
834 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. IO, OCTOBER 1995

for
Semaphore Queue Priority Assignment
Real-Time Multiprocessor Synchronization

Victor B. Lortz and Kang G. Shin, Fellow, IEEE

Abstract-Prior work on real-time scheduling with global
shared resources in multiprocessor systems assigns as much
blocking as possible to the lowest-priority tasks. In this paper, we
show that better schedulability can be achieved if global blocking
is distributed according to the blocking tolerance of tasks rather
than their execution priorities. We describe an algorithm that
assigns global semaphore queue priorities according to blocking
tolerance, and we present simulation results demonstrating the
advantages of this approach with rate monotonic scheduling. Our
simulations also show that a simple FIFO usually provides better
real-time schedulability with global semaphores than priority
queues that use task execution priorities.

Index Term-Real-time scheduling, priority assignment, mul-
tiprocessor synchronization, concurrency control.

I. INTRODUCTION

for uniprocessors and then extended to multiprocessors [7],

On multiprocessor systems, a distinction is made between
local and global semaphores. A local semaphore provides
mutual exclusion for tasks running on a single processor. A
global semaphore is shared by tasks running on two or more
processors. The implementation and scheduling implications
of local and global semaphores are very different. For local
semaphores, one can use a near-optimal uniprocessor protocol
such as the priority ceiling protocol [lo]. For global sema-
phores, however, the problem is more difficult.

Prior work on real-time multiprocessor synchronization uses
priority queues for global semaphores and uses the rate mono-
tonic execution priorities of tasks for their queue priorities [7],
[9], [lo]. In this paper, we show that better real-time schedu-

~91, [io].

lability can be achieved if a task’s global semaphore queue
priority is independent of the task’s execution priority. The
queue priority should be assigned according to the blocking
tolerance of the task rather than the execution priority. A task’s
blocking tolerance is the amount of time a task can be blocked
before it is no longer guaranteed to meet its deadline. Unfortu-
nately, the problem of assigning optimal global semaphore
queue priorities for real-time scheduling is NP-complete. We
present and evaluate an algorithm that uses a greedy heuristic
to find a good

We restrict our analysis to rate monotonic scheduling of peri-
odic tasks composed of sequences of jobs with deadlines corre-
sponding to the task periods (each job J of a task z must com-
plete its computation within z‘s period after its release). A job
corresponds to a sequence of instructions that would continu-
ously use the processor until the job finishes if the job were
running
task execution priorities are inversely proportional to task peri-
ods (higher priority tasks have shorter periods and thus tighter
deadlines). Aperiodic tasks can be accommodated within this
flamework through use of a periodic server [3], [111.

Another important result shown by our simulations is that

ULTITASKING applications often need to share resources
across tasks. To safely share resources, some form of

mutual exclusion is usually needed. In general-purpose sys-
tems, semaphores are commonly used to block one task while
another is using the resource. However, blocking
in a real-time system can cause tasks to miss deadlines. Mok
proved that unrestricted use of semaphores in real-time sys-
tems causes the schedulability problem (i.e., guaranteeing task
deadlines) to be NP-complete [6]. For preemptive, priority-
based scheduling, mutual exclusion leads to a problem called

inversion.,9 Priority inversion occurs when a high-
priority task is blocked while a lower-priority task a
shared resource. If a medium-priority task preempts the Iower-
priority task while it holds the lock, the blocking time of the
high-priority task becomes unbounded.

exten-
sively, and many solutions have been proposed. Most solutions
(e.g., basic priority inheritance, priority ceiling protocol,
semaphore control protocol, kernel priority protocol) are based
on some form of priority inheritance, in which low-priority
tasks executing critical sections are given a temporary priority
boost to help them complete the critical section within a

M

in most

The priority inversion problem has been
On the processor. In rate monotonic

bounded time [2], [7], [SI, [9], [lo]. The priority ceiling proto-
col and the semaphore control protocol firther bound blocking

(first in Out) queues for global
provide better schedulability than priority queues

delays and avoid deadlocks by preventing tasks flom attempt-
ing to acquire semaphores under certain conditions. These
“real-time” synchronization protocols were first developed

using rate monotonic task execution priorities. This surprising
result underscores the differences between global and local

The remainder of this paper is organized as follows: Sec-
tion I1 presents the basic schedulability equations for rate mo-

global blocking delays of high-priority tasks should not always
be minimized. Section 111 analyzes the Problem of assigning
global semaphore queue priorities and proves that optimal

scheduling in real-time systems.

Manuscript received October 1993.
V.B. Lortz is with Intel Architecture Labs in Hillsboro, OR 97124; e-mail:

victor-lortz@ccm.jf.intel.com.
K.G. Shin is with the Real-Time Computing Laboratory, Department o

Electrical Engineering and Computer Science, University of Michigan, Ann
Arbor, MI 48 109-2122; e-mail: kgshin@eecs.umich.edu.

notonic scheduling and explains why, in multiprocessors, the

IEEECS Log Number S9503 1.

0098-5589/95$04.00 D 1995 IEEE

mailto:victor-lortz@ccm.jf.intel.com
mailto:kgshin@eecs.umich.edu

LORTZ AND SHIN SEMAPHORE QUEUE PRIORITY ASSIGNMENT FOR RFAL-TIME MULTIPROCESSOR SYNCHRONIZATION

~

835

semaphore queue priority assignment for multiprocessor syn-
chronization is NP-complete. We also present there a heuristic
algorithm for solving this problem. Section IV describes the
experiments we performed to evaluate the different methods
for scheduling global semaphore queues. Section V discusses
various implementation issues, and the paper concludes with
Section VI.

11. BLOCKING DELAYS AND
SCHEDULARILITY GUARANTEES

Given rate monotonic scheduling of n periodic tasks with
blocking for synchronization, Rajkumar et al. [9] proved that
satisfaction of the following equation on each processor pro-
vides sufficient conditions for schedulability:

In this equation (set of inequalities, actually), lower-
numbered subscripts correspond to higher-priority tasks. C,, TI,
and B, are the execution time, period, and blocking time of
task z,, respectively. The ith inequality is a sufficient condition
for schedulability of task z,. This equation appears very simple,
but it warrants careful study. The C,IT, components represent
the utilization, or fraction of computation time consumed by
task z,. The number Q ” ‘ - I) represents a bound on the utiliza-
tion of the processor below which task deadlines are guaran-
teed [4]. As the number of tasks increases, this bound con-
verges to Ig 2 , or about 70% utilization. This utilization bound
provides only a sufficient condition for schedulability; for
most task sets, a more complex method called “critical zone
analysis” is able to guarantee higher utilizations with rate mo-
notonic scheduling. However, (2. l) is a useful approximation
to critical zone analysis, and it provides insight into the basic
properties of rate monotonic scheduling.

