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Abstract 

As intelligent, autonomous systems are embedded in critical real-world environments, it be- 
comes increasingly important to rigorously characterize how these systems will perform. Research 
in real-time computing and control has developed ways of proving that a given control system 
will meet the demands of an environment, but has not addressed the dynamic planning of control 
actions. Building an agent that can flexibly achieve its goals in changing environments requires 
a blending of real-time computing and AI technologies, The Cooperative Intelligent Real-time 
Control Architecture (CIRCA) implements this blending by executing complex AI methods and 
guaranteed Ral-time control plans on separate subsystems. We describe the formal model of 
agent/environment interactions that CIRCA uses to build control plans, and we show how those 
control plans are guaranteed to meet domain requirements. CIRCA’s world model provides the in- 
formation required to make real-time performance guarantees, but avoids unnecessary complexity. 

1. Introduction 

Artificially intelligent agents that are constructed in the laboratory are often unsuited 
to real-world domains, where the pace of interactions between an agent and its changing 
environment may exceed the response rate of traditional AI methods. For example, an 
autonomous vehicle operating in the real world needs a control system that responds 
quickly enough to avoid collisions with obstacles or other vehicles. This requirement for 
timely behavior is the defining characteristic of a class of environments known as hard 
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real-time domains. Hard real-time domains have deadlines by which control responses 
must be produced, or catastrophic failure may occur. Other common examples of hard 
real-time domains include nuclear power plant control, medical monitoring, and aircraft 
control. 

Because catastrophic failure may occur if deadlines are missed, control systems for 

agents operating in real-time environments must not only choose appropriate actions in 
varied situations, they must make those action choices at appropriate times. Research in 
real-time systems addresses precisely this issue, by developing methods for guaranteeing 
that the reaction rate of a control system matches the rate of change in the environment. 
Real-time computing is not about building “fast” systems; it is about building systems 
that are predictably “fast enough” to act on their environments in ways that achieve 

their goals [ 23,491. Real-time systems researchers have developed a powerful set of 
tools to prove that embedded systems meet this criterion. These tools include techniques 

for characterizing a system’s interactions with its environment through such measures 
as worst-case execution time, resource requirements, and deadlines. Given this type of 

information, mechanisms are available to predictably schedule and execute the described 
behaviors and to guarantee that they will meet their deadlines. 

While real-time systems research addresses timeliness issues for a given set of tasks, it 
does not address the source of those tasks; real-time researchers assume they are given 
tasks that have certain performance requirements, but the motivations for those tasks 

and requirements are left unspecified. Traditional AI planning research, on the other 
hand, has characterized the interactions of an agent and its environment in terms of 

state spaces and operators that move through those spaces. Planning has concentrated on 
searching for sequences of operators (tasks) to execute in a particular situation. Thus 
we would like to combine the guaranteed performance methods of real-time systems 
with AI planning mechanisms to build a flexible, intelligent control system that can 
dynamically plan its own behaviors and guarantee that those behaviors will meet hard 
deadlines in real-time environments. 

This paper describes the techniques we have developed to model agent/environment 
interactions, allowing a system to integrate real-time considerations into a state-based 

planning representation, and to reason over this representation in a uniform and consistent 
manner. We describe this world model in the context of the Cooperative Intelligent 
Real-time Control Architecture (CIRCA) [ 31,341. As illustrated in Fig. 1, CIRCA 
combines parallel AI and real-time control subsystems to meet the requirements of both 
arbitrarily complex AI algorithms and predictable real-time control responses. The AI 

subsystem (AIS) performs high-level reasoning about tasks and, in cooperation with the 
Scheduler, develops low-level control plans using low-variance primitives. These control 
plans are executed in a predictable, guaranteed fashion by the real-time subsystem 

(RTS). 
CIRCA’s domain-independent world modeling method provides a concise charac- 

terization of the information required to make guarantees, and allows the system to 
automatically derive a reactive control plan that can be guaranteed to meet the domain’s 
deadlines and achieve the system’s goals. The architecture makes a fundamental dis- 
tinction between activities directed towards achieving “control-level” goals, which are 
guaranteed to meet domain deadlines, and behaviors for “task-level” goals, which are 
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Fig. 1. The Cooperative Intelligent Real-time Control Architecture. 

executed in a less-predictable manner. We will show how the world model serves not 
only as the basis for planning actions and making performance guarantees, but also 
as a key justification for the architectural division of control-level (guaranteed) and 
task-level (unguaranteed) goals. 

By reasoning about this model of agent/environment interactions to produce its guar- 
anteed control plans, CIRCA is also able to introspect on its own capabilities. When 
the system does not have sufficient resources to guarantee that it will meet all of the 
domain’s deadlines, CIRCA can recognize this overconstraining situation from the world 
model, and can make explicit tradeoffs in its plans, goals, and expectations. The world 
model thus plays a crucial role in guiding the system’s behavior and providing an 
underlying framework for performance guarantees. 

From an AI perspective, this paper presents a method for dynamically building reactive 
systems based on an explicit characterization of the range of possible agent/environment 
interactions. From a real-time systems perspective, this paper presents a method for 
intelligently automating the dynamic synthesis and verification of real-time control sys- 
tems. 

1.1. Example domain 

We will illustrate CIRCA’s world-modeling and control-planning mechanisms in the 
example domain shown in Fig. 2. The Puma robot arm, simulated in Deneb Robotics’ 
Igrip system, is assigned the task of packing objects (parts) arriving on the conveyor 
belt into the nearby box. The parts can have several shapes (e.g., square, rectangle, 
triangle), each of which requires a different packing strategy. The control system may 
not know Q priori how to pack all of the possible types of parts. If parts of a new 
shape arrive, the system can stack those parts on the nearby table until it has derived an 
appropriate box-packing strategy. The conveyor moves at a fixed rate and the parts are 
spaced apart on the belt so that they arrive with some maximum frequency. Once at the 
end of the belt, each part remains motionless until the next part arrives, at which time it 
will be pushed off the end of the belt (unless the robot picks it up first). If a part falls 
off the end of the belt because the robot does not pick it up in time, the system is said 
to have failed. 

The robot arm is also responsible for reacting to an emergency alert light. If the light 
comes on, the system has only a limited time to push the button next to the light, or 
it fails. This portion of the task represents a completely asynchronous interrupt with a 
hard deadline on its service time. 
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Fig. 2. The example domain, in which the Puma robot packs objects from the conveyor into the box. 

1.2. Organization 

This paper is organized into six additional sections. In the next section, we provide 
more detail on the conflicting nature of AI and real-time systems, and briefly describe 
previous approaches to combining these methods. Section 3 presents an architectural 
overview of CIRCA and discusses the guarantees that the system strives to provide. 
Section 4 describes the world model that the system uses to build and guarantee control 
plans. The model was introduced briefly in [34]; this paper provides complete details 
on the theoretical basis for the system’s guarantees. Section 5 describes how the world 
model is used explicitly by the system to dynamically construct and guarantee control 

plans. Section 6 discusses related work on modeling techniques used in the service of 
real-time control. Section 7 concludes with a summary of our progress and the avenues 
of future research we are pursuing. 
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2. Background: real-time versus AI 

AI planning research has traditionally concentrated on being able to prove that a 
sequence of actions will lead to a desirable state of the world. Real-time systems, 
however, are concerned with proving that the time needed by a set of actions will not 
exceed deadlines. Ideally, we would like to combine the intelligent planning methods 
from AI with the guaranteed performance features of real-time systems, to build an 
intelligent agent that could be guaranteed to succeed in its environment. But when real- 
time constraints are imposed on the action of planning as well as on the resultant plan, 
developing intelligent real-time embedded agents is very difficult. 

In this section, we compare the features of real-time and AI methods. This comparison 
reveals a conflict between the constraints involved in making real-time guarantees and 
the characteristics of traditional AI methods. We briefly survey several approaches to 
resolving this conflict before introducing our approach in Section 3. 

2.1. Real-time systems 

As we noted in the Introduction, real-time domains are primarily characterized by 
deadlines. To succeed in a real-time domain, a control system must always provide 
required responses before their associated deadlines. Thus real-time research has focused 
on ways of proving that a particular set of tasks can be guaranteed to meet a domain’s 
timing constraints. The most common approach to making these guarantees is to analyze 
the worst-case resource requirements of the set of required tasks and then build a task- 
execution schedule that ensures the tasks will all meet their deadlines in the worst 
case. 

As with all such proofs, these guarantees are based on several assumptions about the 
nature of the tasks and domain. For example, the system must know all of the tasks to 
be executed, and their worst-case resource needs, before those tasks must actually be 
executed. Similarly, the system must know the deadlines by which the tasks must be 
completed, and the available execution resources. Finally, the system must be able to 
finish building the schedule of tasks before those tasks must actually be executed. 

These characteristics of real-time systems are summarized in the second column of 
Table 1: a real-time system assumes an environment that may be dynamic (in the sense 
that the tasks required may vary at runtime) but that at least has known worst-case 
task requirements. Most real-time systems run numeric control algorithms with well- 
understood resource requirements and performance. Using these worst-case measures, it 
is possible to build task schedules that allocate the system’s limited execution resources 
and provide guaranteed response times. 

2.2. Al methods 

The third column of Table 1 outlines characteristics of traditional AI planning systems, 
and reveals a sharp contrast with real-time systems. Most AI systems are based on the 
“closed world” assumption: the AI-controlled agent is the only source of change in the 
world. Within this environment, the AI system’s task is to plan some future course of 
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Cornmarina features of Al and real-time svstems 

Real-time Traditional 

system AI planner 
Reactive 

AI system 

Cooperative 

AI & real-time 

Environment 

Tasks 

Resources 

Response 

time 

dynamic, known 

worst-case 

classical control, 

numeric algorithms 

limited 

guaranteed 

static, 

closed-world, 

predictable 

search, 

lookahead planning 

assumed sufficient 

high-variance 

or unbounded 

dynamic, 

unpredictable, 

unmodeled 

situated reaction, 

no lookahead 

assumed sufficient 

bounded 

dynamic, modeled, 

limited 

unpredictability 

planning & 

reaction 

limited 

guaranteed reactions, 

high-variance 

planning 

action using projection (lookahead) and search. Most planners assume that the agent 

executing the plan will have essentially unlimited sensing and processing resources. 
If we try to cast this type of AI method as a task within a real-time system, the 

fundamental problem is that planning involves searching for the solution to a generally 
intractable problem [5], and thus the planning process has extremely large worst- 

case resource requirements. The time to find a plan in the worst case may be several 
orders of magnitude longer than the average time to find a plan. This means that 

allocating resources to guarantee the worst-case response time will be very costly, and 
will lead to very low utilization of a system’s resources [ 37,451. Furthermore, AI 
systems with powerful knowledge representations [ 5, lo] or learning abilities [9] may 
have unbounded worst-case response times. In these cases, it is impossible to allocate 
sufficient resources ahead of time, and thus real-time guarantees are not feasible. 

2.3. Approaches to real-time Al 

We can intuitively describe two fundamental approaches to integrating AI and real- 
time systems: a system can try to be “intelligent in real-time”, or it can try to be 
“intelligent about real-time”. In the first approach, AI mechanisms are forced to meet 
real-time deadlines, and the high-variance problems discussed above are relevant. In the 
second approach, AI methods are used to reason about the real-time tasks that must 
meet deadlines, but the AI process itself is not so constrained. 

2.3. I. Reactive systems 

Most research on the first approach focuses on overcoming the high-variance na- 
ture of traditional planning systems, thus making it practical to embed them in real- 
time systems [37]. For example, “reactive” systems have been developed to rely on 

frequently-updated, sensor-based representations of their environment and perform little 
or no lookahead planning [ 1,4,11]. The features of these systems are summarized in 
the fourth column of Table 1. Note that, since they do not perform search, reactive sys- 
tems generally have low-variance, bounded response times. While these hand-engineered 
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systems have been quite successful, they lack a rigorous foundation supporting their 
capabilities. Recent research has focused on automatically generating reactive control 
systems for situated agents [ 1529,471. In this approach, a system is given a description 
of an agent’s goals, its environment, and its possible actions. The system then derives 
a reactive control system that chooses the correct action for any particular situation 
within the bounds of the world model. This approach combines the logical correctness 
of traditional planning systems with the robust execution features of reactive systems. 

