
Fault-Tolerant Clock Synchronization for Distributed Systems Using Continuous
Synchronization Messages *

Alan Olson, Kang G. Shin

Real-Time Computing Laboratory
The University of Michigan

Ann Arbor, Michigan 48 109-2122
{ alan,kgshin} @eecs.umich.edu

313-763-0391 (voice); 313-763-4617 (fax)

Abstract
We present a probabilistic synchronization algorithm

which sends periodic synchronization messages, instead of
periodic bursts of synchronization messages as other algo-
rithms do. Our “continuous” approach therefore avoids the
burst network loads of other algorithms. Nodes always have
current estimates of other nodes’ clocks, allowing them to
monitor the state of system synchronization, and adjust their
clocks as needed. The algorithm is fault-tolerant, and may
be easily adapted to a wide variety of systems and networks.
We analyze and simulate the algorithm’s performance on a
@-node hypercube, and show the algorithm provides tight
synchronization while imposing only a light load on the net-
work.

1 Introduction
The nodes of a distributed system often need to be syn-

chronized. That is, there exists some 6, such that at any in-
stant any two non-faulty nodes agree on the current time to
within 6. This condition must persist even in the presence of
faulty nodes, clocks, communications, etc. Synchronization
is necessary to establish a global ordering of events. Real-
time systems also use this global time base to allow each
node to determine both when it must complete its own tasks,
and when other nodes must complete theirs.

Synchronization may be accomplished by having all
nodes use the same external time source. For example, Co-
ordinated Universal Time (UTC) can be read via telephone,
radio, or satellite, from several sources, at varying levels of
accuracy [2,17]. Alternatively, the system may be equipped
with a single central clock and communications equipment

*The work reported in this paper was supported in part by Martin Ma-
rietta Astronautics Group in Denver, the Office of Naval Research under
Grant N000-91-J-1115, the NASA under Grant NAG-1220, and the NSF
under Grant MIP-9203895. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors and do
not necessarily reflect the views of the funding agencies.

0731-3071/95 $4.00 0 1995 IEEE
154

Bruno J. Jambor

Martin Marietta Astronautics Group
P.O. Box 179, Denver, CO 80201
bj ambor @ falcon.den.mmc.com

303-977-1972 (voice); 303-977-1 145 (fax)

to allow each node to read it. However, should this sin-
gle time source fail, or if contact is lost or interrupted, the
system is left without a clock. Also, external time sources
may not be available for some applications (e.g., space ve-
hicles.) And, there may be unacceptable cost, size, weight,
and power consumption penalties imposed by radiohatellite
receivers, communications equipment, etc.

It is often preferable to allow each node to use its own
clock, and to limit differences between them with a syn-
chronization algorithm. Synchronization algorithms may be
classified according to the methods used by nodes to inform
one another of their current clock values. Hardware algo-
rithms [6, 7, 14, 161 use a dedicated network to broadcast
each clock signal. Network algorithms [l , 3, 5, 8, 9, 11-
13, 151 send messages across the existing communications
network. Hardware algorithms provide tight synchroniza-
tion, but are expensive to implement. The extra number of
communications lines needed is on the order of n2 for an
n-node system. Network algorithms require no additional
hardware, but tightness of synchronization is limited by un-
certainty in communication delay. They also place an addi-
tional load on the communications network.

Probabilistic synchronization algorithms [1, 3, 4, 11,
131 are a type of network algorithm which try to compen-
sate for the uncertainty in communications delay. The re-
sult is much tighter synchronization, but at the cost of an
even greater load on the communications network. Worse,
the load tends to be “bursty” - very high when the system
is synchronizing, and zero otherwise. A masterklave clock
organization may be used to reduce the network load [1,3],
but this creates problems with selection and synchronization
of masters, faulty masters, and the additional load imposed
on masters. Messages may be combined for efficiency [1 1,
131, but this creates long messages and may not significantly
reduce the total number of bytes transmitted.

In this paper we propose aprobabilistic synchronization

mailto:eecs.umich.edu
http://falcon.den.mmc.com

algorithm which provides tight synchronization while main-
taining a constant, light network load. We do this by mak-
ing our synchronization algorithm run continuously, instead
of periodically as other algorithms do. Continuous opera-
tion eliminates burst loads, and each node is always aware
of how far in or out of synchronization it is, so it can act
to adjust its clock before problems arise. Another continu-
ous synchronization algorithm is described in [4], but it is
targeted towards completely connected systems while our
algorithm is geared towards point-to-point systems. Our al-
gorithm also allows for greater flexibility in adjusting the
clock.

The rest of this paper is organized as follows. In Sec-
tion 2 we give an overview of our algorithm and present our
definitions and assumptions about the system. In Section 3
we describe the messages used to distribute clock informa-
tion, and where and when they are sent. In Section 4 we
discuss how each node keeps track of estimated skews, and
updates these estimates in response to new information. In
Section 5 we discuss how a node uses its skew estimates to
adjust the value of its own clock. In Section 6 we present the
results of our analysis and simulation. The paper concludes
with Section 7.

