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broadcast can be carried out in time O( n) .  Other algorithms can be 
implemented using divide and conquer trees. A divide and conquer 
tree is a tree whose leaves are labeled with the p E S,, and if p is 
the label of an interior vertex then its sons are labeled p , p ( l i )  for 
some i. Essentially optimal divide and conquer trees are constructed 
in [7] ,  of height O ( n  log n ) ;  this construction can readily be adapted 
to tQ graphs. 

Algorithms which can be implemented using a divide and conquer 
tree thus run with hypercube performance on a star. Examples are 
numerous, and include single link synchronous broadcast, associative 
binary operation on one element per processor, and all prefixes for 
the latter where the processors are ordered according to the order of 
the leaves of the divide and conquer tree. It is an interesting question 
whether there are divide and conquer trees of height O ( n  logn),  
whose leaves are ordered according to the standard enumeration of 
S,. We suspect that these might exist. 

A universal sequence is a sequence of transpositions 
( l i L ) , . .  . , ( l t r )  such that every permutation in S,  occurs as 
a product of a subsequence. Universal sequences of length 
O(n1ogn) are constructed in [ I ] .  They can also be found by 
finding a common supersequence of the branches of a routing 
tree. Determining the shortest common supersequence of a set of 
sequences is NP complete [15]. For small 71 however they may 
easily be found by computer search. For example for n = 5 the 
shortest universal sequence of this type has length 12; an example is 

234523425342. 

A universal sequence for S,, yields one for a tQ graph, but there 
may be shorter ones. 

As mentioned in [ I ] ,  given a universal sequence a divide and 
conquer tree can be derived. The height of the tree is bounded by the 
length of the universal sequence. To derive the divide and conquer 
tree, start with I and the first transposition in the sequence. For each 
leaf 11 of the tree constructed so far, if p (  l i )  does not occur in the tree, 
where ( l i )  is the current transposition in the universal sequence, add 
sons labeled p.pl l i )  and advance the current transposition. Continue 
until all p occur in the tree. There are algorithms which require a 
universal sequence and not just a divide and conquer tree, such as 
the multinode broadcast algorithm of [7]. 

The mesh embedding of Section 111 has been used to obtain 
algorithms for some problems. These run on tQ graphs, but since 
many of them have been superseded by [4] we will not consider this 
further. 

X. CONCLUSION 

We have given what appears to be a useful notion of a “standard’ 
enumeration of the star graph S,, . A bound is given on the diameter 
of prefixes and suffixes, and an O(  n )  interval broadcast algorithm is 
given. The prefixes of length t ( n - 1 )! for some t are especially well 
behaved. These graphs would be the same in any coset respecting 
enumeration, but the standard enumeration is useful in discussing 
them, as it is for S, itself. 
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Abstract-This paper proposes a simple, yet effective scheme to pre- 
vent congestion in a packet-switched multistage interconnection network 
(MIN) caused by hotspols. In this scheme, switches in the second and third 
stages of the MIN monitor their buffer occupancy to detect any notable 
nonuniform access behavior. When a switch detects congestion, packets 
generated by processors will be blocked from entering the congested 
switch until the congestion is cleared. Our scheme is compared with two 
well known schemes [l], [2], and shown to exhibit significantly better 
performance than these two. 
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I. INTRODUCTION 

The multistage interconnection networks (MIN's) are an important 
class of high-bandwidth networks that can be used for multiproces- 
sor/multicomputer systems. The MIN has a good performance when 
the network traffic pattern is uniform. so that network resources (link 
bandwidths and buffers) may be shared by different communication 
channels in a fair and efficient manner. However, when demands 
of different sources are not uniform, communication channels may 
not be able to share the network resources fairly. Even worse, if the 
service demand on a resource exceeds its capacity, packets blocked 
by this resource may build up quickly in the network. The blocking 
effect can quickly propagate backward, and most paths in the network 
will soon be blocked, thereby resulting in a severe drop of network 
throughput. 

