
QoS-Sensitive Protocol Processing in Shared-Memory
Multiprocessor Multimedia Servers (Extended Abstract)

Ashjsh Mehra Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, MI 48109-2122

Email: { ashish,kgshin}B eecs. umich. edu

1 Iiit ro d uct ioii

The advent of high-speed nrtworks and demand for distributed multimedia applications now requires that the
communication subsystems in end hosts (or simply hosts) be designed and implemented to facilitate and provide
certain quality-of-service (QoS) guarantees. An application specifies its &OS requirements for each active connec-
tion in terms of several parameters such as end-to-end delay, delay jitter, and bandwidth; additional requirements
regarding packet loss and in-order delivery can also be specified [l, 21. Additionally, the application may need to
specify its traffic cliaracteristics on each connection in order for the host communication subsystem and network
to provide the required guarantees. Acceptance of a guaranteed-QoS connection by the network implies a contract
between the network and the application that the requirements of the latter will be met as long as the application
honors its traffic specifications. Given appropriate support within the network t o establish and maintain such
connections, we focus on the problem of maintaining QoS-guarantees within the communication Subsystem on
the host’. In particular we consider shared-memory multiprocessor (SMMP) hosts since medium- to large-scale
SMMPs are increasingly being employed as multimedia servers and desktop workstations.

Large-scale multimedia servers may support hundreds of guaranteed-QoS connections simultaneously, each
requiring the processing and transfer of large amounts of data. Supporting multiple guaranteed-QoS connections
on SMMP hosts requires a careful study of the hardware and software structure of the communication subsystem.
which includes protocol processing and access to/from the network via the network adapter. The communication
subsystem structure must facilitate a range of &OS guarantees, while keeping resource utilization high, because of
three aspects of application behavior: (i) applications may have a variety of &OS requirements, (ii) there may be
large variations in the traffic behavior of each connection even when traffic specifications are not violated, and (i i i)
the number of established connections and their desired QoS may vary over time. The primary goal, therefore, is
to design the communication subsystem to make protocol processing and network transmission/reception &OS-
senstttve.

In this paper we study the issues involved in designing the communicationsubsystem to provide QoS guarantees
for connections originating or terminating at an SMMP host. In particular] we propose an architecture for QoS-
sensitive protocol processing and highlight the design tradeoffs involved in realizing the architecture on an S M M P
host. I n the remaining sections we motivate the necessity of such an architecture and highlight its salient features
and associat,ed design t radeoffs. We conclude by describing our simulation-based evaluation framework which
features object-oriented. parameterized models for resources participating in communication and QoS-sensitive
resource man agemen 1, pol I cies.

.

The work reported in this paper was supported in part by the National Science Foundation under grant MIP-9203895 and the Office
of Naval Research undcr grant NO001 4-94-1-0229. Any opinions, findings, and conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily reflect the views of NSF or ONR. ’ End-teend performance guarantees cannot be provided without maintaining QoS guarantees within the compufafioa sulsysf em
as well. While extremely relevant, the issues involved are beyond the scope of this paper. Since we focus on communication subsystem
design for a server, we only consider transmission-side issues; our future work will consider reception-side issues as well.

163

2 Issues and Approaches for QoS-Sensitive Protocol Processing

Consider the problem of servicing a large number of guaranteed-QoS connections engaged in network transmission.
In addition to such connections, there may be several best-effort connections that must be serviced in a fair
manner, with reasonably good performance. The data to be transmitted over each connection resides either
in an input device (such as a frame-grabber) or in host memory; we assume that the computation subsystem
prepares outgoing data i n a QoS-sensitive fashion before handing it over to the communication subsystem. Each
guaranteed-QoS connection is assumed to have the following traffic flow semantics. On each connection data is
transferred from the server to the destination client (unidirectional data flow), successive messages on a connection
must be delivered i n the order they were generated (in-order message delivery), and data that suffers loss of &OS
guarantees within the network is unusable and hence not retransmitted (unreliable data transfer). Best-effort
connections do not have the requirement of in-order delivery but may require retransmissions to ensure loss-less
data transfer. These connection semantics are applicable to a large class of multimedia applications, and retain
the generality of our proposed architecture for QoS-sensitive protocol processing.