However, while reactive systems may have low-variance response times, “reaction 
planning” systems do not yet provide real-time performance guarantees. There is no 
proof that the reactive systems they generate will react at a rate appropriate to the 
environmental changes. A system can be over-reactive if it acts prematurely, committing 
to a poor course of action when it has sufficient time to compute a better one. Likewise, 
a system can be under-reactive if it fails to keep up with changes in its environment, 
and its decisions are based on excessively outdated information. The effectiveness of 
an agent depends not on its absolute reaction speed, but on its speed relative to its 
environment. Thus a fundamental design goal for a situated agent is the ability to react 
to its environment at an appropriate time scale. Furthermore, since various environmental 
features may change at drastically different rates, an agent should be able to support 
reactivity on a variety of time scales, and should be able to explicitly reason about the 
appropriate rate of reactivity for a particular goal and environment. 

2.3.2. The cooperative approach 
The second approach to real-time AI, where an agent should be “intelligent about 

real-time”, avoids embedding AI mechanisms within a real-time system. Instead, AI 
processing and real-time control run in parallel and are loosely coupled. In essence, 
the cooperative approach builds an overall system from two components: a traditional 
real-time system and a real-time system designer. Real-time system designers have tra- 
ditionally been people, who are given detailed characterizations of how the real-time 
system needs to interact with the environment. In the cooperative approach, an AI system 
performs the role of a system designer, explicitly allocating the system’s limited exe- 
cution resources for expected tasks. Because the real-time and AI components are only 
loosely coupled in a cooperative system, the AI processing can remain unpredictable, 
high-variance, and unguaranteed. This cooperative approach has motivated the design of 
CIRCA. 

3. Overview of CIRCA 

We assume that the autonomous agent our system must control will inhabit an en- 
vironment in which, to survive and achieve its goals, the agent must respond actively 
to various types of input stimuli. Some of those responses will maintain the system’s 
safety and some will help achieve other system goals. Within this type of environment, 
CIRCA is designed to make guarantees about its performance based on the fundamental 
restriction that the system has limited sensing, processing, and actuating resources. A 
direct consequence of this bounded rationality [48] and bounded reactivity [ 331 is that 
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TAP place-rectangle-in-box 
:TEST (and (part-status in-gripper) (part-type rectangle)) 
:ACTION (place-rectangle-in-box) 
:RESOURCES (overhead-camera arm> 
: TEST-TIME .2 [seconds] 
:ACTION-TIME 2.5 [seconds] 
:MAX-PERIOD 11.2 [seconds] 

Fig. 3. An example TAP from the robot arm domain. 

the system usually cannot simultaneously guarantee all the required reactions to input 
stimuli that may ever be required to achieve its goals. CIRCA’s solution to this limita- 
tion has two elements. First, the system divides its overall task into subtasks that only 
require selected subsets of the system’s possible reactions. CIRCA dynamically builds 

short-term control plans that are guaranteed to implement those subsets of reactions. As 
the agent pursues different subtasks, the appropriate reactions change, and new control 
plans are derived. Thus the system never tries to simultaneously implement all of the 
reactions required for the overall task. 

CIRCA’s second way of dealing with resource limitations is to gracefully degrade its 

guarantees. If a subtask still requires more reactive responses than can be guaranteed, 
the system can leave less-important reactions unguaranteed. CIRCA’s guarantees are 

based on worst-case execution times, so when guaranteed reactions use less time than 
they have been allotted, the system can use the remaining time to execute unguaranteed 
reactions. Thus CIRCA creates two classes of reactions (guaranteed and not) so that 

it can guarantee the timeliness of some reactions rather than none. We will discuss the 
value of these guarantees in Section 3.4, after presenting more details on CIRCA. 

3. I. Control plans 

CIRCA’s control plans take the form of cyclic schedules of simple test-action pairs 

(TAPS). Each TAP is essentially an annotated production rule consisting of a set of 
tests (or preconditions), a set of actions to take if all the tests return true, data about 
the sensing and actuating resources the TAP requires, and worst-case timing data on 
how long it takes to test the preconditions and execute the actions. During the pro- 
cess of building control plans (to be discussed in detail in Section 5)) individual TAPS 
are automatically composed from primitive descriptions of actions and tests. The plan- 
ning process also assigns each TAP a maximum period, fixing the longest time interval 
allowed between invocations of the TAP. A control plan (TAP schedule) is guaran- 
teed to execute its component TAPS at least as frequently as their maximum periods 
require. 

Fig. 3 shows an example TAP generated automatically for our example robot task. 
The TEST specifies that the TAP is executed only if the robot has grasped the part, 
and knows that the part is rectangular. If these conditions are true, the robot places 
the part into the box. Testing and executing this TAP takes a maximum of 2.7 seconds 
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(TEST-TIME + ACTION-TIME), and the AIS’ planning process has determined that it 
must be run at least every 11.2 seconds (MAX-PERIOD) to guarantee that the current 
part will be processed by the time the next part arrives (thus avoiding failure). 

In addition to the cyclic schedule of guaranteed TAT%, a control plan may also include 
a list of unguaranteed or “best-effort” TAPS. These TAPS implement reactions that are 
desirable, but cannot be guaranteed due to the system’s bounded reactivity. If the test 
expression of a guaranteed TAP in the cyclic schedule returns false, then an unguaranteed 
TAP may be executed in the time scheduled for that guaranteed TAP’s action. 

To facilitate our discussion, we introduce a functional notation for referencing features 
of a TAP 7. The function tests(r) refers to the TAP’s tests, and actions(~) refers to 
the actions the TAP implements. We use wcet(tests(r)) to refer to the worst-case 
execution time of the TAP’s tests, and likewise wcet(actions( 7) ) for the worst-case 
execution time of the TAP’s actions. These are the values represented by the TEST-TIME 
and ACTION-TIME slots in the TAP structure. The worst-case execution time for the 
whole TAP is thus wcet(r) = wcet(tests( 7)) + wcet(actions(T)). The best-case and 
actual execution times are similarly referenced by the functions beet(r) and et(r). We 
introduce these last two notations only for the discussion in Section 4; CIRCA does not 
represent or reason about them. 

3.2. Operations 

CIRCA’s operation can be viewed as a pipeline in which control plans are derived 
in the AIS, scheduled in the Scheduler, and then executed on the RTS. These three 
operations can occur simultaneously on different control plans, so that while the AIS 
and the Scheduler are cooperatively developing the next control plans, the RTS is 
executing the previous control plan and maintaining system safety. However, data flow 
is not strictly unidirectional through the pipeline: feedback information can flow from 
the RTS and Scheduler to the AIS, so that changes in the world can affect the generation 
of control plans. For example, the arrival of a part of an unfamiliar type will cause the 
RTS to temporarily stack the part on the table and notify the AIS. In response, the AIS 
will develop a new plan for packing the new type of part into the box. 

CIRCA’s primary architectural feature is the separation of real-time and non-real-time 
subsystems. The RTS and AIS serve different purposes within the system, and their 
interaction must be carefully controlled. The RTS is responsible for executing control 
plans in a completely predictable fashion, so that their execution matches the model 
used by the AIS and Scheduler. The RTS meets this criterion for TAP execution because 
it has no other function; it simply loops over the cyclic schedule of TAPS, testing and 
executing them repeatedly. Even communication in and out of the RTS is encapsulated 
within TAPS, so that all RTS activity is scheduled explicitly.3 Thus control plans that 
make guarantees in the modeled world are executed accurately, and the model guarantees 
are equally valid in the real world. 

The AlS and Scheduler, on the other hand, perform the complex, unpredictable rea- 
soning required to develop guaranteed control plans, and the performance of these 

3 For more details on the RTS, see [ 3 11. 
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subsystems must not interfere with the RTS’ predictable execution. To achieve this iso- 
lation, each control plan executed on the RTS is designed both to achieve a short-term 
goal and to ensure system safety throughout the range of environmental states that may 

occur during and after the accomplishment of this goal. The effect of the latter crite- 
rion, which will be explained in detail in Section 4, is to allow the RTS to keep the 
system safe while the AIS and Scheduler try to build the next control plan; the planning 

operation is nut constrained to meet domain deadlines. 
The planning processes of the AIS can be divided into two main levels: the planning 

that builds control plans (TAP schedules) to accomplish some short-term goal, and the 

higher-level abstraction planning that decomposes long-term goals into short-term goals 
for which control plans will be built. This paper is primarily concerned with the AIS 

planning processes that build control plans. 
These control plans can implement sequential behavior, such as the series of actions 

required for the Puma to pick up a part from the conveyor, move to the box, and place 
the part in the box. Longer-term sequential behavior is achieved by downloading new 

control plans to the RTS. For example, if the Puma must move full boxes onto a second 
conveyor, the set of control reactions required for that task might form a separate TAP 
schedule, downloaded to the RTS when a box is filled.4 Control is transferred to a 
new plan only when the system detects that it is in an acceptable state which the new 

plan has also been built to handle. Clearly, to implement sequential behavior in this 

way, the planner must decompose the task so that consecutive control plans have no 
hard real-time constraints between them. That is, the planner must develop consecutive 
control plans whose common states for transitions between the plans can be maintained 
or re-achieved indefinitely. 

In a less-repetitive domain such as mobile robot navigation, this type of sequential 
activation of control plans is even more intuitive. For example, a mobile robot might 
be given one control plan that moves it along a hallway to a doorway, another plan 
to move through the doorway into a room, and another to perform some task once at 
a workstation in the room. These separate control plans would each use the robot’s 
limited sensors, processors, and actuators in different ways during the different phases 
of operation. The system would transfer between control plans only when the mobile 

robot was in a safe (halted) state, so there would be no hard deadlines dictating the 
time by which each control plan must be built. 

3.3. Control-level versus task-level 

The dichotomy between CIRCA’s real-time and non-real-time subsystems relies on 
the distinction between two classes of goals: control-level goals and task-level goals. 
CIRCA is designed to guarantee its control-level goals via the predictable execution of 
the RTS. Task-level goals, on the other hand, are achieved on a best-effort basis; that 
is, the system tries to achieve task-level goals when possible, but if time pressure or 

4This example raises the obvious possibility of caching and reusing TAP schedules-we expect that this 

approach could provide significant benefits, but this paper focuses on how to produce these schedules in the 
first place. 
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other restrictions make this impossible, the system is still considered successful. In real- 
time systems terminology, control-level goals correspond to hard deadlines. Frequently, 
control-level goals are related to system safety. For example, in our robot arm domain, 
the system has a control-level goal of preventing arriving parts from falling off the 
end of the moving conveyor belt, because parts may be fragile or explosive, and thus 
dropping them is considered a catastrophic failure. Task-level goals can be violated (or 
not achieved) without such drastic results. For example, the robot arm system is given a 
task-level goal to stack arriving parts in the box. However, if the emergency light goes 
on during that operation, it is acceptable for the system to quickly place the part on 
the table (instead of in the box) and respond to the emergency, In this example, it is 
acceptable for the system to not achieve its task-level goal, and no deadline is given. 

We can also conceive of task-level goals that have deadlines, but those deadlines must 
be “soft” or negotiable. Task-level deadlines frequently result from commitments to other 
agents, while control-level deadlines are derived from physical relationships between an 
agent and its environment. For example, a mobile robot may have a deadline for a 
task-level goal of arriving at some location, but missing that deadline may only require 
the agent to renegotiate a rendezvous with another agent at some later time. The same 
mobile robot, however, will have control-level goals to avoid collisions, and the actions 
that achieve those goals must always meet their deadlines, or the robot may be damaged. 
Accordingly, the system always gives priority to scheduling and guaranteeing actions 
that achieve control-level goals. 

The distinction between task-level and control-level goals is made automatically by 
CIRCA, based on its analysis of the domain model, resource limitations, and prioritized 
goals specified by the system designer. 5 Examining this information, CIRCA can derive 
deadlines for the actions which achieve the various goals, and can try to maximize 
the number of goals it will achieve given its bounded reactivity. CIRCA may also 
dynamically decide that it does not have the resources required to guarantee that it 
will achieve all of its control-level goals. In that case, the system automatically makes 
performance tradeoffs which may leave some control-level goals unguaranteed, treating 
them essentially the same as task-level goals. Thus control-level goals are those that the 
system should try to guarantee, but this may not always be possible. 

Linking control-level goals to system safety is a crucial concept, because it shows 
how the RTS and AIS can be truly isolated. Since the AIS and RTS run on separate 
processors, the AIS’ reasoning is largely separated from the system’s actual interactions 
with the environment. The only way that the AIS’ processing affects the world (directly, 
not through the RTS) is in the fact that it takes up time-that is, while the AIS is building 
a control plan, the world “keeps going”. However, even this effect can be factored out 
because the RTS continues interacting with the world, enforcing the guarantees on 
control-level goals. If those guarantees ensure the system’s safety, the RTS can continue 
keeping the system safe for an indefinite amount of time while the AIS generates the 
next control plan. 