2 Synchronization
We assume the system has n nodes, denoted NO, ...,

Nn-l. The synchronization algorithm must ensure that the
difference (or skew) between the clocks of any two non-
faulty nodes is never more than a given 6. The behavior of
clocks at faulty nodes is not constrained.

Synchronization algorithms typically have three
phases: distribution of clock information, estimation of
clock skews, and adjustment of clock values. In conven-
tional synchronization algorithms these phases are sequen-
tial, and the algorithm terminates after clock adjustment. In
our algorithm all three phases are running simultaneously,
and the algorithm never terminates. A node may therefore
adjust its clock at any time, and other nodes must distin-
guish between clock adjustments and variation in clock
rates. We do this with the following clock structure:

Raw clock: A counter that increments (approximately) at a
specified rate. The raw clock has a specified maximum
dnj?, e. A raw clock with a specified rate of t ticks per
second will actually have between t(1 - e) and t(1 +e)
ticks per second. This property allows the raw clock to
be used to measure time intervals with a known maxi-
mum error.

Clockadjustment: The value that is added to the raw
clock value to get the current time. This allows the
clock value to be adjusted without altering the raw
clock.

Timerecord

Timerecord

Timerecwd

Timerecord

Figure 1 : A synchronization message

Target adjustment: The value the clock adjustment
should have. The synchronization algorithm does not
change the clock adjustment immediately. Instead, it
sets the target adjustment to the desired new value,
and changes the clock adjustment slowly until it is
equal to the target adjustment.

The synchronization algorithm sends both the raw
clocks and target adjustments. Nodes may therefore esti-
mate differences between raw clock values, and account for
clock adjustment by using the most recent target adjustment.

3 Distribution of Clock Information
Our synchronization messages are novel both in their

structure, and in the schedule for sending them.

3.1 Synchronization Message Structure
The basic unit of our synchronization message is the

trail, which consists of one or more rimerecords. The struc-
ture of synchronization messages is illustrated in Figure 1.

Each trail contains a header and a number of timere-
cords, listed in the order in which they were added. Nodes
add a timerecord to each trail as it arrives. Timerecords
are augmented timestamps, and each contains the following
fields:

Node: The node which created the timerecord.

Arrival Time: The local raw clock when the trail arrived
at the node which created the timerecord.

SendTime: The local raw clock and target adjustment
when the trail was sent from the node which cre-

155

ated the timerecord. The two values are recorded
separately instead of being added together.

A trail is therefore a record of which nodes it has vis-
ited, and how long it stayed at each one. Should a trail re-
turn to the node where it started (i.e., it completes a cycle),
this information can be used to estimate when it was at each
node. This allows a node to estimate the clock skews be-
tween itself and the other nodes the trail visited.

Accurate recording of the arrival and send times on
each timerecord is vital to the operation of the synchroniza-
tion algorithm. Sloppiness in recording these times effec-
tively increases uncertainty in message delays. Automatic
timestamping schemes, like the one in [12], can greatly re-
duce uncertainty in message delays, and allow for tighter
synchronization.

3.2 Synchronization Message Processing
The goal of the clock distribution algorithm is therefore

to generate cyclic trails at each node. A flexible procedure
for generating cyclic trails is described in [lo]. Space re-
strictions prevent us from describing this procedure here.
Instead, we describe a simpler method that works well in
most cases.

The nodes of the system are laid out in a [fi 1 x [fi 1
grid, as if the system were a wrapped square mesh. Dummy
nodes are used to fill in the grid if necessary, and a system
node is assigned to act in place of each dummy. Message
sending is done in two altemating slices. During a row slice
all nodes are sending synchronization messages to all the
nodes in their row. Row slices are altemated with column
slices; where all nodes are sending synchronization mes-
sages to all the nodes in their column. The length of a slice
is a fixed system parameter, but must be significantly greater
than 26.

Each synchronization message received is broken up
into its component trails. Trails which have completed a cy-
cle are sent to the estimation algorithm. The rest are stored
temporarily for possible inclusion in one or more of the syn-
chronization messages being sent in the next slice.

The trails sent in a synchronization message have two
sources. Each synchronization message contains one new
trail created just before the message was sent. The remain-
ing trails are copies of trails received in the previous slice
with the current node’s timerecord added on. A trail is only
included in a given synchronization message if doing so en-
ables the trail to complete a cycle of length four. The rules
for determining which trails go where are simple: a trail
which arrives with one timerecord may be sent anywhere
in the next slice; a trail which arrives with two timerecords
may be sent only to the node in the same row or column as
the node where it started; a trail which arrives with three
timerecords must be sent back to the node where it started.

The altemating nature of the slices ensure that each trail al-
temates between traveling “vertically” and “horizontally”,
and the resulting cycles are rectangles in the grid. These
rules may be used to construct tables which allow each node
to quickly determine suitable destinations for each trail.

