
Amerlean Control ~ ~ e ~ i ~ $  Conference of the 

Sealie, Washington * June 490s 

n Open Architecture Testbed for 
onitoring and Control of Machining 

Jaehyun Park, Sushi1 Birla, 
Kang G. Shin, 

Zbigniew J. Pasek, Galip Ulsoy, 
Yansong Shan, Yoram Koren 

Dept. of Electrical Engineering 
and Computer Science 

The University of Michigan 
{ jaehyun, b i r l a s ,  kgshin)@eecs.umich.edu 

Dept. of Mechanical Engineering 
and Applied Mechanics 

The University of Michigan 
{zbigniev, u lsoy ,  ykoren}@engin.umich.edu 

Abstract 

This paper presents an open architecture controller 
(OAC) for machining systems and describes the OAC 
testbed at  the University of Michigan. Because our 
OAC is designed for fully open systems, it does not 
depend on any specific hardware or software compo- 
nents. This openness includes software reusability 
which enables integration of a wide range of mon- 
itoring and control features. In addition to open- 
ness, our OAC system provides guaranteed real-time 
performance, an important requirement for advanced 
manufacturing. 

1. Introduction 

To develop a next-generation manufacturing system 
with flexibility, while minimizing life-cycle cost for 
the machine controller, as well as for developing the 
control system itself, it is necessary to define hard- 
ware and software architectures based on an open 
architecture concept. In this paper, we present an 
OAC (Open Architecture Controller) for machining 
systems and the OAC testbed we have been building 
up at  the University of Michigan. 

The OAC approaches known to date could be clas- 
sified into two major groups: one driven by indus- 
try focusing on the compatibility among commercial 
products, and the other offering hardware flexibility 
and software adaptability which are driven by the 
needs of basic research organizations. Although they 

The work reported in this paper was supported in part by 
the National Science Foundation under Grant DDM-9313222. 
Any opinions, findings, and conclusions or recommendations 
expressed in this paper are those of the authors and do not 
necessarily reflect the view of the NSF. 

differ in approach, the final goal of developing an 
OAC is to provide an open system for manufacturing. 
The OSACA (Open System Architecture for Con- 
trols within Automation systems; ESPRIT I11 project 
6379) project [I, 21 may be one of the largest-scale 
projects for OAC, in which almost all of the standard- 
ization matters including network, application soft- 
ware as well as hardware, have been considered. The 
National Center for Manufacturing Sciences (NCMS) 
and the US. Air Force co-sponsored the Next Gen- 
eration Controller Program (NGC), and Martin Ma- 
rietta organized industry requirements [3] and pre- 
pared a Specification for an Open Systems Architec- 
ture Standard (SOSAS) [4]. The next step beyond 
NGC/SOSAS by NIST is the ECA (Enhanced Ma- 
chine Controller Architecture) project [5, 61. Other 
research projects like as the Chimera project [7], the 
MDARTS [8], and the HOAM-CNC [9] have demon- 
strated a variety of approaches to OAC. 

Although it is very difficult to form a universal 
agreement on the definition of an open system, 
(l)vendor-ne.lltrala'ty, and (2)component-integrubzlity 
can be thought of as two fundamental features of 
an open system. Vendor-neutrality is necessary be- 
cause an open system should be designed based on 
well-established standards that are independent of a 
single proprietary vendor. Component-integrability 
is required for the portability and incremental ex- 
pandability of any open system. For example, if 
temperature-compensation control is needed, the sys- 
tem should be able to integrate existing results (i.e., 
temperature sensors, thermal models, compensation 
algorithms) from thermal compensation research into 
the controller with minimal effort. 

In addition to the openness requirement, an OAC 
must provide guaranteed real-time performance 

200 

mailto:kgshin)@eecs.umich.edu
mailto:ykoren}@engin.umich.edu


which is one of the fundamental features of auto- 
mated manufacturing systems. A control task in a 
manufacturing system consists of several sub-tasks, 
such as sensing machine status, several levels of con- 
trol algorithms, and controlling actuators. Some of 
these tasks are periodically executed and others ape- 
riodically. However, all of them must meet certain 
timing constraints. In a real-time system, such as a 
manufacturing system, it is sometimes meaningless to 
monitor/control the process if these time constraints 
are not met. However, the issue of meeting real-time 
constraints has not been adequately addressed in pre- 
vious research on OAC. Thus, to develop an advanced 
manufacturing controller, we must achieve two goals. 
The first goal is to build a flexible open system to 
meet the need of integrating advanced machine mon- 
itoring and control technologies in a modular manner. 
The second goal is to build a system with guaranteed 
response time for tasks at different levels of hierarchy 
and real-time interfaces between machine tool appli- 
cation task components in an advanced manufactur- 
ing system. 