The B,IT, component represents the effect of blocking on the
schedulability of task z,. Note that when a task blocks, other
tasks become eligible to run. Blocking is not the same as busy
waiting for a shared resource. Time spent busy waiting would
be included in the task’s C, component. The blocking factor B,
is the amount of time a job J , may be blocked when it would
otherwise be eligible to run. This blocking might result from
waiting for a semaphore held by a lower-priority job on the
same processor (local blocking) or it might result from waiting
for a semaphore held by a job of any priority executing on
another processor (remote blocking). Waiting for higher-
priority jobs on the same processor is explicitly excluded from
B, since this is part of the normal preemption time for task z,.
In other words, the time spent waiting for higher-priority tasks
on the same processor is already counted in the C,Iq compo-
nents fori < i.

To guarantee schedulability, it is necessary to bound the B,
components. To minimize priority inversion associated with
global semaphores, tasks executing global semaphore critical
sections are given higher execution priority than any task out-
side of a global critical section. If interleaved global and local
semaphores are used, local semaphore critical sections must

inherit the global semaphore’s high priority. For the purposes
of this paper, we assume that global critical sections are not
interleaved with local critical sections.

Prior work [9] on real-time synchronization for multiproc-
essors states: “Another fundamental goal of our synchroniza-
tion protocol is that whenever possible, we would let a lower-
priority job wait for a higher-priority job.” This is accom-
plished for global semaphores by using priority queues to en-
sure that the highest-priority blocked job will be granted the
semaphore next. The justification given in [9] for making
lower-priority jobs wait is that the longer periods (TI) of lower-
priority tasks results in less schedulability loss BIT for a given
blocking duration B. However, the statement “a given blocking
duration B’ does not take into account an important character-
istic of the problem.

In general, the worst-case blocking duration Bl,s associated
with a given semaphore is proportional to the ratio of the peri-
ods of the tasks sharing the semaphore:

B,,,y = K [%] ,

where is the period of a task with a higher semaphore queue
priority and K is a function of the critical section time. If a
higher-priority job J , has a lower semaphore queue priority than
a lower-priority job J,, it waits for at most one critical section of

the lower-priority job per semaphore request (1‘1 f = 1 if T, < 7J .

However, if a lower-priority job has a lower semaphore queue
priority, it may be blocked for multiple critical sections of the
high-priority job. This is because a more frequent task will start
more than one job within the less frequent task’s period. In prac-
tice, it is unlikely that a high-frequency task would actually
block a lower-frequency task multiple times per global sema-
phore request. However, in hard real-time applications, it is nec-
essary to design for worst-case conditions.

The potential for multiple blocking, on average, increases B,
of the lower-priority task to more than offset the longer period
T,. Therefore, the schedulability loss B,IT, is actually greater for
the lower-priority task than it would be for the higher-priority
task. It is also important to note that the schedulability loss BJT,
is lost only for task z,. This is different from utilization, where
the CJT, component of a higher-priority task reduces the
schedulability of all lower-priority tasks.

Lower-priority tasks on a uniprocessor do not benefit
(become more schedulable) if they are given a higher priority
in local semaphore queues. This is because the deferred exe-
cution of any higher-priority task’s critical section must still be
completed on the same processor before its deadline. Even if a
lower-priority task is granted first use of the shared resource,,it
can be immediately preempted by the higher-priority task
when it exits the critical section. Therefore, on uniprocessors,
it is always best to assign semaphore queue priorities accord-
ing to the execution priorities. On multiprocessors, however,
the situation is fundamentally different. Higher-priority tasks
on remote processors cannot preempt a local task, so the
schedulability of local lower-priority tasks can be improved by
increasing their global semaphore queue priorities relative to
remote tasks.

836 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. IO, OCTOBER 1995

The following simple example illustrates the advantage of
assigning more remote blocking to a higher-priority task. Sup-
pose that we have two jobs J , and J2, both released at time 0,
with execution times of 2 and 4, and periods 7 and 10, respec-
tively. Furthermore, suppose that these tasks use the same
global semaphore and that the worst-case blocking time for
that semaphore is either 1 or 3 time units, depending on the
semaphore queue priority. If the higher semaphore queue
priority is given to the higher-priority task, the schedulability
equation for i = 2 becomes .29 + .4 + .3 I .83. This inequal-
ity does not hold, so schedulability is not guaranteed. Now
assume that the higher-priority job J , is given the lower
semaphore queue priority. The schedulability equations are:

our results to derive the total blocking associated with all
semaphores. Therefore, our goal is to calculate B,,J, the block-
ing time for job J, associated with waiting for global sema-
phore S. To simplify the analysis, we assume that global
critical sections are non-preemptable, which approximates
the behavior of the modified priority ceiling protocol pro-
posed for multiprocessor synchronization [9]. We define the
following notation. Note that J , might contain multiple criti-
cal sections guarded by S. Furthermore, unlike (2. l), the task
numbers in our notation do not correlate with priorities. On a
multiprocessor, task 53 might be the highest-priority task on
one of the processors, so the notation of (2.1) is inadequate
for this domain.

for i = 1, .29 + .43 I 1 and for i = 2, .29 + .4 + .1 I .83. Both
of these inequalities hold, so the tasks are schedulable. Fig. 1
depicts graphically these two alternatives. The preemption
intervals for J2 are marked with P to distinguish them from
remote blocking intervals. When J2 is assigned greater remote
blocking, it misses its deadline. When it is assigned less, all
deadlines are met.

@,:

pk,S:

The processor to which J, is assigned.
The period of task 2,.
The semaphore queue priority for job Jk when it
waits for S. As discussed thus far, this priority is
independent of the execution priority of Jk.
The set of local jobs on @, that use s and have
lower execution priority than J,.

{ JL,J,s}:

remote blocking remote blocking

J1 I'J deadline

remote blocking

5 10 0

remote blocking

I
I

remote blocking
n

I I

J

I

I
0 5 10

Fig. 1 . Advantage of assigning more remote blocking to a high-priority task.