The network congestion caused by nonuniform traffic patterns is 
also called the hot spot problem in a multiprocessor system, where an 
MIN is used as the interconnection network between processors and 
memory modules. In this case, a hot spot is a memory module whose 
service rate is exceeded by the rate of requests to use it. Once a hot 
spot is formed, most packets in the network would be blocked, and 
the network throughput may drop to nearly zero. When a network 
becomes congested due to the presence of a hot spot in the network, 
the set of switches on the paths to the hot spot forms a cotigesfion 
tree with the hot spot as the root and processors as the leaves. In  
a congestion tree, packets destined for the root are called the hot 
packets and the other packets are called cold packets. 

Many researchers had studied the hot spot problem using stochastic 
models and simulations [3]-[7], 191, and proposed several control 
schemes to alleviate the resulting severe performance degradation. 
The hot spot problem was first observed in the IBM RP3 prqject [SI, 
[ 1 I ] ,  and the c"nbining switch was then proposed to handle excessive 
hot packets. Since this initial effort, several software [ 161, 1171 and 
hardware based solutions [ I ] ,  [3].  [IO].  [12]-[1S], [IS], [I91 to the 
hot spot problem had been proposed, and some of the representative 
solutions would be reviewed below. 

In this paper, we propose a distributed algorithm for detection and 
prevention of network congestions caused by hot spots. Similar to the 
scheme proposed by Scott and Sohi 1 I .  we adopt a feedback control 
principle to prevent network congestions. However, our congestion 
detection scheme uses the buffer ocnqxtncy for congestion detection, 
while Scott and Sohi's scheme uses a continuous stream of hot 
packets arriving at their destinations. Through extensive simulations 
we find that in an uncontrolled network, most packets are blocked in 
switches very close to network input. Therefore, the buffer occupancy 
of switches close to the network input is used for early detection of 
the congestions caused by hot spots. Each buffer-occupancy monitor 
controls a set of processors. and occupancy monitors (at the same 
stage) make packet-blocking decisions independently. Therefore, at 
any instant, only a fraction of processors in the system can (not) 
input packets to the network. Our scheme thus has a much smoother 
throughput than other schemes. We compare the performance of our 
scheme with those of the two schemes proposed in [ I ] ,  [?I. Our 
simulation results show that the three schemes have a similar behavior 
when the hot access rate is low. However, our scheme has a much 
more stable, and significantly better performance, than those of the 
other schemes at higher hot-access rates. 

11. DETECTION AND PREVENTION OF NETWORK CONGESTION 

The MIN under consideration is assumed to be constructed with 
2 x 2 switches. Each input port of a switch has a packet buffer. The 
Banyan, or any other topologically-equivalent topology of Banyan, 
is assumed for the network. Processors are connected to the network 
input ports. and memory modules are connected to network output 
ports. It is assumed that the duration of a memory cycle is the 

same as a network cycle, and a memory module can serve only one 
memory-access request in one memory cycle. 

Network congestion is a statistical phenomenon, and its effect 
is measured by how fast it affects the performance of a network. 
Thus, we define netnork congestion as a condition under which the 
communication delay of cold packets becomes very large because of 
excessive demands of hot packets for network resources. A congested 
area is composed of a congested switch and those switches that 
have forward paths to the congested switch. In a congested area, the 
number of cold packets may not be significantly smaller than that of 
hot packets, but both cold and hot packets are being blocked for a very 
long time, and hence, the throughput of the area is very low. Based on 
the above definition, switches close to a hot spot are not considered 
as congested, because although most packets are destined for the hot 
spot, the throughput of switches in this area may be relatively higher 
than that of the rest of the network. It is more appropriate to consider 
the network input as the congested area, since most cold packets in  
an uncontrolled and congested network are blocked close to network 
input. I n  this case, hot spots cause the network congestion. 

Our design prevents network congestion based on an optimal 
combination of congestion-detection, conRestion-resolution and 
congesfion-blocking. Our objective is to maintain a stable network 
throughput and to provide good quality of service to these packets 
already in the network. A distributed control approach is helpful 
to achieve this objective. For congestion detection we need to 
define the optimal conditions under which the other two schemes 
should be activateded to handle congestion. The congestion-detection 
scheme must consistently detect congestion, whether the congestion- 
resolution and blocking mechanisms are activated or not. The 
congestion-resolution scheme i s  used to handle packets in the 
network after detecting a network congestion. This could be done 
through specially designed switches, or dynamic assignment of packet 
priority, or simply doing nothing. The congestion-blocking scheme is 
used to stop packets from entering the network at proper time instants. 
The efficiency and simplicity of these schemes are particularly 
important, so that they can be used in high-speed networks without 
appreciable interference with the normal network operation. As it 
will become clear later, we only need to use the congestion-detection 
and congestion-blocking mechanisms for our design. Hence, we will 
not consider the congestion-resolution scheme any further. 

