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Abstract 
We present a probabilistic synchronization algorithm 

which sends periodic synchronization messages, instead of 
periodic bursts of synchronization messages as other algo- 
rithms do. Our “continuous” approach therefore avoids the 
burst network loads of other algorithms. Nodes always have 
current estimates of other nodes’ clocks, allowing them to 
monitor the state of system synchronization, and adjust their 
clocks as needed. The algorithm is fault-tolerant, and may 
be easily adapted to a wide variety of systems and networks. 
We analyze and simulate the algorithm’s performance on a 
@-node hypercube, and show the algorithm provides tight 
synchronization while imposing only a light load on the net- 
work. 

1 Introduction 
The nodes of a distributed system often need to be syn- 

chronized. That is, there exists some 6, such that at any in- 
stant any two non-faulty nodes agree on the current time to 
within 6. This condition must persist even in the presence of 
faulty nodes, clocks, communications, etc. Synchronization 
is necessary to establish a global ordering of events. Real- 
time systems also use this global time base to allow each 
node to determine both when it must complete its own tasks, 
and when other nodes must complete theirs. 

Synchronization may be accomplished by having all 
nodes use the same external time source. For example, Co- 
ordinated Universal Time (UTC) can be read via telephone, 
radio, or satellite, from several sources, at varying levels of 
accuracy [2,17]. Alternatively, the system may be equipped 
with a single central clock and communications equipment 
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to allow each node to read it. However, should this sin- 
gle time source fail, or if contact is lost or interrupted, the 
system is left without a clock. Also, external time sources 
may not be available for some applications (e.g., space ve- 
hicles.) And, there may be unacceptable cost, size, weight, 
and power consumption penalties imposed by radiohatellite 
receivers, communications equipment, etc. 

It is often preferable to allow each node to use its own 
clock, and to limit differences between them with a syn- 
chronization algorithm. Synchronization algorithms may be 
classified according to the methods used by nodes to inform 
one another of their current clock values. Hardware algo- 
rithms [6, 7, 14, 161 use a dedicated network to broadcast 
each clock signal. Network algorithms [ l ,  3, 5,  8, 9, 11- 
13, 151 send messages across the existing communications 
network. Hardware algorithms provide tight synchroniza- 
tion, but are expensive to implement. The extra number of 
communications lines needed is on the order of n2 for an 
n-node system. Network algorithms require no additional 
hardware, but tightness of synchronization is limited by un- 
certainty in communication delay. They also place an addi- 
tional load on the communications network. 

Probabilistic synchronization algorithms [ 1, 3, 4, 11, 
131 are a type of network algorithm which try to compen- 
sate for the uncertainty in communications delay. The re- 
sult is much tighter synchronization, but at the cost of an 
even greater load on the communications network. Worse, 
the load tends to be “bursty” - very high when the system 
is synchronizing, and zero otherwise. A masterklave clock 
organization may be used to reduce the network load [ 1,3], 
but this creates problems with selection and synchronization 
of masters, faulty masters, and the additional load imposed 
on masters. Messages may be combined for efficiency [ 1 1, 
131, but this creates long messages and may not significantly 
reduce the total number of bytes transmitted. 

In this paper we propose aprobabilistic synchronization 
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algorithm which provides tight synchronization while main- 
taining a constant, light network load. We do this by mak- 
ing our synchronization algorithm run continuously, instead 
of periodically as other algorithms do. Continuous opera- 
tion eliminates burst loads, and each node is always aware 
of how far in or out of synchronization it is, so it can act 
to adjust its clock before problems arise. Another continu- 
ous synchronization algorithm is described in [4], but it is 
targeted towards completely connected systems while our 
algorithm is geared towards point-to-point systems. Our al- 
gorithm also allows for greater flexibility in adjusting the 
clock. 

The rest of this paper is organized as follows. In Sec- 
tion 2 we give an overview of our algorithm and present our 
definitions and assumptions about the system. In Section 3 
we describe the messages used to distribute clock informa- 
tion, and where and when they are sent. In Section 4 we 
discuss how each node keeps track of estimated skews, and 
updates these estimates in response to new information. In 
Section 5 we discuss how a node uses its skew estimates to 
adjust the value of its own clock. In Section 6 we present the 
results of our analysis and simulation. The paper concludes 
with Section 7. 

2 Synchronization 
We assume the system has n nodes, denoted NO, ..., 

Nn-l. The synchronization algorithm must ensure that the 
difference (or skew) between the clocks of any two non- 
faulty nodes is never more than a given 6. The behavior of 
clocks at faulty nodes is not constrained. 