4 Estimation
The estimation algorithm uses cyclic trails to estimate

clock skews. We use an algorithm similar in concept to
those in [3, 111, but adapted to continuous operation.
4.1 Skew Intervals

A node makes estimates by consulting the skew inter-
vals maintained for each node. The bounds of Ni’s skew in-
terval for Nj are computed from Nj ’s timerecords on cyclic
trails, and are guaranteed to bound the actual skew between
Nj and Ni. The skew estimate is the midpoint of the inter-
val, so the estimate can be off by no more than one-half of
the width of the interval.

No constant interval is likely to contain the skew be-
tween a pair of nodes for long. Skew intervals must there-
fore be widened each time they are used. Widening is done
by subtracting from the lower bound, and adding to the up-
per bound, the maximum clock drift possible since the last
time the interval was widened.

Ni’s skew interval for Nj is actually the intersection of
a number of trail intervals. N , computes a new trail inter-
val for Nj each time it receives a cyclic trail containing a
timerecord from N j . The trail interval is then intersected
with the existing (widened) skew interval to form the new
skew interval.

Computing trail intervals is simple. Assume Ni has re-
ceived a cyclic trail. Our distribution algorithm generates
cycles of length four, so let the other three nodes the trail
visited be Nil, Ni, , and Ni, . We need the following defi-
nitions:

Tj: The raw send time on the timerecord of Nij . TO is the
raw send time on Ni’s first timerecord. T4 is the raw
arrival time on Ni’s second timerecord.

d : The minimum delay between the sending of
the synchronization message by Nij and its re-
ception at Nij+l. These may also be summed:
d G C k d

j-j+1

j -b h=j h-h+l ’

Wj: The measured wait time at Nij . This is the difference
between the raw send and arrival times at N i j . Note
that WO and W4 are both 0. The sum of a series of
waits is also defined: jyb =
When the trail returns to N;, the raw clock at Nij must

have a value of at least Tj + jf4, + ,y,. Similarly, the raw
clock at Nij must have a value of at most Tj + (T4 - TO) -

Wh.

156

d , - oyj.. These bounds only hold if there is no clock drift.
The maximum clock drift, e, is used to compensate. Also,
T4 is subtracted from each bound to convert them to bounds
on the skew between Nij and Ni. The final interval for the
skew between Nij and Ni is shown in Equation (4.1).

4.2 Analysis
The width of any given interval, and the uncertainty of

the resulting estimate, is somewhat variable. Because the
uncertainty of the estimates determines how closely nodes
may be synchronized, we would like to be able to predict
how wide any given interval is likely to be.

As above, we assume Ni receives a cyclic trail contain-
ing timerecords from Nil, Ni,, and Ni, . During the fol-
lowing slice Ni receives a similar cyclic trail, only the or-
der of the timerecords is reversed: Ni, , Ni, , and Nil. In
the next two slices the pattern repeats. We call trails with
the Nil, Ni, , Ni, orderfonvard trails, and the trails with
the reverse order backward trails. These forward-backward
pairs of trails form the basis of our analysis.

The skew interval for Nij is the intersection of all
previously-computed trail intervals (appropriately widened
to account for possible clock drift since they were com-
puted.) In older intervals the widening is so great they are
of no consequence in the final intersection. For this reason
we consider only the most recent 2q trail intervals, where q
has been chosen appropriately large.

Number the trails from 0 to 2q - 1, with the oldest trail
being trail 0. We define the following notation for forward
trails (arrow directions are reversed for backward trails):

0-1

a j z i : The skew between the raw clock values of Nij and
Ni at the time Ni received the trail.

Tjh: The timerecord of Nij from the h'th trail.

X h : A random variable representing the difference be-
tween the actual delay and j-f+l for trail h (i.e., the
difference between actual and minimum message de-
lay.) The j.-$+l's are assumed independent and identi-
cally distnbuted. A series of these may be summed as
for j_d,.

j-j+l

K: : Similar to ,y,, except z: is a random variable repre-
senting the actual (instead of measured) node wait on
trail h.

The following inequalities hold for all forward trails
(there are analogous ones for backward trails):

(4.2)

(4.3)

Let Ljh and Uj" be the lower and upper bounds of the in-
terval for Nij from trail h. We re-write the endpoints of the
interval in Equation (4.1) in terms of our random variables,
substituting from Equations (4.2) through (4.5) as needed.
We also use the fact that e is small to make the approxima-
tions (1 + e) (1 - 2e) M (1 - e) and (1 - e) (1 + 2e) M
(1 + e) . Let X be the length of a slice. For forward trails the
following inequalities hold (again, there are corresponding
inequalities for backward trails):

uj" I ajzi + E: (1 + e) + 2eX (2q - h - 1)

We eliminate dependency on node wait by replacing
the final terms in Equations (4.6) and (4.7) with 2&ii and
2 ~ / 3 $ ~ . pi i and ,&, are chosen large enough to be highly
probable upper bounds for the terms they replace. p i i and
/3bi are the corresponding values for backward trails.