CIRCA’s unguaranteed TAP list provides best-effort reactions that are not guaranteed 
to meet any deadlines, but may run when the system has extra time available. Unguar- 

5 Currently, our implementation only deals with two priorities: critical and not. 
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anteed TAPS typically achieve task-level goals, and in tightly constrained circumstances 
they will also provide best-effort attempts to achieve control-level goals. In the degener- 
ate case when all reactions are best-effort because the system lacks the resources needed 
to guarantee any, CIRCA behaves just like most other reactive systems, executing as 
fast as it can, with no reason to believe this speed will meet the demands of its environ- 
ment. We claim that CIRCA’s automatically-guaranteed control performance is superior 

in many ways to unguaranteed control. 

3.4. The value of guarantees 

One main benefit of providing control-level guarantees is the a priori knowledge of 

the suitability of the control system; if CIRCA can build a guaranteed control plan, we 
may confidently use that plan in situations where failure is not acceptable. If CIRCA 
cannot provide a guaranteed control plan, this is an indication that the system does 

not have sufficient resources to cope with its control-level goals in the environment. 
In that case, CIRCA has the ability to modify its high-level plans or goals to try to 

build an acceptable plan. For example, the system could alter the way it decomposes a 
long-term goal into short-term goals, so that the timing constraints on difficult processes 
are relaxed. In our example domain, the system might allocate more time to the process 
of packing parts into the box by slowing down the conveyor belt. The key point is that 

CIRCA is aware of its own capacity to deal with a specific combination of goals and 
environment. This is analogous to the cognizant failure stressed by Gat [ 131. Guaranteed 

control plans also play a crucial role in isolating the unpredictable performance of the 
AIS from the rigid, real-time guarantees of the RTS, as discussed above. 

Of course, CIRCA’s guarantees are based on several assumptions about the generally 

uncertain, unpredictable real world. However, there is no better way to build a control 
system: all systems are designed with certain environments in mind, and if they can be 
proven to manage the specified environments that is only for the better. The uncertainty 
inherent in the real world makes no difference for this argument. To paraphrase Stankovic 
[49], the fact that the system may not function correctly or that the world may differ 
from our environment model with a nonzero probability does not give us license to 
increase the odds of failure by not trying to guarantee performance. 

Consider this didactic example: we must transmit vital digital information across a 

network, and we can use either a simple one-shot transmission or an error-correcting 
protocol that is guaranteed to correct all known types of errors. Ignoring efficiency (or 
cost), the error-correcting protocol is clearly the preferable choice, because it has a 
performance guarantee that the one-shot transmission lacks. This guarantee has value 
despite the fact that we acknowledge that the protocol is only guaranteed to work for 
known errors. In fact, we can never hope to do better. The task as given is to transmit 
over a particular network, and the error-correcting protocol has been optimized for that 
task. 

To determine the net value of performance guarantees, we must also examine their 
two fundamental costs: the one-time cost of making the guarantee and the recurring cost 
of potentially low utilization. In the case of the error-correcting protocol, these costs 
might be represented by the time-consuming process of coding the protocol, and the 
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decreased transmission bandwidth available while using the protocol. By both of these 
measures the error-correcting protocol costs more, but it may be worth the cost to ensure 
that we really can transmit the information correctly. If the survival of the Space Shuttle 
depends on the transmitted data, the complex protocol is definitely worth these costs. 

One confusing issue is flexibility: is a guaranteed system less flexible than an unguar- 
anteed system? Not necessarily-flexibility and utilization are traded off in guaranteed 
systems. A complete guaranteed system is maximally flexible because it must deal with 
all possible occurrences. This guarantee leads to lower utilization when the environment 
does not exhibit all of the worst-case behaviors that must be monitored. On the other 
hand, a system may guarantee to handle only some of the possible occurrences, and in 
return it could have higher utilization. The flexibility/utilization tradeoff is not unique 
to guaranteed systems, it is a feature of all bounded-resource systems. The tradeoff is 
clarified by the fact that guarantees provide a stricter definition of flexibility: a guaran- 
teed system’s flexibility can be seen as the fraction of the possible worlds the system is 
known to be capable of handling. By that definition, an unguaranteed system can only 
establish flexibility through testing. 

In sum, CIRCA’s guarantees are only as good as its environment model, and its 
control plans do incur higher costs than other plans that do not deal with all possible 
environmental occurrences. On the other hand, CIRCA’s control plans have known 
properties such as correctness and timeliness that can be used in a priori analyses, 
which may in turn lead to modifications in the system’s plans and goals. We postulate 
that, in many complex control tasks, the advantages of guaranteed performance outweigh 
its costs. 

This paper focuses on CIRCA’s methods for deriving its safety-guaranteeing con- 
trol plans. In the following section, we show how the architecture’s model of 
agent/environment interactions forms the basis for these guarantees. 

4. The world model 

An efficient world model should represent precisely the information necessary to de- 
rive plans, and no more. Since our goal is to derive control plans that are guaranteed 
to meet domain deadlines, these plans must be able to succeed even through the en- 
vironment’s worst-case behavior. Thus the world model we have developed to derive 
TAP plans is not intended to be a complete, perfect representation of the world’s actual 
behavior; instead, the model represents the world’s worst-case behavior, and it is used 
to build plans that can cope with the worst-case. This distinction is extremely important, 
because it simplifies some aspects of world modeling and motivates the model form we 
have chosen. 

Informally, the world model represents the behavior of the world (including the 
controlled agent) as movement between states via transitions. States contain descriptions 
of the features of the world at some instant, and transitions describe how those features 
can change. Ongoing processes in the world are represented by “state-encoding”- 
the status of a process is considered a feature of the world (a “fluent” [28] ), and 
is explicitly encoded into the representation of a state. Important changes in process 
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status thus correspond to transitions between states. Any passage of time that does not 
lead to significant changes in process status is not represented explicitly: essentially, 
when no transition occurs the world remains in the same state, where that state may 

indicate that some process is currently occurring. For example, as the robot arm moves 

towards the box, the status of this process is encoded into the features (ROBOT-STATUS 
MOVING-OVER-BOX) (ROBOT-POSITION CHANGING). Just continuing to move does not 
lead to a state change, and thus there is no associated transition. However, when the 
robot arrives at its destination, the process finishes, the status will change, and the 
world model will represent this change by a transition to a new state with the features 

(ROBOT-STAT~S HALTED) (ROBOT-POSITION OVER-BOX). 

In [ 341 we briefly introduced a formal representation of the world model as a directed 
graph. In this paper, we greatly extend the formal representation, showing precisely how 
control plans can be proven to guarantee the system’s safety. The formal world model 

has five elements ( S, F, TE, TA , TT) : 
( 1) A finite set of “states” S = {St, &, . . . , S,,}, where each state Si represents a 

description of relevant features of the world. 
(2) A distinguished failure state F, which subsumes all states that violate domain 

constraints or control-level goals (e.g., system survival). The system strives to 
avoid the failure state. 

(3) A finite set of “event transitions” TE = {TEl, TEE,. . . , TE,,}, that represent world 

occurrences as instantaneous state changes. 

(4) A finite set of “action transitions” TA = {TAI , TAZ, . . . , T,+,}, that represent actions 

performed by the RTS. 
(5) A finite set of “temporal transitions” TT = {TTI, TTZ.. . . , TQ}, that represent the 

progression of time. We represent only the significant temporal transitions which 

lead to state changes. 
Each transition c E T = TE U TA U TT is a mapping between states; E : S + S. The 

functions D : T t S and R : T ---f S determine the domain and range of a transition; 
T; : D(Ti) -+ R(Ti). 

Fig. 4 shows an abstracted portion of the graph model for our robot arm domain. 

Solid single arrows represent event transitions TEE, dashed single arrows represent action 
transitions TAi, and double arrows represent temporal transitions Tn. State A in the 

figure represents the world state in which the robot has picked up a part from the 
conveyor and is moving to place it into the box. The double arrow to state B represents 
the continuation of that process until the robot reaches its destination. When the robot 
arrives over the box, the control system senses that state and halts the motion process, 
as represented by the dashed arrow to state C. 

The single solid arrow from state A to state D represents the possibility that the emer- 
gency light may go on while the robot is in motion. 6 From state D, the double arrow to 
state F (failure) represents the deadline for reacting to the emergency and pushing the 
button. The dashed arrows to states E, G, and H represent the planned actions to avoid 
that failure, quickly halting, placing the part on the table, and moving to push the but- 

6 We have omitted other instances of the same event that may occur from state B and state C 



Fig. 4. An abstracted portion of the graph model for the robot arm domain. For clarity, many states, state 
features, and transitions have been omitted. 

ton. Note that we have modeled these three actions (HALT, PLACE-PART-ON-TABLE, and 
PUSH-EMEFtGENCY-BUTTON) as atomic-no event can intervene. Before we can explain 
why this is necessary, we must first clarify the semantics of state transitions. 

4.1. Transitions 

At any particular time, the world is considered to occupy a single state in the model, 
conceptually marked by a unique token w. The token moves instantly along a transition 
from its domain state to its range state when the transition “fires”. A transition may 
fire any time the token is in its domain state and the transition is “enabled”. When 
the token enters a new state, the transitions out of that state are enabled for some 
interval of time following the transition into that state, as indicated by the function 
enabled : T x If8 + (0, 1). The fu nc ions mind : T + JR and muxd : T --) W represent t 
the endpoints of the enabled interval as the minimum and maximum delays after the 
state is entered. So if to is the time at which w enters state Si, and Ti is a transition 
leading out of Si (i.e., D(c) = Si), then enabled(z, t) = 1 for all times t such that 
to + minA( T) < t < to + muxA( Z) . 

The different types of transitions have different general forms for their enabled in- 
tervals, as shown in Table 2. Since event transitions represent asynchronous and in- 
stantaneous external events, which may occur any time the world is in their domain 
state, their mind is zero and their muxd is infinity. Both event transitions and temporal 
transitions are modeled as uncertain; i.e., they may never fire. This feature prevents 
the system from building plans that depend on external events or unguaranteed pro- 
cesses for the accomplishment of control-level goals; such dependencies would prohibit 
any performance guarantees. This is the reason the PUSH-EMERGENCY-BUTTON action 
(among others) must be an atomic transition, rather than a state-encoded process; we 
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Table 2 

Enabled interval definitions 

Transition type mind maxd 

Event 0 

Temporal >O 

Action bcet( 7) 

co 

cc 

P(7) + wet(T) 

must guarantee to push the button to avoid a control-level failure, so the action must 

itself be guaranteed. 
Temporal transitions, by definition, represent the passage of time, and the significant 

state changes that can occur as processes continue. Temporal transitions have a mind 

determined by the rate at which the corresponding process is running. In the example 
of Fig. 4, the mind for the temporal transition from state A to state B depends on how 
fast the robot is moving, as well as how far it has to move. In this case, the transition’s 
mind represents the earliest possible time the robot could ever arrive over the box (and 

thus enter state B). 
Action transitions represent the intentional activity of the RTS, and thus can have 

more rigorously defined temporal behavior. In particular, since an action is implemented 

by a TAP running with a fixed period, we can compute values for the minimum and 

maximum delay between the time the world enters a state and the time the TAP fires, 
sensing that state and executing the action. We assume, as a worst case, that a TAP’s tests 

take a “snapshot” of the world when they are first run and spend the rest of et( tests( 7) ) 

processing that captured data. We also assume that the TAP’s actions do not actually 
affect the world until the very end of et(actions(~)). Thus the minimum delay between 
entering a state and completing a relevant TAP’s actions is bcet( r), as illustrated in 
Fig. 5. In the figure, the upper time-line shows the occurrence of an event that moves 

the world from state X to state Y. Below that, the mind case is illustrated by a TAP 
whose tests begin just as the new state is entered. Below that example, another periodic 

TAP is shown just missing the state transition (its tests started just before the event). In 
that case, the TAP will not correctly sense the new world state until its next invocation, 
and thus the action transition implemented by that TAP has a maxd = P( 7) + wcet(T), 

where P (7) is the period of the TAP 

4.2. Proving safety 

Given this understanding of the dynamics of the world model, we are now in a position 
to lend rigor to the notion that some control plans can “cope” with the world. First we 
will define the goal of a control plan as keeping the world restricted to a particular 
subset of states, and then we will show how that goal can be provably achieved. 