2.1 Requirements

Once established. transmission on each connection must commence by a certain deadline and, once initiated.
the connection must receive a certain rate of protocol processing and transmission bandwidth; both the deadline
and the rate are derived from the connection’s &OS requirements. While policies for uncontrolled sharing would
maximize resource utilization. and hence be ideal for best-effort traffic, these sharing models are ill-suited for
QoS-sensitive protocol processing. Uncontrolled sharing of communication resources introduces unpredictability
in protocol processing and can result in violations of &OS guarantees. For example, connections may receive
service in an order that causes a less urgent message to be transmitted ahead of an urgent one. Similarly, on a
given connection, the order of message transmissions may violate the requirement of in-order message delivery.
This is because, assuming static network routes for connections, in-order delivery of messages necessitates in-order
message transmission. Therefore, the communication subsystem must exercise fine-grain control over management
of resources involved in communication, such as processors and the network adapter.

Within the communication subsystem, the degree of sharing of processors amongst connections depends on the
transport system architecture [3] and resource management policies employed. Resources such as processors and
buffers must be allocated to individual connections in order to meet their QoS requirements. This allocation must
attempt to reduce load imbalance, achieve high resource utilization, and maximize the number of connections that
can be serviced. llnlikc uniprocessor hosts. network adapter access by multiple processors must be coordinated
to satisfy the &OS requircnient.~ of individual connections. The nature and overhead of this coordination depends
on the design features a n d performance characteristics of the network adapter. The interconnection architecture
(e.g., bus or crossbar) and shared-memory model (uniform or non-uniform access) within the host also influence
this aspect significantly.

A final requirement. is that connections must be insulated from one another so that an ill-behaved connection
only degrades its own performance and not that of any other connection. A connection can violate its traffic
specification in two ways: initiating bursts of message transmissions and transmitting messages larger than the
maximum message size allowed on that connection. The policies for resource management must ensure that an
ill-behaved connection docs not consume resources at the expense of well-behaved connections. At the same time,
the ill-behaved connection must continue to receive service insofar as possible, perhaps with a degraded &OS,
since the traffic specification violations are likely to be of a temporary nature.

’

2.2 Proposed Architecture

In order to satisfy tlir above requirements. we propose a communication subsystem architectcure which provides
QoS-sensitive protocol processing by

0 dedicat ing a set of processors for protocol processing.

164

0 mapping active connections to these protocol processors,
0 scheduling protocol processing on each protocol processor, and

coordinating (i.e.: scheduling) access to the network adapter by the active protocol processors (i.e., those

Together, these features allow the communication subsystem to exercise fine-grain control over resource manage-
ment in order to satisfy &OS guarantees, as discussed below. We assume that all activities other than managing
resources involved in communication, performing protocol processing, and coordinating access to the network
link, are executed on the Computation subsystem.

Dedicating a set. of processors for protocol processing implies a stat ic parfi tzoning of the available processors
in the host: this e1iininat.e~ sharing (and the resulting interference) between the computation and communication
subsystems. Provision of multiple protocol processors facilitates scalable server design by increasing the processing
capacity of the communication subsystem and allowing concurrent handling of different connections. Protocol
processing is based on a vertical process architecture employing the process-per-connection model [3]. Each
connection h a s associated with it a unique process (the connection “handler”) and a first-in-first-out (FIFO)
queue of messages waiting to be processed and transmitted; the connection handler processes the queued messages
one at a time. Maintaining a FIFO queue of messages per-connection preserves the order in which messages are
generated on each connection; early arrivals due to message bursts are absorbed in the message queue and do not
affect processing on other connections. A message is dequeued for processing only when the previous message
has been completely processed and the corresponding packets enqueued for transmission. A message violating
the message-size limit can be dropped as s00n as it is generated. Alternately, the message can be enqueued
for protocol processing but is processed at a reduced priority. We lower handler priority in proportion to the
amount by which t,he message exceeds the size limit; the priority is reduced incrementally to spread out the total
degradation evenly across the maximum-message-size “blocks” in the original message.

