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Victor B. Lortz and Kang G. Shin, Fellow, IEEE 

Abstract-Prior work on real-time scheduling with global 
shared resources in multiprocessor systems assigns as much 
blocking as possible to the lowest-priority tasks. In this paper, we 
show that better schedulability can be achieved if global blocking 
is distributed according to the blocking tolerance of tasks rather 
than their execution priorities. We describe an algorithm that 
assigns global semaphore queue priorities according to blocking 
tolerance, and we present simulation results demonstrating the 
advantages of this approach with rate monotonic scheduling. Our 
simulations also show that a simple FIFO usually provides better 
real-time schedulability with global semaphores than priority 
queues that use task execution priorities. 

Index Term-Real-time scheduling, priority assignment, mul- 
tiprocessor synchronization, concurrency control. 

I. INTRODUCTION 

for uniprocessors and then extended to multiprocessors [7], 

On multiprocessor systems, a distinction is made between 
local and global semaphores. A local semaphore provides 
mutual exclusion for tasks running on a single processor. A 
global semaphore is shared by tasks running on two or more 
processors. The implementation and scheduling implications 
of local and global semaphores are very different. For local 
semaphores, one can use a near-optimal uniprocessor protocol 
such as the priority ceiling protocol [lo]. For global sema- 
phores, however, the problem is more difficult. 

Prior work on real-time multiprocessor synchronization uses 
priority queues for global semaphores and uses the rate mono- 
tonic execution priorities of tasks for their queue priorities [7], 
[9], [lo]. In this paper, we show that better real-time schedu- 

~91, [io]. 

lability can be achieved if a task’s global semaphore queue 
priority is independent of the task’s execution priority. The 
queue priority should be assigned according to the blocking 
tolerance of the task rather than the execution priority. A task’s 
blocking tolerance is the amount of time a task can be blocked 
before it is no longer guaranteed to meet its deadline. Unfortu- 
nately, the problem of assigning optimal global semaphore 
queue priorities for real-time scheduling is NP-complete. We 
present and evaluate an algorithm that uses a greedy heuristic 
to find a good 

We restrict our analysis to rate monotonic scheduling of peri- 
odic tasks composed of sequences of jobs with deadlines corre- 
sponding to the task periods (each job J of a task z must com- 
plete its computation within z‘s period after its release). A job 
corresponds to a sequence of instructions that would continu- 
ously use the processor until the job finishes if the job were 
running 
task execution priorities are inversely proportional to task peri- 
ods (higher priority tasks have shorter periods and thus tighter 
deadlines). Aperiodic tasks can be accommodated within this 
flamework through use of a periodic server [3], [ 111. 

Another important result shown by our simulations is that 

ULTITASKING applications often need to share resources 
across tasks. To safely share resources, some form of 

mutual exclusion is usually needed. In general-purpose sys- 
tems, semaphores are commonly used to block one task while 
another is using the resource. However, blocking 
in a real-time system can cause tasks to miss deadlines. Mok 
proved that unrestricted use of semaphores in real-time sys- 
tems causes the schedulability problem (i.e., guaranteeing task 
deadlines) to be NP-complete [6]. For preemptive, priority- 
based scheduling, mutual exclusion leads to a problem called 

inversion.,9 Priority inversion occurs when a high- 
priority task is blocked while a lower-priority task a 
shared resource. If a medium-priority task preempts the Iower- 
priority task while it holds the lock, the blocking time of the 
high-priority task becomes unbounded. 

exten- 
sively, and many solutions have been proposed. Most solutions 
(e.g., basic priority inheritance, priority ceiling protocol, 
semaphore control protocol, kernel priority protocol) are based 
on some form of priority inheritance, in which low-priority 
tasks executing critical sections are given a temporary priority 
boost to help them complete the critical section within a 

M 

in most 

The priority inversion problem has been 
On the processor. In rate monotonic 

bounded time [2], [7], [SI, [9], [lo]. The priority ceiling proto- 
col and the semaphore control protocol firther bound blocking 

(first in Out) queues for global 
provide better schedulability than priority queues 

delays and avoid deadlocks by preventing tasks flom attempt- 
ing to acquire semaphores under certain conditions. These 
“real-time” synchronization protocols were first developed 

using rate monotonic task execution priorities. This surprising 
result underscores the differences between global and local 

The remainder of this paper is organized as follows: Sec- 
tion I1 presents the basic schedulability equations for rate mo- 

global blocking delays of high-priority tasks should not always 
be minimized. Section 111 analyzes the Problem of assigning 
global semaphore queue priorities and proves that optimal 

scheduling in real-time systems. 
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semaphore queue priority assignment for multiprocessor syn- 
chronization is NP-complete. We also present there a heuristic 
algorithm for solving this problem. Section IV describes the 
experiments we performed to evaluate the different methods 
for scheduling global semaphore queues. Section V discusses 
various implementation issues, and the paper concludes with 
Section VI. 

11. BLOCKING DELAYS AND 
SCHEDULARILITY GUARANTEES 

Given rate monotonic scheduling of n periodic tasks with 
blocking for synchronization, Rajkumar et al. [9] proved that 
satisfaction of the following equation on each processor pro- 
vides sufficient conditions for schedulability: 

In this equation (set of inequalities, actually), lower- 
numbered subscripts correspond to higher-priority tasks. C,, TI, 
and B, are the execution time, period, and blocking time of 
task z,, respectively. The ith inequality is a sufficient condition 
for schedulability of task z,. This equation appears very simple, 
but it warrants careful study. The C,IT, components represent 
the utilization, or fraction of computation time consumed by 
task z,. The number Q ” ‘ - I )  represents a bound on the utiliza- 
tion of the processor below which task deadlines are guaran- 
teed [4]. As the number of tasks increases, this bound con- 
verges to Ig 2 ,  or about 70% utilization. This utilization bound 
provides only a sufficient condition for schedulability; for 
most task sets, a more complex method called “critical zone 
analysis” is able to guarantee higher utilizations with rate mo- 
notonic scheduling. However, (2. l )  is a useful approximation 
to critical zone analysis, and it provides insight into the basic 
properties of rate monotonic scheduling. 

The B,IT, component represents the effect of blocking on the 
schedulability of task z,. Note that when a task blocks, other 
tasks become eligible to run. Blocking is not the same as busy 
waiting for a shared resource. Time spent busy waiting would 
be included in the task’s C, component. The blocking factor B, 
is the amount of time a job J ,  may be blocked when it would 
otherwise be eligible to run. This blocking might result from 
waiting for a semaphore held by a lower-priority job on the 
same processor (local blocking) or it might result from waiting 
for a semaphore held by a job of any priority executing on 
another processor (remote blocking). Waiting for higher- 
priority jobs on the same processor is explicitly excluded from 
B, since this is part of the normal preemption time for task z,. 
In other words, the time spent waiting for higher-priority tasks 
on the same processor is already counted in the C,Iq compo- 
nents fori  < i. 