Synchronization algorithms typically have three 
phases: distribution of clock information, estimation of 
clock skews, and adjustment of clock values. In conven- 
tional synchronization algorithms these phases are sequen- 
tial, and the algorithm terminates after clock adjustment. In 
our algorithm all three phases are running simultaneously, 
and the algorithm never terminates. A node may therefore 
adjust its clock at any time, and other nodes must distin- 
guish between clock adjustments and variation in clock 
rates. We do this with the following clock structure: 

Raw clock: A counter that increments (approximately) at a 
specified rate. The raw clock has a specified maximum 
dnj?, e. A raw clock with a specified rate of t  ticks per 
second will actually have between t( 1 - e) and t( 1 +e) 
ticks per second. This property allows the raw clock to 
be used to measure time intervals with a known maxi- 
mum error. 

Clockadjustment: The value that is added to the raw 
clock value to get the current time. This allows the 
clock value to be adjusted without altering the raw 
clock. 

Timerecord 

Timerecord 

Timerecwd 

Timerecord 

Figure 1 : A synchronization message 

Target adjustment: The value the clock adjustment 
should have. The synchronization algorithm does not 
change the clock adjustment immediately. Instead, it 
sets the target adjustment to the desired new value, 
and changes the clock adjustment slowly until it is 
equal to the target adjustment. 

The synchronization algorithm sends both the raw 
clocks and target adjustments. Nodes may therefore esti- 
mate differences between raw clock values, and account for 
clock adjustment by using the most recent target adjustment. 

3 Distribution of Clock Information 
Our synchronization messages are novel both in their 

structure, and in the schedule for sending them. 

3.1 Synchronization Message Structure 
The basic unit of our synchronization message is the 

trail, which consists of one or more rimerecords. The struc- 
ture of synchronization messages is illustrated in Figure 1. 

Each trail contains a header and a number of timere- 
cords, listed in the order in which they were added. Nodes 
add a timerecord to each trail as it arrives. Timerecords 
are augmented timestamps, and each contains the following 
fields: 

Node: The node which created the timerecord. 

Arrival Time: The local raw clock when the trail arrived 
at the node which created the timerecord. 

SendTime: The local raw clock and target adjustment 
when the trail was sent from the node which cre- 
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ated the timerecord. The two values are recorded 
separately instead of being added together. 

A trail is therefore a record of which nodes it has vis- 
ited, and how long it stayed at each one. Should a trail re- 
turn to the node where it started (i.e., it completes a cycle), 
this information can be used to estimate when it was at each 
node. This allows a node to estimate the clock skews be- 
tween itself and the other nodes the trail visited. 

Accurate recording of the arrival and send times on 
each timerecord is vital to the operation of the synchroniza- 
tion algorithm. Sloppiness in recording these times effec- 
tively increases uncertainty in message delays. Automatic 
timestamping schemes, like the one in [12], can greatly re- 
duce uncertainty in message delays, and allow for tighter 
synchronization. 

3.2 Synchronization Message Processing 
The goal of the clock distribution algorithm is therefore 

to generate cyclic trails at each node. A flexible procedure 
for generating cyclic trails is described in [lo]. Space re- 
strictions prevent us from describing this procedure here. 
Instead, we describe a simpler method that works well in 
most cases. 

The nodes of the system are laid out in a [fi 1 x [fi 1 
grid, as if the system were a wrapped square mesh. Dummy 
nodes are used to fill in the grid if necessary, and a system 
node is assigned to act in place of each dummy. Message 
sending is done in two altemating slices. During a row slice 
all nodes are sending synchronization messages to all the 
nodes in their row. Row slices are altemated with column 
slices; where all nodes are sending synchronization mes- 
sages to all the nodes in their column. The length of a slice 
is a fixed system parameter, but must be significantly greater 
than 26. 

Each synchronization message received is broken up 
into its component trails. Trails which have completed a cy- 
cle are sent to the estimation algorithm. The rest are stored 
temporarily for possible inclusion in one or more of the syn- 
chronization messages being sent in the next slice. 

The trails sent in a synchronization message have two 
sources. Each synchronization message contains one new 
trail created just before the message was sent. The remain- 
ing trails are copies of trails received in the previous slice 
with the current node’s timerecord added on. A trail is only 
included in a given synchronization message if doing so en- 
ables the trail to complete a cycle of length four. The rules 
for determining which trails go where are simple: a trail 
which arrives with one timerecord may be sent anywhere 
in the next slice; a trail which arrives with two timerecords 
may be sent only to the node in the same row or column as 
the node where it started; a trail which arrives with three 
timerecords must be sent back to the node where it started. 

The altemating nature of the slices ensure that each trail al- 
temates between traveling “vertically” and “horizontally”, 
and the resulting cycles are rectangles in the grid. These 
rules may be used to construct tables which allow each node 
to quickly determine suitable destinations for each trail. 