Associating a unique process with each connection simplifies the mapping of connections to processors and
the scheduling of the corresponding handlers an each processor. When a connection is established, it is mapped
to exactly one of the protocol processors (in other words, a processor is allocated to it). This mapping is a
function of the available processing capacity on each processor and the &OS requirements of the connection to
be established. Mapping a connection to exactly one processor ensures that packets belonging to a message
are enqueued for transmission in the correct order; it also reduces coordination and synchronization overheads.
Since more than one processor may have sufficient processing capacity t o accommodate the new connection,
processor selection is done based on heuristics such as first-fit, least-current-load? least-number-of-connections,
or a combination thereof. This mapping could be changed each time a new connection is accepted for service.
However, for connections reserved in advance (i.e., the client announces its connection requirements well before
the time it actually needs the established connection), an optimal static mapping may be derived and processors
scheduled accordingly.

Given a mapping of connect,ions to processors, per-connection protocol processing is scheduled on each pro-
cessor according to the &OS requirements of the connections mapped onto that processor. Both dynamic-priority
and fixed-priority real-tinw Scheduling algorithms can be employed to manage each processor. The scheduling
algorithm used determines the number and type of connections that can be mapped onto a processor without
violating QoS guarant.ees. The processor-connection mapping may need to be changed in order to accommodate
a new connection, iinprovc utilization. or reduce load imbalance; the feasibility of connection remapping depends
on the potential benefits a n d associated cost of remapping.

Since multiple connect.ions receive service simultaneously, more than one processor would compete for access
to the network adapter if each connection handler initiated transmission. Coordination amongst active processors
is necessary to ensure that. the network adapter transmits packets based on the relative &OS requirements of the
connections. Instead of directly invoking transmission, each connection handler inserts its packets into a shared set
of link packet queues that. determine the order in which packets from all connections will be transmitted. Initiation
of transmission can either be done by the network adapter, if it has the required capability and intelligence to access
the packet queues, or transmission can be initiated by a special link scheduler executing on one of the processors.
Note that scheduling of packets may be required even if the network adapter is cognizant of connections and their
QoS requirements, as in A T M networks.

that have packets to transmit).

165

Best-effort connections are handled differently in the proposed architecture. They must be serviced in a fair
manner so that reasonably good performance is delivered to them even in the the presence of guaranteed-QoS
connections. Unlike guaranteed-QoS connections, best-effort connections are maintained as a shared pool of work
available to all protocol processors. Processing of messages on best-effort connections is given higher priority
than processing early niessages on guaranteed-QoS connections, even if per-connection protocol processing is
work-conserving. Instead of idling. a processor processes best-effort connections; in addition to providing pro-
cessing capacity for best-effort connections, this keeps processor utilization high. Generation of messages on
guaranteed-QoS connections immediately preempts processing on best-effort connections. Fair servicing amongst
best-effort connections is provided through FIFO or round-robin scheduling policies. To provide a certain mini-
mum processing capacity to best-effort connections, a number of protocol processors can be set aside. Fairness in
packet transmissions is ensured by giving best-effort packets priority over early-arriving packets when scheduling
packet transmissions.

2.3 Design Tradeoffs

The myriad design tradcoffs that arise within the framework of the proposed architecture can be classified as
follows:

Processor-conn.ection mapping and rem.apping: While an opt.imal static mapping may be derived for connections
reserved sufficiently in advance, the absence of a priori knowledge of connection requests necessitates use of
heuristics to guide the mapping. For a given set of protocol processors, there is a fundamental tradeoff between
load imbalance amongst, processors and the utilization of each processor. Since the available heuristics exploit
this tradeoff differently, i,he choice of the mapping heuristic has a significant impact on the number and type
(determined by the QoS requirement) of connections that can be established for service. The choice of map-
ping heuristic also determines the potential benefit and incurred cost of dynamically remapping connections to
“garbage-collect“ suficient processing capacity for a new connection.