Explicit recognition of excessive packets destined for a particular 
memory module [ 11 is the most commonly-suggested approach for 
detecting a hot spot. This approach was shown to offer a fairly good 
performance when the hot-access rate is low. but its performance 
deteriorates rapidly with increase of the hot-access rate, as observed 
in our simulation. To avoid this problem, the switch buffer occupancy 
for congestion detection. The occupancy of a buffer increases only 
when the packet input rate is higher than the packet output rate of the 
corresponding switch. A continual increase of the buffer occupancy 
in a switch implies that the buffer space of the switch may soon be 
used up and all inbound packets would be blocked. Therefore, either 
the packet input rate to the congested area should be lowered, or 
the output rate of the switch should be increased, until the buffer 
occupancy drops to an acceptable level. This is true even when the 
congestion-blocking mechanism is activated. 

Next, we decide on how and where to detect network congestions 
to maximize the network throughput and minimize the packet delay, 
To reduce the possibility of false alarms, we use different rules for 
congestion detection before, during, and after the network becomes 
congested due to the hot spot(s). In an uncontrolled network, if the 
network becomes congested due to a hot spot, most switches can be 
in one of the two states: heavily-loaded or under-loaded. Switches 
would be heavily-loaded if they are on the congestion tree, or would 
be extremely under-loaded otherwise. The under-loaded switches are 
called the .free switches, and they are empty for most of the time, 
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because most packets destined for them have been blocked in the 
congestion tree. 

Through interactive graphical simulations, we observed that, when 
a congestion tree is being formed. the buffer occupancy of switches 
on the congestion tree becomes sharply different from those of their 
adjacent free switches in a very short time period. Therefore, the 
difference in the buffer occupancies in adjacent switches (of certain 
adjacent stages) is used as the congestion detection rule, called rule 
A,  before the congestion-blocking mechanisms are activated. This 
change in the buffer occupancy of adjacent switches becomes less 
dramatic after the congestion-blocking mechanisms are activated (to 
block excessive packets). Thus, even though rule A could still be 
used for congestion detection, the network throughput may fluctuate. 
Therefore, during the time when congestion-blocking mechanisms are 
activated, we propose to use the buffer occupancy of each individual 
switch as the congestion-detection rule, called rule B. If the buffer 
occupancy of a switch exceeds a given threshold then it implies that 
the congestion-blocking mechanism related to this switch is allowing 
too many packets to enter the network, and hence, packets should be 
blocked until the buffer occupancy drops to a lower value. 

Finally, after the hot accesses cease, we need to de-activate the 
congestion-blocking mechanisms to avoid unnecessary throughput 
loss due to false detection of transient traffic fluctuations. This post- 
congestion detection rule. called rule C, can be defined as the condi- 
tion when no congestion i s  detected for a chosen period of time. The 
three congestion detection rules are formally summarized as follows. 

Rule A: The occupancy-monitor of a passive CUTH detects conges- 
tion if the difference between the buffer occupancies of its adjacent 
switches at the next stage exceeds the last recorded ph value. 
Rule B: The buffer-occupancy monitor of an active CUTH detects 
congestion, if the buffer occupancy of the switch in which the 
monitor resides becomes higher than p ) ,  , then its controlled flow- 
throttles begin to block packets from entering the congested area. 
The flow-throttles allow packets to enter the network if the reading 
of the occupancy monitor becomes lower than a prespecified value 
pi 5 pc < p h .  