4 Estimation 
The estimation algorithm uses cyclic trails to estimate 

clock skews. We use an algorithm similar in concept to 
those in [3, 111, but adapted to continuous operation. 
4.1 Skew Intervals 

A node makes estimates by consulting the skew inter- 
vals maintained for each node. The bounds of Ni’s skew in- 
terval for Nj are computed from Nj ’s timerecords on cyclic 
trails, and are guaranteed to bound the actual skew between 
Nj and Ni. The skew estimate is the midpoint of the inter- 
val, so the estimate can be off by no more than one-half of 
the width of the interval. 

No constant interval is likely to contain the skew be- 
tween a pair of nodes for long. Skew intervals must there- 
fore be widened each time they are used. Widening is done 
by subtracting from the lower bound, and adding to the up- 
per bound, the maximum clock drift possible since the last 
time the interval was widened. 

Ni’s skew interval for Nj is actually the intersection of 
a number of trail intervals. N ,  computes a new trail inter- 
val for Nj each time it receives a cyclic trail containing a 
timerecord from N j .  The trail interval is then intersected 
with the existing (widened) skew interval to form the new 
skew interval. 

Computing trail intervals is simple. Assume Ni has re- 
ceived a cyclic trail. Our distribution algorithm generates 
cycles of length four, so let the other three nodes the trail 
visited be Nil, Ni, , and Ni, . We need the following defi- 
nitions: 

Tj: The raw send time on the timerecord of Nij . TO is the 
raw send time on Ni’s first timerecord. T4 is the raw 
arrival time on Ni’s second timerecord. 

d : The minimum delay between the sending of 
the synchronization message by Nij and its re- 
ception at Nij+l. These may also be summed: 
d G C k  d 

j-j+1 

j -b h=j h-h+l ’  

Wj: The measured wait time at Nij . This is the difference 
between the raw send and arrival times at N i j .  Note 
that WO and W4 are both 0. The sum of a series of 
waits is also defined: jyb = 
When the trail returns to N;, the raw clock at Nij must 

have a value of at least Tj + jf4, + ,y,. Similarly, the raw 
clock at Nij must have a value of at most Tj + (T4 - TO) - 

Wh. 
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d ,  - oyj.. These bounds only hold if there is no clock drift. 
The maximum clock drift, e, is used to compensate. Also, 
T4 is subtracted from each bound to convert them to bounds 
on the skew between Nij and Ni. The final interval for the 
skew between Nij and Ni is shown in Equation (4.1). 

4.2 Analysis 
The width of any given interval, and the uncertainty of 

the resulting estimate, is somewhat variable. Because the 
uncertainty of the estimates determines how closely nodes 
may be synchronized, we would like to be able to predict 
how wide any given interval is likely to be. 

As above, we assume Ni receives a cyclic trail contain- 
ing timerecords from Nil, Ni,, and Ni, . During the fol- 
lowing slice Ni receives a similar cyclic trail, only the or- 
der of the timerecords is reversed: Ni, , Ni, , and Nil. In 
the next two slices the pattern repeats. We call trails with 
the Nil, Ni, , Ni, orderfonvard trails, and the trails with 
the reverse order backward trails. These forward-backward 
pairs of trails form the basis of our analysis. 

The skew interval for Nij is the intersection of all 
previously-computed trail intervals (appropriately widened 
to account for possible clock drift since they were com- 
puted.) In older intervals the widening is so great they are 
of no consequence in the final intersection. For this reason 
we consider only the most recent 2q trail intervals, where q 
has been chosen appropriately large. 

Number the trails from 0 to 2q - 1, with the oldest trail 
being trail 0. We define the following notation for forward 
trails (arrow directions are reversed for backward trails): 

0-1 

a j z i :  The skew between the raw clock values of Nij and 
Ni at the time Ni received the trail. 

Tjh: The timerecord of Nij from the h'th trail. 

X h  : A random variable representing the difference be- 
tween the actual delay and j-f+l for trail h (i.e., the 
difference between actual and minimum message de- 
lay.) The j.-$+l's are assumed independent and identi- 
cally distnbuted. A series of these may be summed as 
for j_d,. 

j-j+l 

K: : Similar to ,y,, except z: is a random variable repre- 
senting the actual (instead of measured) node wait on 
trail h. 