Let C; and 2.4; be the lower and upper bounds of the
interval for Nij formed by intersecting the intervals of the
p'th pair of forward-backward trails. Given the distribution
functions for o<j, jT4, and j<4, the distribution func-
tions for C; and 2.4; are shown in Equations (4.8) and (4.9).
The ajl, is dropped from Equations (4.8) and (4.9) since
it merely shifted both distributions the same amount in the
same direction, and it is the dzflerence between the random
variables that is important.

The intersection of the intervals of the q forward-
backward trail pairs has a lower bound equal to the maxi-
mum of the C;'s, and an upper bound equal to the minimum
of the Ujp's. We define two new random variables: MAX;q
is the maximum of the CjP's, and MZN;q is the minimum of

157

the UT'S. The distribution functions for MAX;q and MIN;'
can be expressed in terms of the distribution functions of
LT and U!:

a-1

(4.10)

0-1

The density functions, fMm?q (z) and fMIN;q (21,
may be found by differentiating Equations (4.10) and (4.11).

Let be the width of N,'s interval for Nij . The prob-
ability that 0:' is less than z is the probability that the dif-
ference between MIN;' and MAXiq is less than x. Random
variable MIN;' depends on the values of U:. Each U: de-
pends on the values of $!;, and x2p+1. Similarly, MAX;q

ultimately depends on the values of T!: and xO:T1. There-
fore, MIN;' and MAX;' depend on different, independent,
random variables. The difference between them can thus
be computed by a simple convolution integral. With a lit-
tle simplification we get:

3

J - 4

0

Ffl;q 2 / fMAx;q (Y)FMIN?q (. + y)dy (4'12)
-2 3

Section 6 contains examples using Equation (4.12), and
compares them with simulation results.

4.3 Fault-Tolerance
Since all the information used to make estimates is car-

ried on the trails, trails provide the only avenue through
which a faulty node may affect estimates made by other non-
faulty nodes. There are two ways a faulty node may pro-
ceed. A transmission fault causes a node to alter or destroy
trails that it receives. An accounting fault causes a node to
add misleading information of its own to the trail, but leave
the rest of the trail untouched.
43.1 "smission Faults. Transmission faults fall into
two general categories: those that cause trails to be lost or
sent to the incorrect destination, and those that alter or re-
move the timerecords of other nodes. If digital signatures

are used to detect changes in other node's timerecords, then
altered trails are essentially equivalent to lost trails.

Lost trails are detected almost immediately since each
node knows what trails it should receive during each slice.
Transmission faults are usually easy to find, and can often
be masked with standard techniques like replication of mes-
sages. Nodes may also "skip" those nodes which act suspi-
cious. For example, Nil sends the trail it received from Ni
to both Ni, and Ni, . Ni, uses the copy received from Nil
if Ni, does not forward the trail properly.
4.3.2 Accounting Faults. An accounting fault causes a
node to record an incorrect arrival or send time on its timere-
cord. As a result, other nodes either under or over-estimate
the wait time at the affected node. This affects the computa-
tion of intervals, and may cause actual skews to be outside
the computed intervals.

There is no guaranteed method for detecting account-
ing faults. However, with a simplified, but fairly realistic,
model of accounting faults we can get an idea of how likely
they are to cause problems. Let Ni receive a series of cyclic
trails containing timerecords from Nil, Ni,, and Ni,. Let
Nil have an accounting fault which causes it to add ofhers
of and 06 to its measured wait time on forward and back-
ward trails. This nicely models the most likely type of ac-
counting fault: a clock which runs too fast or too slow. We
wish to see the effects on Ni's intervals for Ni, and Ni3,
so we modify Equation (4.8) by adding og to the numera-
tor in F X , and modify Equation (4.9) by adding of to the

numerator in F .
0- j

0- j

Distribution functions for the new values of MAX;q and
MIN;q may be found exactly as in Section 4.2. However,
the width of the resulting interval is not the primary interest
here. Instead, the following values are computed:

PE?* : The probability that the resulting interval is empty,
i.e., the lower bound is greater than the upper bound.
For an empty interval MIN;q - MAX;q < 0, and the
density function is similar to Equation (4.12):

J

Pcaq : The probability that the actual skew is within the re-
sulting interval. If F' and F' are the mod-

2

 MAX;^ M I N ; ~

158

ified density functions described above then

Section 6.3 computes P zq and Pcaq for a 64-node hy-
J

percube.

5 Adjustment
Nodes use their skew estimates to compute a synchro-

nization udjusrment. The synchronization adjustment is
then applied by adding it to the target adjustment. The
unique features of our algorithm allows considerable flexi-
bility in clock adjustment.

5.1 Computing the Synchronization Adjust-

A number of methods of computing synchronization
adjustments have been proposed. For example, given the
set of all skew estimates, and if no more than m nodes are
faulty, one may choose the mean [8], m + 1st smallest [12],
or median (after the m smallest and largest estimates are dis-
carded) [9]. Any of these may be used with our synchroniza-
tion algorithm. However, in this section we present a variant
of the interactive convergence algorithm [8] which has sev-
eral unique features that make it especially well suited for
our purposes.