In this paper, we describe our efforts at the Uni- 
versity of Michigan in building an open architecture 
real-time controller for manufacturing systems, or 
UMOAC (the University of Michigan Open Architec- 
ture Controller) for short, that meets these require- 
ments. Section 2 describes the hardware configura- 
tion of UMOAC, and Section 3 discusses its software 
configuration. Section 4 introduces our laboratory 
evaluation system, or the UMOAC testbed for short. 

2. Hardware Configuration 

The UMOAC (University of Michigan Open Architec- 
ture Controller) is designed to meet two basic require- 
ments: openness to meet the need of integrating ad- 
vanced machine monitoring and control technologies, 
and real-time operation to guarantee response times 
of tasks at different levels of abstraction between task 
components in an advanced manufacturing system. 

The base hardware configuration of UMOAC is a dis- 
tributed system in which processing nodes are con- 
nected through a real-time link/bus. This distributed 
system enables the use of a range of hardware con- 
figurations. Anything from a small micro-controller 
to a medium-size computer can be a processing node 
in a particular configuration. However, regardless of 
their size and functionality, they operate within a 
unified software hierarchy and maintain communica- 
tion compatibility with real-time guarantee. To build 
a heterogeneous configuration while keeping vendor- 
neutrality, no specific hardware platform is defined for 

Figure 1: UMOAC hardware configuration 

the UMOAC. However, each processing node is based 
on an industry standard architecture and built with 
standard off-the-shelf components such as the V M E  
bus. Figure 1 shows a typical example of the UMOAC 
configuration. There are three kinds of processing 
nodes in this configuration: operator node, real-time 
computing node, and real-time control node. The 
operator node is usually used for non-real-time tasks 
such as programming and non-real-time plant mon- 
itoring. The real-time computing node deals with 
real-time control and monitoring tasks such as real- 
time data-logging, diagnosis, scheduling, and con- 
trols. The real-time control node performs fine-grain 
real-time tasks including servo-level control and data- 
acquisition. 

In a distributed system like UMOAC, the commu- 
nication channel between processing nodes plays an 
important role for real-time performance as well as its 
openness. Although there are several communication 
protocols used for manufacturing automation, (e.g, 
Mini-MAP, and Ethernet), to send periodic, sporadic, 
and non-real-time messages over a single network in a 
bounded time, UMOAC adopts the CAN (Controller 
Area Network)[lO] as a real-time communication link 
between processing nodes. Because it provides a short 
worst-case bus access latency and a distributed bus 
acquisition scheme based on the priority of messages, 
when used with a proper scheduling policy, it shows 
better performance in meeting real-time bounds than 
existing communication protocols. We proposed a 
MTS (Mixed Traffic Scheduler) [113 to support pe- 
riodic, sporadic, and non-real-time messages over a 
single CAN I Our simulation of real machine-control 
tasks has shown MTS to outperfom DM (Deadline 
Monotonic) in handling high-speed real-time data. 

201 



-7 

Real-time Object Manager 
I 

Micro-kernel-based 01s 

Device Driver Network Driver 
I I 

1 8  

:s 

I 
;g  

_ I  

-; g 
I -  

Virtual Device Driver 

Figure 2: UMOAC Software hierarchy 

3. Software Configuration 

To enable the writing of highly portable application 
programs, which should be completely isolated from 
the hardware configuration, the software hierarchy of 
UMOAC consists of three major layers: (1) appli- 
cation layer, (2) object management layer, and (3) 
device driver layer as shown in Figure 2. 

The application layer is composed of application pro- 
grams, functional modules, and abstract machine 
models. Application programs are top-level soft- 
ware which includes the user interface, programming, 
and monitoring. To make this application program 
portable, abstract machine models and highly modu- 
lar functional modules are used, which are indepen- 
dent of hardware configuration. The functional mod- 
ules and abstract machine models are managed by an 
application integrator, with which functional modules 
written for a specific application can be reused or ex- 
tended for other applications. 

An abstract machine model corresponds to a real ma- 
chine's hardware. This abstract machine model con- 
tains a specification of the machine itself as well as the 
data acquired at run-time. The run-time data is man- 
aged by the real-time object manager while ensuring 
the pre-defined response time. Since an application 
program as well as functional modules, interact only 
with the abstract machine models, they are isolated 
from the hardware. This isolation enables the mod- 
ules to possess modularity and reusability. 