The following inequalities hold for all forward trails 
(there are analogous ones for backward trails): 

(4.2) 

(4.3) 

Let Ljh and Uj" be the lower and upper bounds of the in- 
terval for Nij from trail h. We re-write the endpoints of the 
interval in Equation (4.1) in terms of our random variables, 
substituting from Equations (4.2) through (4.5) as needed. 
We also use the fact that e is small to make the approxima- 
tions (1 + e) (1 - 2e) M (1 - e )  and (1 - e)  (1 + 2e) M 
( 1 + e) .  Let X be the length of a slice. For forward trails the 
following inequalities hold (again, there are corresponding 
inequalities for backward trails): 

uj" I ajzi + E: (1 + e) + 2eX (2q - h - 1) 

We eliminate dependency on node wait by replacing 
the final terms in Equations (4.6) and (4.7) with 2&ii and 
2 ~ / 3 $ ~ .  pi i  and ,&, are chosen large enough to be highly 
probable upper bounds for the terms they replace. p i i  and 
/3bi are the corresponding values for backward trails. 

Let C; and 2.4; be the lower and upper bounds of the 
interval for Nij formed by intersecting the intervals of the 
p'th pair of forward-backward trails. Given the distribution 
functions for o<j, jT4, and j<4, the distribution func- 
tions for C; and 2.4; are shown in Equations (4.8) and (4.9). 
The ajl, is dropped from Equations (4.8) and (4.9) since 
it merely shifted both distributions the same amount in the 
same direction, and it is the dzflerence between the random 
variables that is important. 

The intersection of the intervals of the q forward- 
backward trail pairs has a lower bound equal to the maxi- 
mum of the C;'s, and an upper bound equal to the minimum 
of the Ujp's. We define two new random variables: MAX;q 
is the maximum of the CjP's, and MZN;q is the minimum of 
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the UT'S. The distribution functions for MAX;q and MIN;' 
can be expressed in terms of the distribution functions of 
LT and U!: 

a-1 

(4.10) 

0-1 

The density functions, fMm?q (z) and fMIN;q (21, 
may be found by differentiating Equations (4.10) and (4.11). 

Let be the width of N,'s interval for Nij . The prob- 
ability that 0:' is less than z is the probability that the dif- 
ference between MIN;' and MAXiq is less than x. Random 
variable MIN;' depends on the values of U:. Each U: de- 
pends on the values of $!;, and x2p+1. Similarly, MAX;q 

ultimately depends on the values of T!: and xO:T1. There- 
fore, MIN;' and MAX;' depend on different, independent, 
random variables. The difference between them can thus 
be computed by a simple convolution integral. With a lit- 
tle simplification we get: 

3 

J - 4  

0 

Ffl;q 2 / fMAx;q (Y)FMIN?q (. + y)dy (4'12) 
-2 3 

Section 6 contains examples using Equation (4.12), and 
compares them with simulation results. 

4.3 Fault-Tolerance 
Since all the information used to make estimates is car- 

ried on the trails, trails provide the only avenue through 
which a faulty node may affect estimates made by other non- 
faulty nodes. There are two ways a faulty node may pro- 
ceed. A transmission fault causes a node to alter or destroy 
trails that it receives. An accounting fault causes a node to 
add misleading information of its own to the trail, but leave 
the rest of the trail untouched. 
43.1 "smission Faults. Transmission faults fall into 
two general categories: those that cause trails to be lost or 
sent to the incorrect destination, and those that alter or re- 
move the timerecords of other nodes. If digital signatures 

are used to detect changes in other node's timerecords, then 
altered trails are essentially equivalent to lost trails. 

Lost trails are detected almost immediately since each 
node knows what trails it should receive during each slice. 
Transmission faults are usually easy to find, and can often 
be masked with standard techniques like replication of mes- 
sages. Nodes may also "skip" those nodes which act suspi- 
cious. For example, Nil sends the trail it received from Ni 
to both Ni, and Ni, . Ni, uses the copy received from Nil 
if Ni, does not forward the trail properly. 
4.3.2 Accounting Faults. An accounting fault causes a 
node to record an incorrect arrival or send time on its timere- 
cord. As a result, other nodes either under or over-estimate 
the wait time at the affected node. This affects the computa- 
tion of intervals, and may cause actual skews to be outside 
the computed intervals. 