111. THE SEMAPHORE QUEUE
PRIORITY ASSIGNMENT PROBLEM

A. Notation
We have seen how rate monotonic scheduling imposes lim-

its on task blocking delays. A full characterization of blocking
delays in multiprocessors depends upon the particular schedul-
ing and priority inheritance protocol used. For the purposes of
this paper, we analyze the blocking associated with waiting on
a single global semaphore in a multiprocessor. Our analysis
applies only to global semaphores; local semaphores should be
managed by one of the near-optimal uniprocessor protocols
such as the priority ceiling protocol [lo]. It is easy to extend

{Jr,s>: The set of jobs assigned to processor p r f @,
that use semaphore S.

{JffQP,,s}:The set of jobs Jk E {JL,,s} U {Jr+y} with Pk,S >
PIS.

PIS.
{JLQP,,s}: The set of jobs Jk E {JL,,J} U { J J } with Pk,s <

CS,,s: The maximum time required by job J, to execute
a critical section guarded by S.

CSlmax,,,~: The maximum critical section time for S of jobs
Jk E {JLQpl,s}.

NC,,+ The number of times J, enters a critical section
guarded by S.

LNuM,J.: mjn,,s(NC,,, , xk (NCk,, x la]) for Jk E { JLQt,,}) .

Given these definitions, the blocking Bl,s is bounded by:

for Jk E { JHQP,s}.
At most NCkS x critical sections guarded by S for each

J , can block J, since the number of instances of Jk within 7,'s
period is bounded by 151. Critical zone analysis cannot re-

duce this bound, because the tasks in {JHQPl,s} with higher
frequency than z, are on remote processors. The extra blocking
represented by LNUM,J x CSlmox,r,S accounts for the possibility
that a task (local or remote) with a lower semaphore queue
priority will already be using the semaphore when task 7, at-
tempts to lock it. The number of jobs Jk E {JHQPl,s} depends
on the task distribution across the multiprocessor and the
semaphore queue priority assigned to J, for semaphore S.

If we take the task distribution in the multiprocessor as
given (we address the issue of task allocation in Section V),
the blocking associated with semaphore S for J, is primarily
determined by the semaphore queue priorities. Therefore, it is
possible to manipulate the distribution of blocking associated

Tzl

LORTZ AND SHIN SEMAPHORE QUEUE PRIORITY ASSIGNMENT FOR REAL-TIMb MUI.TIPROCESSOR SYNCI1RONILATION

__

837

with S across the different tasks that use S by assigning the
semaphore queue priorities Pk,S. Semaphore queue priority
assignment provides an added degree of freedom to real-time
multiprocessor scheduling. By allocating blocking delays ex-
plicitly, it is possible to improve the overall schedulability of
the system compared to FIFO or rate monotonic semaphore
scheduling (henceforth called RMSS in this paper).

B. NP-Completeness Proof

Given a distribution of tasks sharing resources on a multi-
processor such that all tasks are schedulable via rate mono-
tonic scheduling without global semaphore blocking delays,
we would like to know whether the tasks can be assigned
global semaphore queue priorities such that they are still
schedulable. Furthermore, we would like to have an efficient
algorithm to generate a solution to the priority assignment
problem. We call this problem MSQPA, for multiprocessor
semaphore queue priority assignment. Unfortunately, this
problem is computationally intractable.

THEOREM 1. The semaphore queue priority assignment prob-
lem for rate monotonic scheduling (MSQPA) is NP-
complete.

PROOF. To show that MSQPA is in NP, for an instance of the
problem, we let the set of priority assignments {P,,,} be the
certificate (where is the semaphore queue priority for
task z, and semaphore 8. Checking whether task deadlines
are guaranteed can be performed in polynomial time by cal-
culating the blocking factors for each task z, using
and applying (2.1) or critical zone analysis.

We now show that MSQPA is NP-hard by reducing PAR-
TITION [11 to an instance of MSQPA.
Suppose that we have a multiprocessor with 3 processors.
Processor P I will be assigned a task that uses all n global
semaphores but has a low utilization so that it can always
tolerate the lowest semaphore queue priority (priority 1).

Processor PI we call the “blocking processor” since ir serves
only to supply blocking delays to the system. Without this
processor, the semaphore queue priority assignment of tasks
on the two “partition processors” would make no difference,
since the queue could never be longer than one. The other two
processors are each assigned a single task 7,. Each of these
tasks has the same execution time C and the same period
and each task z, uses all n global semaphores.

Now for a given instance of PARTITION, we define n global
semaphores where n = 1.11 and map each of the n items a E A to
the decision to assign z, queue priority 3 or queue priority 2 for
a given semaphore on one of the partition processors. Further-
more, we set the critical section times for each semaphore such
that the PARTITION size function s(a) E z‘ corresponds to the
difference in blocking between having priority 3 or priority 2 in
the semaphore queue. Finally, we adjust the utilization and pe-
riod of the two tasks z, such that the available blocking B for
each is exactly B,,, + 1/2 xoe s(u) . B,,, is the best-case

blocking for the partition processors, corresponding to having
priority 3 for all semaphores. Now we have a symmetric prob-
lem where each processor can tolerate exactly 1/2 of the total
blocking associated with having the lowest semaphore queue
priorities. All of these transformation steps can be performed in
polynomial time.

Suppose that a subset A‘ exists with

O E A ’ G 4 - 4 ’

Then if we assign semaphore queue priority 3 to z2 for
semaphores associated with a E A‘ and priority 2 for the
rest (and vice versa for z3 on processor pj), the total
blocking B for each task z, will be exactly
B,,,,, +1/2c s (u) , which will not exceed the blocking

U € -1

tolerance. Hence, the task set will be schedulable. Con-
versely, assume that we have determined a priority as-
signment for each of the n semaphores and each task z,
such that the blocking tolerance B is not violated. Then if
we choose the items U that correspond to the priority as-
signment 3 for z2, we will have constructed a subset A‘ of
A with

C s (u) = -&(a).
E , 4 ’ (1E .A - 4 ’

We have shown how to reduce PARTITION to an instance
of MSQPA, so MSQPA is NP-hard. Since MSQPA is in NP

U and is NP-hard, it is NP-complete.

C. The SQPA Algorithm

Unless P = NP, no efficient algorithm solves MSQPA. How-
ever, we have developed the following heuristic algorithm.
This algorithm, which we call SQPA, performs well for most
task sets.

1) Calculate the blocking bounds for each task from (2.1) or
from the more accurate critical zone analysis.

2) Determine the blocking delays associated with local
semaphores using whatever protocol is chosen to manage
them (e.g., priority ceiling protocol). Subtract these de-
lays from the blocking bounds determined in Step l . The
result is the available absolute blocking tolerance for
each task. If any of these are negative, report failure im-
mediately.