The second software layer of the UMOAC, the ob- 

ject management layer, consists of virtual device 
driver, system configurator, real-time object man- 
ager, and real-time operating system. The main 
role of the system configurator is a mapping between 
hardware-independent application software (includ- 
ing functional modules and abstract machine mod- 
els) and real hardware such as controlled plants and 
remote processing modules. If the controlled plant is 
connected to the local 1/0 interface hardware, the vir- 
tual device driver is used, of which a hardware-specific 
device driver would eventually have an inherent inter- 
face scheme. This virtual device driver concept used 
in the UMOAC provides interoperability at the hard- 
ware level. If the controlled plant is connected to the 
remote processing modules or any functional module 
wanting to use the data from the remote processing 
module, the system configurator uses a network driver 
for that data. Because these mappings by the system 
configurator are also isolated from writing applica- 
tion programs, they maximize software modularity 
and reusability. 

The real-time object manager provides system ser- 
vices tuned to the domain of object-oriented machine 
control applications. These services extend the micro- 
kernel operating system services and include domain- 
specific scheduling of tasks and resources. The object 
manager also supports persistency and configuration 
definition. The real-time object manager is designed 
on top of a commercially-available real-time operat- 
ing system which has a micro-kernel architecture and 
a POSIX-compliant interface. 

The third software layer of the UMOAC, the device 
driver layer, is the only hardware dependent part. Be- 
cause both local and remote 1/0 drivers provide the 
same interface protocol, remote data through CAN 
can be handled just like local data. 

4. Evaluation 

To evaluate our design, we have been building a 
testbed, shown in Figure 3, which consists of a 6- 
axis CNC milling machine, commercial CNC con- 
troller (Robotool), PC-based CNC, VMEbus-based 
UMOAC, and CAN-based UMOAC. The current 
testbed has evolved from the activities in the Uni- 
versity of Michigan CNC Laboratory, where over the 
years research on the next generation CNC controllers 
was conducted [12]. To effectively perform research in 
that area, an open and readily modifiable control sys- 
tem was needed - these features were not possessed 
by any of the commercially-available CNC systems. 
The current hardware platform of UMOAC is config- 
ured based on VMEbus, which consists of Xycom-486 

202 



Figure 3: Hardware configuration of the UMOAC 
test bed 

. . - .  i c w  

Figure 4: Software configuration of testbed 

plementing multiple process control strategies. It has 
been implemented in various forms; most of these 
controllers, however, were constructed in an ad hoc 
manner to solve a single problem since no rigorous 

CPU boards and multiple 1/0 devices. The object 
manager is implemented on the top of QNX real-time 
operating system and all of the application program 
is written in C++ language. 

The UMOAC testbed was more open as compared to 
commercial CNC controllers, allowing researchers to 
implement, modify, and then test various algorithms 
for servo control, interpolation, adaptive control and 
error compensation. The system also provided the 
users with access to data from 16 sensors, including 
tachometers, digital encoders (rotary and linear), mo- 
tor current sensors and a spindle power sensor. 

Functionally, an OAC for multi-axis machining 
should provide the multi- level, hierarchical configura- 
tion presented in Figure 4. The information database 
and the monitoring and control routines are divided 
into specific modules, which provide data integrity. 
The system's modularity simplifies installation, main- 
tenance and upgradability of the software. Moni- 
toring and control modules have access to the infor- 
mation database, real-time measurements, near real- 
time measurement and each other. The information 
database may also be dynamically updated. 

The main issue in developing controllers for machin- 
ing processes is the relative complexity of the sys- 
tem. While research regarding control components 
involved in such applications, such as servo or process 
controllers, is well developed, much of the research re- 
sults are not implementable, mostly due to the lack of 
attention paid to the interactions between the various 
processes. The higher-level, hierarchical, supervisory 
control is needed to integrate and coordinate control 
modules. 

Supervisory control is a promising structure for im- 

controller design methodology exists. The servo level 
control refers here to the dynamics, hardware and 
controls of the basic motions of the machine tool and 
its auxiliary equipment, such as, for example, mo- 
tor velocity and position control. The process level 
includes dynamics, hardware and controls involving 
interactions between the machine tool and the work- 
piece. Finally, the supervisory level corresponds to 
the control architecture capable of intelligent integra- 
tion and coordination of involved modules at all levels 
by intelligently selecting appropriate process control 
strategies. 