Per-processor conncciion scheduling and per-connection protocol processing: The utilization of each processor is
determined by the scheduling algorithm employed and the mix of connections mapped onto the processor. This
in turn determines sparc processing capacity and hence the set of connections that will be mapped onto the
processor in the future. ‘I’he tradeoffs involved depend greatly on whether handler execution is fully preemptive
(immediate preemptmion). semi-preemptive (bounded-delay preemption) or non-preemptive. Note that these three
differ primarily i n the pwemplion granularily, which can be viewed as the number of packets processed between
preemption points. The preemption granularity determines the worst-case preemption delay, which must be
balanced against, preemption ovcrheads such as context switches and cache misses. Additionally, per-connection
protocol processing could be work-conserving or non-work-conserving; this impacts the handling of message bursts
on a connection. Assuiiiing that guarant,ees of other connections are not violated, work-conserving protocol
processing would improve processor utilization. Finally, the scheduling of connection handlers is also affected by
the mechanisms employed to police traffic. For example, a handler should be blocked if the connection does not
have any available slots i n the l ink packet queues; this can happen either when a handler is “working ahead!“ or
when a message violates the maximum-message-size limit.

Global coordination (schfduling) for network adapter access: Since mutual exclusion is necessary to deposit packets
in the link packet queues. the overhead of packet insertion could get excessive. Depending upon the preemption
granularity for protocol processing. each handler can amortize this overhead by inserting a block of packets instead
of inserting each packet as soon as it is prepared for transmission. The characteristics of the adapter and the
interconnection architecture of the host play a significant role in realizing the coordination amongst processors.
Important adapter characteristics include provision of DMA capability, amount of on-board packet memory and
organization of packet queues, ability to maintain per-connection &OS guarantees, and bounded, predictable
latency to access the communication medium. The interconnection architecture determines the data transfer
path from the source (processor, main memory, or an input/output device) to the network adapter, and how the
available dat.a transfer bandwidth on this path is shared amongst the connections. A bus-based interconnection
limits concurrent data transfers: furthermore, QoS-sensitive consumption of transfer bandwidth may not be
achieved simply through priority-based arbitration amongst processors. A crossbar-based interconnection provides

166

additional concurrency and, coupled with support in the network adapter, can support DMA-based data transfer
on multiple connections simultaneously. If the protocol stack decouples data transfer from control, and the adapter
supports DMA to/from any source in the host, bandwidth can be consumed in the order in which packets are
transmitted.

Number of protocol processors: The partitioning of processors between the computation and communication
subsystems depends on the expected computational and communication load per connection, respectively. With
advance reservation of connections, the optimal partition can be determined off-line. Without a priori knowledge
of connection requests, however, determining the partition is ad hoc. Given the capacity of each processor, a
static choice of the num.ber of processors may not scale with the number of connections. Depending upon the
tradeoffs identified earlier. it may be possible to allow controlled sharing of processors between the computation
and communication subsystem. Additional protocol processors could be deployed only when necessary, i.e.: when
new connections arc e~t~ablished and cannot be accommodated on the available protocol processors.

3 Evaluat iiig the Desigil Tradeoffs

As a first step towards dciiionstrating the feasibility of the proposed architecture and evaluating the design trade-
offs highlighted, we have implemented a QoS-sensitive communication subsystem on a single protocol processor [4]
residing in a small-scale bus-based multiprocessor host with a NUMA configuration [5] . The implementation has
been done in the context of real-izme channels, a paradigm for real-time communication services in packet-
switched networks [SI. The communication executive on the protocol processor is derived from r-kernel 3.1 [7];
our implementation of the protocol stack decouples data transfer and control to minimize data copying. The imple-
mentat.ion features a process-per-channel model with fixed-priority and earliest-deadline-first semi-preemptive
scheduling of channel handlers; each channel handler relinquishes the CPU to a waiting higher-priority handler
at evenly-spaced preempt,ion points. Protocol processing can be work-conserving or non-work-conserving, with
best-effort channels given processing and transmission priority over “work ahead” real-time channels. Link access
scheduling is performed by a non-work-conserving link scheduler thread that. runs at the highest possible priority.
Channel handlers violat.iiig their traffic specification are prevented from consuming processing and link capacity
either by blocking their execution or lowering their priority relative to the well-behaved channels. We are cur-
rently evaluating the implementation to determine a variety of cost-performance tradeoffs, such as preemption

, granularity/overheads: a n d the effectiveness of the scheduling and traffic policing mechanisms.