There is no guaranteed method for detecting account- 
ing faults. However, with a simplified, but fairly realistic, 
model of accounting faults we can get an idea of how likely 
they are to cause problems. Let Ni receive a series of cyclic 
trails containing timerecords from Nil, Ni,, and Ni,. Let 
Nil have an accounting fault which causes it to add ofhers 
of and 06 to its measured wait time on forward and back- 
ward trails. This nicely models the most likely type of ac- 
counting fault: a clock which runs too fast or too slow. We 
wish to see the effects on Ni's intervals for Ni, and Ni3, 
so we modify Equation (4.8) by adding og to the numera- 
tor in F X  , and modify Equation (4.9) by adding of to the 

numerator in F . 
0- j 

0- j 

Distribution functions for the new values of MAX;q and 
MIN;q may be found exactly as in Section 4.2. However, 
the width of the resulting interval is not the primary interest 
here. Instead, the following values are computed: 

PE?* : The probability that the resulting interval is empty, 
i.e., the lower bound is greater than the upper bound. 
For an empty interval MIN;q - MAX;q < 0,  and the 
density function is similar to Equation (4.12): 

J 

Pcaq : The probability that the actual skew is within the re- 
sulting interval. If F' and F' are the mod- 

2 

 MAX;^ M I N ; ~  
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ified density functions described above then 

Section 6.3 computes P zq and Pcaq for a 64-node hy- 
J 

percube. 

5 Adjustment 
Nodes use their skew estimates to compute a synchro- 

nization udjusrment. The synchronization adjustment is 
then applied by adding it to the target adjustment. The 
unique features of our algorithm allows considerable flexi- 
bility in clock adjustment. 

5.1 Computing the Synchronization Adjust- 

A number of methods of computing synchronization 
adjustments have been proposed. For example, given the 
set of all skew estimates, and if no more than m nodes are 
faulty, one may choose the mean [8], m + 1st smallest [12], 
or median (after the m smallest and largest estimates are dis- 
carded) [9]. Any of these may be used with our synchroniza- 
tion algorithm. However, in this section we present a variant 
of the interactive convergence algorithm [8] which has sev- 
eral unique features that make it especially well suited for 
our purposes. 

Our algorithm is called restricted range mean. It be- 
gins with the set of all available skew estimates (including 
a 0 estimate for the local node), and finds the largest subset 
having the following properties: 

1. The average uncertainties of the estimates is less than 

ment 

or equal to a specified E < 6. 

2. For each estimate, the absolute value of the estimate, 
minus its uncertainty, is less than or equal to 6 (i.e., the 
estimate’s interval must intersect [-6,6].) 

3. For any two estimates, the absolute value of their dif- 
ference, minus the sum of their uncertainties, is less 
than or equal to 6 (i.e., the estimates must be within 
6 of one another.) 

The members of this set are called the accepted esti- 
mates. If the number of accepted estimates is at least IC, the 
computation is successful, and the synchronization adjust- 
ment is the mean of the accepted estimates. The values of E 

and IC depend both on one another, and on 6, n, and m. The 
relationship between these values is derived in Section 5.2. 

Dropping property 3 produces a variant called unre- 
stricted range mean. Unrestricted range mean has a larger 
value for IC, but it is easier to find the set of accepted esti- 
mates. 

5.2 Proof of Correctness 
Correctness proofs for traditional synchronization 

algorithms usually proceed by showing that when two 
nodes adjust their clocks simultaneously, the maximum 
skew between their clocks is T, where T < 6. The differ- 
ence between T and 6 allows for clock drift between re- 
synchronizations. These proofs depend on the assumption 
that all nodes adjust their clocks simultaneously. However, 
forcing simultaneous clock adjustments seems to violate 
the “spirit” of our algorithm. 

We can use a similar proof if we assume that any pair of 
nodes successfully computes synchronization adjustments 
simultaneously (or nearly so.) This is a reasonable assump- 
tion if nodes compute synchronization adjustments at the 
end of each slice, and if computation of the synchronization 
adjustment is nearly always successful. We do not require 
nodes apply each successfully computed synchronization 
adjustment. Instead, nodes only apply synchronization ad- 
justments that are greater than L = ; (6 - T) - eX. We know 
that if two nodes adjust their clocks simultaneously they will 
be within T of one another. It follows that if a node doesn’t 
adjust its clock it must be within T + L of any node that did 
adjust its clock. Finally, we conclude that if two nodes don’t 
adjust their clocks they must be within T + 2C = 6 - 2eX 
of one another. Therefore, whether they adjust their clocks 
or not, any pair of non-faulty nodes will still be within 6 of 
one another at the end of the next slice. 

Let Ni and Nj be any two nodes in the system. Without 
loss of generality, assume Nj ’s clock is ahead of Ni’s clock. 
Let Ni accept ei 2 IC estimates, and Nj accept ej 2 n esti- 
mates. We wish to find, for all possible values of ei and e j ,  
the maximum skew between Nj and Ni after they have ad- 
justed their clocks. The maximum skew increases as ei and 
ej decrease, so IC is the smallest integer such that whenever 
both ei and ej are greater than or equal to IC, the maximum 
skew is less than or equal to T. 