We define an “event-closed” set of states SEC C S as a set of states for which every 
event transition from every state in the set leads to a state that is also in the set. That is, 

~TEI E TE 1 D(TE~) $ SEC V R(TEi) E SEC. 

In other words, instantaneous events cannot move the system out of the event-closed set 
of states; only actions and temporal transitions can leave the event-closed set. 
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Fig. 5. Deriving the mind and maxA for an action transition implemented by a periodic TAP 7. 

An event-closed set of states with no events leading to the failure state is called a 
“safe” set of states: 

Note that a safe set of states can still lead to the failure state through temporal transi- 
tions (i.e., it is possible that 3Tn E TT 1 II E Sde A R(Tn) = F). These temporal 
transitions to failure correspond exactly to violating the hard real-time domain con- 
straints: if the system fails to react to a state before a hard deadline, then in the worst 
case it will enter the failure state via a temporal transition. By “waiting too long” to 
react, the system fails. In the context of real-time computing, this is known as a riming 
failure. 

The definition of a safe set of states is not particularly restrictive, since it only 
prohibits event transitions to failure and event transitions that lead out of the set. The 
former requirement is necessary because no system can guarantee to avoid failure if it 
has no time to react to an event before failure occurs. The latter requirement is intended 
to allow the system to use action transitions to keep the world within the safe set, never 
moving to a state from which failure is possible via an event transition. In essence, the 
existence of a safe set of states only constrains the environment such that an agent must 
always have some minimum time to react before a failure occurs. 

Finally, we can define a “safely-controlled” set of states Ssc as a safe set which also 
has no temporal transitions to failure or out of the set, i.e., 

fin E TT 1 DU-n) $ &cV(Wid E &z~R(Tn) # F). 

The goal of a control plan is to ensure that the world remains in a safely-controlled 
set of states, so that failure can never occur. This is analogous to a stable closed-loop 
control policy [46] which is known to restrict the operation of a controlled system 
to a desirable range of states. To show how a control plan can make a safe set of 
states a safely-controlled set, we now introduce a simple set of correctness-preserving 
model transformations. These transformations prune out unreachable states [ 121, and 
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thus allow us to prove safety properties by showing that certain control plans can restrict 
the world so that no failure states are reachable. 

4.3. Model transformations 

We must first define the concept of reachability in our world model. We repre- 
sent reachability, or the possibility of the world entering a given state, as a predicate 

reachable : S + (0, l}, where 

reachable( S;) = I 

if 3z E T, 3Sj E S 1 reachable A D(T) = Sj A R(C) = &. 

This recursive definition merely says that a state is reachable if there is a transition to 

that state from another reachable state. We ground the recursion by defining a set of 
initial world states I C S such that VI, E I 1 reachable( Ii) = 1. For any initial state 
I,, the transitive closure of reachability from that state yields RI,, the set of all states 
reachable from that initial state. In general we do not distinguish among possible initial 
states, and thus when we speak of the set of reachable world states we mean the union 

of the reachable sets from each initial state: RI = U,,E, RI,. 

The “correctness” of a world mode1 is determined by how accurately it represents 

the behavior of the world. In our case, the mode1 is intended to represent all of the 

worst-case possible behaviors, so the set of all reachable world states RI is the crucial 
factor in determining the correctness of our model. If the world mode1 predicts exactly 

the same states that are possible in the real world, it is most correct. If the model 
predicts those correct states plus some additional states, the only problem is inefficiency 
because the system may plan actions to account for states that can actually never occur. 

However, if the model fails to predict some possible world state, the system may not 
plan a necessary control action, leading to failure during plan execution. Thus the mode1 
transformations we use preserve the model’s correctness by never removing mode1 states 
unless those states can never be reached. 

The first, most powerful transformation simply involves removing transitions that are 

preempted, that is, transitions which can never fire because some other transition will 
always fire first. In terms of our representation, a transition Ti preempts another transition 
7” if maxA < minA(7”). Since events have mind = 0, nothing can preempt an event. 

Temporal transitions have non-zero mind, and thus we can design action transitions 
(whose maxd depends on the frequency we choose for the corresponding TAPS) that 
will meet the preemption criterion. A preempted transition never becomes enabled and 
thus can never fire, so it can be removed from the graph mode1 without affecting the 
correctness of the model. 

Two other simple transformations complete the required set. First, it is obvious that 
any non-initial state that has no transitions leading into it is unreachable, and thus can 
be removed from the mode1 without affecting correctness. Finally, all transitions leading 
out of states that are unreachable can also be removed, since they will never fire either. 
Table 3 summarizes the conditions for these mode1 transformations. 
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Table 3 
Conditions for removing world model states and transitions 

VSiES-II, VCET 

101 

preempted(c) E3Tj E T 1 mu.ul(Tj) < minA(l;:) A D(Tj) = D(c) 

unreadtable E R(Ti) # Si 

unfireable(Ti) ~unreachable( D(c)) 

By propagating the preemptive effects of planned control actions into the removal of 
states from the world model, these transformations show how control plans can force 
the world to remain within a safely-controlled set of states. Control plans that meet this 
criterion are called “complete” control plans, and they guarantee that the system will 
avoid failure. 

Beyond this, however, complete control plans also provide one other feature critical to 
CIRCA’s operation. We have previously noted that resource restrictions generally make 
it impossible to produce a single control plan that will guarantee safety and achieve all 
task-level goals. Thus CIRCA breaks task-level goals into subgoals and tries to build 
complete control plans for each subgoal. It is essential that these control plans guarantee 
to avoid failure and also guarantee to avoid moving out of the safely-controlled set of 
states for which they were planned, so that the system can continue running a complete 
control plan for an indeterminate amount of time without risk of violating its control- 
level goals. Thus the AIS can utilize unpredictable or high-variance AI techniques to 
build control plans, because while it is building one, the previous control plan is running 
on the RTS and keeping the system safe. 

4.4. Relationship to Petri-Net models 

It is useful to compare this type of state-based model with models based on Petri 
Nets (PNs) and their variations [ 381. In PN models, “places” represent the status 
of world features, and transitions connect places, representing the way features can 
change. Multiple tokens can be spread among the places, and the complete state of the 
modeled world at any instant is defined by the distribution of those tokens, known as 
the “marking” of the net. Thus in PNs the set of world states that can be reached from 
any initial world state is represented by the set of net markings that can be reached from 
an initial marking. In contrast, each state of our world model is a complete description 
of the world, and the set of world states that can be reached from an initial state is 
represented by the set of model states reachable from that initial state. In other words, 
the explicit state enumeration of our world model makes the set of reachable world 
states extremely easy to recognize. 

This feature is desirable because, as we have just shown, reachability is the key to 
proving safety. In the process of building the world model, it is trivial for the AIS to 
recognize when a failure state is reachable, because it will actually create a state with the 
(FAILURE T) feature. Thus, while building the world model, the AIS can immediately 
plan actions to avoid failures. Planning for a world model represented as a PN would 
be considerably more difficult, because the effects of actions on the reachability of 
particular world states are much harder to determine. In effect, our state-based world 
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model trades the storage space cost of enumerating world states against the computation 
time cost of determining reachability in a more compact PN model. 

4.5. Worst-case simplifications: uncertainty, determinism, and time 

Because our world model need only represent the worst-case behavior of the envi- 
ronment, several potentially complex representation issues are simplified. For example, 
a great deal of research has been focused on methods for explicitly representing and 

propagating uncertainty about the likelihood of various events. Our world model has no 

need of that information: any possible transitions between world states must be included 
in the world model, no matter how improbable they are, because in the worst case they 

just might occur. However, if the system eventually does need to make compromises 
because it cannot guarantee all of its control-level goals, then having information on 

the likelihood of various states leading to failure might help the system make intelligent 
choices about which control-level goals can best be left unguaranteed. 

Similarly, uncertainty about the world’s initial state is not explicitly represented. 
Instead, the initial world features specified by the AIS are assumed to match a set of 
initial model states I, and control plans must be built to deal with all of the states 
reachable from each of those potential initial states. 

As for uncertainty about information from sensors during runtime, the system is 
required to be able to sufficiently distinguish the current world state whenever an action 

has been planned. This minimal capability is required by any system claiming guaranteed 

performance. Note that this does not mean that the precise, complete world state must 
be determined for action (because some subset of world features may be sufficient to 
determine the appropriate action-see Section 5.2), nor does it mean that the control 
system must be able to perfectly track the progression of states in the environment [ 411. 
In fact the system never needs to know the world’s state if it does not need to take any 

action; thus, the world can traverse many transitions but cause no change in the control 
system. The RTS’ internal representation of the world can become quite outdated, but 
only in non-critical ways. 

For example, while the robot arm is responding to an emergency alert, the next part 
may arrive on the conveyor belt. However, the system may not immediately recognize 

this event, because it is in the middle of the actions responding to the emergency. These 
emergency-response actions are scheduled at a higher frequency than the actions that 
deal with arriving parts. The response latency and the resulting temporarily “out-of- 

date” internal state of the RTS are non-critical because, even if the system had seen the 
new part immediately, it would have had to continue the ongoing reactions to avoid a 
timing failure from the emergency. In the process of building the control plan, the AIS 
has already examined this sequence of events and has guaranteed that the control plan 
functions correctly. 

We have described the world model transitions with unique range states, but this 
does not mean that the world or the model must be deterministic. Transitions can also 
specify multiple possible range states. Again, because all possible states must be handled, 
nondeterminism does not add complexity: nondeterministic transitions are equivalent to 
multiple transitions with identical domains and different range states. 
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L J 
Fig. 6. A world model subset showing the representation of potentially simultaneous events. 

As we have seen, the worst-case criterion also removes the need for any detailed 
representation of time. Complex temporal logics have been developed for reasoning 
about the relationships between asynchronous external events, simultaneous actions, 
and the regular passage of “wall clock” time [2,7,16,28,50]. So far the only timing 
information we have shown for our world model is the simple worst-case values needed 
to recognize preempted transitions. There is no need to explicitly represent or reason 
about the different possible orders of events or actions, because all of those orders are 
considered equally likely (in the worst case). 

Instantaneous events allow our model to represent simultaneity, but they do so by 
enumerating sequences of states that can occur without the passage of time. For example, 
in Fig. 6 we see that event transitions El and E2 are both applicable to state A. 
A complex temporal world model might include constraints on the ordering of those 
events, but that information is of no use to us because the worst case may include any 
order of occurrence, even simultaneity. Note that the possibility of El and E2 occurring 
simultaneously is explicitly represented by state C: since the events have mind = 0, state 
C can be entered at the same instant state A is entered. 

4.6. Dependent temporal tmnsitions 

The world model has one difficulty with its minimalist representation of time: depen- 
dencies between temporal transitions. To illustrate the problem, Fig. 7 repeats a portion 
of the robot arm domain shown earlier. Beginning with the event EMEFlGENCY-ALERT 
entering state D, the robot has thirty seconds to push the emergency button before 
failure occurs, as represented by the temporal transition to failure. We can see that 
taking the necessary actions HALT and PLACE-PART-ON-TABLE does not remove the 
threat of failure from the emergency condition. Thus state E and state G still have tem- 
poral transitions to failure. The difficulty is that the minimum time until failure along 
these transitions is no longer thirty seconds, because the emergency began in state D, 
and some amount of time passed before we halted and moved to state E. Thus the 
real minimum time to failure from state E depends on the sojourn time in state D. 
We call this situation a dependent temporal transition, and it complicates the process 
of reasoning about the world model, as we shall see. However, dependent temporal 
transitions are still manageable because the worst-case mind for a dependent temporal 
transition is easy to determine: if TTj is dependent on Tn leading out of state 4, then 
minA( TTj) = minA(Tn) - maxd(T~ij), where TAij is the action taken to move between 
states Si and Sj. In the figure, the temporal transition from state E has mind = 30 minus 
the maxd of the TAP implementing the action from state D to state E. 
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4.7. Action loops 

Mixing action transitions and temporal transitions can lead to one type of pathological 
subgraph called an action loop. In an action loop, actions join a cycle of states without 
any intervening events or temporal transitions. For example, Fig. 8 shows an action 
loop that the system might propose while building a plan for the robot arm problem. 
In the figure, the system has planned to halt in state D, transitioning to state E. But it 

has also planned that, once in state E, it will immediately resume motion. There are 

two problems with this action loop. First, the loop can lead to a timing failure because 
each time the world loops back into state D, the time remaining until failure is not the 
original thirty seconds, but depends on how long it has been since the emergency alert 
first occurred. CIRCA has no way to recognize when the loop has been executed many 
times and failure is imminent. 