Based on the insights gained, we are designing a powerful, parameterized, object-oriented SMMP simulator
to study the proposed architecture and design tradeoffs identified in this paper. The design of the simulator
is similar to the one developed in [8], but specifically geared towards QoS-sensitive protocol processing. In
particular, it features parameterized models for resources (processors, memory, processor-memory or processor-
processor interconnect, network adapter), resource management and scheduling policies (connection admission
control, processor-connection mapping, per-processor scheduling, link access scheduling), and resource usage
(connection requests, per-connection traffic generation and protocol processing). The overall structure of the
simulator is illustrated in Figure 1.

As shown in Figure 1. the user configures the simulator for a given set of experiments via a specification script
written in the simulator‘s specification language. The user’s specification is parsed by a front-end module to de-
termine the policies, parameters, and architectural environment to be used for the experiments. The specification
of resources includes the number and type of available resources, their performance characteristics, and the ar-
chitectural configurat.ion of the SMMP; the simulator instantiates resources based on this specification. Resource
management specification includes the policies and heuristics to use for resource management and scheduling,
which is used to select and configure generic resource management modules in the simulator. The specification of
workload generation i s used to determine the QoS requirements and traffic characteristics of individual conner-
tions, and the probability distributions for generation of connection requests and per-connection traffic. Finally,
the data collection specification is used to select the performance parameters and metrics for which the simulator
must collect data and accumulate statistics. At the completion of the experiments, the simulator outputs per-
formance results such as the utilization of each resource, the delivered &OS on each active connection, and the
number of connections accepted/rejected.

167

WORKLOAD
GENERATION

PERFORMANCE RESULTS
Resource utilization
Per-connection delivered QoS
Connections accepted
Connections rejected

\ I

SPECIFICATION
Resources
Resource Management
Workload Generation
Data Collection

..
%

Connection requests:
-arrivals, dep8rtUreS - QOS requirements - trafnc specification

Prr~connectiw tmfTic:
-message size
+ message rate
- message burst

Figure 1: Structure of SMMP simulator

4 Related Work

The approaches taken to implement protocol processing in SMMPs essentially lie on two extremes. In one
approach. each processor executing a process also performs protocol processing for messages transmitted by that
process [9]. In this model. protocol processing is treated as work strictly local to each processor, resulting in
an implicit sharing betwren the computation and communication subsystems. An alternative approach treats
protocol processing as global work that can be scheduled uniformly on any available processor [lo , 111; this results
i n explicit sharing between the two subsystems. These approaches may not suffice for QoS-sensitive protocol
processing since they introduce unpredictability in the availability and allocation of processing resources. and
complicate global coordination for network access. Our proposal for static partitioning of processing resources is
similar to those for multiprocessor front-ends 1121, except that a set of processors within the host are dedicated
for protocol processing. as in [13].

Vertical process archibectures employing process-per-connection and process-per-message models have been
proposed to exploit parallelism in protocol implementations [3]. A process-per-message model seems unsuitable for
QoS-sensitive protocol processing. Assuming that each message’s shepherd process is independently scheduled on
the protocol processors. simultaneous processing of multiple messages from the same connection would lead to out-
of-order consumption of protocol processing and transmission bandwidth. Further, shepherd processes handling
messages belonging to the same connection must now synchronize to maintain consistent connection state. With
potentially several coiinections mapped to the same processor, it becomes more expensive to coordinate handling of
messages on a connection and between connections. Our choice of the process-per-connection model and mapping
of each connection handler to exactly one processor is based on these considerations. Recent results have shown

168

that connectional para l ld i sm delivers comparat ively m o r e scalable performance t h a n message parallelism [14.15].