The skew between Nj and Ni after they have adjusted 
their clocks is equal to the skew between them before they 
adjusted their clocks, plus the difference between the syn- 
chronization adjustments of Nj  and Ni.  There are certain 
conditions that must hold for the skew between Nj and Ni 
after they have adjusted their clocks to be the maximum for 
the given values of ei and ej : 

1. Nj’s estimates are, on average, E too low, while Nj’s 
estimates are, on average, E too high. 

2. Every non-faulty node is accepted by either Ni, N j ,  or 
both. 

3. Non-faulty nodes which are only accepted by Nj have 
skews of 6 with respect to non-faulty nodes which are 
only accepted by Ni. 
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4. 

5 .  

The number of faulty nodes is m, and both Ni and Nj 
accept every faulty node. 

Ni's estimates for the faulty nodes are the smallest es- 
timates Ni can accept, and Nj's skew estimates for 
these same faulty nodes are the largest estimates Nj 
can accept (recall that estimates of faulty nodes don't 
have to agree.) 

The following definitions are useful in the computation 
of IC. Note that in these definitions all skews are the actual 
skews instead of the estimated skews. The difference be- 
tween actual and estimated skew is accounted for by includ- 
ing a term for maximum uncertainty. 

~i and %: The minimum and maximum skews (with re- 
spect to Ni)  of non-faulty nodes accepted by Ni. Note 
that a node automatically accepts itself, so -yi has a 
maximum of 0, and 5 has a minimum of 07- Also, 

- 

- 
Ti - 3 5 6- 

+-yj and%: The minimum and maximum skews (with 
respect to N j )  of non-faulty nodes accepted by N j .  
Again, the maximum of Tj is 0, the minimum of % is 

- 

- 
0, and - ~j 5 6. - 

T'i: The sum of the skews (with respect to Ni)  of then - ej 
non-faulty nodes which are only accepted by Ni. 

rj : The sum of the skews (with respect to N j )  of the n - ei 
non-faulty nodes which are only accepted by N j .  

rij: The sum of the skews (with respect to Ni)  of the ei + 
ej - n - m non-faulty nodes accepted by both Ni and 
Nj . 

Ni estimates skews of % - 6 for each faulty node, and 
Nj estimates skews of yj + 6 for each faulty node. - 

+ rj + (3 + 6) m + e je)  

To eliminate ri and rj from Equation (5 .  I ) ,  we replace 
them with the following bounds: 

ri L ~i - ( n - e j )  

rj 5 (yi - + 6 - a j t i )  ( n  - ej)  

Since Ni and Nj both accept estimates of some com- 
mon nodes, it follows that - ~j + a j z i  5 5. Substituting into 
Equation (5.1) gives: 

eiejT > (ei - e j )  rij + 2 e i e j ~  - ei (ei - n) - ~i 

+ ej (ej  - n) 5 + (ei - e j )  m 5  

- ei (ei - n) 6 + (ei + e j )  m6 (5.2) 

No further progress can be made without additional in- 
formation about the values of ei and e j .  Consider first the 
case where ei 2 e j .  It follows that rij has its maximum 
value, (Ti + 6) (ei + ej - n - m), and t h a t 7  has its max- 
imum value, Ti - + 6. Substituting into Equation (5.2) gives: 

r > - m b + - ( n + m - e j ) 6 + 2 &  
1 1 
ej ei 

Both ei and ej divide positive quantities, so the right- 
hand side is maximized when both are equal to IC. Substi- 
tuting and solving for IC gives: 

IC > 6 ( n + 2 m ) / ( 6 + r - 2 ~ )  (5.3) 

The case where ei 5 ej proceeds similarly, and the re- 

A similar derivation may be done for unrestricted range 
sult is identical to Equation (5.3). 

mean. The result is nearly identical to Equation (5.3): 

IC > S ( n + 3 m ) / ( 6 + ~ - 2 ~ )  (5.4) 

Ensuring successful computation of the synchroniza- 
tion adjustment requires manipulating the relative values of 
6, r, m, and E .  

6 Analysis and Simulation 
The adjustment algorithm of Section 5 has require- 

ments of the estimation algorithm of Section 4. We use 
both the analysis of Section 4 and simulation to show that 
these requirements can be met for realistic values of 6 and 
A. We also use the analysis of Section 4.3.2 to analyze the 
effects of accounting faults. 

6.1 Parameters 
Both the analysis and simulation assume a store-and- 

forward type message passing system, where all delays are 
independent and identically distributed. We assume each 
delay to be exponentially distributed with a minimum of 
2110ps and a mean of 2 4 5 0 ~ s .  That is, if the distance be- 
tween Nij and Nij+l is k ,  then . (G is k(2110)ps, and 

is the sum of k independent exponentially-distributed 
random variables with mean 340ps. These delays are sim- 
ilar to those used in [ 1,3], and are rather large by modem 
standards; they are about what one would expect for user- 
level processes on workstations connected by Ethemet. 