To guarantee schedulability, it is necessary to bound the B, 
components. To minimize priority inversion associated with 
global semaphores, tasks executing global semaphore critical 
sections are given higher execution priority than any task out- 
side of a global critical section. If interleaved global and local 
semaphores are used, local semaphore critical sections must 

inherit the global semaphore’s high priority. For the purposes 
of this paper, we assume that global critical sections are not 
interleaved with local critical sections. 

Prior work [9] on real-time synchronization for multiproc- 
essors states: “Another fundamental goal of our synchroniza- 
tion protocol is that whenever possible, we would let a lower- 
priority job wait for a higher-priority job.” This is accom- 
plished for global semaphores by using priority queues to en- 
sure that the highest-priority blocked job will be granted the 
semaphore next. The justification given in [9] for making 
lower-priority jobs wait is that the longer periods (TI )  of lower- 
priority tasks results in less schedulability loss BIT for a given 
blocking duration B. However, the statement “a given blocking 
duration B’ does not take into account an important character- 
istic of the problem. 

In general, the worst-case blocking duration Bl,s associated 
with a given semaphore is proportional to the ratio of the peri- 
ods of the tasks sharing the semaphore: 

B,,,y = K [ % ] ,  

where is the period of a task with a higher semaphore queue 
priority and K is a function of the critical section time. If a 
higher-priority job J ,  has a lower semaphore queue priority than 
a lower-priority job J,, it waits for at most one critical section of 

the lower-priority job per semaphore request ( 1‘1 f = 1 if T, < 7J .  

However, if a lower-priority job has a lower semaphore queue 
priority, it may be blocked for multiple critical sections of the 
high-priority job. This is because a more frequent task will start 
more than one job within the less frequent task’s period. In prac- 
tice, it is unlikely that a high-frequency task would actually 
block a lower-frequency task multiple times per global sema- 
phore request. However, in hard real-time applications, it is nec- 
essary to design for worst-case conditions. 

The potential for multiple blocking, on average, increases B, 
of the lower-priority task to more than offset the longer period 
T,. Therefore, the schedulability loss B,IT, is actually greater for 
the lower-priority task than it would be for the higher-priority 
task. It is also important to note that the schedulability loss BJT, 
is lost only for task z,. This is different from utilization, where 
the CJT, component of a higher-priority task reduces the 
schedulability of all lower-priority tasks. 

Lower-priority tasks on a uniprocessor do not benefit 
(become more schedulable) if they are given a higher priority 
in local semaphore queues. This is because the deferred exe- 
cution of any higher-priority task’s critical section must still be 
completed on the same processor before its deadline. Even if a 
lower-priority task is granted first use of the shared resource,,it 
can be immediately preempted by the higher-priority task 
when it exits the critical section. Therefore, on uniprocessors, 
it is always best to assign semaphore queue priorities accord- 
ing to the execution priorities. On multiprocessors, however, 
the situation is fundamentally different. Higher-priority tasks 
on remote processors cannot preempt a local task, so the 
schedulability of local lower-priority tasks can be improved by 
increasing their global semaphore queue priorities relative to 
remote tasks. 
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The following simple example illustrates the advantage of 
assigning more remote blocking to a higher-priority task. Sup- 
pose that we have two jobs J ,  and J2, both released at time 0, 
with execution times of 2 and 4, and periods 7 and 10, respec- 
tively. Furthermore, suppose that these tasks use the same 
global semaphore and that the worst-case blocking time for 
that semaphore is either 1 or 3 time units, depending on the 
semaphore queue priority. If the higher semaphore queue 
priority is given to the higher-priority task, the schedulability 
equation for i = 2 becomes .29 + .4 + .3 I .83. This inequal- 
ity does not hold, so schedulability is not guaranteed. Now 
assume that the higher-priority job J ,  is given the lower 
semaphore queue priority. The schedulability equations are: 

our results to derive the total blocking associated with all 
semaphores. Therefore, our goal is to calculate B,,J, the block- 
ing time for job J, associated with waiting for global sema- 
phore S. To simplify the analysis, we assume that global 
critical sections are non-preemptable, which approximates 
the behavior of the modified priority ceiling protocol pro- 
posed for multiprocessor synchronization [9]. We define the 
following notation. Note that J ,  might contain multiple criti- 
cal sections guarded by S. Furthermore, unlike (2. l), the task 
numbers in our notation do not correlate with priorities. On a 
multiprocessor, task 53 might be the highest-priority task on 
one of the processors, so the notation of (2.1) is inadequate 
for this domain. 

for i = 1, .29 + .43 I 1 and for i = 2, .29 + .4 + .1 I .83. Both 
of these inequalities hold, so the tasks are schedulable. Fig. 1 
depicts graphically these two alternatives. The preemption 
intervals for J2 are marked with P to distinguish them from 
remote blocking intervals. When J2 is assigned greater remote 
blocking, it misses its deadline. When it is assigned less, all 
deadlines are met. 

@,: 

pk,S: 

The processor to which J, is assigned. 
The period of task 2,. 
The semaphore queue priority for job Jk when it 
waits for S. As discussed thus far, this priority is 
independent of the execution priority of Jk. 
The set of local jobs on @, that use s and have 
lower execution priority than J,. 

{ JL,J,s}: 

remote blocking remote blocking 

J1 I'J deadline 

remote blocking 

5 10 0 

remote blocking 

I 
I 

remote blocking 
n 

I I 

J 

I 

I 
0 5 10 

Fig. 1 .  Advantage of assigning more remote blocking to a high-priority task. 

111. THE SEMAPHORE QUEUE 
PRIORITY ASSIGNMENT PROBLEM 

A. Notation 
We have seen how rate monotonic scheduling imposes lim- 

its on task blocking delays. A full characterization of blocking 
delays in multiprocessors depends upon the particular schedul- 
ing and priority inheritance protocol used. For the purposes of 
this paper, we analyze the blocking associated with waiting on 
a single global semaphore in a multiprocessor. Our analysis 
applies only to global semaphores; local semaphores should be 
managed by one of the near-optimal uniprocessor protocols 
such as the priority ceiling protocol [lo]. It is easy to extend 

{Jr,s>: The set of jobs assigned to processor p r  f @, 
that use semaphore S. 