The second problem with action loops is that they accomplish nothing. In many 

classical planning systems, an action loop might have a valid purpose because the 

Fig. 8. An action loop that might be generated for the robot arm domain. 
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Fig. 9. An inappropriate action. 

representation of states is incomplete, and thus side-effects are possible. In our complete 
state representation, side-effects do not exist, so looping back into a previous state 
means that the world is exactly the way it was (except for the wall clock time). Thus 
a sequence of actions leading out of a state and then back into that same state will not 
accomplish any goal. Note that a loop of states including event or temporal transitions is 
quite reasonable, because these transitions represent environmental behaviors that may 
move the world away from desired states, and the system should plan actions to restore 
those goals. 

4.8. Predictive su#iciency 

Fig. 9 shows how “inappropriate” TAP actions may be executed if an event occurs 
between the time a TAP senses the world state and performs its actions. In some cases 
inappropriate actions do not matter, and in some cases they can lead to catastrophic 
failure. Consider an example in which a TAP is used to detonate explosive charges that 
will demolish a building. Sensors have been installed on the building’s doors to make 
sure that nobody is in the building when it is destroyed. But, as in Fig. 9, someone might 
enter the building just after the sensors are checked, and before the explosives detonate. 
Since events are instantaneous and asynchronous, the system itself cannot prevent this 
type of failure. If failure may result from an inappropriate action, we must ensure that 
the sensors have “predictive sufficiency”. That is, a sensor reading must indicate both 
that a particular condition exists, and that it will continue to exist long enough for the 
response action to occur (wcet( 7) in the worst case). 

In the demolition example, one solution is to place a ring of sensors several me- 
ters from the building, so that people entering the building will first pass through the 
perimeter sensors. We can then interpret the actual information returned by the sensors 
(“nobody has crossed the perimeter”) to mean that “nobody could enter the building 
in the next K seconds”. The semantics of the sensor data are altered by adding domain 
knowledge (the perimeter distance and maximum human speed) to yield predictive 
information, or knowledge about possible future states. We are currently formalizing 
and implementing techniques by which CIRCA can reason explicitly about the need for 
predictive sufficiency [ 351. 

4.9. Summary of agent/environment characterization for guarantees 

While we stressed the value of guarantees in Section 3, in this section we 
have identified critical pieces of information that an agent needs in order to make 
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guarantees about its performance in its environment. The characteristics of the 
agent/environment interaction that an intelligent, flexible agent must be able to model 

include: 
l features of the world relevant to the agent, including failure conditions; 

l possible external events, and how they move the world to new states; 
l transitions that are caused by the passage of time, including the minimum time 

until the transition can occur in the worst case (mind) ; 
l all sensing primitives, including their worst-case execution times; sensed data must 

have predictive sufficiency (as discussed in Section 4.8); 
l all action transitions, including their worst-case execution times; actions and sensing 

primitives must be guaranteed to succeed; 
l the set of possible initial states, which must all be safe (or else the agent could 

fail before it ever begins) ; 
l the actions that preempt temporal transitions, to keep the system in a safely- 

controlled set of states. 
These requirements are not specific to CIRCA’s approach to real-time AI; any system 

seeking to make similar real-time response guarantees must have this information. For 
example, any system that is attempting to guarantee the timeliness of its behaviors must 
already have some guarantee that its primitive actions (or some combination of them) 
will succeed. If primitives are not guaranteed, then it does not matter whether the system 

decides to act in time, because the action it takes might not affect the environment in 
the desired way. Similarly, if an agent hopes to avoid failing due to delays, it must 

be assured that it can take an action between an event and a temporal transition to 
failure; no system can make safety guarantees in a world with instantaneous transitions 

to failure. 
Guaranteed real-time agent/environment interactions must therefore be characterized 

as we have described to assure that an agent can achieve its control-level goals in 
its environment. CIRCA’s model captures this characterization and embodies it in a 
specific architecture. In the context of CIRCA’s approach to making guarantees with 
limited resources, we can also add one more requirement on the agent/environment in- 
teractions: it must be possible to partition the state space into safely-controlled sets 
of states for which the system has sufficient resources. In other words, the RTS 
is given a control plan that uses limited resources to deal with the contingencies 
that may arise in a limited set of situations, and we must therefore ensure that the 
world can be restricted to those handled situations. Intuitively, this means that the do- 
main must afford the opportunity for “stalling” or cycling behavior, where the agent 
can remain safe by continuing to execute a fixed, limited set of reactions while the 
AIS is generating the next control plan. For example, a mobile robot can halt and 
wait for instructions, and remain safe from obstacle collisions with a relatively sim- 
ple set of reactions. Likewise, in our Puma example, the robot can stack unknown 
parts on the table, still avoiding failure while it waits for details on how to pack 
those parts. If this type of task decomposition is not possible, and remaining safe 
in the environment requires an agent to be continually monitoring for all possible 

situations, then there is no need for CIRCA’s intelligent resource allocation mecha- 
nisms. 
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4.10. Appropriate domains for CIRCA 

Given that CIRCA must model the characteristics listed above, what types of 
agent/environment combinations will CIRCA be appropriate for? The simple answer 
is “ones that can be characterized as above”, but to get a more intuitive sense, let us 
reduce the number of criteria. Because CIRCA’s world model representation corresponds 
loosely with the representation of states and transitions in discrete event systems [ 401, 
we will employ two terms from that field: controllability and observability. We will use 
controllability to reflect the degree to which the intelligent control system can change 
its current state to another state. Three qualitative levels of controllability are: fully 
controllable (the system can take actions to reach any desired state); partially control- 
lable (the system can take actions to avoid undesirable states, but may not have control 
over all state changes); and uncontrollable (the system has no control over what state it 
might find itself in). Observability reflects the degree to which the system can determine 
which state it is in based on its observations/measurements. The qualitative levels here 
are: fully observable (the system can make adequate observations to uniquely decide 
which state it is in 7 ) ; and partially observable (the system might only restrict the set 
of states it believes it might be in). 

Finally, because any system has only limited resources, we define a third dimension 
called capacity, which reflects the degree to which a system has enough resource capacity 
to handle all of the demands placed on it. We will use two qualitative levels of capacity: 
limited and unlimited. 

Along these dimensions, CIRCA is most appropriate for agent/environment inter- 
actions characterized as partially controllable, fully observable, and having limited ca- 
pacity. Examples of such systems include agile manufacturing systems, robotic sys- 
tems acting in dynamic physical environments (where physical laws impose con- 
straints that allow some controllability), and distributed computing systems. Varying 
the controllability dimension, CIRCA would also work in fully controllable domains 
such as control of simple manufacturing robots. However, the complexity of CIRCA 
could be overkill; a simpler, traditional sequencer should be sufficient to allocate re- 
sources as it moves the system deterministically through states. In an uncontrollable 
system, CIRCA would still be able to guarantee some level of performance given pre- 
dicted events, but the certainty of these predictions would be limited, and CIRCA’s 
actions might not achieve their goals. Thus, a more reactive approach, like Univer- 
sal Plans [47]-where more inputs and unguaranteed responses are considered, and 
outputs are never assumed to be correct-might be more appropriate for such situa- 
tions. Modeling domains as fully uncontrollable is fairly rare, since that implies that 
the agent cannot necessarily take actions to preserve its own safety or achieve its 
goals. 

Because CIRCA has been designed specifically to handle limitations in sensing and 
processing resources by allocating them intelligently, CIRCA would not be an appro- 

’ Note that this implies both the ability for sensing to be sufficiently discriminating and for observations to 
be sufficiently predictive. 
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priate choice when there are unlimited resources. A single, powerful controller would 
be more appropriate. In situations where full observability is not assured, making any 

guarantees on control is problematic. CIRCA could work in such domains by making 
guarantees based on assumptions about what might be observed, but such guarantees 

would be inherently probabilistic. 

5. Building and using the world model: implementation details 

With this understanding of how control plans can be shown to keep the system safe, we 
now present CIRCA’s implementation of the world model and its methods for developing 
complete control plans. Our goal here is to describe the unusual features necessary to 
build real-time control plans using our model of agent/environment interactions. We 

describe algorithms that successfully implement these features, but we do not contend 
that these are the most efficient or novel mechanisms possible. Note that this section 
describes only the low-level control planning done in the AIS; more complex high-level 

reasoning is done by a different process. The prototype high-level reasoning mechanism, 
described fully in [ 311, is based largely on PRS [ 14,201. 

From the description of the world model above, we might derive a simple approach 
in which the entire world model state space is enumerated and then actions are planned 

to reduce the graph to a safely-controlled subset. Of course, the immediate objection to 
this approach is that it involves generating and storing a complete enumeration of the 
state space, which is exponential in the number of world features. Furthermore, since 
planning a single action can make large sections of the world model’s entire graph 

unreachable, much of that enumeration might be wasted. 
Therefore, we have developed an algorithm that dynamically interleaves the construc- 

tion of the world model and the planning of control actions. The control plans (TAP 
schedules) that are run on the RTS are developed by five processing phases, outlined 
below and described in more detail in the following sections. 

In the first phase (planning actions), the AIS builds up a list of actions that must 
be taken to make all failure states in the world model unreachable. This phase actually 

builds and manipulates the world model states on-the-fly, as it is planning actions and 
simulating transitions. Associated with each planned action is a list of the states to 
which that action must be applied and the associated temporal transitions which it has 
been planned to preempt. 

In the second phase of processing (minimiz,ing tests), the AIS attempts to maximally 
generalize the preconditions for each action, so that as few tests as possible are necessary 
to decide when to apply the action. The third phase (planning sensing) builds TAPS 
that perform the tests using selected sensing actions. The fourth phase (assigning TAP 
periods) chooses TAP periods so that they will always preempt their associated temporal 
transitions, and the final phase (scheduling TAPS) invokes the Scheduler to build a cyclic 
TAP schedule that meets all of the TAP timing requirements. 

These processing phases do not operate in a purely feed-forward manner; rather, con- 
trol and information can flow back from later phases when problems are detected in the 
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developing TAPS. For example, when phase three runs to plan sensing actions it may 
find that the sensing actions required to test a particular planned action’s preconditions 
are so complex and time-consuming that the action can never preempt the temporal 
transition it was designed for (i.e., wcet(tests(r)) + wcet(actions(r)) > mind(T,)). 
This condition was not detected earlier because the sensing actions cannot be planned 
until the second phase has minimized the set of feature tests required. Since the tem- 
poral transition is no longer preempted, the world model is no longer safe, and the 
system must backtrack to choose different sensing actions or even different actions 
altogether. 

To allow control (backtracking) to propagate between these different processing 
phases, we have implemented them in an explicit-stack state machine, illustrated in 
Fig. 10. The action planning and postprocessing phases are cast in the form of individ- 
ual functions for each decision process-every decision made by the system maps to a 
function call. The main loop of the system chooses which decision function to run next 
based on a global mode variable. Each decision function computes its decision, pushes 
the alternative choices for that decision onto a choice-stuck, sets the mode variable to 
select the next decision that should be run, and returns a boolean indicating whether 
backtracking should be initiated. For example, the basic action-planning decision func- 
tion looks at the world model state currently being examined, chooses an action to apply 
to that state, pushes the alternative actions onto the choice-stack, and returns true. Or, 
if there are no more action alternatives for the current state, the function returns nil, in- 
dicating that backtracking is required. Backtracking affects the world model, the choice 
stack, and the stack that maintains the state of the decision loop (including the current 
mode and the current world model state). 

By casting the main processing loop in this form, we have made the system highly 
modular, so that additional decision processes (like postprocessing phases) can be added 
easily. The explicit stack of this implementation also has an advantage over recursive 
implementations, because in this formulation it is fairly easy to interrupt and resume the 
control-level planner. 

5.1. Planning actions 

Because the world model state space is exponential in the number of world features, 
the AIS mechanisms that build TAP plans are actually given a much more compact 
representation of the world. The input to these mechanisms is divided into three types 
of information: transition descriptions, initial state descriptions, and goal descriptions. 
Transition descriptions are simple production rules that detail the changes the world can 
undergo, much like STRIPS operators [ 361. Fig. 11 shows example rules from the robot 
arm domain. Note that the preconditions and postconditions need not fully specify all 
features of the states to which the transitions apply. These descriptions are implicitly 
generalized by the lack of certain feature specifications. Action transition descriptions 
also include information about their worst-case execution times and the required actuator 
resources. 