J - J + ~  a: 
J - J + l  
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A value of low5  is used for e. The simulator chooses 
the clock rate for each node at random from the range [l- 
e, 1 + e]. The clock rates remain fixed throughout the sim- 
ulation. 

6.2 64-node Hypercube 
For this example we use a 64-node hypercube. When 

we map the nodes of the hypercube onto an 8 x 8 square 
mesh, we find that each row and column corresponds to a 
3-dimensional subcube. Each synchronization message en- 
counters at most three message delays, and any cyclic trail 
encounters at most twelve. 

6.2.1 Analysis. We consider the width of the intervals 
computed by Nj. We concentrate on the 49 nodes which 
do not share a row or column with Ni. These nodes are the 
“middle” nodes in the trails, and are always Ni, in the anal- 
ysis. We concentrate on these nodes because their intervals 
are usually the widest. This is because these nodes tend to 
be further away, and because Ni receives more cyclic trails 
containing the timerecords of nodes with which it shares a 
row or column. 

Our assumption of independent, identically distributed 
message delays means the distributions F X  , F X  , F X  , 
and F are identical. Wait times are on the order of A, and 

since X is much larger than j-4d+l and j-)f++l, the B values are 
dominated by the wait times. %e therefore use the approxi- 
mations @ = Pi2 w= 4X, and pfi, = B;, a 8X. Table 1 
shows how the probability the width of an interval is less 
than 2e varies with the number of hops from Nj. The first 
column shows the number of hops, and the second column 
shows how many nodes are that many hops from Ni. The 
last four columns show the probability, for several values 
of E and A, that the intervals of these nodes have widths less 
than 2E. 

One can use results like those in Table 1 to compute the 
number of automatic intervals; those intervals with a width 
less than 2 ~ .  Automatic intervals produceestimates with un- 
certainties less than E,  and which will therefore be automati- 
cally accepted when computing the synchronization adjust- 
ment. Ni’s interval for itself has width 0 and is therefore au- 
tomatic. Our experience shows the intervals for the 15 nodes 
in Ni’s row and column are also automatic. We can use the 
analytical results to predict how many of the remaining 49 
intervals will be automatic. 

For example, when E = lOOOps and X = Is, we ex- 
pect that of the 49 nodes in Table 1,9 + 18 + 15(0.9976) + 
6(0.8206) + l(0.3035) = 47.19 will have automatic inter- 
vals. The expected number of automatic intervals is there- 
fore 63.19. If we use range restriction, 6 = 5000ps, and 
T = 4000ps, then Equation (5.3) gives IC > 62.86 when 
m = 12. The expected number of automatic intervals is 

2-44 0-2 0-2 

2-4 

therefore enough to ensure successful computation of the 
synchronization adjustment when up to 12 faults are present. 
6.2.2 Simulation. Because automatic intervals do not 
provide the only accepted estimates, considering only auto- 
matic intervals produces pessimistic results. We turn to sim- 
ulation both to determine the expected number of accepted 
estimates, and the expected maximum skew. Table 2 shows 
the number of automatic and accepted intervals in our sim- 
ulation. If we compare the number of automatic intervals 
from Table 2 with the expected number of automatic inter- 
vals from Section 6.2.1, we find the simulation results to be 
consistently higher. The differences are considerable, from 
37 automatic intervals to 52, in one instance. 

Figure 2 plots the maximum skew over time for differ- 
ent values of A. The maximum skew is fairly constant, and 
well below S. Letting S = 5ms may not seem impressive at 
first glance, but it must be seen in light of the relatively large 
message delays. Minimal message delay between the two 
furthest nodes is over 12ms. And, if we assume the maxi- 
mum message delay is a mere 2ms greater than minimum 
(5ms might be a more reasonable estimate), the maximum 
variability in message delay is 12ms. Our algorithm there- 
fore does much better than synchronization algorithms such 
as [8,9, 151, which are limited by the maximum variability 
in message delays. 

A final result of the simulation is an estimate of the size 
of synchronization messages. Assuming 64-bit clock val- 
ues, the messages were just under 12Kbytes long, and length 
was independent of A. Each node sends 7 synchronization 
messages per slice, which take a total of 12 hops, resulting 
in 144Kbytes transmitted. If X = 4s, this works out to about 
12Kbytes per link per second, or less than 1% of the avail- 
able bandwidth of a lOMbit/s link. The load is not perfectly 
constant, but can be made nearly so if synchronization mes- 
sages are broken up into small pieces. These pieces may be 
sent individually over the course of the entire slice without 
adversely affecting synchronization. 