Rule C: The hot access is deemed to cease, if no congestion is 
detected for a pre-specified period by an active CUTH. 
The above three congestion-detection rules are integrated with 

congestion blocking mechanisms on a distributed control structure, 
called ocCUpancv-monitors andfiow-THrottles (CUTH). Each CUTH 
consists of one buffer-occupancy monitor and a set of flow-throttles 
placed in  processors, each of which has a path to the buffer-occupancy 
monitor. The buffer-occupancy monitors are placed in switches 
located at stages close to the network input, and thus, each buffer- 
occupancy monitor controls only a small number of flow-throttles. 
CUTH’s can overlap with one another, and a flow-throttle must follow 
packet-blocking commands sent by any occupancy monitors, since the 
flow-throttle can be on the congestion trees of several hot spots. 

Before congestion is detected, a CUTH is in  the passive state, 
and it does not block packets from entering the network. Occupancy 
monitors periodically sample and store the buffer-occupancy level ph ,  
as long as Rule A does not detect any congestion. The parameter p h  is 
taken as the background traffic intensity, which will be later used as 
a reference in determining the existence of a network congestion by 
Rule B, when the congestion-blocking mechanisms are activated. A 
passive CUTH enters the active state once it detects a congestion 
condition. Then, Rule B is used for congestion detection by the 
occupancy monitor, and the flow-throttles begin to block or allow 
packets to enter the congested area based on the detection results 
from the occupancy monitors. 

Placing flow-throttles in processors is a relatively easy decision, 
because by blocking excessive packets from entering the network, we 
can resolve network congestion without modifying the switch design. 

The difficult design issues are how to embed occupancy monitors 
into switches, and how to coordinate them with flow-throttles. These 
design issues need to be done through a careful analysis of the 
network topology and the congestion behavior, as discussed next. 

To implement the congestion detection rules B and C, the occu- 
pancy monitor in a switch needs to examine its own buffer occupancy. 
To implement rule A, we note that any switch on an arbitrary 
congestion tree is also connected to a free switch through one of 
its output ports. That is, any switch on a congestion tree has one 
output port connected to a switch on the congestion tree, and the 
other connected to a free switch. If the switch size is T x T ,  then 
a switch on a congestion tree has one of its output ports connected 
to another switch on the same congestion tree, and all other output 
ports connected to free switches. Therefore, to implement rule A, 
the occupancy monitor in a switch also needs to be connected to 
the occupancy monitors of its adjacent switches at the next stage. 
Moreover, the occupancy monitor of a switch may also need to inform 
its upstream neighboring switches of its status as either congested, or 
not-congested. This way the congestion condition can be propagated 
to the processors to control traffic flow. 

A. Hardware Implementation 

We propose a sliding-window based CUTH design, where the 
window size is 111 clock cycles. The occupancy monitor can be 
implemented with a ?[,-stage shift-register array and a counter, where 
w is the window size. Each register is m = log,(q + 1) bits wide, 
where q is the number of buffers in a packet queue. The number of 
packets in a packet queue is sampled into the shift-register array of 
the occupancy monitor, and the register array is shifted forward one 
stage in each clock cycle. The counter storing the buffer occupancy 
is updated to be C = C + 71, - t i o  in each cycle, where C is the 
current value of the counter, and 7 3 ,  and tio are the input and output 
of the shift-register array, respectively. 

If an occupancy monitor is in the passive state, the current counter 
value is stored into its memory periodically as P h .  When the 
occupancy monitor becomes active, and the value of its counter 
becomes higher than p l l ,  all the flow-throttles in the same CUTH will 
have to be activated to block packets from entering the congested 
area. When an occupancy monitor detects congestion, it needs to 
inform all processors that can reach the switch of its location, so 
that flow-throttles can block packets destined for the congested area. 
This communication mechanism can be implemented in two different 
ways. In the first approach, each switch is assigned a subspace ID, 
which indicates the address subspace of the memory modules that 
can be reached by the switch [20]. Counting from input to output 
stages, a switch at the ith stage has i bits of subspace ID. When 
the occupancy monitor at stage i detects a congestion, it can send 
a message, which contains its subspace ID, back to all processors 
that can reach this switch. The flow-throttle in a processor blocks 
any messages whose addresses are in  the received subspace ID(s). If 
several hot spots become active at the same time, then packets can 
be divided into groups based on the subspace ID’S of the (detected) 
congested areas. A new hot-spot group is added to the processor 
after a new hot spot is detected. The hot-spot group can be deleted 
when rule C with respect to the hot spot detects the disappearance 
of the hot spot. The overhead in dealing with the hot packets in the 
communication buffer of the processor should not impose any serious 
performance penalty. This is because when hot accesses begin, the 
effective packet generation rate will drop to lower than the original 
packet generation rate of processors. The drop of packet generation 
rate can be substantial for most existing schemes, as our simulation 
results indicate. Therefore, our scheme outperforms many existing 
schemes as long as the time for sorting packets is smaller than the 
average packet interdeparture rate (from the processor buffer to the 