{JffQP,,s}:The set of jobs Jk E {JL,,s} U {Jr+y} with Pk,S > 
PIS. 

PIS. 
{JLQP,,s}: The set of jobs Jk E {JL,,J} U { J J }  with Pk,s < 

CS,,s: The maximum time required by job J, to execute 
a critical section guarded by S. 

CSlmax,,,~: The maximum critical section time for S of jobs 
Jk E {JLQpl,s}. 

NC,,+ The number of times J, enters a critical section 
guarded by S. 

LNuM,J.: mjn,,s( NC,,, , xk (NCk,, x la]) for Jk E { JLQt,,}) . 

Given these definitions, the blocking Bl,s is bounded by: 

for Jk E { JHQP,s}. 
At most NCkS x critical sections guarded by S for each 

J ,  can block J, since the number of instances of Jk within 7,'s 
period is bounded by 151. Critical zone analysis cannot re- 

duce this bound, because the tasks in {JHQPl,s} with higher 
frequency than z, are on remote processors. The extra blocking 
represented by LNUM,J x CSlmox,r,S accounts for the possibility 
that a task (local or remote) with a lower semaphore queue 
priority will already be using the semaphore when task 7, at- 
tempts to lock it. The number of jobs Jk E {JHQPl,s} depends 
on the task distribution across the multiprocessor and the 
semaphore queue priority assigned to J, for semaphore S. 

If we take the task distribution in the multiprocessor as 
given (we address the issue of task allocation in Section V), 
the blocking associated with semaphore S for J, is primarily 
determined by the semaphore queue priorities. Therefore, it is 
possible to manipulate the distribution of blocking associated 

Tzl 
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with S across the different tasks that use S by assigning the 
semaphore queue priorities Pk,S. Semaphore queue priority 
assignment provides an added degree of freedom to real-time 
multiprocessor scheduling. By allocating blocking delays ex- 
plicitly, it is possible to improve the overall schedulability of 
the system compared to FIFO or rate monotonic semaphore 
scheduling (henceforth called RMSS in this paper). 

B. NP-Completeness Proof 

Given a distribution of tasks sharing resources on a multi- 
processor such that all tasks are schedulable via rate mono- 
tonic scheduling without global semaphore blocking delays, 
we would like to know whether the tasks can be assigned 
global semaphore queue priorities such that they are still 
schedulable. Furthermore, we would like to have an efficient 
algorithm to generate a solution to the priority assignment 
problem. We call this problem MSQPA, for multiprocessor 
semaphore queue priority assignment. Unfortunately, this 
problem is computationally intractable. 

THEOREM 1. The semaphore queue priority assignment prob- 
lem for rate monotonic scheduling (MSQPA) is NP- 
complete. 

PROOF. To show that MSQPA is in NP, for an instance of the 
problem, we let the set of priority assignments {P,,,} be the 
certificate (where is the semaphore queue priority for 
task z, and semaphore 8. Checking whether task deadlines 
are guaranteed can be performed in polynomial time by cal- 
culating the blocking factors for each task z, using 
and applying (2.1) or critical zone analysis. 

We now show that MSQPA is NP-hard by reducing PAR- 
TITION [ 11 to an instance of MSQPA. 
Suppose that we have a multiprocessor with 3 processors. 
Processor P I  will be assigned a task that uses all n global 
semaphores but has a low utilization so that it can always 
tolerate the lowest semaphore queue priority (priority 1). 

Processor PI  we call the “blocking processor” since ir serves 
only to supply blocking delays to the system. Without this 
processor, the semaphore queue priority assignment of tasks 
on the two “partition processors” would make no difference, 
since the queue could never be longer than one. The other two 
processors are each assigned a single task 7,. Each of these 
tasks has the same execution time C and the same period 
and each task z, uses all n global semaphores. 

Now for a given instance of PARTITION, we define n global 
semaphores where n = 1.11 and map each of the n items a E A to 
the decision to assign z, queue priority 3 or queue priority 2 for 
a given semaphore on one of the partition processors. Further- 
more, we set the critical section times for each semaphore such 
that the PARTITION size function s(a) E z‘ corresponds to the 
difference in blocking between having priority 3 or priority 2 in 
the semaphore queue. Finally, we adjust the utilization and pe- 
riod of the two tasks z, such that the available blocking B for 
each is exactly B,,, + 1/2 xoe s(u) .  B,,, is the best-case 

blocking for the partition processors, corresponding to having 
priority 3 for all semaphores. Now we have a symmetric prob- 
lem where each processor can tolerate exactly 1/2 of the total 
blocking associated with having the lowest semaphore queue 
priorities. All of these transformation steps can be performed in 
polynomial time. 

Suppose that a subset A‘ exists with 

O E A ’  G 4 - 4 ’  

Then if we assign semaphore queue priority 3 to z2 for 
semaphores associated with a E A‘ and priority 2 for the 
rest (and vice versa for z3 on processor pj), the total 
blocking B for each task z, will be exactly 
B,,,,, +1/2c s ( u ) ,  which will not exceed the blocking 

U €  -1 

tolerance. Hence, the task set will be schedulable. Con- 
versely, assume that we have determined a priority as- 
signment for each of the n semaphores and each task z, 
such that the blocking tolerance B is not violated. Then if 
we choose the items U that correspond to the priority as- 
signment 3 for z2, we will have constructed a subset A‘ of 
A with 

C s ( u ) =  -&(a). 
E , 4 ’  (1E .A - 4 ’  

We have shown how to reduce PARTITION to an instance 
of MSQPA, so MSQPA is NP-hard. Since MSQPA is in NP 

U and is NP-hard, it is NP-complete. 

C. The SQPA Algorithm 

Unless P = NP, no efficient algorithm solves MSQPA. How- 
ever, we have developed the following heuristic algorithm. 
This algorithm, which we call SQPA, performs well for most 
task sets. 

1)  Calculate the blocking bounds for each task from (2.1) or 
from the more accurate critical zone analysis. 

2) Determine the blocking delays associated with local 
semaphores using whatever protocol is chosen to manage 
them (e.g., priority ceiling protocol). Subtract these de- 
lays from the blocking bounds determined in Step l .  The 
result is the available absolute blocking tolerance for 
each task. If any of these are negative, report failure im- 
mediately. 

3) Identify the semaphore S with the largest unassigned 
blocking delay. An approximate method for determin- 
ing this is: for each semaphore with priorities still un- 
assigned for some set of tasks (z}, compute - c,; E(5 j  Tmay, x NC, , / c  where T,,lo,p is the maximum 

period of the tasks in { z}. Choose the semaphore with 
the largest sum. 