Goal descriptions also do not usually specify the entire state of the desired world: 
in fact, many describe just a single feature (such as (PART-STATUS IN-BOX)). These 
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(defun run-control-planner (taux result) 
(do-until (equal *mode* 'end) 

(setf result 
(case 

(if (null 

*mode* 
(plan-action (plan-action)) 
(check-intermediate-plan 
(check-intermediate-plan)) 

(generalize-tests (generalize-tests)) 
(assign-sensors (assign-sensors)) 
(build-taps (build-taps)) 
(schedule-taps (schedule-taps)))) 
result) (backtrack-all)))) 

Fig. 10. The main loop for the AIS control-level planner. 

EVENT emergency-alert 
PRECONDS: ((emergency nil>> 
POSTCONDS: ((emergency T)) 

TEMPORAL emergency-failure 
PRECONDS: ((emergency T)) 
POSTCONDS: ((failure T)) 
MIN-DELAY: 30 [seconds] 

ACTION push-emergency-button 
PRECONDS: ((robot-status free) (gripper-status free)) 
POSTCONDS: ((emergency nil)) 
RESOURCES: (arm> 
WCET: 3.5 [seconds] 

Fig. I 1. Example transition descriptions given to the AIS. 

partial descriptions are not expanded into an explicit set of acceptable states; instead, 
the AIS uses the descriptions as litmus tests for states which it generates on-the-fly, as 
detailed below. 

5.1. I. The planning algorithm 
Given this input information, the AIS dynamically constructs the graph model and 

the plan of actions together in a single depth-first search process, essentially similar to 
a forward-chaining STRIPS planner [36]. This process operates on a stack of states 
(the state-stack), examining each state in turn and planning actions that achieve goals 
and preempt temporal transitions that lead to failure. To initiate the processing, each of 
the completely-specified initial states is pushed onto the state-stack. Then, as long as 
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the stack is not empty, the AIS pops a state off the stack and considers it the current 
state. If the current state is unreachable, * the AIS will ignore it and pop the next state 
off the stack. If the current state is reachable, the AIS finds all the event transitions 
and temporal transitions that apply to the current state. The applicable transitions are 
simulated by substituting their postconditions into the current state description, yielding 
either new states that have not been examined yet or old states that have already been 
processed (i.e., states for which actions have already been planned). New states are 
pushed onto the state stack, while old states are simply updated with the information 
that they have a new source state. 

The AIS then finds all the acceptable action transitions that could be taken from the 
current state. If there are no temporal transitions to failure from the current state, 
then all action transitions that apply to the current state are acceptable, including 
the null action NO-OP. If there are any temporal transitions to failure, only action 
transitions that can be implemented quickly enough to preempt the failure are con- 
sidered acceptable. The AIS chooses from amongst the acceptable actions the one 
that leads to the best next state, as determined by a heuristic scoring function (de- 
scribed below). The other acceptable actions are retained on the choice-stack, so that 
the next-best alternative will be chosen if the system later backtracks to this point in the 
search. 

Chronological backtracking is initiated when one of two conditions is satisfied. First, 
the system backtracks when it detects an action loop (see Section 4.7). Whenever 
a planned action leads to a state &Id that has already been processed, the system 
searches for action loops by looking back recursively along the action transitions lead- 
ing to the current state, checking to see if any originated at &Id. The second con- 
dition for backtracking is the recognition that there are no remaining action choices 
for the current state. In that case, it is clear that the planner has found an unavoid- 
able failure: either there are no acceptable actions to preempt a temporal transition to 
failure from the current state, or the system must have explored all possible worlds 
beyond this state and backtracked to reach this state, otherwise NO-OP would be a 
choice. 

By running the planning process until the state-stack is empty, the AIS simulates out 
all of the paths the world might feasibly take while the agent is controlled by a particular 
set of action transitions. More importantly, that set of action transitions is dynamically 
defined as the AIS works, in response to the recognition that a failure state is reachable. 
The basic action-planning algorithm terminates when no failure state is reachable. Using 
chronological backtracking to consider every applicable action at each state, the AIS 
can perform a complete search of the set of action plans. 

5. I .2. Complexity 
We noted earlier that the complexity of some environments may make it impractical to 

enumerate all possible situations. This is one of the arguments frequently used against ad 
hoc real-time systems that are simply tested exhaustively to demonstrate that they meet 

8 A non-initial state on the stack may become unreachable if actions am. planned to preempt every temporal 
transition leading into that state, and no event or planned action transitions lead into that state. 
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hard deadlines [ 491. How, then, does CIRCA’s enumerative world modeling technique 
differ? 

The most important difference is that the AIS does not enumerate the entire domain 

state space. As discussed earlier, the AIS’ high-level planning explicitly divides long- 
term goals into shorter-term subgoals, which are then separately implemented by control 
plans. This restricted context means that the state space of the control planner is not the 
entire set of states the system and world can ever enter. 

Furthermore, the planner avoids enumerating even this restricted space because, while 
it is generating the world model, it is also generating the plan of actions. Each time an 

action is planned, it restricts the world’s behavior and thus prunes out states that the 

AIS never even considers. In our Puma domain, one of the problem variations has a 
complete model space of over 5100 world states. To build a complete control plan that 
guarantees all control-level goals and also achieves the task-level goals, the AIS only 
enumerates 330 unique states. The final plan restricts the world to a safely-controlled 
set of 158 possible (reachable) states. For a problem in which the world is described 
by eleven different features, and eight actions are planned for 144 different states, the 
size of the space actually searched seems quite reasonable. 

Even if the system searches as much as possible and cannot produce a complete control 
plan, it is highly unlikely that the entire search space will ever be enumerated. The reason 
is simply that CIRCA only enumerates possible world states. In most realistic worlds, the 

structure of the external world makes many combinations of world features impossible. 
This is reflected in the AIS’ world model by the fact that many combinations of state 

features are not reachable, even without any planned actions. In our example domain, it 
is not possible for the features (OBJECT-STATUS IN-GRIPPER) and (GRIPPER-STATUS 
FREE) to coexist. This fact is not explicitly represented, and the AIS never generates a 
state with those features and then realizes it violates a domain rule; instead, the system 
simply cannot generate that state because it is not possible with the given transition 

descriptions. 
In general, any system making guarantees must somehow ensure that those guarantees 

hold for all possible worlds. This requires either an exponential enumeration of states 
or some dependency information that allows the system to extend guarantees made for 
one state to other states without examining the others individually. Recent work by 

Godefroid and Kabanza [ 151 illustrates one way in which such dependency information 
can reduce search spaces; their results allow a system to examine only a single ordering 
of independent actions, rather than enumerating all possible orderings. These results are 
not immediately applicable to CIRCA, because their world model does not include ex- 
ternal events. This omission simplifies the concept of action independence to a condition 

on the action descriptions. In the CIRCA model, this condition alone is not sufficient 
to determine if actions are independent: by enabling or disabling event transitions, an 
action can affect another even if its description includes no overlapping terms. We are 
actively investigating ways of deriving independence conditions in CIRCA’s model of 
agent/environment interactions. 

However, the most important point to remember is that the planning done by CIRCA’s 
AIS is isolated from the real-time domain deadlines. The AIS does not need to meet 
deadlines while producing control plans, so the complexity of the planner is decoupled 
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from the agent’s interactions with the world. In fact, the complexity of planning is one 
of the fundamental motivations for CIRCA’s distinction between the AIS and RTS: the 
high-variance search for plans to achieve goals must be isolated from ongoing, real-time 
interactions with the environment. 

51.3. Incremental improvement 
Currently, the system makes only a crude distinction between control-level and task- 

level goals. All control-level goals must be achieved, or the system backtracks. If some 
task-level goals are not achieved by a control plan, the system may still consider the plan 
acceptable. In the future, we may add more information so that the system can make 
intelligent decisions about risk-taking in the pursuit of task-level goals. This information 
might include criticality ratings for goals and event probabilities, so that the system 
could compute the utility of guaranteeing different subsets of control-level goals. In 
general, however, our initial focus on guaranteed behavior has led us to ignore such 
difficult information; we have concentrated instead on developing a system that can 
make rigid, complete guarantees within the scope of its limited knowledge. Given that 
most rigorous capability, we can easily modify the system so that it can forgo various 
goals when necessitated by resource restrictions [ 341. 

With the action-planning algorithm described above, we can derive every possible 
action plan that guarantees to avoid control-level failure. What we really want, if pos- 
sible, is a plan that guarantees the control-level goals and also either guarantees or 
at least makes possible the task-level goals. To find those plans, we have formed the 
action-planning algorithm as an imprecise computation [ 24,321 that will continue gen- 
erating new plans until no more are available, or until a plan that achieves all of the 
task-level goals is found. In the current implementation, a plan is considered to achieve 
a task-level goal if any state satisfying that goal is reachable. The decision function 
check-intermediate-plan, illustrated in Fig. 12, is placed in the loop shown in 
Fig. 10, to be run after the plan-action phase runs out of states to plan for. If the 
current plan does not achieve all of the control-level goals and make the task-level goals 
at least reachable, the decision function returns nil and the system backtracks to find a 
better plan. A more restrictive criterion might test to make sure that task-level goals are 
reachable from all states in the world model, or that the control plan always drives the 
system towards the task-level goals. 

If the AIS decides, based on task-level time pressures, that it needs to produce the 
next control plan quickly, it can interrupt the planning loop of Fig. 10 and use the 
current acceptable plan stored in *stored-plan*. If the AIS has more time available, 
it can continue producing plans for as much time as is convenient, and then use the 
best plan stored so far. In this way, the AIS can itself implement an any-time planning 
algorithm [ 8,431. This feature is useful because, although achieving control-level goals 
is never dependent on timely responses from the AIS, achieving non-critical, task-level 
goals may be. For example, in our box-packing scenario, the system implements the 
control-level goal of making sure that nothing falls off the conveyor belt by (in the worst 
case) putting the part it is currently holding down on the table. The control plan must 
also be able to stop the conveyor when the table is full. When that happens, the robot 
will continue to satisfy its control-level goals (even easier with the conveyor stopped!), 
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(defun check-intermediate-plan () 

(let ((plan (find-all-planned-actions)) 

(states (remove-if-not #Jstate-is-reachable-p 

(find-all-states))) 

(goals-done 0)) 

(dolist (goal *goals*) ;;; Count goals that are reachable. 

(if (any #'state-has-feature-p states goal) 

(++ goals-done))) 

;;; If current plan did better than stored, or have none 

;;; stored yet, store this one. Stored in global as a 

;;; list (plan goals-done). 

(if (or (not *stored-plan*) (> goals-done (second *stored-plan*))) 

(setf *stored-plan* (list plan goals-done))) 

(cond ((= goals-done 

(length *goals*)) ;;; If all goals reachable, 

(setf *mode* 

'generalize-tests) ;;; move on to next phase 

T) ;;; and don't backtrack. 

(T nil>>>> ;;; Else, backtrack for new plan. 

Fig, 12. The check-intermediate-plan decision function, implementing an incremental improvement 

method. 

and no catastrophes will occur. However, the faster the AIS figures out how to pack 
the articles sitting on the table, the faster the system will achieve its task-level goal of 

generating a packed box. 

5.1.4. The scoring heuristic 

The scoring function used to choose actions is the only heuristic knowledge currently 
used by the control-level action planner. The heuristic performs a recursive N-step 
lookahead, returning a value corresponding to the best state reachable in Iv’ transitions 
from the current state. The scoring function expresses preferences for states based 

on how completely they satisfy the system’s control-level and task-level goals. Since 
control-level goals are defined to be those which the system is trying to guarantee, they 
are weighted as more important than task-level goals. In fact, we consider violations 
of control-level goals to be equivalent to risking the safety of the system, and thus a 
violation of any single control-level goal is considered worse even than a violation of 

all the system’s task-level goals. 
The planner may choose an action that leads into a state from which a temporal 

transition leads to failure. Clearly, the longer the mind of that temporal transition to 
failure, the easier it will be to avoid failure by taking another action. Thus the scoring 
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function also expresses a preference for states which have the longest possible delays 
until failure occurs. To guide the system towards choosing the shortest path to success, 
the scoring function also takes into account the number of transitions which must be 
traversed to reach a state with a desirable set of features. 

5.2. Minimizing tests 

Because an action may be useful in several world states, we do not build up complete 
TAPS with sensing requirements as soon as an action is planned: if the action applies 
to several states, we would end up with multiple TAPS implementing the same action 
with different, but probably similar tests. This would make the scheduling operation 
much harder. Instead, we wait until all of the actions have been planned, and we have a 
full description of their sets of domain states. Then, in the second phase of processing, 
the AIS attempts to maximally generalize the preconditions for each action, so that as 
few tests as possible are necessary to decide when to apply the action. This phase is 
especially crucial when actions are applied to several states: the minimization phase can 
eliminate the need to test some specified features if the omission of those tests will not 
allow the action to be applied to a state for which it was not planned. 

