workloads.
Drawing on the Net, Ralg, and Workload sup-
port, pp-mess-sim users could then compare candidate
router architectures under the same network policies
and application demands.

References

W. Athas and C . Seitz, “Multicomputers:
Message-passing concurrent computers,’’ IEEE
Computer, pp. 9-24, August 1988.

X . Zhang, “System effects of interprocessor com-
munication latency in multicomputers,” IEEE
Micro, pp. 12-15,52-55, April 1991.

A. M. Law and M. G. McComas, “Simulation
software for communications networks: The state
of the art,” IEEE Communications Magazine,
pp. 44-50, March 1994.

J.-M. Hsu and P. Banerjee, “Performance mea-
surement and trace driven simulation of parallel

92

150.0 150.0

- H 100.0

f P
p 50.0 50.0

- 100.0 P

3 3

t I

0.6 0.8
0.0

0.8 0.8 0.0 0.2 0.4
0.0

0.0 0.2 0.4
LMUlllnlon LM Ulilinlon

(a) Poisson arrival process (b) Bursty arrival process

Figure 3: Comparing routing algorithms under wormhole switching and bit-complement traffic

CAD and numeric applications on a hypercube
multicomputer,” IEEE Trans. Parallel and Dis-
tributed Systems, vol. 3, pp. 451-464, July 1992.

[5] R. Cypher, A. Ho, S. Konstantinidou, and
P. Messina, “Architectural requirements of par-
allel scientific applications with explicit commu-
nication,” in Proc. Int ’1 Symposium on Computer
Architecture, pp. 2-13, May 1993.

[6] M. G. Norman and P. Thanisch, “Models of ma-
chines and computation for mapping in multi-
computers,” A C M Computing Surveys, vol. 25,
pp. 263-302, September 1993.

[7] J . Dolter, A Programmable Routing Controller
Supporting Multi-mode Routing and Switching in
Distributed Real- Time Systems. PhD thesis, Uni-
versity of Michigan, September 1993.

[8] W. J . Dally, “Performance analysis of k-ary n-
cube interconnection networks,” IEEE Trans.
Computers, vol. 39, pp. 775-785, June 1990.

[9] A. Agarwal, “Limits on interconnection network
performance,’’ IEEE Trans. Parallel and Dis-
tributed Systems, vol. 2, pp. 398-412, October
1991.

[lo] W. J . Dally and C. L. Seitz, “Deadlock-free mes-
sage routing in multiprocessor interconnection
networks,” IEEE Trans. Computers, vol. C-36,
no. 5, pp. 547-553, May 1987.

[ll] W. Dally, “Virtual-channel flow control,” IEEE
Trans. Parallel and Distributed Systems, vol. 3,
pp. 194-205, March 1992.

[12] A. A. Chien, “A cost and speed model for k-ary
n-cube wormhole routers,” in Proc. Hot Intercon-
nects, August 1993.

[13] P. Kermani and L. Kleinrock, “Virtual cut-
through: A new computer communication
switching technique,” Computer Networks, vol. 3,
pp. 267-286, September 1979.

[14] W. J. Dally and C. L. Seitz, “The torus routing
chip,” Journal of Distributed Computing, vol. 1,
no. 3, pp. 187-196, 1986.

[15] M. G. Hluchyj and M. J . Karol, “Queueing in
high-performance packet switching,” IEEE Jour-
nal on Selected Areas in Communications, vol. 6,
pp. 1587-1597, December 1988.

[16] J . Rexford and K. G. Shin, “Support for multi-
ple classes of traffic in multicomputer routers,” in
Proc. Parallel Computer Routing and Communi-
cation Workshop, pp. 116-130, May 1994.

[17] J . Duato, “A new theory of deadlock-free adap-
tive routing in wormhole networks,” IEEE Trans.
Parallel and Distributed Systems, pp. 1320-1331,
December 1993.

[18] J . Dolter, S. Daniel, A. Mehra, J . Rexford,
W. Feng, and K. Shin, “SPIDER: Flexible and ef-
ficient communication support for point-to-point
distributed systems,” in Proc. Int’l Conf. on Dis-
tributed Computing Systems, pp. 574-580, June
1994.

93