538 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 5, MAY 1995 

Udllzaion bgMow - - - - - -  - - - - - - - - -  

Fig. I. The configuration of CUTH’s implemented in a 16 x 16 MIN. 

network), which is also called the effective packet departure rate. 
An alternative design for coordination of occupancy monitors and 

flow-throttles is by direct propagation of control signals. To pass 
congestion condition from an occupancy monitor to its flow-throttles, 
an active occupancy monitor located at stage h asserts a block-signal 
to its neighbors at stage h - 1. A switch S, at stage h - 1 that receives 
an asserted block-signal propagates it backward to its neighbors at 
stage h - 2, with one additional hot-address line denoting the outport 
of S, that is connected to the asserted occupancy monitor. Then, 
S,I and Sg2, both of which are connected to the input ports of S,, 
continue to propagate the block-signals and the hot-address signals 
one more stage, after adding one more bit denoting the outport of 
S,, #( Sy2 ) that is connected to S,, to the received hot-address lines. 
This approach is more suitable for the case when the occupancy 
monitors are very close to processors. Since our simulation results 
show that placing the occupancy monitors on stages 2 and 3 yields 
best performance even under extremely high hot-access rates, the 
hardware costs of both schemes are reasonably low. A 16 x 16 MIN 
with embedded CUTH’s is illustrated in Fig. I .  

To reduce the packet blocking effect under congestion, we modify 
the conventional first-in-first-out (FIFO) buffers into a parallel- 
access-buffers (PAB) structure. Based on the PAB structure, cold 
packets need not be blocked in congested switches in the presence 
of hot spots. The circuit design of the PAB is illustrated in Fig. 2, in 
which a packet-selector is associated with each buffer in the PAB to 
control movement of the packet, if any. RD, denotes the existence of 
a packet in the ith buffer of a PAB. The Packet-in, in-enable, queue- 
full and RD,’s together decide where to insert a new packet into the 
PAB. This part of control circuits is also necessary for conventional 
FIFO-buffers. The rest of control signals are used for dynamic routing 
of blocked packets as follows. Whenever two packets from the head 
of the two PAB’s contend for the same output port, only one of the 
two requests will be granted, and the lost PAB is allowed to route 

occupulcy 
Monitors 

another packet, if any, destined for the other output port. To realize 
this operation, a tristate transmission gate array needs to be added to 
the output of each packet buffer, in addition to control signals. At the 
beginning of each routing cycle, a PAB issues a request signal, which 
can be the RD bit of the leading buffer, to the switching arbitrator. 
In the meantime the routing tag of the leading packet is also made 
available to the entire PAB. If the PAB wins the contention, then its 
leading packet is routed to the next stage. Otherwise, the Alternate 
signal will be set to 1 and propagated backward to the PAB. The first 
packet buffer with Altematein = 1, which has a different tag value 
from that of the leading packet, should assert its out-enable to route 
its packet to the switch at the next stage. In the meantime, the packet 
buffer needs to set its alternate-out to 0. Packets behind the routed 
packets will be shifted up one register after the grant-signal returns. A 
buffer can accept a shifted-up packet if its Advance signal is asserted. 
After a new packet arrives, the empty buffer next to the last occupied 
buffer will receive the packet and change its RD bit accordingly. Note 
that the additional complexity of the PAB over the FIFO buffers 
is limited, because only a small amount of combinational circuits 
would be needed to implement the algorithm. This way network 
resources can be released for servicing other packets in the shortest 
time possible. We also note that the buffer-occupancy monitors are 
quite flexible, because they can be embedded into any existing switch 
design in a nonintrusive manner. (Their interference with the normal 
operation of switches is minimal.) On the other hand, most existing, 
if not all, hot spot prevention algorithms are based on the detection 
of a large number of packets destined for a particular network output 
port. This usually leads to a solution which indeed tries to resolve 
the congestion already formed in the network. 