3) Identify the semaphore S with the largest unassigned
blocking delay. An approximate method for determin-
ing this is: for each semaphore with priorities still un-
assigned for some set of tasks (z}, compute - c,; E(5 j Tmay, x NC, , / c where T,,lo,p is the maximum

period of the tasks in { z}. Choose the semaphore with
the largest sum.

4) Find the task T that uses semaphore S and that has the
largest measure of blocking tolerance. This can be de-
fined as the largest absolute blocking tolerance or the
largest ratio of blocking tolerance to unassigned sema-

83 8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. IO, OCTOBER 1995

constant
varied

total

phores (excluding S) for that task. If one or more tasks has
enough absolute blocking tolerance for the blocking cur-
rently being assigned and if it has no other unassigned
semaphores, then choose the task with the highest execu-
tion priority (shortest period) in this group. This rule is an
elaboration of the selection method that uses the largest ra-
tio of blocking tolerance to unassigned semaphores.

5) Assign the lowest unassigned semaphore queue priority
for S to task z. As semaphore priorities are assigned to a
task, the absolute blocking tolerance of that task is re-
duced to reflect the blocking delay associated with that
semaphore priority assignment.

6) Repeat the previous three steps until all semaphore queue
priorities are assigned for all tasks.

7) Verify the schedulability of the task set using (2.1) or
critical zone analysis.

When possible, it is preferable that tasks with short periods
(high execution priorities) be assigned a low semaphore prior-
ity P,+y, since high frequency tasks add proportionally more
blocking to the tasks with lower semaphore priorities and incur
proportionally less blocking from the tasks with higher sema-
phore priorities. This is because global blocking is a function
of the ratio of task periods. If a task has only one source of
blocking (one semaphore) not yet assigned, the maximum al-
lowable blocking should be chosen for that task, because any
excess task blocking capacity is effectively wasted once all of
its semaphore priorities are chosen.

D. Complexity Analysis of SQPA
If there are k semaphores, each shared by an average of Tu,

tasks and by at most T,, tasks, there are a total of k x T,, pri-
ority assignments to make. For each priority assignment,
SQPA iterates over the unassigned tasks for that semaphore,
which number at most Tmw When a priority assignment is
made, the unassigned blocking delay for that semaphore is
adjusted, and the semaphore is inserted into a priority heap.
This insert operation has complexity Ig k. The overall com-
plexity of SQPA is thus: O(k Tu,, (lg k + Tma)).

0.7 602 292 109
0.7 384 187 64

2721 1412 654

IV. EXPERIMENTS

Consider the RMSS priority assignment method of [7], [9]:
assign lowest semaphore queue priorities to the lowest-priority
tasks. Since low-priority tasks may have less blocking toler-
ance than high-priority tasks, the RMSS method should lead to
worse schedulability than SQPA. To test this hypothesis, we
have implemented our algorithm and conducted extensive ex-
periments comparing our approach with RMSS and with sim-
ple FIFO queues on randomly-generated task sets. Appendix I
describes in detail how the task sets were constructed. Each
processor was equally loaded, and approximately 50% of the
overall utilization was dedicated to global critical sections.
Realistic systems would probably spend much less time than
this executing critical sections, but our goal was to test the
relative performance of the different semaphore scheduling
algorithms rather than to reflect the characteristics of realistic
systems.

For our primary experiments, we generated 5,400 different
task sets. These task sets were generated in groups of 50 sets
for each combination of [3, 6, or 10 processors], [3, 6 or 10
tasks per processor], [5, 10, or 20 global semaphores],
[processor utilizations of 0.6 or 0.71, and [constant or varying
critical section times for semaphores]. For our schedulability
analysis, we used critical zone analysis rather than (2.1) be-
cause it is a more accurate method for determining schedula-
bility. If (2.1) is used, the blocking bounds are slightly tighter,
which makes the task sets more difficult to schedule. The rela-
tive performance of the semaphore scheduling algorithms re-
mains the same regardless of which analysis method is used.

We first checked how many of the task sets each method
successfully scheduled. All of the task sets were originally
schedulable if there were no blocking delays, and the goal was
to preserve schedulability with global semaphore use. Table I
summarizes the performance of the different methods. Not
surprisingly, more task sets were schedulable with lower utili-
zation and with constant critical section times (constant only
for a given semaphore, different semaphores were assigned
different critical section times). Processors with lower utiliza-
tions have larger bounds on blocking for the lowest-priority
tasks, and it is easier to schedule resources if they are of uni-
form size.

The data show a clear trend with SQPA performing much
better than FIFO, which in turn performs much better than
RMSS. We also examined which combination of processor
number and number of tasks corresponded to the schedulable
and unschedulable task sets. The most significant factor was
the number of processors. Of the 2,72 1 task sets scheduled by
SQPA, 59% were from the 3 processor task sets (113 of the
overall task sets had 3 processors). For FIFO queues, 84% of
the 1,412 schedulable task sets had 3 processors; for RMSS,
95.7% of the 654 schedulable sets had 3 processors. It was
easier to schedule fewer processors in our test sets since the
number of semaphores was independent of the number of
processors. Fewer processors meant fewer total tasks in the
system and hence less contention for the fixed number of
semaphores. We ran some additional experiments with 100
processors to test this hypothesis. With 200 semaphores,
SQPA was able to consistently schedule task sets with 100
processors, 6 tasks per processor, 0.6 utilization, and constant
critical section times. The FIFO and RMSS methods could not
schedule any of these task sets. However, if there were only
100 or 50 semaphores, none of the priority assignment meth-
ods could schedule any of the 100-processor task sets.

TABLE I
TASK SETS SCHEDULED BY EACH METHOD

I critical I I I I I
section times I utilization 1 SQPA I FIFO I RMSS

constant [0.6 I 987 I 522 I 275
I varied 1 0.6 I 748 I 411 I 206 1

LORTZ AND SHIN SEMAPHORE QUEUE PKlORlTY ASSIGNMENT FOR REAL-TIME MULTIPROCESSOR SYNCHRONIZATION

Test Reassign
sets SQPA SQPA

Most 1350 26.5 38.3
difficult

difficult
Overall 2679 18 25.4

Moderately 1329 9.4 12

~

839

FIFO RMSS
56.8 64.3

32.9 44.9

44.9 54.7

It is also likely that with more processors there will be in-
dividual processors with a tasWsemaphore distribution that is
especially difficult to schedule. This would make the multi-
processor less likely to be schedulable than an individual proc-
essor. To investigate this possibility, we counted how many
individual processors were schedulable with each method for
our test sets. If entire task sets are considered, as in Table I,
SQPA scheduled 50% of the task sets, FIFO scheduled 26%,
and RMSS scheduled 12%. For individual processors within
the multiprocessor, SQPA scheduled 47.9%, FIFO scheduled
29.5%, and RMSS scheduled 19.9%. These numbers confirm
our suspicion that the FIFO and RMSS methods sometimes are
unable to schedule a multiprocessor due to unfavorable task
distributions on individual processors. However, SQPA is able
to modify its blocking assignments to compensate for proces-
sors that are more difficult to schedule. Therefore, in our task
sets, SQPA was able to schedule approximately the same per-
centage of complete task sets as individual processors.