4) Find the task T that uses semaphore S and that has the 
largest measure of blocking tolerance. This can be de- 
fined as the largest absolute blocking tolerance or the 
largest ratio of blocking tolerance to unassigned sema- 
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constant 
varied 

total 

phores (excluding S) for that task. If one or more tasks has 
enough absolute blocking tolerance for the blocking cur- 
rently being assigned and if it has no other unassigned 
semaphores, then choose the task with the highest execu- 
tion priority (shortest period) in this group. This rule is an 
elaboration of the selection method that uses the largest ra- 
tio of blocking tolerance to unassigned semaphores. 

5) Assign the lowest unassigned semaphore queue priority 
for S to task z. As semaphore priorities are assigned to a 
task, the absolute blocking tolerance of that task is re- 
duced to reflect the blocking delay associated with that 
semaphore priority assignment. 

6) Repeat the previous three steps until all semaphore queue 
priorities are assigned for all tasks. 

7) Verify the schedulability of the task set using (2.1) or 
critical zone analysis. 

When possible, it is preferable that tasks with short periods 
(high execution priorities) be assigned a low semaphore prior- 
ity P,+y, since high frequency tasks add proportionally more 
blocking to the tasks with lower semaphore priorities and incur 
proportionally less blocking from the tasks with higher sema- 
phore priorities. This is because global blocking is a function 
of the ratio of task periods. If a task has only one source of 
blocking (one semaphore) not yet assigned, the maximum al- 
lowable blocking should be chosen for that task, because any 
excess task blocking capacity is effectively wasted once all of 
its semaphore priorities are chosen. 

D. Complexity Analysis of SQPA 
If there are k semaphores, each shared by an average of Tu, 

tasks and by at most T,, tasks, there are a total of k x T,, pri- 
ority assignments to make. For each priority assignment, 
SQPA iterates over the unassigned tasks for that semaphore, 
which number at most Tmw When a priority assignment is 
made, the unassigned blocking delay for that semaphore is 
adjusted, and the semaphore is inserted into a priority heap. 
This insert operation has complexity Ig k. The overall com- 
plexity of SQPA is thus: O(k Tu,, (lg k + Tma)). 

0.7 602 292 109 
0.7 384 187 64 

2721 1412 654 

IV. EXPERIMENTS 

Consider the RMSS priority assignment method of [7], [9]: 
assign lowest semaphore queue priorities to the lowest-priority 
tasks. Since low-priority tasks may have less blocking toler- 
ance than high-priority tasks, the RMSS method should lead to 
worse schedulability than SQPA. To test this hypothesis, we 
have implemented our algorithm and conducted extensive ex- 
periments comparing our approach with RMSS and with sim- 
ple FIFO queues on randomly-generated task sets. Appendix I 
describes in detail how the task sets were constructed. Each 
processor was equally loaded, and approximately 50% of the 
overall utilization was dedicated to global critical sections. 
Realistic systems would probably spend much less time than 
this executing critical sections, but our goal was to test the 
relative performance of the different semaphore scheduling 
algorithms rather than to reflect the characteristics of realistic 
systems. 

For our primary experiments, we generated 5,400 different 
task sets. These task sets were generated in groups of 50 sets 
for each combination of [3, 6, or 10 processors], [3, 6 or 10 
tasks per processor], [5, 10, or 20 global semaphores], 
[processor utilizations of 0.6 or 0.71, and [constant or varying 
critical section times for semaphores]. For our schedulability 
analysis, we used critical zone analysis rather than (2.1) be- 
cause it is a more accurate method for determining schedula- 
bility. If (2.1) is used, the blocking bounds are slightly tighter, 
which makes the task sets more difficult to schedule. The rela- 
tive performance of the semaphore scheduling algorithms re- 
mains the same regardless of which analysis method is used. 

We first checked how many of the task sets each method 
successfully scheduled. All of the task sets were originally 
schedulable if there were no blocking delays, and the goal was 
to preserve schedulability with global semaphore use. Table I 
summarizes the performance of the different methods. Not 
surprisingly, more task sets were schedulable with lower utili- 
zation and with constant critical section times (constant only 
for a given semaphore, different semaphores were assigned 
different critical section times). Processors with lower utiliza- 
tions have larger bounds on blocking for the lowest-priority 
tasks, and it is easier to schedule resources if they are of uni- 
form size. 

The data show a clear trend with SQPA performing much 
better than FIFO, which in turn performs much better than 
RMSS. We also examined which combination of processor 
number and number of tasks corresponded to the schedulable 
and unschedulable task sets. The most significant factor was 
the number of processors. Of the 2,72 1 task sets scheduled by 
SQPA, 59% were from the 3 processor task sets (113 of the 
overall task sets had 3 processors). For FIFO queues, 84% of 
the 1,412 schedulable task sets had 3 processors; for RMSS, 
95.7% of the 654 schedulable sets had 3 processors. It was 
easier to schedule fewer processors in our test sets since the 
number of semaphores was independent of the number of 
processors. Fewer processors meant fewer total tasks in the 
system and hence less contention for the fixed number of 
semaphores. We ran some additional experiments with 100 
processors to test this hypothesis. With 200 semaphores, 
SQPA was able to consistently schedule task sets with 100 
processors, 6 tasks per processor, 0.6 utilization, and constant 
critical section times. The FIFO and RMSS methods could not 
schedule any of these task sets. However, if there were only 
100 or 50 semaphores, none of the priority assignment meth- 
ods could schedule any of the 100-processor task sets. 

TABLE I 
TASK SETS SCHEDULED BY EACH METHOD 

I critical I I I I I 
section times I utilization 1 SQPA I FIFO I RMSS 

constant [ 0.6 I 987 I 522 I 275 
I varied 1 0.6 I 748 I 411 I 206 1 
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Test Reassign 
sets SQPA SQPA 

Most 1350 26.5 38.3 
difficult 

difficult 
Overall 2679 18 25.4 

Moderately 1329 9.4 12 

~ 

839 

FIFO RMSS 
56.8 64.3 

32.9 44.9 

44.9 54.7 

It is also likely that with more processors there will be in- 
dividual processors with a tasWsemaphore distribution that is 
especially difficult to schedule. This would make the multi- 
processor less likely to be schedulable than an individual proc- 
essor. To investigate this possibility, we counted how many 
individual processors were schedulable with each method for 
our test sets. If entire task sets are considered, as in Table I, 
SQPA scheduled 50% of the task sets, FIFO scheduled 26%, 
and RMSS scheduled 12%. For individual processors within 
the multiprocessor, SQPA scheduled 47.9%, FIFO scheduled 
29.5%, and RMSS scheduled 19.9%. These numbers confirm 
our suspicion that the FIFO and RMSS methods sometimes are 
unable to schedule a multiprocessor due to unfavorable task 
distributions on individual processors. However, SQPA is able 
to modify its blocking assignments to compensate for proces- 
sors that are more difficult to schedule. Therefore, in our task 
sets, SQPA was able to schedule approximately the same per- 
centage of complete task sets as individual processors. 