6.3 Accounting Faults 
For our final example we use the results of Section 4.3.2 

to analyze accounting faults in a 64-node hypercube. As 
before, we assume that Nj receives a series of cyclic trails 
where Nil has an accounting fault, and consider the effects 
on Ni’s intervals for Ni, and Ni,.  Nil expresses the ac- 
counting fault by adding offsets of and 0 6  to its wait times 
on forward and backward trails. This causes Ni’s intervals 
for Ni, and Ni, to either become empty, or no longer con- 
tain the actual skew. An empty interval shows that an ac- 
counting fault is present. An interval which does not con- 
tain the actual skew invalidates the guaranteed uncertainty 
provided by the estimation algorithm. 

Our goal, therefore, is to show that Ni’s intervals for 
Ni, and Ni3 will either be empty, or will contain the actual 
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hops nodes 
2 9 
3 18 
4 15 
5 6 
6 1 

Table 1 : Probability interval widths are less than 2~ in a 64-node hypercube. 

x = 1s x = 4s 
E = 1OOOps E = 2000ps E = 1OOOps E = 2000ps 

1 .m 1 .m 0.9139 1 .m 
1 .m 1 .m 0.3812 1 .m 
0.9976 1 .m 0.0588 1 .m 
0.8206 1 .m 0.0048 0.9953 
0.3035 1 .m 0.0003 0.8939 

II E = 1ooous E = 2000lAs 
(s) 

Table 2: Average number of automatic and accepted intervals in a 64-node hypercube. 

automatic I accepted 11 automatic I accepted 

Figure 2: Maximum skew between nodes in a 64-node hypercube when 6 = 5000ps, 7 = 4000ps and E = 1OOOps. 

2 
3 
4 

0.9994 0.0001 0.0005 0.0605 0.5863 0.3532 
0.9261 0.0227 0.0512 0.0159 0.7689 0.2152 
0.1010 0.6698 0.2292 O.oo00 0.9881 0.0119 
0.0247 0.8883 0.0870 O.oo00 0.9973 0.0027 

6 6 0.1123 0.6370 0.2507 0.0001 0.9776 0.0223 L 0.0001 0.9922 0.0077 O.oo00 0.9999 0.0001 9 

60.6 64.0 64.0 64.0 
56.8 64.0 64.0 64.0 
52.6 64.0 64.0 64.0 

Table 3: Analysis of accounting faults for a @-node hypercube where of = o b  = 1OOOps. 
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skew. Table 3 shows PE?‘ (the probability the interval is 
empty) and Pcaq (the prdbability the interval contains the 
actual skew) for several possible cyclic trails in the hyper- 
cube. The first two columns show the number of hops to the 
node of interest (either Ni, or Nis) in forward and back- 
ward trails. Note that the forward and backward hops are 
equal for Ni, , and not equal for Ni,. For example, No re- 
ceives a series of trails which travel in one direction or the 
other along the path NO H N7 H N15 e, Ns H No. In 
this case, N15 is Noz and the number of hops to it is 4 for 
either forward or backward trails, while NS is NO, and the 
number of hops to it is 7 for forward trails and 1 for back- 
ward trails. The remaining columns show P z q ,  PcZ., and 

PFZq 1 - PE? - Pczq for various values of A. 
An examination of Table 3 shows that P zq decreases 

and P zq increases both with the number of hops, and with 
A. Ni3 has a lower value of PEzq and a higher value of PCzn 
than Ni, , and the differences increase with the number of 
forward hops. Clearly, distance and time ameliorate the ef- 
fects of accounting faults. the probability that Ni is 
unaware of the fault and is using an incorrect estimate, first 
rises, then falls as the number of hops increases. The ac- 
counting fault therefore has a limited window of opportu- 
nity. The error it can introduce into estimates is no larger 
than either of or Ob,  but larger offsets increase the likelihood 
of detection, and smaller offsets have little hope of causing 
any errors at all. 

J 

J 

1 3 

E j  

cj 

J J 

J 

7 Conclusion 
Clock synchronization is a requirement of many real- 

time distributed systems. In this paper we presented aproba- 
bilistic fault-tolerant clock synchronization algorithm which 
can be used with a variety of network architectures. This al- 
gorithm is very different from existing synchronization al- 
gorithms, and has a number of unique features: 

0 Synchronization messages are sent at short, regular in- 
tervals, instead the periodic burst of messages sent by 
other synchronization algorithms. 

e An average of estimate uncertainties is used instead of 
a limit on estimate uncertainty. 

0 Nodes may adjust their clocks at any time. 

We presented an analysis of our algorithm, and also did 
simulation. Both showed the algorithm to work quite well 
on @-node hypercubes. 
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