We next investigated how the different methods compared
when individual task sets were considered. One might think that
the different semaphore priority assignment methods would be
suited to different task sets. For example, are some of the task
sets schedulable via RMSS but not SQPA, and vice versa? Table
11 addresses this question. The answer is “no,” RMSS could not
schedule any of the task sets that SQPA did not schedule. On the
other hand, SQPA scheduled 2067 task sets that RMSS could
not. Likewise, SQPA dominated FIFO and FIFO dominated
RMSS in terms of scheduling individual task sets. Thus, the per-
formance difference between these methods is significant on
average, and it also holds for most individual cases.

TABLE 11
NUMBER OF INDIVIDUAL TASK SET5 SCHEDULABLE BY
METHOD OF COLUMN BUT NOT BY METHOD OF ROW WI

FIFO 1316
RMSS 2067 773

Since the three methods have significant differences in abil-
ity to schedule task sets, it is important to measure more than
simply the number of task sets scheduled. This is because it is
possible to make the best method look arbitrarily good by ad-
justing the parameters that determine how difficult the task sets
are to schedule. For example, SQPA was able to schedule
about 50% of our sample task sets. By reducing the number of
very difficult task sets (those with the most contention for
semaphores) and increasing the number of moderately difficult
task sets (those that SQPA can usually schedule but the other
methods cannot), we could disproportionately increase the
percentage of task sets schedulable by SQPA. To eliminate
this source of bias and to better quantify the relative perform-
ances of the different methods, we investigated how close the
unschedulable task sets were to being schedulable under each
method. To answer this question, we gradually decreased the
utilization of all processors in the multiprocessor until the task
set became schedulable. We did this by leaving most task pa-
rameters (periods, semaphore priorities, etc.) constant while

Table 111 shows the average delta values for the task sets
that were unschedulable by SQPA. The row labeled “Most
difficult” averaged the deltas of the groups of task sets for
which SQPA could not schedule any of the 50 similar task sets
(recall that we generated 50 task sets for each combination of
task parameters such as number of processors). These task sets
were the most difficult to schedule, and Table I11 shows that
they had the largest deltas. The “Moderately difficult” row in
Table I11 averages the deltas of task sets for which some of the
50 similar sets were schedulable and some were not. The
“Overall” row averages all of the cases from the other two
rows. The delta factors provide a more useful characterization
of the relative performances of the three priority assignment
methods than simply how many task sets are schedulable. As
Table III shows, on average, SQPA could schedule about 20%
more utilization than FIFO (44.9 - 25.4), which in turn could
schedule about 10% more utilization than RMSS (54.7 -
44.9). The differences in utilization schedulable by each
method depends heavily on the fraction of computation time
spent in global critical sections. The percentages reported here
are with respect to our task sets. Task sets for which less time
is spent in critical sections would probably have lower delta
percentages but the same pattern of relative performance.

Reassigning the semaphore queue priorities as the utiliza-

840 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 10, OCTOBER 1995

tion was scaled back helped substantially for those test cases
that were difficult to schedule (the “Most difficult” cases) but
did not help as much for test cases that were originally nearly
schedulable (the “Moderately difficult” cases). Reassigning
priorities leads to better schedulability because the shape of
the blocking bound curve changes as computation times are
reduced. The more the computation times are scaled back the
more the shape changes and the more opportunity for im-
provement through changing the blocking distribution to re-
flect the new blocking tolerances.

TABLE IV
NUMBER OF INDIVIDUAL TASK SETS FOR WHICH THE METHOD OF THE

COLUMN PERFORMED BETTER THAN THE METHOD OF THE ROW

SQPA
43 8

I RMSS I 4732 I 4252 I I
We next investigated how the different methods compared

when the deltas of individual task sets were examined. This
information is summarized in Table IV. Table IV expands
upon Table I1 by counting all of the individual task sets for
which one method performed better than another. Performing
better is defined as either successfully scheduling the task set
when the other method could not or having a smaller delta
than the other method. These results are consistent with that
reported in Table 11: By a wide margin, SQPA performs better
than FIFO and RMSS; FIFO performs better than RMSS by a
lesser margin. To keep the comparison fair, the delta of SQPA
in Table IV is the one that kept the original semaphore queue
priorities (it is not the “Reassign SQPA” delta).

A. A Specific Task Set

Now that we have characterized our entire task sets, we will
examine a particular case in detail to gain insight into the be-
haviors of the different semaphore queue priority assignment

overall task set parameters:
0.7 uti1 3 cpus 6 tasks 5 semaphores
nominal critical section times for the

45 32 70 46 63
5 global semaphores:

methods. Fig. 2 shows the task set (to make the listing easier to
correlate with the graphs, the tasks in Fig. 2 were renumbered
and sorted in decreasing priority order for each processor).
This particular task set was one of the 50 task sets generated
with 0.7 utilization, 3 processors, average of 6 tasks per proc-
essor, 5 semaphores, and varying critical section times. For
these parameters, SQPA was able to schedule 16 of the 50 task
sets. The average delta factors for the 34 unschedulable task
sets were: “Reassign SQPA” = 8.9 SQPA = 9.7 FIFO = 24.1
RMSS = 32.2. For the particular task set considered here, the
delta factors were: “Reassign SQPA” = 8 SQPA = 10 FIFO =
23 RMSS = 3 1. Therefore, this task set is fairly representative
of the group of 34 unschedulable ones with the same task set
generation parameters.

Processor 0 has seven tasks, while processor 1 has only five.
This is because we randomize the utilizations for tasks as we
generate them and stop when the processor utilization limit is
reached, not when a certain number of tasks are chosen.
Likewise, three of the tasks were not assigned semaphores.
This is because their computation times were small, and the
method we used to select semaphores failed to assign a sema-
phore after five random selections (see Appendix I).