We next investigated how the different methods compared 
when individual task sets were considered. One might think that 
the different semaphore priority assignment methods would be 
suited to different task sets. For example, are some of the task 
sets schedulable via RMSS but not SQPA, and vice versa? Table 
11 addresses this question. The answer is “no,” RMSS could not 
schedule any of the task sets that SQPA did not schedule. On the 
other hand, SQPA scheduled 2067 task sets that RMSS could 
not. Likewise, SQPA dominated FIFO and FIFO dominated 
RMSS in terms of scheduling individual task sets. Thus, the per- 
formance difference between these methods is significant on 
average, and it also holds for most individual cases. 

TABLE 11 
NUMBER OF INDIVIDUAL TASK SET5 SCHEDULABLE BY 
METHOD OF COLUMN BUT NOT BY METHOD OF ROW WI 

FIFO 1316 
RMSS 2067 773 

Since the three methods have significant differences in abil- 
ity to schedule task sets, it is important to measure more than 
simply the number of task sets scheduled. This is because it is 
possible to make the best method look arbitrarily good by ad- 
justing the parameters that determine how difficult the task sets 
are to schedule. For example, SQPA was able to schedule 
about 50% of our sample task sets. By reducing the number of 
very difficult task sets (those with the most contention for 
semaphores) and increasing the number of moderately difficult 
task sets (those that SQPA can usually schedule but the other 
methods cannot), we could disproportionately increase the 
percentage of task sets schedulable by SQPA. To eliminate 
this source of bias and to better quantify the relative perform- 
ances of the different methods, we investigated how close the 
unschedulable task sets were to being schedulable under each 
method. To answer this question, we gradually decreased the 
utilization of all processors in the multiprocessor until the task 
set became schedulable. We did this by leaving most task pa- 
rameters (periods, semaphore priorities, etc.) constant while 

Table 111 shows the average delta values for the task sets 
that were unschedulable by SQPA. The row labeled “Most 
difficult” averaged the deltas of the groups of task sets for 
which SQPA could not schedule any of the 50 similar task sets 
(recall that we generated 50 task sets for each combination of 
task parameters such as number of processors). These task sets 
were the most difficult to schedule, and Table I11 shows that 
they had the largest deltas. The “Moderately difficult” row in 
Table I11 averages the deltas of task sets for which some of the 
50 similar sets were schedulable and some were not. The 
“Overall” row averages all of the cases from the other two 
rows. The delta factors provide a more useful characterization 
of the relative performances of the three priority assignment 
methods than simply how many task sets are schedulable. As 
Table III shows, on average, SQPA could schedule about 20% 
more utilization than FIFO (44.9 - 25.4), which in turn could 
schedule about 10% more utilization than RMSS (54.7 - 
44.9). The differences in utilization schedulable by each 
method depends heavily on the fraction of computation time 
spent in global critical sections. The percentages reported here 
are with respect to our task sets. Task sets for which less time 
is spent in critical sections would probably have lower delta 
percentages but the same pattern of relative performance. 

Reassigning the semaphore queue priorities as the utiliza- 
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tion was scaled back helped substantially for those test cases 
that were difficult to schedule (the “Most difficult” cases) but 
did not help as much for test cases that were originally nearly 
schedulable (the “Moderately difficult” cases). Reassigning 
priorities leads to better schedulability because the shape of 
the blocking bound curve changes as computation times are 
reduced. The more the computation times are scaled back the 
more the shape changes and the more opportunity for im- 
provement through changing the blocking distribution to re- 
flect the new blocking tolerances. 

TABLE IV 
NUMBER OF INDIVIDUAL TASK SETS FOR WHICH THE METHOD OF THE 

COLUMN PERFORMED BETTER THAN THE METHOD OF THE ROW 

SQPA 
43 8 

I RMSS I 4732 I 4252 I I 
We next investigated how the different methods compared 

when the deltas of individual task sets were examined. This 
information is summarized in Table IV. Table IV expands 
upon Table I1 by counting all of the individual task sets for 
which one method performed better than another. Performing 
better is defined as either successfully scheduling the task set 
when the other method could not or having a smaller delta 
than the other method. These results are consistent with that 
reported in Table 11: By a wide margin, SQPA performs better 
than FIFO and RMSS; FIFO performs better than RMSS by a 
lesser margin. To keep the comparison fair, the delta of SQPA 
in Table IV is the one that kept the original semaphore queue 
priorities (it is not the “Reassign SQPA” delta). 

A. A Specific Task Set 

Now that we have characterized our entire task sets, we will 
examine a particular case in detail to gain insight into the be- 
haviors of the different semaphore queue priority assignment 

# overall task set parameters: 
0.7 uti1 3 cpus 6 tasks 5 semaphores 
# nominal critical section times for the 

45 32 70 46 63 
5 global semaphores: 

methods. Fig. 2 shows the task set (to make the listing easier to 
correlate with the graphs, the tasks in Fig. 2 were renumbered 
and sorted in decreasing priority order for each processor). 
This particular task set was one of the 50 task sets generated 
with 0.7 utilization, 3 processors, average of 6 tasks per proc- 
essor, 5 semaphores, and varying critical section times. For 
these parameters, SQPA was able to schedule 16 of the 50 task 
sets. The average delta factors for the 34 unschedulable task 
sets were: “Reassign SQPA” = 8.9 SQPA = 9.7 FIFO = 24.1 
RMSS = 32.2. For the particular task set considered here, the 
delta factors were: “Reassign SQPA” = 8 SQPA = 10 FIFO = 
23 RMSS = 3 1. Therefore, this task set is fairly representative 
of the group of 34 unschedulable ones with the same task set 
generation parameters. 

Processor 0 has seven tasks, while processor 1 has only five. 
This is because we randomize the utilizations for tasks as we 
generate them and stop when the processor utilization limit is 
reached, not when a certain number of tasks are chosen. 
Likewise, three of the tasks were not assigned semaphores. 
This is because their computation times were small, and the 
method we used to select semaphores failed to assign a sema- 
phore after five random selections (see Appendix I). 