The test minimization process is essentially equivalent to the minimization of switch- 
ing circuits [ 221. Each action can be considered separately as a circuit whose minterms 
are the features of the states for which it has been planned. All states that are not 
reachable in the world model are considered “don’t-cares”, because it does not mat- 
ter whether the final testing expression includes their features or not, they can never 
occur. 

For example, in the robot arm domain, the planner initially plans to take the ac- 
tion PUSH-EMERGENCY-BUTTON in four states, each of which has eleven features. 
After minimization, the action is associated only with tests for ((EMERGENCY T) 
(GRIPPER-STATUS FREE)). The new tests do not check all eleven state features, so 
they will take less time to execute. Of course, with only those two preconditions, the 
resulting TAP will match many more than the originally planned four world states. How- 
ever, the minimization algorithm has determined that none of those additional matching 
states are reachable, and thus they do not matter. Note that the minimization phase can 
even remove preconditions that are required to execute the action. In this example, the 
PUSH-EMERGENCY-BUTTON action transition description in Fig. 11 included the precon- 
dition (ROBOT-STATUS FREE), but that precondition was removed during minimization 
because it is not needed to distinguish the four planned states. 

The general test minimization problem is NP-complete, so we have avoided using a 
complete algorithm. Instead, the minimization phase is implemented using the heuristic 
ID3 program 9 [ 391, which is given the states for which an action has been planned 
as positive examples and all the other planned (possible) states as negative examples. 
ID3 incrementally builds a decision tree to distinguish the positive examples from the 
negative examples. While this approach does not guarantee an optimally small decision 
tree, it yields reasonable results with very little processing. 

9 Marcel Schoppers suggested this approach. 
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SENSOR overhead-camera 

DETECTS: (part-seen part-type robot-position) 

WCET: . 1 [seconds] 

V-SENSOR robot-status? 

DETECTS: (robot-status) 

P-WCET : .02 [seconds] 
USES: ((overhead-camera I> (moving? 1) > 

Fig. 13. Example sensor and virtual sensor descriptions. 

5.3. Planning sensing 

Once the action preconditions have been minimized, the AIS plans sensing actions to 

implement the precondition tests. To plan sensing actions, the AIS examines descriptions 
of the system’s sensors that include what world features the sensor detects and its worst- 

case execution time. Fig. 13 shows two example sensor descriptions. 
The first example describes a physical sensor in the system, the overhead camera 

that returns information about arriving parts and the position of the robot. The second 

example describes a “virtual sensor”, a software construct that may access several 

physical sensors (and/or several readings from a single sensor) and combine their 
values. In the example, the virtual sensor robot-status? combines single readings from 
the camera and another virtual sensor (moving?) to determine the robot’s status. The 

worst-case execution time for the virtual sensor is determined by adding the time needed 
to access the component sensor values to the worst-case processing time, indicated by 
P-WCET. 

Virtual sensors can also access the limited RTS world model, which is essentially 
a set of storage locations that hold status information. For example, the virtual sensor 
moving? accesses an RTS storage location to determine whether the robot is currently 

moving. The actions that start and stop motion also set the value of this storage location. 
No physical sensor readings are required, and thus the moving? virtual sensor executes 

very quickly. 
One of the areas in which CIRCA is currently being extended is the automatic 

assignment of additional internal storage locations to buffer physical sensor readings 
that will be useful to future precondition tests. If a physical sensor reading is fairly 
costly to acquire and its value is known to persist for a sufficient time, then several 
actions that test that value in their preconditions could instead access the stored result of 
a single physical sensor execution. This automatic planning of the use of internal storage 
to avoid excessive sensing could greatly enhance the system’s efficiency, allowing the 
AIS to produce TAP schedules for domains which would otherwise be too demanding. 

Some systems may have multiple sensors capable of detecting a particular world 
feature, and some sensors may detect multiple world features. Thus the task of assigning 
sensors to action preconditions is a covering problem, involving finding a minimal set 
of sensing actions that will test all the preconditions. The AIS could solve this problem 
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Fig. 14. Example actions dealing with dependent temporal transitions. 

via a depth-first search process over all the possible covering sets. Each covering set 
would be checked to make sure that, when combined into a TAP, the resulting worst- 
case execution time does not exceed the mind of the temporal transition the action has 
been planned to preempt. If it does, the system would backtrack to try the next possible 
covering set of sensing actions. If no set of sensing actions could be built to yield 
a sufficiently short TAP, then the backtracking would propagate back to the previous 
processing phases, and the system would search for a different control plan. 

Currently, the sensor-planning functionality has been implemented in the Puma domain 
in a simplified form. Rather than performing a search, an association list is used to 
map abstract world model state features to different combinations of sensed real-world 
features. The higher-level AIS processing can modify this association list as necessary, 
bypassing the search processing that might otherwise be used to perform sensor planning. 

5.4. Assigning TAP periods 

Once the sensing actions have been chosen, the complete set of TAPS is built and 
their worst-case execution times are available. In the final phases of processing, the AIS 
assigns periods to the TAPS and builds schedules that meet those periodic constraints. 
Assigning TAP periods is largely a trivial task, except for TAPS that deal with dependent 
temporal transitions, For other TAPS, the preemption equation described earlier shows 
that each TAP’s period should be just less than the corresponding temporal transition’s 
mind minus the TAP’s worst-case execution time. 

For TAPS dealing with dependent temporal transitions, the problem is complicated by 
the dependencies between TAP periods. For example, Fig. 14 shows a chain of temporal 
transitions where TTI is the initial temporal transition applicable to state X, and the 
actions Al and A2 do not remove the cause of the temporal transition. Thus dependent 
versions of the temporal transition apply to the succeeding states Y and 2. As presented 
earlier, it is easy to compute the minimum delays until the dependent transitions are 
enabled: 

minA(TT2) = minA(TT1) - P(TA~) - wcet(7Al>, 

minA( TT3) = minA( Tn) - P( 7~2) - wcet( TM) 

= minA(TT1) - P(TA1) - wcet(TA1) - P(7A2) - wcef(7,&, 

where 7~1 and 7.~2 are the TAPS that implement the respective actions. In the general 
case, where n actions are needed to end the chain of dependent temporal transitions, we 
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see that 

n-l 

minA(T~,) = minA(T~1) - c [P(T,Q) + wcet(TAi)] . 
i=l 

We also know that, for the preemption condition to hold for the final action An that 
terminates the chain, we must have minA(TT,,) > P(TA~) + wcet(TA,). 

Substituting, we see that 

minA(TT1) > c [p(7,4~) + wcet(TA;)] . 

This equation essentially shows that the mind of the initial temporal transition must be 
long enough to accommodate all TAPS invoked in the dependent chain. Rearranging the 
equation to solve for the periods, we have 

kP(?-Aj) < minA(TT1) - ewcet(TA,), 
i=l i=l 

In other words, the sum of the TAP periods must be less than the total slack time 
remaining in the original temporal transition when all of the TAPS use their worst- 

case execution time. Unfortunately, we cannot solve this equation alone for the TAP 

periods because there are n free variables and only one independent equation. Thus 

additional constraint equations must be added. We synthesize those constraints based 
on the observation that scheduling periodic tasks is easier if their utilization is low; 
that is, if their execution times are relatively small compared to their periods. To keep 
each TAP’s utilization low, the choice of each TAP’s period should be influenced by 

the length of the TAP’s execution. For example, assigning a short period to a complex, 
costly TAP will leave little slack time between its invocations for the other TAPS to 
run. Thus longer TAPS should be given longer periods, and shorter TAPS can be given 

shorter periods without leading to excessively high utilization. To achieve this effect, 
we distribute the total slack time among the TAP periods in proportion to each TAP’s 
worst-case execution time: 

p(TAi) < ,, 
wcet( 7Ai) 

minA(TT1) - 2 wcet(TAj) . 

C wcet( TAj) 
j=l 1 J=l 

So, for chains of states with dependent temporal transitions, the system adds up the total 
worst-case execution time for the TAPS in the chain, subtracts that from the mind of the 
first temporal transition in the chain, and divides the remaining slack time proportionally 
among all of the TAPS. This distribution has the effect of making each TAP have the 
same utilization. 

Unfortunately, the intuitive motivation for this equal-utilization strategy is not entirely 
accurate: it is not always best to have TAPS with equal utilizations, particularly when 
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TAPS may have widely-varying worst-case execution times. For example, consider two 
TAPS, A and B, with worst-case execution times of 10 and 100 milliseconds respectively. 
Suppose that these two TAPS are required to preempt a dependent temporal transition 
chain with minA( TTI ) = 500 milliseconds, as described above. Using the equal-utilization 
strategy, TAP A would be assigned a period of ( 10/l 10) * (500 - 110) M 35 ms. lo 
However, it is immediately obvious that this will not lead to a feasible schedule, because 
wet(B) > P(A). No schedule will ever be possible if this condition holds, because 
any invocation of TAP B would immediately imply that TAP A had missed its deadline. 

Therefore, it is clear that every TAP must have a period that is at least greater than 
the maximum worst-case TAP execution time (wcet(TM) ) that will be scheduled. We 
can incorporate that requirement into our period assignment strategy by pre-allocating 
at least that much time to each TAP period: 

P(r&) < wcet(TM) 

wcet( rAi) 
+” minA(TT1) - 2 WCet(7Aj) - n * WCef(TM) 

c 
wcet( TAj) j=l 1 

. 

j=l 
For the example TAPS, this results in setting P(A) = 100 + (10/l 10) * (500 - 110 - 
2* 100) % 117 and P(B) = 272. These period assignments lead easily to the simple 
feasible schedule AB. 

While this simple two-TAP example works well, experiments have shown that, when 
more TAPS are being scheduled, the TAP periods may still be assigned so that shorter 
TAPS have periods that are too short to allow enough other TAPS to execute between 
invocations. Thus it has proven useful to increase the pre-allocation of time to all TAPS 
above and beyond the required WC&(?%). The amount of this increased allocation is 
determined by multiplying wcet( TM) by a value greater than one. For the Puma domain, a 
multiplicative factor of 1.2 has provided the best performance, although experimentation 
was limited to a few scheduling problems. 

While this approach to assigning TAP periods is designed to make scheduling the 
TAPS as easy as possible, other considerations might usefully influence the period- 
assignment phase. For instance, if the various states in the chain have different levels 
of desirability, it might be preferable to bias the TAP periods so that the system spends 
more time in the preferred states. In the example of Fig. 14, if an event led from state Y 
to a highly-valued new state, it might make sense to increase the period of 7.~2, so that 
the system might remain in state Y longer, giving more time for the beneficial event to 
occur. 

5.5. Scheduling TAPS 

In the final phase of generating TAP control plans, the AIS sends the accumulated 
information about the TAPS to the Scheduler module. The Scheduler tries to build 

lo Note that we truncate the actual computed value to maintain the required inequality. 
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a cyclic schedule that runs TAPS at least as frequently as their periods require. In 
the current implementation, the RTS can run only one TAP at a time, and TAPS are 

not interruptible, so the Scheduler does not need to consider TAP preemption. The 
Scheduler uses a modified deadline-driven scheduling algorithm [25] to derive a TAP 

schedule. The basic deadline-driven algorithm specifies that, each time the system can 
choose which TAP to run, it should run the available TAP with the closest deadline. 

To derive a cyclic schedule with this criterion, the Scheduler simulates the operation 
of a dynamic scheduler, incrementing a time counter and deciding which TAPS to run 
as simulated time passes. After the simulation has progressed far enough to invoke the 

TAP with the maximum MAX-PERIOD, the Scheduler begins scanning the trace of the 

simulation, attempting to extract a loop of TAP invocations which meets all TAP timing 
requirements. The maximum possible loop size is equal to the least common multiple 
of the TAP MAX-PERIODS. If the Scheduler cannot build a successful schedule to 
guarantee all the TAP timing constraints, the AIS backtracks to generate a different 

proposed TAP plan. 

6. Related work 

In this section, we discuss several research projects that relate closely to CIRCA’s 

world-modeling methods and the way CIRCA generates performance guarantees. A more 
general comparison to related work on combining AI and real-time control appears in 
[ 341, and a survey of the entire field appears in [ 231. 