111. PERFORMANCE COMPARISON 
We compare the performance of our scheme against that of two 

simple yet effective schemes proposed in [ I ]  and [Z] by simulation. 
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Fig. 2. 
ules ('V = 512.1) = O.7.h = 0.1). 

Network throughput and packet delay with eight hot memory mod- 

Since the two schemes being compared were found to have similar 
behaviors, we explain only the experiment setup of the feedback 
control scheme [ I ] .  In the feedback control scheme, a memory module 
was detected as a "hot spot," if the number of consecutive packets 
destined for the memory module became greater than a threshold 
value T, where the optimal value of T was suggested in [ I ]  to be 4. 
Although this scheme was designed only to handle a single hot spot 
at a time, for fair comparison we assumed that it could detect multiple 
hot spots, and the "limiting-damping" scheme was incorporated in the 
simulation for its better performance. In all simulation runs, packet 
routing is synchronized, i.e., routing of packets in all switches is 
driven by one global clock. Each clock period is one network cycle, 
and it takes one network cycle to route a packet from one stage to 
next. 

Simulation results of different combinations of cold and hot packet 
rates have been obtained while varying parameters queue size, pt, , and 
pp. Due to the extremely large run-time and data storage requirements, 
we present only a few representative cases. In examples given below, 
the MIN connects 512 processors to 512 memory modules. The cold- 
packet generation rate is set to 0.7, and processors initially generate 
only cold packets for 100 cycles, and then generate hot packets for 
100 to 800 cycles. The hot accesses cease after 800 network cycles. 
The generation rates of hot packets are set to different values in 
different experimental runs. 

A critical issue that needs to be examined is where to embed the 
buffer-occupancy monitors. The system performance was not good if 
buffer-occupancy monitors and input blocking were embedded in the 
whole network. However, by placing the buffer-occupancy monitors 
only at the second and third stages, and the flow-throttles in the 
processors, we obtain the best performance in all the cases studied. 
This is because we can detect the blockage of cold and hot packets 

caused by the hot spot before the whole network becomes congested. 
Also, the downstream stages of the network are intentionally left 
uncontrolled so that all the hot packets already in the network 
can depart from the network at the maximum network service 
rate. 

Our experimental results show that, when the window size is 5 
to 7 cycles long, congestion can be prevented with relatively little 
fluctuation in the network throughput and packet delay. When the 
window size was set to 8 cycles or longer, the control algorithm 
could not respond to the formation of congestion tree in time, 
and a notable throughput loss was registered. On the other hand, 
if the window size was set to 4 cycles or shorter, the network 
throughput fluctuates, because of over-reaction to transient traffic 
fluctuation. 

The parameter ph is dynamically sampled from the background 
traffic when the CUTH is at its passive state. The value of pe 
reflects the condition that allows new packets to enter an area that 
was detected to have been congested. An interesting observation is 
that for a wide range of values, pc has relatively little impact on 
the network throughput under the congestion condition, but it has 
a significant impact on the packet delay, as confirmed in numerous 
runs of simulation. The use of a smaller p[  implies that we allow 
packets to enter a previously-congested area only after much of the 
congestion had disappeared. The use of a large pr value implies that 
we allow packets to enter the previously-congested area shortly after 
the congestion condition eased up. Therefore, with a high p~ value 
the packet delay tends to increase (moderately fast). But the packet 
delay for hot spots remains stable if a low p [  value is used, since 
packets already in the network will receive a better service. 