Fig. 3 shows the blocking distributions and bounds for the 
tasks when SQPA is used to assign the semaphore queue pri- 
orities. In these graphs, the bars represent worst-case blocking 
for each task associated with its chosen semaphore queue pri- 
orities. The line shows the bound on blocking below which the 
task is schedulable with rate monotonic scheduling. The tasks 

21 00 

- bound 
1500 = blocking 

# task set description using the following format: 
# task CPU priority period ctime ; sem# NCS CSscale ... 
1 0  273 1095 66 ; 0 10.62 
2 0 271 1106 81 

4 0 152 1966 144 ; 3 1 0.9 
5 0 150 1989 127 ; 1 1 1.4; 4 1 0.6 1800 
6 0 129 2315 424 ; 0 1 0.28; 2 2 0.74; 3 2 1.5; 4 1 1.2 = blocking 
7 0 122 2453 147 ; 0 10.57; 3 10.3; 4 10.81 1 500 
8 1 3 9 5  758 108 ; 1 3  0.33 
9 1 394 760 115 ; 0 1 0.85; 1 1 0.35; 2 1 0.36 
10 1 131 2284 333 ; 0 1 0.79; 1 2 1.7 
11 1 117 2556 293 ; 0 3 0.29; 3 4 0.31; 4 1 1.3 
12 1 104 2874 419 ; 0 1 0.62; 1 1 0.77; 3 1 1.4 
13 2 622 482 45 
14 2 437 686 27 
15 2 193 1547 235 ; 3 1 1 
16 2 115 2603 365 ; 0 1 1.6; 3 3 0.3; 4 1 0.62 
17 2 110 2722 244 ; 0 2 0.9; 1 1 0.9; 2 1 0.92 
18 2 108 2764 513 ; 0 1 1.5; 2 2 1.4 Tasks on CPU N 

Tasks on CPU N 

3 0 193 1553 290 ; 0 2 0.48; 3 1 1.7 2100 

- bound 

0)  1200 
E 
F ! m  

600 

300 

0 

Fig. 2. Example task set. Fig. 3. SQPA blocking before and after a 10 percent reduction in utilization. 
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Fig. 4. FIFO blocking before and after a 23 percent reduction in utilization 

on each processor are shown in decreasing priority order from 
left to right on the x axis, and the processor number for each 
task is shown below the task’s bar. The lower graph in Fig. 3 
shows that when utilizations are reduced by 10% (delta = lo), 
the task set becomes schedulable with the original SQPA 
semaphore queue priorities. If one examines the blocking 
bounds for each processor, it is apparent that there is no direct 
relationship between task priority and blocking bound. How- 
ever, the highest-priority (leftmost) and lowest-priority 
(rightmost) tasks on each processor tend to have the tightest 
blocking bounds. The highest-priority tasks have tight block- 
ing bounds because they have tight deadlines. The lowest- 
priority tasks have tight bounds because of their lower execu- 
tion priority. As the utilizations are scaled back, the blocking 
times (semaphore critical section times) decrease and the 
bounds increase until the blocking no longer exceeds the 
bound. At that point, all of the (modified) tasks are guaranteed 
to be schedulable. 

Fig. 4 shows the blocking distributions and bounds for the 
tasks when FIFO is used for the semaphore queues. If the top 
graphs for SQPA and FIFO are compared, one can see that 
FIFO assigns less blocking to the higher-priority tasks on each 
processor than SQPA does. With FIFO, the lower-priority 
tasks thus exceeded their bounds by a greater percentage than 
with SQPA. Therefore, the original utilization of 0.7 had to be 
scaled back by 23% before FIFO was able to schedule the task 
set. The blocking bound curve for the tasks with scaled-back 
utilization differs somewhat in shape from the original bound 

Fig. 5 .  RMSS blocking before and after a 3 1 percent reduction in utilization 

curve since the increase in bound for each task is the product 
of the task periods and the reduction in higher-priority task 
utilization (recall (2.1)). Thus, the blocking bound increases 
disproportionately for lower-priority tasks, which have longer 
periods and a larger sum of higher-priority utilizations. 

Fig. 5 shows the blocking distributions and bounds for the 
tasks when RMSS is used for the semaphore queues. RMSS 
assigned even more blocking to the low-priority tasks than 
FIFO and thereby severely exceeded the blocking bounds of 
the lowest-priority tasks. A delta of 31 was required to make 
the tasks schedulable with Rh4SS. In general, the inflexibility 
of FIFO and RMSS leads to assigning too much blocking to 
tasks with low blocking tolerance, thereby making them un- 
schedulable. RMSS assigns as much blocking as possible to 
the lowest priority tasks and performs even worse than FIFO 
for most of our task sets. 

V. IMPLEMENTATION ISSUES 

We have shown that SQPA has significant advantages over 
both FIFO and RMSS, but it also is important to consider the 
relative complexities and overheads associated with imple- 
menting the different methods. Clearly, SQPA is more com- 
plex to implement than either FIFO or Rh4SS. With FIFO and 
RMSS, the semaphore queue priorities are fixed and require 
no extra computation to determine. Our SQPA algorithm runs 
in O(kTu, (Ig k + T,,,,,.)) time for k semaphores, each shared by 
on average Tu, and at most T,, tasks. Although SQPA is 
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more complex, the performance advantages could be substan- 
tial for real-time multiprocessor applications with heavy sema- 
phore use. Furthermore, the computation of SQPA is per- 
formed off-line, so it does not add extra overhead at runtime. 
Real-time application designers usually perform off-line 
schedulability analysis and task allocation, so running SQPA 
would simply be an extra part of that activity. 

Both SQPA and RMSS require a priority queue for sema- 
phores. The extra overhead of maintaining a priority queue 
rather than a FIFO must be justified by the superior perform- 
ance of SQPA. Since suspending a task on a semaphore is an 
expensive operation in the first place, maintaining a priority 
queue rather than a FIFO should not add significantly to the 
overhead. Ultimately, the question of whether a priority queue 
is justified depends upon the application and the implementa- 
tion of the queues. 

In the discussion so far, we have assumed that the task dis- 
tribution across the multiprocessor was fixed and the problem 
was to choose the semaphore queue priorities. In reality, one 
often needs to solve both problems: first task allocation and 
then semaphore queue priority assignment. Since the problem 
of allocating tasks to processors on a multiprocessor is known 
to be NP-complete [ l ]  even when no resource sharing (other 
than processors) is considered, there is no computationally 
efficient solution for this problem (unless P = NP). The poten- 
tial for blocking on semaphore queues adds another level of 
complexity to an already very difficult problem. 