For example, a simple face milling operation involves 
a number of process issues, such as occurrence of chat- 
ter, tool wear, surface finish, etc. To obtain satisfac- 
tory quality of the workpiece the following process 
control modules have to be used: chatter detection 
and suppression, force control, tool wear rate con- 
straint, surface finish control. The chatter module 
detects the onset of chatter and adjusts the operating 
point in the process input space to assure cutting pro- 
cess stability. The force control module manipulates 
the feedrate to maximize the productivity given tool 
wear rate constraints. The tool wear constraint rate 
module provides the force controller with the current 
tool wear rate constraint values. The surface finish 
controller adjusts the feedrate to maximize the sur- 
face finish quality. The supervisory controller inte- 
grates and coordinates the control modules to com- 
plete the operation. If an unstable depth-of-cut is 
attempted during the roughing pass, the force and 
chatter modules have to be coordinated, since their 

203 



actions may be of contradictory nature. Similarly, the 
actions of the surface finish module and force con- 
troller have to be coordinated during the finishing 
pass. 

5. Conclusion 

Although this project is still in a preliminary stage, 
our approach to an open architecture control of ma- 
chining systems has already had some major impact. 
First, our system is fully open, because it does not de- 
pend on a specific hardware or software component. 
Second, our system provides guaranteed real-time op- 
eration, an important requirement for advanced man- 
ufacturing. Third, our system can integrate a wide 
range of monitoring or control features in a modular 
manner. We will fully test this system on a 6-axis 
milling machine, and other machines at the Univer- 
sity of Michigan. 

Acknowledgments 

The authors would like to thank L. Zhou, S. Jee 
and R. Landers for their assistance in building the 
UMOAC evaluation system. 

References 
[l] G. Pritschow. Automation technology - on the 
way to an open system architecture. Robotics tY 
Computer-Integrated Manufacturing, 7( 1/2):103-111, 
1990. 

[2] G. Pritschow, Ch. Daniel, G. Junghans, and 
W. Sperling. Open system controllers - a challenge 
for the future of the machine tool industry. Annals of 
the CIRP, 42(1):449-452, 1993. 

[3] Next Generation Workstation/Machine Con- 
troller (NGC) Requirements Definition Document 
(RDD), 1989. 

[4] Manufacturing Technology Directorate Wright 
Laboratory, Air Force Materiel Command, WPAFB, 
Ohio 45433-7739. Nezt Generation Controller Speci- 
fication for an Open Systems Architecture Standard, 
September 1994. W1-TR-94-8033. 

151 Frederick M. Proctor, Brad Damazo, Charles 
Yang, and Simon Frechette. Open architecture 
for machine control. NISTIR-5307. Technical re- 
port, National Institute of Standards and Technology, 
Gaithersburg, MD 20899, December 1993. 

[6] Frederick M. Proctor and John Michaloski. 
Enhanced machine controller architecture overview. 
NISTIR-5331. Technical report, National Institute of 

Standards and Technology, Gaithersburg, MD 20899, 
December 1993. 
[7] David B. Stewart, Richard A. Volpe, and 
Pradeep K. Khosla. Design of dynamically recon- 
figurable real-time software using port-based objects. 
CMU-RI-TR-93-11. Technical report, Carnegie Mel- 
lon University, Pittsburgh, PA 15213, July 1993. 

[SI Victor B. Lortz and Kang G. Shin. MDARTS: 
A multiprocessor database architecture for real-time 
systems CSETR-155-93. Technical report, The Uni- 
versity of Michigan, EECS, Ann Arbor MI 48109- 
2122, March 1993. 
[9] Y. Altintas and W. K. Munasinghe. A hier- 
archical open-architecture CNC system for machine 
tools. Annals of the CIRP, 43(1):349-354, 1994. 
[lo] Robert Bosch GmbH, Stuttgart. CAN Spec$- 
catzon Versaon 2.0, 1991. 
1111 Khawar M. Zuberi and Kang G. Shin. Non- 
preeemptive scheduling of messages on controller area 
networks for real-time control applications. In Proc. 
1995 IEEE Real- Time Technology and Applications 
Symp., Chicago, U.S.A, 1995. in press. 

[12] A. Galip Ulsoy and Y. Koren. Control of ma- 
chining processes. Journal of Dynamic Systems, Mea- 
surement and Control, 115( 2 )  :30 1-308, June 1993. 

204 