The effect of p(  value on the network throughput was very 
limited, because, when a congested network is being controlled, a 
large number of packets will likely be blocked at processors. Thus, 
whenever a throttle allows packets to enter the network, a large 
number of packets will try to enter the network, thus increasing 
the network throughput. In the meantime, whenever the congestion 
condition is detected (based on the / l h  value), the flow-throttle will 
block packets. Therefore, the network throughput can be sustained 
for a wide range of p t  values. Moreover, the throttles operate in a 
distributed manner. At any instant only some of the flow-throttles are 
blocking packets, thus making the network throughput much more 
stable than that of any centralized algorithm. From our experiments, 
we found that the packet delay becomes notably high and fluctuating 
if pp > 0.3, but its effect on the network throughput was insignificant. 
As a result, the pf value was set to 0.1 to achieve a high network 
throughput with negligible fluctuation in the routing delay. 

We observed that the two schemes being compared worked well 
when the hot-packet request rates were relatively low. but their 
network throughputs were reduced to 0. I when the hot-packet request 
rate from each processor is greater than 0.1. For Scott and Sohi's 
scheme, this is mainly because of the relatively slow detection of 
hot spots, and thus, at a high hot-access rate; there were already 
too many hot packets in the congestion tree before detecting a hot 
memory, as pointed out in [l]. For Peir-Lee's scheme, hot packets 
could enter the network even after a hot spot was detected, thus 
making it difficult to dissipate the hot packets already in the network 
when the hot-packet generation rate was high. When the hot-memory 
request rate was 0.03 or lower, our scheme was only slightly better 
than the other two schemes being compared. However, our control 
scheme was shown to be much better than the other two when the 
hot-memory request rate was higher than 0.03, regardless of the 
number of hot spots in the system. The network throughputs and 
packet delays under the three schemes for a 512 x 512 MIN are 
plotted in Fig. 3, in which p and h denote the cold and hot packet 
generation rates by each processor, respectively. In addition, buffer- 
occupancy monitors are placed at the second and third stages. Since 



540 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6. NO. 5 ,  MAY 1995 

400 500 600 700 800 900  1000 -. _ _ _  0 100 200 JOY 

0 . 6  0 . 5  
0 .4  
0 . 3  
0 . 2  0.1 

0 100 200 300 400 500 600 100 BOO 900 1000 

o 100 200 300 aoa sa0 600 loo goo 900 iaaa 

120 

30 
is 

0 100  200  300 400 500 600  700 800 900 1000 

0 100 200 300 400 500 600 100  800 900 1000 

1 BO 

2 ::s 
i: ;! 

0 
0 100 ZOO 300 400 500 600 700 800 900 1000 

Fig 3 
ule? (.V = 512.1) = 0 7 . h  = 0 1 )  

Network throughput and packet dealy with eight hot memory mod- 

the network was far less congested in our scheme, the effective (cold) 
packet generation rate-which was the actual (cold) packet output 
rate from processors-under our scheme was much higher than that 
of the two schemes being compared, as can be seen from Fig. 4. 
In  these figures, 11 denotes the background packet generation rate, 
and h denotes the hot-packet generation rate in  each processor. After 
comparing our scheme with the other two, we proceeded to study the 
performance impact of network sizes on our control scheme, and we 
observed little performance difference. 

All the performance results reported so far are based on the 
assumption that it takes one cycle network for the congestion mon- 
itor to inform the flow throttles. The network performances under 
different combinations of the window size and message delay are 
also evaluated through simulation. When the message delay was 
in the range of 1 to 4. no notable performance degradation was 
observed. So. it was important to keep the message delay as short 
as possible. 

IV. CONCLUSION 
We have introduced a cost-effective congestion detection and 

prevention scheme for packet-switched MIN’s. Our simulation results 
show that our scheme can sustain the network throughput under 
extremely nonuniform traffic. The effectiveness of our scheme stems 
from the facts that I )  it detects network congestion caused by 
hot spots, instead of the hot spots themselves, and 2) excessive 
packets are not allowed to enter the network, so that packets blocked 
in the network can be dicsipated quickly. Our scheme can be 
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hot memory modules (.V = 512.1’ = O.7.h = 0.1). 