Fig. 3 shows the blocking distributions and bounds for the
tasks when SQPA is used to assign the semaphore queue pri-
orities. In these graphs, the bars represent worst-case blocking
for each task associated with its chosen semaphore queue pri-
orities. The line shows the bound on blocking below which the
task is schedulable with rate monotonic scheduling. The tasks

21 00

- bound
1500 = blocking

task set description using the following format:
task CPU priority period ctime ; sem# NCS CSscale ...
1 0 273 1095 66 ; 0 10.62
2 0 271 1106 81

4 0 152 1966 144 ; 3 1 0.9
5 0 150 1989 127 ; 1 1 1.4; 4 1 0.6 1800
6 0 129 2315 424 ; 0 1 0.28; 2 2 0.74; 3 2 1.5; 4 1 1.2 = blocking
7 0 122 2453 147 ; 0 10.57; 3 10.3; 4 10.81 1 500
8 1 3 9 5 758 108 ; 1 3 0.33
9 1 394 760 115 ; 0 1 0.85; 1 1 0.35; 2 1 0.36
10 1 131 2284 333 ; 0 1 0.79; 1 2 1.7
11 1 117 2556 293 ; 0 3 0.29; 3 4 0.31; 4 1 1.3
12 1 104 2874 419 ; 0 1 0.62; 1 1 0.77; 3 1 1.4
13 2 622 482 45
14 2 437 686 27
15 2 193 1547 235 ; 3 1 1
16 2 115 2603 365 ; 0 1 1.6; 3 3 0.3; 4 1 0.62
17 2 110 2722 244 ; 0 2 0.9; 1 1 0.9; 2 1 0.92
18 2 108 2764 513 ; 0 1 1.5; 2 2 1.4 Tasks on CPU N

Tasks on CPU N

3 0 193 1553 290 ; 0 2 0.48; 3 1 1.7 2100

- bound

0) 1200
E
F ! m

600

300

0

Fig. 2. Example task set. Fig. 3. SQPA blocking before and after a 10 percent reduction in utilization.

LORTZ AND SHIN: SEMAPHORE QUEUE PRIORITY ASSIGNMENT FOR REAL-TIME MULTIPROCESSOR SYNCHRONIZATION 841

2100

1800

1500
bound -

$I 1200
.-
+ 9 0 0

600

300

0
Tasks on CPU N

21 00

1800

1500

p) 1200
E
F 900

600

300

0

bound
blocking

-

n

Tasks on CPU N

- bound = blocking
1800

1500

1200

K m

600

300

o o o o o o o o 1 1 1 1 1 2 2 2 2 2 2
Tasks on CPU N

- bound 2100 r

E

600

300

Tasks on CPU N
0 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 2

Fig. 4. FIFO blocking before and after a 23 percent reduction in utilization

on each processor are shown in decreasing priority order from
left to right on the x axis, and the processor number for each
task is shown below the task’s bar. The lower graph in Fig. 3
shows that when utilizations are reduced by 10% (delta = lo),
the task set becomes schedulable with the original SQPA
semaphore queue priorities. If one examines the blocking
bounds for each processor, it is apparent that there is no direct
relationship between task priority and blocking bound. How-
ever, the highest-priority (leftmost) and lowest-priority
(rightmost) tasks on each processor tend to have the tightest
blocking bounds. The highest-priority tasks have tight block-
ing bounds because they have tight deadlines. The lowest-
priority tasks have tight bounds because of their lower execu-
tion priority. As the utilizations are scaled back, the blocking
times (semaphore critical section times) decrease and the
bounds increase until the blocking no longer exceeds the
bound. At that point, all of the (modified) tasks are guaranteed
to be schedulable.

Fig. 4 shows the blocking distributions and bounds for the
tasks when FIFO is used for the semaphore queues. If the top
graphs for SQPA and FIFO are compared, one can see that
FIFO assigns less blocking to the higher-priority tasks on each
processor than SQPA does. With FIFO, the lower-priority
tasks thus exceeded their bounds by a greater percentage than
with SQPA. Therefore, the original utilization of 0.7 had to be
scaled back by 23% before FIFO was able to schedule the task
set. The blocking bound curve for the tasks with scaled-back
utilization differs somewhat in shape from the original bound

Fig. 5 . RMSS blocking before and after a 3 1 percent reduction in utilization

curve since the increase in bound for each task is the product
of the task periods and the reduction in higher-priority task
utilization (recall (2.1)). Thus, the blocking bound increases
disproportionately for lower-priority tasks, which have longer
periods and a larger sum of higher-priority utilizations.

Fig. 5 shows the blocking distributions and bounds for the
tasks when RMSS is used for the semaphore queues. RMSS
assigned even more blocking to the low-priority tasks than
FIFO and thereby severely exceeded the blocking bounds of
the lowest-priority tasks. A delta of 31 was required to make
the tasks schedulable with Rh4SS. In general, the inflexibility
of FIFO and RMSS leads to assigning too much blocking to
tasks with low blocking tolerance, thereby making them un-
schedulable. RMSS assigns as much blocking as possible to
the lowest priority tasks and performs even worse than FIFO
for most of our task sets.

V. IMPLEMENTATION ISSUES

We have shown that SQPA has significant advantages over
both FIFO and RMSS, but it also is important to consider the
relative complexities and overheads associated with imple-
menting the different methods. Clearly, SQPA is more com-
plex to implement than either FIFO or Rh4SS. With FIFO and
RMSS, the semaphore queue priorities are fixed and require
no extra computation to determine. Our SQPA algorithm runs
in O(kTu, (Ig k + T,,,,,.)) time for k semaphores, each shared by
on average Tu, and at most T,, tasks. Although SQPA is

842 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 10, OCTOBER 1995

more complex, the performance advantages could be substan-
tial for real-time multiprocessor applications with heavy sema-
phore use. Furthermore, the computation of SQPA is per-
formed off-line, so it does not add extra overhead at runtime.
Real-time application designers usually perform off-line
schedulability analysis and task allocation, so running SQPA
would simply be an extra part of that activity.

Both SQPA and RMSS require a priority queue for sema-
phores. The extra overhead of maintaining a priority queue
rather than a FIFO must be justified by the superior perform-
ance of SQPA. Since suspending a task on a semaphore is an
expensive operation in the first place, maintaining a priority
queue rather than a FIFO should not add significantly to the
overhead. Ultimately, the question of whether a priority queue
is justified depends upon the application and the implementa-
tion of the queues.