Our algorithm is called restricted range mean. It be-
gins with the set of all available skew estimates (including
a 0 estimate for the local node), and finds the largest subset
having the following properties:

1. The average uncertainties of the estimates is less than

ment

or equal to a specified E < 6.

2. For each estimate, the absolute value of the estimate,
minus its uncertainty, is less than or equal to 6 (i.e., the
estimate’s interval must intersect [-6,6].)

3. For any two estimates, the absolute value of their dif-
ference, minus the sum of their uncertainties, is less
than or equal to 6 (i.e., the estimates must be within
6 of one another.)

The members of this set are called the accepted esti-
mates. If the number of accepted estimates is at least IC, the
computation is successful, and the synchronization adjust-
ment is the mean of the accepted estimates. The values of E

and IC depend both on one another, and on 6, n, and m. The
relationship between these values is derived in Section 5.2.

Dropping property 3 produces a variant called unre-
stricted range mean. Unrestricted range mean has a larger
value for IC, but it is easier to find the set of accepted esti-
mates.

5.2 Proof of Correctness
Correctness proofs for traditional synchronization

algorithms usually proceed by showing that when two
nodes adjust their clocks simultaneously, the maximum
skew between their clocks is T, where T < 6. The differ-
ence between T and 6 allows for clock drift between re-
synchronizations. These proofs depend on the assumption
that all nodes adjust their clocks simultaneously. However,
forcing simultaneous clock adjustments seems to violate
the “spirit” of our algorithm.

We can use a similar proof if we assume that any pair of
nodes successfully computes synchronization adjustments
simultaneously (or nearly so.) This is a reasonable assump-
tion if nodes compute synchronization adjustments at the
end of each slice, and if computation of the synchronization
adjustment is nearly always successful. We do not require
nodes apply each successfully computed synchronization
adjustment. Instead, nodes only apply synchronization ad-
justments that are greater than L = ; (6 - T) - eX. We know
that if two nodes adjust their clocks simultaneously they will
be within T of one another. It follows that if a node doesn’t
adjust its clock it must be within T + L of any node that did
adjust its clock. Finally, we conclude that if two nodes don’t
adjust their clocks they must be within T + 2C = 6 - 2eX
of one another. Therefore, whether they adjust their clocks
or not, any pair of non-faulty nodes will still be within 6 of
one another at the end of the next slice.

Let Ni and Nj be any two nodes in the system. Without
loss of generality, assume Nj ’s clock is ahead of Ni’s clock.
Let Ni accept ei 2 IC estimates, and Nj accept ej 2 n esti-
mates. We wish to find, for all possible values of ei and e j ,
the maximum skew between Nj and Ni after they have ad-
justed their clocks. The maximum skew increases as ei and
ej decrease, so IC is the smallest integer such that whenever
both ei and ej are greater than or equal to IC, the maximum
skew is less than or equal to T.

The skew between Nj and Ni after they have adjusted
their clocks is equal to the skew between them before they
adjusted their clocks, plus the difference between the syn-
chronization adjustments of Nj and Ni. There are certain
conditions that must hold for the skew between Nj and Ni
after they have adjusted their clocks to be the maximum for
the given values of ei and ej :

1. Nj’s estimates are, on average, E too low, while Nj’s
estimates are, on average, E too high.

2. Every non-faulty node is accepted by either Ni, N j , or
both.

3. Non-faulty nodes which are only accepted by Nj have
skews of 6 with respect to non-faulty nodes which are
only accepted by Ni.

159

4.

5 .

The number of faulty nodes is m, and both Ni and Nj
accept every faulty node.

Ni's estimates for the faulty nodes are the smallest es-
timates Ni can accept, and Nj's skew estimates for
these same faulty nodes are the largest estimates Nj
can accept (recall that estimates of faulty nodes don't
have to agree.)

The following definitions are useful in the computation
of IC. Note that in these definitions all skews are the actual
skews instead of the estimated skews. The difference be-
tween actual and estimated skew is accounted for by includ-
ing a term for maximum uncertainty.

~i and %: The minimum and maximum skews (with re-
spect to Ni) of non-faulty nodes accepted by Ni. Note
that a node automatically accepts itself, so -yi has a
maximum of 0, and 5 has a minimum of 07- Also,

-

-
Ti - 3 5 6-

+-yj and%: The minimum and maximum skews (with
respect to N j) of non-faulty nodes accepted by N j .
Again, the maximum of Tj is 0, the minimum of % is

-

-
0, and - ~j 5 6. -

T'i: The sum of the skews (with respect to Ni) of then - ej
non-faulty nodes which are only accepted by Ni.

rj : The sum of the skews (with respect to N j) of the n - ei
non-faulty nodes which are only accepted by N j .

rij: The sum of the skews (with respect to Ni) of the ei +
ej - n - m non-faulty nodes accepted by both Ni and
Nj .