Cold and hot packets generated under different schemes with eight 

implemented with simple, inexpensive hardware mechanisms, making 
it an attractive solution to prevention of network congestion. 
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Properties of Generalized Branch 
and Combine Clock Networks 

Ahmed El-Amawy and Priyalal Kulasinghe 

Abstract-In a recent development a new clock distribution scheme has 
been introduced. The scheme called Branch-and-Combine or BaC, is the 
first to guarantee constant skew bound regardless of network size. In this 
paper we generalize and extend the work on BaC networks. Our study 
takes the approach of defining a general graph theoretic model which 
is then utilized to define a general network model taking into account 
node function. We use the models to establish some interesting results on 
clocking paths, node input sequences, node inputs’ relative timings, and 
skew bound. We prove that a network adhering to our general model 
is stable (will not oscillate) despite its cyclic nature. We also prove that 
no tree of any kind can be used to distribute the clock in two or more 
dimensions such that skew bound is constant. The paper then exploits the 
derived properties to describe the inherent interplay between topology, 
timing, node function, and skew bound. 

Zndex Terms-Branch-and-combine network, clock distribution, skew 
bound, synchronous system, VLSI, large system, network stability, cyclic 
clock networks. 
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1. INTRODUCTION 
In order to meet the ever increasing demand for higher computing 

power, the size and complexity of computing systems have grown 
steadily. Clock skew has been widely recognized as a major problem 
in implementing very large synchronous systems. Typically, a single 
global clock is used to provide the basic timing and synchronization 
mechanism for different parts of the system. Due to several factors 
such as variation in buffer delays, variation in signal propagation 
delays on wires, and different threshold voltages, clocking events 
generally reach clocked cells at different times. The maximum 
difference in arrival times at two cells, which directly communicate, is 
what we mean by clock skew. Many researchers have investigated the 
clock skew problem as exemplified by the work in [ 11-[SI, [ 101-[13]. 
In one study Fisher and Kung [7] have shown that if an H-Tree i s  
used to clock a 2-D mesh of processors, i t  is impossible to guarantee 
a constant skew upper bound, provided that small delay variations 
are not ignored. 

In a recent development, El-Amawy [3], [5] introduced a novel 
clock distribution scheme called Brunch and Combine (or BaC for 
short) which is the first to guarantee a constant upper skew bound 
irrespective of network size. The scheme distributes the global clock 
through a set of simple interconnected nodes whose main function 
is to process the clock signal such that it adheres to certain timing 
constraints. In [3]-151, three BaC network designs for clocking a 2- 
D mesh of processors have been introduced. A single network was 
analyzed in detail in [SI and shown to be stable under the assumed 
model. Also skew was shown to be bounded above by a constant 
for each of the three networks. In [ 6 ] ,  BaC clocking was compared 
to H-tree clocking of a 2-D mesh of processors in a VLSI context. 
That study shows that the BaC clocking is superior to the H-tree in 
almost all aspects, for medium and large size meshes. 

In this paper we extend, generalize, and improve on the previous 
work on BaC networks. We define a general class of BaC networks. 
We do not contine our study to any particular topology or dimension- 
ality. Instead we base our study on a graph theoretic model which only 
requires that each pair of adjacent vertices be included in a directed 
cycle of finite length. We define a network model which specifies 
the underlying assumptions such as node function and clock signal 
constraints which are dependent on the properties of the underlying 
graph representation. We then utilize the network model to derive 
important properties of the generalized class of BaC networks. We 
prove that a network adhering to our general model is stable (will 
not oscillate) despite its cyclic nature. We prove that nodes will 
be triggered via the shortest delay paths from the source and that 
clocking events will reach nodes in proper order separated in time by 
at least nA, where A is the maximum delay through a node and one 
of its output links. We further prove that if small delay variations are 
not ignored, it is impossible to guarantee constant upper bound on 
clock skew in the absence of cycles in any clock distribution network 
of two or more dimensions. This establishes the necessity of cycles in 
the clock distribution networks clocking large data networks; which 
is the characterizing feature of BaC networks. The implication of 
this is that it will not be possible to design a clock network which 
provides constant upper bound on skew in ni -D networks ( m  > 1) 
using a distribution tree of any kind. 

Based on the derived properties we are able to predict maximum 
clocking rates which are almost double those predicted in [ 5 ] ,  [8]. 
We describe a simple method for achieving these new bounds on 
maximum clocking rates for BaC networks. 

Section I1 introduces and defines the generalized graph and network 
models. Section 111 represents the main body of the paper. In it we 
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