In the discussion so far, we have assumed that the task dis-
tribution across the multiprocessor was fixed and the problem
was to choose the semaphore queue priorities. In reality, one
often needs to solve both problems: first task allocation and
then semaphore queue priority assignment. Since the problem
of allocating tasks to processors on a multiprocessor is known
to be NP-complete [l] even when no resource sharing (other
than processors) is considered, there is no computationally
efficient solution for this problem (unless P = NP). The poten-
tial for blocking on semaphore queues adds another level of
complexity to an already very difficult problem.

A task allocation algorithm should consider the impact of re-
source sharing since this will affect the overall schedulability of
the system. However, the resource sharing costs depend in part
on the task allocation. Therefore, if a task allocation algorithm
conducts a search over possible task allocations, the resource
sharing costs have to be computed for each point in the search
space. The semaphore queue priority assignment method we
propose requires more computation than the fixed priority meth-
ods of FIFO and RMSS (i.e., O(kT,, (lg k + 2"")) rather than
O(kTm)). Our algorithm is relatively efficient, but if it is em-
ployed during task allocation, some additional overhead is in-
curred compared to FIFO and RMSS. However, it is important
to remember that this overhead is paid off-line, before any real-
time processing occurs. Furthermore, it is possible to use FIFO
priorities to arrive at a task allocation and then use SQPA to
improve the schedulability for that allocation.

If tasks must be dynamically added or removed from the
multiprocessor, it is possible to use SQPA to precompute
semaphore queue priorities corresponding to different task sets
on the system (different modes). Real-time systems tend to be
much more consistent in their task sets than conventional mul-
tiprocessing systems, so the different modes are likely to be
known in advance. Alternatively, suppose an unexpected task
needs to be added to a running system. It is not necessary to
recompute and change all of the existing semaphore queue
priorities throughout the system. Rather, it is only necessary to
search over the possible semaphore queue priorities for the
new task being added and to assign its priorities such that none
of the existing tasks become unschedulable. A similar run-time
schedulability determination is required with FIFO or RMSS

when unexpected tasks are added, but these methods only try
one fixed global semaphore priority for the task, so they may
not be able to schedule the new task in cases when the more
flexible approach can.

Implementing any of the methods requires hardware support
for inter-processor interrupts to notify the processor whose
task is at the head of the queue when the semaphore becomes
available. Since tasks in global critical sections are given very
high priority, the task that was previously blocked will likely
be immediately scheduled to run and complete its use of the
critical section. Blocking on semaphore queues and task
switching is relatively expensive and should only be used for
long critical sections. For short critical sections, it is better to
spin wait in a priority queue or FIFO (ordinary spinlocks with-
out queues are not deterministic and thus are inappropriate for
real-time systems) [5] . Tasks spinning on a global lock should
be given a very high priority to avoid being preempted and
thus blocking remote tasks.

VI. CONCLUSION

In this paper, we have shown that the schedulability of real-
time multiprocessor applications can be significantly improved
if global blocking delays are distributed according to task
blocking tolerance rather than some fixed priority scheme.
Often, higher-priority tasks that share global semaphores on
multiprocessors should be given low global semaphore queue
priorities. However, there is no fixed relationship between task
execution priorities and semaphore queue priorities. We ana-
lyzed the problem of selecting global semaphore queue priori-
ties for real-time tasks on multiprocessors and showed that this
problem is NP-complete. Fortunately, it is not very difficult to
implement a good heuristic algorithm for this problem. We
presented such an algorithm and compared it with the RMSS
method and FIFO scheduling on a large number of task sets.

Of the methods tested, SQPA performed best by a wide
margin. The next best method was FIFO, followed by RMSS.
It is surprising that a simple FIFO performed better for real-
time scheduling than RMSS, which is the best method for local
semaphores. However, we have shown that remote blocking in
multiprocessors is fundamentally different than local blocking
in a uniprocessor. In multiprocessors, it is often better to as-
sign more remote blocking to the more frequent, higher-
priority tasks. Because FIFO distributes more of the blocking
to high-priority tasks than does RMSS, it usually performs
better.

The ultimate question of which method is best for real sys-
tems cannot be answered without reference to a particular im-
plementation and a particular application. However, a real-
time operating system could provide priority queues for global
semaphores, default to FIFO priorities, and allow an applica-
tion to choose different priorities during semaphore initializa-
tion. This would allow the application programmer to use
whatever method is appropriate for that application.

LORTZ AND SHIN: SEMAPHORE QUEUE PRIORITY ASSIGNMENT FOR REAL-TIME MULTIPROCESSOR SYNCHRONIZATION

~

843

APPENDIX I
TASK SET GENERATION METHOD

Our task-set generator program took the following pa-
rameters: target utilization for the processors, number of task
sets to generate, number of processors, average number of
tasks per processor, number of semaphores, and a flag to
vary or keep constant the critical section times for each task
using a semaphore. First, we established a range of periods
for the tasks from 100 to 3,000. Second, we chose the nomi-
nal critical section time for each semaphore from a uniform
distribution between 0.1 and 0.5 of the average expected
computation time of a task (average period x target utiliza-
tion - average number of tasks per processor). Next, we be-
gan generating tasks for each processor until the assigned
utilization reached the target utilization.

For each task, we first randomly chose a utilization from a
uniform distribution between one third and twice the average
utilization (target utilization for each processor + average
number of tasks). If the chosen utilization plus that of the
tasks already assigned to that processor exceeded the target
utilization bound, we reset the chosen utilization to equal the
difference. In this way, we ensured that every processor
would have the same utilization load. In a realistic system,
not every processor is equally loaded, but we were interested
in examining the behavior of the system when the blocking
delays were close to violating the schedulability of the proc-
essor. By loading all processors equally, we were able to
move all of the processors near this region of marginal
schedulability in a consistent manner. Equal loading also
diminished somewhat the expected advantage of our sema-
phore assignment strategy since SQPA is able to add extra
blocking to tasks on lightly-loaded processors. Nevertheless,
in the interest of simplicity, we used uniform utilizations.
Given the task’s chosen utilization, we chose the task’s pe-
riod from a uniform distribution between 100 and 3,000 and
derived the corresponding computation time. We also set the
priority for the task according to the rate monotonic schedul-
ing discipline. Once each task’s execution parameters were
set, we used the following method to choose its semaphores.