Ni estimates skews of % - 6 for each faulty node, and
Nj estimates skews of yj + 6 for each faulty node. -

+ rj + (3 + 6) m + e je)

To eliminate ri and rj from Equation (5 . I) , we replace
them with the following bounds:

ri L ~i - (n - e j)

rj 5 (yi - + 6 - a j t i) (n - ej)

Since Ni and Nj both accept estimates of some com-
mon nodes, it follows that - ~j + a j z i 5 5. Substituting into
Equation (5.1) gives:

eiejT > (ei - e j) rij + 2 e i e j ~ - ei (ei - n) - ~i

+ ej (ej - n) 5 + (ei - e j) m 5

- ei (ei - n) 6 + (ei + e j) m6 (5.2)

No further progress can be made without additional in-
formation about the values of ei and e j . Consider first the
case where ei 2 e j . It follows that rij has its maximum
value, (Ti + 6) (ei + ej - n - m), and t h a t 7 has its max-
imum value, Ti - + 6. Substituting into Equation (5.2) gives:

r > - m b + - (n + m - e j) 6 + 2 &
1 1
ej ei

Both ei and ej divide positive quantities, so the right-
hand side is maximized when both are equal to IC. Substi-
tuting and solving for IC gives:

IC > 6 (n + 2 m) / (6 + r - 2 ~) (5.3)

The case where ei 5 ej proceeds similarly, and the re-

A similar derivation may be done for unrestricted range
sult is identical to Equation (5.3).

mean. The result is nearly identical to Equation (5.3):

IC > S (n + 3 m) / (6 + ~ - 2 ~) (5.4)

Ensuring successful computation of the synchroniza-
tion adjustment requires manipulating the relative values of
6, r, m, and E .

6 Analysis and Simulation
The adjustment algorithm of Section 5 has require-

ments of the estimation algorithm of Section 4. We use
both the analysis of Section 4 and simulation to show that
these requirements can be met for realistic values of 6 and
A. We also use the analysis of Section 4.3.2 to analyze the
effects of accounting faults.

6.1 Parameters
Both the analysis and simulation assume a store-and-

forward type message passing system, where all delays are
independent and identically distributed. We assume each
delay to be exponentially distributed with a minimum of
2110ps and a mean of 2 4 5 0 ~ s . That is, if the distance be-
tween Nij and Nij+l is k , then . (G is k(2110)ps, and

is the sum of k independent exponentially-distributed
random variables with mean 340ps. These delays are sim-
ilar to those used in [1,3], and are rather large by modem
standards; they are about what one would expect for user-
level processes on workstations connected by Ethemet.

J - J + ~ a:
J - J + l

160

!

A value of low5 is used for e. The simulator chooses
the clock rate for each node at random from the range [l-
e, 1 + e]. The clock rates remain fixed throughout the sim-
ulation.

6.2 64-node Hypercube
For this example we use a 64-node hypercube. When

we map the nodes of the hypercube onto an 8 x 8 square
mesh, we find that each row and column corresponds to a
3-dimensional subcube. Each synchronization message en-
counters at most three message delays, and any cyclic trail
encounters at most twelve.

6.2.1 Analysis. We consider the width of the intervals
computed by Nj. We concentrate on the 49 nodes which
do not share a row or column with Ni. These nodes are the
“middle” nodes in the trails, and are always Ni, in the anal-
ysis. We concentrate on these nodes because their intervals
are usually the widest. This is because these nodes tend to
be further away, and because Ni receives more cyclic trails
containing the timerecords of nodes with which it shares a
row or column.

Our assumption of independent, identically distributed
message delays means the distributions F X , F X , F X ,
and F are identical. Wait times are on the order of A, and

since X is much larger than j-4d+l and j-)f++l, the B values are
dominated by the wait times. %e therefore use the approxi-
mations @ = Pi2 w= 4X, and pfi, = B;, a 8X. Table 1
shows how the probability the width of an interval is less
than 2e varies with the number of hops from Nj. The first
column shows the number of hops, and the second column
shows how many nodes are that many hops from Ni. The
last four columns show the probability, for several values
of E and A, that the intervals of these nodes have widths less
than 2E.

One can use results like those in Table 1 to compute the
number of automatic intervals; those intervals with a width
less than 2 ~ . Automatic intervals produceestimates with un-
certainties less than E, and which will therefore be automati-
cally accepted when computing the synchronization adjust-
ment. Ni’s interval for itself has width 0 and is therefore au-
tomatic. Our experience shows the intervals for the 15 nodes
in Ni’s row and column are also automatic. We can use the
analytical results to predict how many of the remaining 49
intervals will be automatic.