T h e design of high-speed network adapters . their performance characteristics, a n d implicat ions for protocol
s tacks h a s received significant attention recently, for FDDI [lS] as well as ATM [17,18] networks. However, t h e
design tradeoffs haw becn explored pr imari ly in t h e context of uniprocessor workstat ions a n d best-effort network
traffic. We have s tudied the implications of network adapter characteristics for real-time communicat ion on a
Fibre Channel a d a p t e r manufactured by Ancor Communica t ions [5].

References
[l] D. Ferrari, “Client requirements for real-time communication services,” IEEE Communications Magazine, pp. 65-72.

November 1990.
[a] M. Zitterbart, B. Stiller, and A. N. Tantawy, ”A model for flexible high-performance communication systems,” IEEE

Journal on Selected Areas in Communications, vol. 11, no. 4, pp. 507-518, May 1993.
[3] D. C. Schmidt. and T. Suda, “Transport system architecture services for high-performance communications systems,”

IEEE Journal on Selccfed Areas in Communications, vol. 1 1 , no. 4, pp. 489-506, May 1993.
[4] A. Mehra, A. Indiresan, and I<. G. Shin, “Design and evaluation of a QoS-sensitive communication subsystem,” In

preparation, July 1995.
[5] A. Indiresan, A . Mehra, and I i . Shin, “Design tradeoffs in implementing real-time channels on bus-based multiprocessor

hosts,” Technical Report CSE-TR-238-95, University of Michigan, April 1995.
[6] D. D. Kandlur, I<. G. Shin, and D. Ferrari, “Red-time communication in multi-hop networks,” IEEE Trans. on

Parallel and Distributcd Systems, vol. 5, no. 10, pp. 1044-1056, October 1994.
[7] N. C. Hutchinson and L. L. Peterson, “The z-Kernel: An architecture for implementing network protocols,’ IEEE

Trans. Software Engineering, vol. 17, no. 1 , pp. 1-13, January 1991.
[8] I<. Maly et al., “Parallel T C P / I P for multiprocessor workstations,“ in Proc. IFIP TCS/WG6.4 Fourth Int ’I Con!. on

High Performance Networking, pp. 103-118, December 1992.
[9] C. A. Thekkath, D. L. Eager, E. D. Lazowska, and H. M. Levy, “A performance analysis of network 1/0 in shared-

memory multiprocessors,“ Computer Science and Engineering Technical Report 92-04-04, University of Washington,
April 1992.

[IO] A . Garg, “Parallel STREAMS: A multiprocessor implementation,” in Winter 1990 USENIX Conference, pp. 163-176.
January 1990.

[l l] S. lihanna, M . Sebree, and J . Zolnowsky, “Realtime scheduling in SunOS 5.0,“ in Winter USENIX Conference, PP.
375-390, January 1992.

[12] A. N. Netravali, W. I). Roome, and K. Sabnani, “Design and implementation of a high-speed transport protocol,“
IEEE Trans. Communications. vol. 38, no. 1 1 , pp. 2010-2024, November 1990.

[13] M . Bjorkman and P. (iunningberg, “Locking effects in multiprocessor implementations of protocols,n in Proc. of ACM
SIGCOMM, pp. i 4 -83. September 1993.

[14] E. M . Nahum. D. J . Yates. J . F. Kurose, and D. Towsley, “Performance issues in parallelized network protocols,“ in
Proc. USENlS Symp. on Opcrafing Systems Design and Implementation, pp. 125-137, November 1994.

[15] D. C. Schmidt and T. Suda. “Measuring the performance of parallel message-based process architectures,” in IEEE

[I61 K. K . Ramakrishnan. “Performance considerations in designing network interfaces,” IEEE Journal on Selected Areas

[I71 B. Davie, “The architecture and implementation of a high-speed host interface,” IEEE Journal on Selected Areas in

[18] C. B. S. Traw and 3. E\!. Smith, “Hardware/software organization of a high-performance ATM host interface,” IEEE

INFOCOM, pp. 624-633, 1995.

in Communica(ions, vol. 11, no. 2, pp. 203-219, February 1993.

Communicafions, vol. 1 1 , no. 2, pp. 228-239, February 1993.

Journal on Selected Areas in Communications, vol. 11, no. 2, pp. 240-253, February 1993.

169