A task allocation algorithm should consider the impact of re- 
source sharing since this will affect the overall schedulability of 
the system. However, the resource sharing costs depend in part 
on the task allocation. Therefore, if a task allocation algorithm 
conducts a search over possible task allocations, the resource 
sharing costs have to be computed for each point in the search 
space. The semaphore queue priority assignment method we 
propose requires more computation than the fixed priority meth- 
ods of FIFO and RMSS (i.e., O(kT,, (lg k + 2"")) rather than 
O(kTm)). Our algorithm is relatively efficient, but if it is em- 
ployed during task allocation, some additional overhead is in- 
curred compared to FIFO and RMSS. However, it is important 
to remember that this overhead is paid off-line, before any real- 
time processing occurs. Furthermore, it is possible to use FIFO 
priorities to arrive at a task allocation and then use SQPA to 
improve the schedulability for that allocation. 

If tasks must be dynamically added or removed from the 
multiprocessor, it is possible to use SQPA to precompute 
semaphore queue priorities corresponding to different task sets 
on the system (different modes). Real-time systems tend to be 
much more consistent in their task sets than conventional mul- 
tiprocessing systems, so the different modes are likely to be 
known in advance. Alternatively, suppose an unexpected task 
needs to be added to a running system. It is not necessary to 
recompute and change all of the existing semaphore queue 
priorities throughout the system. Rather, it is only necessary to 
search over the possible semaphore queue priorities for the 
new task being added and to assign its priorities such that none 
of the existing tasks become unschedulable. A similar run-time 
schedulability determination is required with FIFO or RMSS 

when unexpected tasks are added, but these methods only try 
one fixed global semaphore priority for the task, so they may 
not be able to schedule the new task in cases when the more 
flexible approach can. 

Implementing any of the methods requires hardware support 
for inter-processor interrupts to notify the processor whose 
task is at the head of the queue when the semaphore becomes 
available. Since tasks in global critical sections are given very 
high priority, the task that was previously blocked will likely 
be immediately scheduled to run and complete its use of the 
critical section. Blocking on semaphore queues and task 
switching is relatively expensive and should only be used for 
long critical sections. For short critical sections, it is better to 
spin wait in a priority queue or FIFO (ordinary spinlocks with- 
out queues are not deterministic and thus are inappropriate for 
real-time systems) [ 5 ] .  Tasks spinning on a global lock should 
be given a very high priority to avoid being preempted and 
thus blocking remote tasks. 

VI. CONCLUSION 

In this paper, we have shown that the schedulability of real- 
time multiprocessor applications can be significantly improved 
if global blocking delays are distributed according to task 
blocking tolerance rather than some fixed priority scheme. 
Often, higher-priority tasks that share global semaphores on 
multiprocessors should be given low global semaphore queue 
priorities. However, there is no fixed relationship between task 
execution priorities and semaphore queue priorities. We ana- 
lyzed the problem of selecting global semaphore queue priori- 
ties for real-time tasks on multiprocessors and showed that this 
problem is NP-complete. Fortunately, it is not very difficult to 
implement a good heuristic algorithm for this problem. We 
presented such an algorithm and compared it with the RMSS 
method and FIFO scheduling on a large number of task sets. 

Of the methods tested, SQPA performed best by a wide 
margin. The next best method was FIFO, followed by RMSS. 
It is surprising that a simple FIFO performed better for real- 
time scheduling than RMSS, which is the best method for local 
semaphores. However, we have shown that remote blocking in 
multiprocessors is fundamentally different than local blocking 
in a uniprocessor. In multiprocessors, it is often better to as- 
sign more remote blocking to the more frequent, higher- 
priority tasks. Because FIFO distributes more of the blocking 
to high-priority tasks than does RMSS, it usually performs 
better. 

The ultimate question of which method is best for real sys- 
tems cannot be answered without reference to a particular im- 
plementation and a particular application. However, a real- 
time operating system could provide priority queues for global 
semaphores, default to FIFO priorities, and allow an applica- 
tion to choose different priorities during semaphore initializa- 
tion. This would allow the application programmer to use 
whatever method is appropriate for that application. 



LORTZ AND SHIN: SEMAPHORE QUEUE PRIORITY ASSIGNMENT FOR REAL-TIME MULTIPROCESSOR SYNCHRONIZATION 

~ 

843 

APPENDIX I 
TASK SET GENERATION METHOD 

Our task-set generator program took the following pa- 
rameters: target utilization for the processors, number of task 
sets to generate, number of processors, average number of 
tasks per processor, number of semaphores, and a flag to 
vary or keep constant the critical section times for each task 
using a semaphore. First, we established a range of periods 
for the tasks from 100 to 3,000. Second, we chose the nomi- 
nal critical section time for each semaphore from a uniform 
distribution between 0.1 and 0.5 of the average expected 
computation time of a task (average period x target utiliza- 
tion - average number of tasks per processor). Next, we be- 
gan generating tasks for each processor until the assigned 
utilization reached the target utilization. 

For each task, we first randomly chose a utilization from a 
uniform distribution between one third and twice the average 
utilization (target utilization for each processor + average 
number of tasks). If the chosen utilization plus that of the 
tasks already assigned to that processor exceeded the target 
utilization bound, we reset the chosen utilization to equal the 
difference. In this way, we ensured that every processor 
would have the same utilization load. In a realistic system, 
not every processor is equally loaded, but we were interested 
in examining the behavior of the system when the blocking 
delays were close to violating the schedulability of the proc- 
essor. By loading all processors equally, we were able to 
move all of the processors near this region of marginal 
schedulability in a consistent manner. Equal loading also 
diminished somewhat the expected advantage of our sema- 
phore assignment strategy since SQPA is able to add extra 
blocking to tasks on lightly-loaded processors. Nevertheless, 
in the interest of simplicity, we used uniform utilizations. 
Given the task’s chosen utilization, we chose the task’s pe- 
riod from a uniform distribution between 100 and 3,000 and 
derived the corresponding computation time. We also set the 
priority for the task according to the rate monotonic schedul- 
ing discipline. Once each task’s execution parameters were 
set, we used the following method to choose its semaphores. 

For each task, we randomly chose a fraction of its compu- 
tation time to devote to executing global critical sections. 
This is an important parameter because it partially deter- 
mines how many semaphores will be used by the task and 
thus how much blocking will be incurred. Therefore, we de- 
cided to select this parameter randomly rather than choose 
some fixed value for it. The range we chose was between 0.2 
and 0.8 of the computation time, so on average about half of 
a task’s computation time will be spent in critical sections. 
Real applications might spend less time executing global 
critical sections, but we chose this range to examine the 
schedulability characteristics of the three semaphore queue 
priority assignment methods under consideration. Obviously, 
if global semaphore critical sections represent only a very 
small fraction of the computation in a given application, their 
impact on schedulability will also be small (if priority inver- 
sion is limited). 