For example, when E = lOOOps and X = Is, we ex-
pect that of the 49 nodes in Table 1,9 + 18 + 15(0.9976) +
6(0.8206) + l(0.3035) = 47.19 will have automatic inter-
vals. The expected number of automatic intervals is there-
fore 63.19. If we use range restriction, 6 = 5000ps, and
T = 4000ps, then Equation (5.3) gives IC > 62.86 when
m = 12. The expected number of automatic intervals is

2-44 0-2 0-2

2-4

therefore enough to ensure successful computation of the
synchronization adjustment when up to 12 faults are present.
6.2.2 Simulation. Because automatic intervals do not
provide the only accepted estimates, considering only auto-
matic intervals produces pessimistic results. We turn to sim-
ulation both to determine the expected number of accepted
estimates, and the expected maximum skew. Table 2 shows
the number of automatic and accepted intervals in our sim-
ulation. If we compare the number of automatic intervals
from Table 2 with the expected number of automatic inter-
vals from Section 6.2.1, we find the simulation results to be
consistently higher. The differences are considerable, from
37 automatic intervals to 52, in one instance.

Figure 2 plots the maximum skew over time for differ-
ent values of A. The maximum skew is fairly constant, and
well below S. Letting S = 5ms may not seem impressive at
first glance, but it must be seen in light of the relatively large
message delays. Minimal message delay between the two
furthest nodes is over 12ms. And, if we assume the maxi-
mum message delay is a mere 2ms greater than minimum
(5ms might be a more reasonable estimate), the maximum
variability in message delay is 12ms. Our algorithm there-
fore does much better than synchronization algorithms such
as [8,9, 151, which are limited by the maximum variability
in message delays.

A final result of the simulation is an estimate of the size
of synchronization messages. Assuming 64-bit clock val-
ues, the messages were just under 12Kbytes long, and length
was independent of A. Each node sends 7 synchronization
messages per slice, which take a total of 12 hops, resulting
in 144Kbytes transmitted. If X = 4s, this works out to about
12Kbytes per link per second, or less than 1% of the avail-
able bandwidth of a lOMbit/s link. The load is not perfectly
constant, but can be made nearly so if synchronization mes-
sages are broken up into small pieces. These pieces may be
sent individually over the course of the entire slice without
adversely affecting synchronization.

6.3 Accounting Faults
For our final example we use the results of Section 4.3.2

to analyze accounting faults in a 64-node hypercube. As
before, we assume that Nj receives a series of cyclic trails
where Nil has an accounting fault, and consider the effects
on Ni’s intervals for Ni, and Ni,. Nil expresses the ac-
counting fault by adding offsets of and 0 6 to its wait times
on forward and backward trails. This causes Ni’s intervals
for Ni, and Ni, to either become empty, or no longer con-
tain the actual skew. An empty interval shows that an ac-
counting fault is present. An interval which does not con-
tain the actual skew invalidates the guaranteed uncertainty
provided by the estimation algorithm.

Our goal, therefore, is to show that Ni’s intervals for
Ni, and Ni3 will either be empty, or will contain the actual

161

hops nodes
2 9
3 18
4 15
5 6
6 1

Table 1 : Probability interval widths are less than 2~ in a 64-node hypercube.

x = 1s x = 4s
E = 1OOOps E = 2000ps E = 1OOOps E = 2000ps

1 .m 1 .m 0.9139 1 .m
1 .m 1 .m 0.3812 1 .m
0.9976 1 .m 0.0588 1 .m
0.8206 1 .m 0.0048 0.9953
0.3035 1 .m 0.0003 0.8939

II E = 1ooous E = 2000lAs
(s)

Table 2: Average number of automatic and accepted intervals in a 64-node hypercube.

automatic I accepted 11 automatic I accepted

Figure 2: Maximum skew between nodes in a 64-node hypercube when 6 = 5000ps, 7 = 4000ps and E = 1OOOps.

2
3
4

0.9994 0.0001 0.0005 0.0605 0.5863 0.3532
0.9261 0.0227 0.0512 0.0159 0.7689 0.2152
0.1010 0.6698 0.2292 O.oo00 0.9881 0.0119
0.0247 0.8883 0.0870 O.oo00 0.9973 0.0027

6 6 0.1123 0.6370 0.2507 0.0001 0.9776 0.0223 L 0.0001 0.9922 0.0077 O.oo00 0.9999 0.0001 9

60.6 64.0 64.0 64.0
56.8 64.0 64.0 64.0
52.6 64.0 64.0 64.0

Table 3: Analysis of accounting faults for a @-node hypercube where of = o b = 1OOOps.