While a number of recent research projects have focused on interactions with the 
real world, and even with combining traditional strategic planners with reactive systems, 
relatively few of these projects have made any mention of the real-time nature of their 

environments. Most reactive systems simply execute as fast as they can, and they are 
engineered to perform “fast enough” for a given environment. As we argued in the 
Introduction, a general architecture for intelligent real-world interactions should provide 

greater flexibility by proving that a particular system has sufficient capacity to meet its 

environment’s deadlines. 
CIRCA’s mechanisms for providing these proofs are the result of combining two fun- 

damental techniques. First, the RTS provides a predictable basis for real-time guarantees 
by running low-variance reactions in a fixed schedule. Second, the AIS generates those 
schedules of reactions and proves that they will maintain the system’s control-level 

goals. 

6. I, Predictable execution 

In this section we discuss the rare AI systems that have been interfaced to the 
real world and have dealt with the concepts of hard deadlines and predictable execution. 
These systems variously rely on real-time operating systems, constant-cycle-time circuits, 
or any-time algorithms to enforce guaranteed, predictable execution. 
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61.1. DWMARUTI 

121 

Hendler and Agrawala [ 191 are integrating an enhanced Dynamic Reaction (DR) 
system and the MARUTI operating system to implement guaranteed real-time reactive 
reasoning in a manner very similar to CIRCA’s guaranteed TAP schedules. The DR 
system sets up asynchronous monitor processes to check conditions on specific world 
model features: signals from these monitors drive changes in reactive activities. The 
MARUTI operating system provides explicit support for scheduling hard real-time tasks 
on distributed systems, guaranteeing the execution of jobs that are accepted. By using 
MARUTI to schedule and execute the reactive elements of DR, the combined system 
can make performance guarantees similar to those CIRCA provides for its control-level 
goals. 

Higher levels of planning have been added to the DR model using the notion of 
abstraction: the reactive system reasons about detailed information in very small units of 
time, while higher levels of reasoning use more abstract data and larger time scales [ 181. 
Complex reasoning is implemented by reactive elements that are triggered by abstract 
information in the world model. The enhanced DR model thus attempts to smoothly 
integrate reactive reasoning and higher-level reasoning within a single processing model, 
unlike the abrupt distinction CIRCA makes between task-level and control-level goals. 
While this integration is desirable, it blurs the notion of guaranteed execution, because 
it is not clear which reactive elements must be guaranteed and which not. By separating 
the AIS and RTS, CIRCA avoids this issue but must carefully limit the communication 
between the subsystems to avoid jeopardizing its performance guarantees. 

DR/MARUTI currently does not reason about its scheduling requirements: it does 
not generate them, and it cannot revise them if sufficient resources are not available. 
However, Hendler and Agrawala have expressed interest in methods for internally de- 
riving the scheduling requirements of the system [ 191, much as CIRCA reasons about 
TAP requirements. They discuss the need to increase the flexibility of DR/MARUTI 
so that it may include non-real-time jobs, just as CIRCA provides the unguaranteed 
TAP list. They also note that a “context-switching” approach might be used to switch 
between predetermined reactive schedules based on environmental data. This is precisely 
the way in which CIRCA operates continuously: it builds TAP schedules off-line from 
the execution unit (in the concurrent AIS) and the RTS executes each schedule when 
the environment has reached the appropriate point in the plan. 

61.2. CROPS5 
CROPS5 is a C-based parallel implementation of the 0PS5 production system [ 371. 

The production system is encapsulated within an “AI server” program that runs under 
a real-time operating system, allowing the production system to run only when other, 
guaranteed real-time control tasks are not using the processor. The AI server thus isolates 
the potentially high-variance CROPS5 problem-solving from the real-time tasks. In the 
CROPS5 architecture, the problem-solving mechanism does not explicitly control the 
guaranteed real-time tasks. Instead, the production system has separate tasks to perform, 
and the goal is to ensure that they will also be completed on-time despite running within 
the best-effort AI server. 
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Research on CROPS5 has focused on reducing the variance in its processing time, 
using both enhanced context-switching mechanisms and structuring of the problem space. 
While performance guarantees have been verified by hand for the system, it does not yet 
include internal mechanisms for reasoning about its own timeliness or problem-solving 
capacity. The system does not reason about a model of agent/environment interactions 
to create its own performance guarantees. 

6.1.3. RedGapps 

Research into the formal relationship between a system’s internal model of the 

world and the real world has been fruitfully implemented in the Rex/Gapps system 

[ 41,421. Rex is a language used to describe digital machines that can be viewed 
as reactive systems. Rex programs are compiled into automata descriptions (usually 
implemented on a general purpose computer) that perform a constant-time mapping 

between inputs (sensors) and outputs (actuators). The theory underlying Rex has 
been used to show that the information stored within a Rex machine can have a 
fixed relationship to the true state of the world. Thus Rex machines provide pre- 

dictable execution and support the types of performance guarantees enforced by CIRCA’s 
RTS. 

Gapps [ 2 1 ] is a system for compiling declarative descriptions of agent behaviors into 

Rex machines. Gapps takes as input the agent’s top-level goal and a set of goal-reduction 
rules that describe how to transform goals into smaller goals or Rex-machine primitives. 

Because Gapps compiles this input into a static Rex machine, it generates large reactive 
systems that exhibit goal-directed behavior but do not perform lookahead planning, 
search, or adaptation. Rex/Gapps is used to specify an agent’s control mechanisms 
directly, as in a robot programming language. CIRCA, on the other hand, plans those 
control mechanisms automatically given a description of goals, primitive capabilities, 
and the environment. 

6.1.4. Any-time algorithms 

One technique for combining high-variance methods with hard deadlines has recently 
become popular in both the AI and real-time communities. “Any-time” algorithms [ 81 

are incremental methods that can be interrupted at any time, yielding a result that 
may have reduced precision, confidence, accuracy, etc. These techniques are naturally 
successful at making timeliness guarantees: they ensure that some result will be available 

by a deadline. However, the quality or correctness of that result cannot be guaranteed 
[ 321. Thus any-time algorithms sacrifice correctness for timeliness, while CIRCA strives 
to guarantee both. Furthermore, by reasoning explicitly about its goals, capabilities, and 
deadlines, CIRCA can trade off the guarantees it chooses to enforce when constrained 
by limited resources. 

The “imprecise computation” paradigm [ 241 is a modification of the any-time method 
in which some minimum amount of processing is guaranteed, so that the algorithm will 
always produce a result with a minimally acceptable result. This is the technique used 
by CIRCA in generating TAP plans (see Section 5.1.3), where a minimally acceptable 
plan achieves only the control-level goals. 
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CIRCA’s AIS is derived from PRS [ 14,201, which itself has some features making 
it suited to real-time applications. Ingrand and Georgeff have shown that, given certain 
assumptions about event frequencies and the form of the system’s procedural knowledge, 
PRS can be guaranteed to notice (or begin reacting to) every world event within 
a bounded time. This guarantee is based on the fact that PRS processing is highly 
interruptible. However, “noticing” an event is distinguished from responding to the event. 
PRS does not make guarantees that it will respond to an event by a certain deadline, 
because it does not (yet) have the ability to reason internally about its own level of 
reactivity. PRS cannot focus its attention and ignore unnecessary sensor information 
completely; instead, the world model is constantly updated. Thus the system’s response 
to a particular event can be arbitrarily interrupted by the arrival of other events, and the 
response to those events can delay the initial processing. 

It is possible to limit the system’s inferencing capabilities and make guarantees about 
overall response time [ 201. This approach leads to a complete embedding of the AI sys- 
tem within the real-time application environment [ 341, and requires either low utilization 
or engineering out the high-variance unpredictability that distinguishes AI techniques 
from simple algorithms. The guarantees that PRS makes are external to the system’s 
operation. 

6.2. Planned reactions, proven safety 

As noted earlier, many reactive AI systems have been composed of manually- 
engineered reaction “plans”. Some systems have been designed with higher-level rea- 
soning processes that select which of the available reactive elements are active [3,6, 
13,17,30]. Other reactive systems are designed, like CIRCA, to automatically generate 
reaction plans from primitive component descriptions [ 291. Performing this type of re- 
action planning is similar to classical planning in the sense that it is done before the 
plan is executed, and usually involves projecting the effects of proposed reactions in a 
world model. With such explicit reasoning about the results of plans, it is possible to 
prove that they will achieve some safety or stability criterion when executed reliably. 

4.2. I. Universal Plans 
Schoppers’ research on the automatic generation of Universal Plans (UPS) [ 44,471 

resembles our work, with the notable exception that CIRCA relies on a restricted world 
model and emphasizes timeliness issues. UPS are generated without considering precisely 
which world states are possible and which are not; UPS specify reactions for all states of 
the world, possible or not. This approach has the advantage that it makes no assumptions 
about the success of its own actions or the behavior of the external world. However, 
lacking those assumptions, UPS cannot provide any performance guarantees. CIRCA’s 
control plans can be viewed as “partial Universal Plans”, in the sense that they specify 
reactions, as necessary, for all possible worlds. The possibility of a world state, of 
course, is dependent on the world model assumptions. 

We have described how CIRCA’s control plans are intended to actively restrict the 
world to a safely-controlled set of states, maintaining its safety while making progress 
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towards its goals. Schoppers [46] has recently discussed how UPS can similarly lead 
to stable “closed-loop dynamics”. This concept of stable closed-loop control requires 

that, given sensed data within some bounds (input), the controlled system will produce 
world behaviors (output) within some bounds. CIRCA reasons explicitly about its 
ability to meet or alter those bounds, as well as the metric timing information required 
for guaranteed performance. UPS do not yet handle this type of metric information or 
the introspective reasoning required to internally verify or alter system goals. 

6.2.2. RS 
Lyons et al. [ 26,271 are investigating the Robot Schemas (Rs) plan representation 

with many of the same goals as our work on CIRCA. In the Rs model, robot plans are 

represented as concurrent communicating processes. Rs provides operators to compose 
larger systems from various combinations of processes. These composition operators are 

capable of representing on-line decision-making, concurrent actions, sequential actions, 
and preconditions. The l?S model can be used to represent both the capabilities of 

a control system and its environment, just as in CIRCA. Rewrite rules describe the 
evolution of 7?!S systems, and these rules can be used to derive proofs that systems will 
meet their goals [ 261. 

RS research began by describing static, hand-coded robot control systems. An ex- 
ecution environment is now being developed to allow the system to run its schemas 

with predictable, guaranteed timeliness [ 271. A planning technique has also been pro- 

posed [ 271, in which a concurrent planning process incrementally modifies the reactive 
schemas running on the execution system. 

7. Summary and future work 

We have described how CIRCA reasons about a principled characterization of 
agent/environment interactions to generate reactive control plans that are guaranteed 
to keep the agent safe and, if possible, to drive the system towards its goals. The char- 
acterization of agent/environment interactions takes the form of a state-transition model 

of the world. Borrowing from the real-time computing literature, the model includes 
explicit worst-case timing information that is used to derive the required rate of reac- 

tion for various world conditions. By reasoning about this explicit model of the world, 
CIRCA is also able to recognize when it does not have sufficient resources to guarantee 
that it will achieve a particular goal within some environment. In that case, CIRCA may 
choose to leave the goal unguaranteed but still try to achieve it (best effort), or it may 

alter its high-level plans or goals. 
Combining these control-plan generation methods with CIRCA’s architectural isolation 

of the AIS from the RTS yields a system uniquely capable of building and predictably 
executing control plans that are guaranteed to be timely and correct. 

Earlier prototypes of CIRCA controlled a Hero mobile robot navigating through 
hallways. CIRCA currently controls a simulated robot arm performing the box-packing 
example discussed throughout this paper. The simulation, written in Deneb Robotics’ 
Igrip system, correctly models the robot’s kinematic behavior. However, the prototype 
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real-time subsystem (written in C) runs on a UNIX platform, and thus cannot rigidly 
enforce execution timing constraints. We are currently porting the RTS to execute on 
the MARUTI real-time operating system, which will provide a predictable execution 
environment. 

Our experience with the current prototype system indicates that the Scheduler module 
is the weak link, because it uses such a simple algorithm. A more powerful Scheduler, 
able to take into account dependencies between TAPS (such as precedence and mutual 
exclusion), would be tremendously helpful, because it would allow CIRCA to schedule 
and guarantee more TAPS, yielding higher utilization of RTS resources. This improved 
capacity would, in turn, make it more likely that the system will have sufficient resources 
for a given problem domain. We are also considering extensions to the Scheduler that 
will allow it to provide more useful, intelligent feedback to the AIS when resource 
restrictions prohibit the Scheduler from building a complete TAP schedule. 
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