We next examined the flag for varying critical section 
times. If the flag was true, we randomly chose an additional 
scaling factor between 0.25 and 1.75 that was multiplied by 
the semaphore’s nominal critical section time to determine 
the critical section time for that task and that semaphore. We 
chose a different critical section scaling factor for each 
semaphore used by each task. To choose the semaphores 
used by each task, we randomly selected a semaphore from 
the semaphore set and checked whether adding its critical 
section time would exceed the fraction of computation time 
bound for critical sections for that task. If this bound was not 
exceeded, we assigned that semaphore to the task. If the 
same semaphore was chosen more than once, we incre- 
mented the number of times the semaphore was used by each 
job of the task (NCk,LT). If the bound was exceeded, we 
skipped that semaphore and chose another. If five selections 
in a row exceeded the bound, we exited the semaphore se- 
lection loop for that task. Because of this termination condi- 
tion, often the sum of critical sections assigned to a task did 
not quite reach the fraction-of-execution-time bound. 

ACKNOWLEDGMENT 

The authors would like to thank Ragunathan Rajkumar and 
Famam Jahanian for their suggestions on earlier drafts of this 
paper. 

REFERENCES 

M.R. Carey and D.S. Johnson, Computers and Intractabillty: A Guide 
to the Theory of NP-Completeness. San Francisco: Freeman, 1979. 
Y. Ishikawa, H. Tokuda, and C.W. Mercer, “An object-oriented real- 
time programming language,” IEEE Computer, vol. 25, no. I O ,  pp. 66- 
73, Oct. 1992. 
J.P. Lehoczky, L. Sha, and J.K. Strosnider, “Enhanced aperiodic re- 
sponsiveness in hard real-time environments,” Proc. Real-Time Systems 
S’mp., pp. 261-270, Dec. 1987. 
C.L. Liu and J.W. Layland, “Scheduling algorithms for multiprogram- 
ming in a hard real-time environment,” 1. ACM, vol. 20, no. I ,  pp. 46- 
61, Jan. 1973. 
V.B. Lortz, A n  Object-Oriented Real-Time Dntabase System for Multr- 
processors, PhD thesis, Univ. of Michigan, Apr. 1994 
A.K. Mok, “Fundamental design problems of distributed systems for the 
hard real-time environment,” PhD thesis, 1983. 
R. Rajkumar, “Real-time synchronization protocols for shared memory 
multiprocessors,” Proc. Int ‘ I  ConJ on Distributed Computing Systems, 
pp. 116-123, 1990. 
R. Rajkumar, Synchronization in Real-Time Systems: A Priority lnheri- 
tance Approach. Kluwer Academlc Publishers, 199 1 
R. Rajkumar, L. Sha, and J.P.  Lehoczky, “Real-time synchronization 
protocols for multiprocessors,” Proc. Real-Time Systems Symp., pp. 
259-269, Dec. 1988. 
L. Sha, R Rajkumar, and J.P. Lehoczky, “Priority inheritance protocols. 
An approach to real-time synchronization,” IEEE Trans. Computers, 
vol. 39, no. 9,pp. 1,175-1,185, Sept. 1990. 
K.G. Shin and Y.-C. Chang, “A reservation-based algorithm for 
scheduling both periodic and aperiodic real-time tasks,” IEEE Trans. on 
Computers (in press). 



844 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 10, OCTOBER 1995 

Victor B. Lortz received a BA in physics from 
Whitman College in 1985 and an MS and PhD in 
computer science from the University of Michigan 
in 1991 and 1994, respectively His dissertation 
included the design and implementation of a hard 
real-time database system for shared-memory multi- 
processors Dr Lortz is currently a senior software 
engineer at Intel Architecture Labs in Hillsboro, 
Oregon Since joining Intel, he has been developing 
system software for next-generation PC platforms 
His research interests include real-time computing, 

object-oriented programming, multiprocessor systems, and user interface 
design 

Kang G. Shin received the BS degree in electronics 
engineering from Seoul National University, Seoul, 
Korea, in  1970 and both the MS and PhD degrees in 
electrical engineering from Cornell University, Ith- 
aca, New York, in 1976 and 1978, respectively 
From 1978 to 1982 he was on the faculty of Rensse- 
laer Polytechnic Institute, Troy, New York He has 
held visiting positions at the U S Airforce Flight 
Dynamics Laboratory, AT&T Bell Laboratories, 
Computer Science Division within the Department 
of Electrical Engineering and Computer Science at 

UC Berkeley, and International Computer Science Institute, Berkeley, CA He 
also chaired the Computer Science and Engineering Division, EECS Depart- 
ment, The University of Michigan for three years beginning January 1991 He 
is currently professor and director of the Real-Time Computing Laboratory at 
the University of Michigan in Ann Arbor 

Dr Shin has authored or coauthored over 300 technical papers (more than 
140 of these in archival journals) and numerous book chapters in the areas of 
distributed real-time computing and control, fault-tolerant computing, com- 
puter architecture, robotics and automation, and intelligent manufacturing He 
is currently writing Qointly with C M Krishna) a textbook Real-Time Systems 
which is scheduled to be published by McGraw Hill in 1996 

In 1987, he received the Outstanding IEEE Transactions on Automatic 
Control Paper Award for a paper on robot trajectory planning In 1989, he 
also received the Research Excellence Award from The University of Michi- 
gan In 1985, he founded the Real-Time Computing Laboratory, where he and 
his colleagues are currently building a 19-node hexagonal mesh multicom- 
puter, called HARTS, and middleware services for distributed real-time fault- 
tolerant applications He has also been applying the basic research results of 
real-time computing to multimedia systems, intelligent transportation sys- 
tems, and manufacturing applications ranging from the control of robots and 
machine tools to the development of open architectures for manufacturing 
equipment and processes 

Dr Shin is an IEEE fellow, was the program chairman of the 1986 IEEE 
Real-Time Systems Symposium (RTSS), the general chairman of the 1987 
RTSS, the guest editor of the August 1987 special issue of f E E E  Transactions 
on Computers on Real-Time Systems, a program co-chair for the 1992 Inter- 
national Conference on Parallel Processing, and has served on numerous 
technical program committees He also chaired the IEEE Technical Commit- 
tee on Real-Time Systems during 1991-93, was a distinguished visitor of the 
Computer Society of the IEEE, an editor of IEEE Transactions on Parallel 
and Distributed Systems, and an area editor of International Journal ojTime- 
Critical Computing Systems 