162

I

skew. Table 3 shows PE?‘ (the probability the interval is
empty) and Pcaq (the prdbability the interval contains the
actual skew) for several possible cyclic trails in the hyper-
cube. The first two columns show the number of hops to the
node of interest (either Ni, or Nis) in forward and back-
ward trails. Note that the forward and backward hops are
equal for Ni, , and not equal for Ni,. For example, No re-
ceives a series of trails which travel in one direction or the
other along the path NO H N7 H N15 e, Ns H No. In
this case, N15 is Noz and the number of hops to it is 4 for
either forward or backward trails, while NS is NO, and the
number of hops to it is 7 for forward trails and 1 for back-
ward trails. The remaining columns show P z q , PcZ., and

PFZq 1 - PE? - Pczq for various values of A.
An examination of Table 3 shows that P zq decreases

and P zq increases both with the number of hops, and with
A. Ni3 has a lower value of PEzq and a higher value of PCzn
than Ni, , and the differences increase with the number of
forward hops. Clearly, distance and time ameliorate the ef-
fects of accounting faults. the probability that Ni is
unaware of the fault and is using an incorrect estimate, first
rises, then falls as the number of hops increases. The ac-
counting fault therefore has a limited window of opportu-
nity. The error it can introduce into estimates is no larger
than either of or Ob, but larger offsets increase the likelihood
of detection, and smaller offsets have little hope of causing
any errors at all.

J

J

1 3

E j

cj

J J

J

7 Conclusion
Clock synchronization is a requirement of many real-

time distributed systems. In this paper we presented aproba-
bilistic fault-tolerant clock synchronization algorithm which
can be used with a variety of network architectures. This al-
gorithm is very different from existing synchronization al-
gorithms, and has a number of unique features:

0 Synchronization messages are sent at short, regular in-
tervals, instead the periodic burst of messages sent by
other synchronization algorithms.

e An average of estimate uncertainties is used instead of
a limit on estimate uncertainty.

0 Nodes may adjust their clocks at any time.

We presented an analysis of our algorithm, and also did
simulation. Both showed the algorithm to work quite well
on @-node hypercubes.

References
[l] K. h i n d , ‘”robabilistic clock synchronization in dis-

tributed systems,” IEEE Trans. Parallel and Distributed Sys-
tems, vol. 5, no. 5, pp. 474487, May 1994.

[2] R. E. Beehler and D. W. Allan, “Recent trends in NBS
time and frequency distribution services,” Proceedings of
the IEEE, vol. 74, no. 1, pp. 155-157, January 1986.

[3] F. Cristian, “F‘robabilistic clock synchronization,” Dis-
tributed Computing, vol. 4, no. 3, pp. 146-158, 1989.

[4] F. Cristian and C. Fetzer, “Probabilistic intemal clock syn-
chronization,” in Proc. 13th Symposium on Reliable Dis-
tributed Systems, pp. 22-31, Dana Point, CA, 1994.

[5] J. Y. Halpem, B. Simons, R. Strong, and D. Dolev, “Fault-
tolerant clock synchronization,” in Pmc. 3rd Symp. on Prin-
ciples of Distributed Computing, pp. 89-102, 1984.

[6] J. L. W. Kessels, ‘ ~ o designs of a fault-tolerant clock-
ing system,” IEEE Trans. Computers, vol. C-33, no. 10, pp.
912-919, October 1984.

[7] C. M. Krishna, K. G. Shin, and R. W. Butler, “Ensuring fault
tolerance of phase-locked clocks,” IEEE Trans. Computers,
vol. C-34, no. 8, pp. 752-756, August 1985.

[8] L. Lamport and P. M. Melliar-Smith, “Synchronizing clocks
in the presence of faults,” Journal of the ACM, vol. 32, no.

[9] J. Lundelius-Welch and N. Lynch, “A new fault-tolerant al-
gorithm for clock synchronization,” Information urd Com-
putation, vol. 77, no. 1, pp. 1-36, 1988.

[lo] A. Olson, Synchronization of Fault-Tolerant Distributed
Real-l’ime Multicomputers, PhD thesis, The University of
Michigan, 1994.

[111 A. Olson and K. G. Shin, “Probabilistic clock synchroniza-
tion in large distributed systems,” in Proceedings of the
11th Intl. Conference on Distributed Computing Systems, pp.
290-297. IEEE, May 1991.

[12] P. Ramanathan, D. D. Kandlur, and K. G. Shin, “Hardware
assisted software clock synchronization for homogeneous
distributed systems,” IEEE Trans. Computers, vol. C-39, no.
4, pp. 514-524, April 1990.

131 S. Rangarajan and S. K. Tripathi, “Efficient synchronization
of clocks in a distributed system,” in Pmc. Real-Time Sys-
tems Symposium, pp. 22-31, December 1991.

141 K. G. Shin and P. Ramanathan, “Clock synchronization of
a large multiprocessor system in the presence of malicious
faults,” IEEE Trans. Computers, vol. C-36, no. 1, pp. 2-12,
January 1987.

151 T. K. Srikanth and S. Toueg, “Optimal clock synchroniza-
tion,” Journal of the ACM, vol. 34, no. 3, pp. 626645, July
1987.

[16] N. Vasanthavada and P. N. Marinos, “Synchronization of
fault-tolerant clocks in the presence of malicious failures,”
IEEE Trans. Computers, vol. 37, no. 4, pp. 440448, April
1988.

[17] G. M. R. Winkler, “Changes at USNO in global timekeep-
ing,” Proceedings of the IEEE, vol. 74, no. 1, pp. 151-155,
January 1986.

1, pp. 52-78, January 1985.

163