For each task, we randomly chose a fraction of its compu-
tation time to devote to executing global critical sections.
This is an important parameter because it partially deter-
mines how many semaphores will be used by the task and
thus how much blocking will be incurred. Therefore, we de-
cided to select this parameter randomly rather than choose
some fixed value for it. The range we chose was between 0.2
and 0.8 of the computation time, so on average about half of
a task’s computation time will be spent in critical sections.
Real applications might spend less time executing global
critical sections, but we chose this range to examine the
schedulability characteristics of the three semaphore queue
priority assignment methods under consideration. Obviously,
if global semaphore critical sections represent only a very
small fraction of the computation in a given application, their
impact on schedulability will also be small (if priority inver-
sion is limited).

We next examined the flag for varying critical section
times. If the flag was true, we randomly chose an additional
scaling factor between 0.25 and 1.75 that was multiplied by
the semaphore’s nominal critical section time to determine
the critical section time for that task and that semaphore. We
chose a different critical section scaling factor for each
semaphore used by each task. To choose the semaphores
used by each task, we randomly selected a semaphore from
the semaphore set and checked whether adding its critical
section time would exceed the fraction of computation time
bound for critical sections for that task. If this bound was not
exceeded, we assigned that semaphore to the task. If the
same semaphore was chosen more than once, we incre-
mented the number of times the semaphore was used by each
job of the task (NCk,LT). If the bound was exceeded, we
skipped that semaphore and chose another. If five selections
in a row exceeded the bound, we exited the semaphore se-
lection loop for that task. Because of this termination condi-
tion, often the sum of critical sections assigned to a task did
not quite reach the fraction-of-execution-time bound.

ACKNOWLEDGMENT

The authors would like to thank Ragunathan Rajkumar and
Famam Jahanian for their suggestions on earlier drafts of this
paper.

REFERENCES

M.R. Carey and D.S. Johnson, Computers and Intractabillty: A Guide
to the Theory of NP-Completeness. San Francisco: Freeman, 1979.
Y. Ishikawa, H. Tokuda, and C.W. Mercer, “An object-oriented real-
time programming language,” IEEE Computer, vol. 25, no. I O , pp. 66-
73, Oct. 1992.
J.P. Lehoczky, L. Sha, and J.K. Strosnider, “Enhanced aperiodic re-
sponsiveness in hard real-time environments,” Proc. Real-Time Systems
S’mp., pp. 261-270, Dec. 1987.
C.L. Liu and J.W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real-time environment,” 1. ACM, vol. 20, no. I , pp. 46-
61, Jan. 1973.
V.B. Lortz, A n Object-Oriented Real-Time Dntabase System for Multr-
processors, PhD thesis, Univ. of Michigan, Apr. 1994
A.K. Mok, “Fundamental design problems of distributed systems for the
hard real-time environment,” PhD thesis, 1983.
R. Rajkumar, “Real-time synchronization protocols for shared memory
multiprocessors,” Proc. Int ‘ I ConJ on Distributed Computing Systems,
pp. 116-123, 1990.
R. Rajkumar, Synchronization in Real-Time Systems: A Priority lnheri-
tance Approach. Kluwer Academlc Publishers, 199 1
R. Rajkumar, L. Sha, and J.P. Lehoczky, “Real-time synchronization
protocols for multiprocessors,” Proc. Real-Time Systems Symp., pp.
259-269, Dec. 1988.
L. Sha, R Rajkumar, and J.P. Lehoczky, “Priority inheritance protocols.
An approach to real-time synchronization,” IEEE Trans. Computers,
vol. 39, no. 9,pp. 1,175-1,185, Sept. 1990.
K.G. Shin and Y.-C. Chang, “A reservation-based algorithm for
scheduling both periodic and aperiodic real-time tasks,” IEEE Trans. on
Computers (in press).

844 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 10, OCTOBER 1995

Victor B. Lortz received a BA in physics from
Whitman College in 1985 and an MS and PhD in
computer science from the University of Michigan
in 1991 and 1994, respectively His dissertation
included the design and implementation of a hard
real-time database system for shared-memory multi-
processors Dr Lortz is currently a senior software
engineer at Intel Architecture Labs in Hillsboro,
Oregon Since joining Intel, he has been developing
system software for next-generation PC platforms
His research interests include real-time computing,

object-oriented programming, multiprocessor systems, and user interface
design

Kang G. Shin received the BS degree in electronics
engineering from Seoul National University, Seoul,
Korea, in 1970 and both the MS and PhD degrees in
electrical engineering from Cornell University, Ith-
aca, New York, in 1976 and 1978, respectively
From 1978 to 1982 he was on the faculty of Rensse-
laer Polytechnic Institute, Troy, New York He has
held visiting positions at the U S Airforce Flight
Dynamics Laboratory, AT&T Bell Laboratories,
Computer Science Division within the Department
of Electrical Engineering and Computer Science at

UC Berkeley, and International Computer Science Institute, Berkeley, CA He
also chaired the Computer Science and Engineering Division, EECS Depart-
ment, The University of Michigan for three years beginning January 1991 He
is currently professor and director of the Real-Time Computing Laboratory at
the University of Michigan in Ann Arbor

Dr Shin has authored or coauthored over 300 technical papers (more than
140 of these in archival journals) and numerous book chapters in the areas of
distributed real-time computing and control, fault-tolerant computing, com-
puter architecture, robotics and automation, and intelligent manufacturing He
is currently writing Qointly with C M Krishna) a textbook Real-Time Systems
which is scheduled to be published by McGraw Hill in 1996

In 1987, he received the Outstanding IEEE Transactions on Automatic
Control Paper Award for a paper on robot trajectory planning In 1989, he
also received the Research Excellence Award from The University of Michi-
gan In 1985, he founded the Real-Time Computing Laboratory, where he and
his colleagues are currently building a 19-node hexagonal mesh multicom-
puter, called HARTS, and middleware services for distributed real-time fault-
tolerant applications He has also been applying the basic research results of
real-time computing to multimedia systems, intelligent transportation sys-
tems, and manufacturing applications ranging from the control of robots and
machine tools to the development of open architectures for manufacturing
equipment and processes

Dr Shin is an IEEE fellow, was the program chairman of the 1986 IEEE
Real-Time Systems Symposium (RTSS), the general chairman of the 1987
RTSS, the guest editor of the August 1987 special issue of f E E E Transactions
on Computers on Real-Time Systems, a program co-chair for the 1992 Inter-
national Conference on Parallel Processing, and has served on numerous
technical program committees He also chaired the IEEE Technical Commit-
tee on Real-Time Systems during 1991-93, was a distinguished visitor of the
Computer Society of the IEEE, an editor of IEEE Transactions on Parallel
and Distributed Systems, and an area editor of International Journal ojTime-
Critical Computing Systems

