
On Reconfiguration Latency in
Fault-Tolerant Syst ems1

Hagbae Kim and Kang G. Shin
Real-Time Computing Laboratory, Dept. of Elec. Eng. and Comput. Sci

The University of Michigan, Ann Arbor, MI 48109-2122

Chuck Roark
Defense Systems & Electronics Group, Texas Instruments Incorporated

P.O. Box 660246, MS 3148, Dallas, TX 75266

ABSTRACT

Digital computers embedded in critical applications such as flight controls should
be equipped with appropriate fault-tolerance schemes to ensure their reliable and
safe operation in the presence of component failures. System reconfiguration, which
enhances reliability by dynamically using spatial redundancy, is generally the most
time-consuming faul t- /error- handling stage.

The reconfigurutzon latency, defined as the time taken for reconfiguring a system
upon failure detection or mode change, depends on many parameters, including the
size of application programs and data, the CPU and memory speed, built-in testing
capabilities, the type (cold, warm, or hot) of spares to use, the system architecture,
and the reconfiguration strategy used. In this paper, we classify the reconfigura-
tion techniques into four types: reconfigurable duplication, reconfigurable N-Modular
Redundancy (NMR), backup sparing, and graceful degradation. For each type of
reconfiguration, we (i) evaluate the reconfiguration latency by using several parame-
ters accounting for the aforementioned parameters, and (ii) determine if this type of
reconfiguration can meet the application required latency.

Index Terms - Reconfiguration latency, dynamic redundancy, processor and task
parameters, backup sparing, graceful degradation, cold, warm, and hot spares

'The work reported was supported in part by a Texas Instruments Grant, the Office of Naval
Research under Grant N00014-91-J-1115 and by the NASA under Grant NAG-1-1120. Any opin-
ions, findings. and conclusions or recommendations expressed in this paper are those of the authors
and do not necessarily reflect the view of the funding agencies.

0-7803-24734/95/$4.00 e 1995 IEEE 287

I. INTRODUCTION

Safety-critical applications like flight controls require their controller computers
to be equipped with fault-tolerance schemes to perform their intended function even
in the case of component failures, thus meeting stringent reliability requirements.
Fault-tolerance is generally achieved via time and/or spatial redundancy. System
reconfiguration upon component failure(s) is a common form of dynamic use of spatial
redundancy. Upon detection of a component failure, the system is reconfigured to
prevent the faulty component from affecting system operation by disconnecting it
from the rest of the system.

In a real-time application which requires quick computer responses, the reconfigu-
ration latency - defined as the time required for disconnecting the faulty component.
bringing in a replacement component and loading it with the application program and
data - is a key to system reliability. because reconfiguration is generally the most
time-consuming fault-/error- handling stage.

although many researchers have proposed reconfiguration algorithms for various
system architectures [1,2.6,8,12], little work has been done to evaluate the reconfig-
uration latency. In [5] , the reconfiguration time was measured as the detection and
isolation time via fault-injection experiments in the Fault-Tolerant Multiprocessor
(FTMP), and the average reconfiguration time was experimentally measured to be
82 milliseconds on the FTMP [ll], which is consumed for switching tasks and setting
up interconnection. Roark e t al. [9] reported the reconfiguration latency to range
from 40-90 milliseconds for specific load-module sizes of several demonstration ap-
plications in a pooled-spares system implemented in the Dynamic Reconfiguration
Demonstration System (DRDS) Program.2 Although several aspects of reconfig-
uration affecting the reconfiguration latency were mentioned [3], the reconfiguration
latency was modeled as a certain variable lying in a deterministic interval, as was
done in [9].

In this paper we focus on the reconfiguration latency by analyzing the effects of
all parameters associated with the reconfiguration process. We classify reconfigura-
tion techniques into four types: reconfigurable duplication, reconfigurable N-Modular
Redundancy (NMR). backup sparing, and graceful degradation. For each type of
reconfiguration, we describe all the features of reconfiguration, which are generally
composed of switching in power and bus connections, running power-up Built-In-
Tests (BITS) on a spare, loading software programs and data from a permanent

'The DRDS Program is being developed to prove the feasibility of pooled spares for next gener-
ation weapon systems by Texas Instruments (TI) Incorporated under a contract from the Naval Air
Warfare Center, Indianapolis, IN.

288

storage medium to the spare CPU and memory, and initializing software. First, we
define several parameters that account for task size, CPU speed, the transfer rate of
bus/interconnection, the number of interconnections (links) between a faulty module
and its replacement module, and the types of spares. We evaluate qualitative and
quantitative effects of these parameters on the reconfiguration latency for the four
types of reconfiguration.

The paper is organized as follows. In Section I1 we specify task size, and processor
& system capabilities by defining several parameters. The assumptions required to
formalize our analysis are also presented there. In Section 111 we investigate the
reconfiguration latency for each of the four types of reconfiguration as a function of
the parameters defined in Section 11. Section IV presents an example of evaluating and
using the reconfiguration latency, especially for backup sparing. The paper concludes
with Section V.

11. PRELIMINARIES

When a failure is detected and its source is identified, the system (hardware and/or
software) should be reconfigured to remove the failed component from active use. This
process of changing the system organization or component interconnection may be
invoked due to a mode change or a component failure, and it may occur during a
non-operational period. However, throughout the paper we are primarily concerned
with dynamic reconfiguration that enables the system to tolerate dynamically- and
randomly- occurring faults during a mission. The time required for dynamic reconfig-
uration is critical to the operation of a real-time system, because reconfiguration -
which is usually the most time-consuming fault-/error- handling stage - is the only
means to remove any permanent fault and because after completing reconfiguration,
the system must, complete each control task within a certain time limit, called the
control system deadline [4]. For the purpose of our analysis, we assume prompt and
perfect fault detection and isolation. (Note that fault detection and isolation is itself
an important topic and must precede the reconfiguration process.)

We define here several parameters that affect the reconfiguration latency. First,
the application program or task determines the size of application code and data to
be reloaded. (We assume that the core operating-system components are preloaded.)
It is well-known that software download, if required, has the greatest impact on the
reconfiguration latency. Let ST be the task size measured in li'bytes. The reconfig-
uration latency may also depend on the speed of each individual processor, because
the CPU speed greatly affects the program download time as well as the initialization
time. Note that the time required for setting up the transfer, the operating system

289

overhead, and the processing time for the transfer are intrinsically sensitive to the
CPU speed. Let sc be the CPU speed measured in MIPS. Bus,/interconnection speed
also influences the program download time, especially when this speed is slower than
memory speed. This speed is determined by bus/interconnection bandwidth, network
OS, and memory access time. Let SB be the bus/interconnection speed measured in
,Ubytes/second.

In case of graceful degradation, task redistribution is required to transfer the
tasks of a faulty module to the remaining active modules, where the transfer time
depends upon the system architecture and the adopted reconfiguration algorithm.
The reconfiguration algorithm decides which module(s) to take over the tasks of a
faulty module. Let n R be the number of interconnections between the faulty module
and the module receiving the unfinished remaining tasks of the faulty module.

111. EVALUATION OF RECONFIGURATION LATENCY

A majority of reconfiguration techniques are included in four classes of dynamic re-
dundancy: (i) reconfigurable duplication, (ii) reconfigurable IVMR, (iii) backup spar-
ing, and (iv) graceful degradation. In this section, we derive the reconfiguration
latency, denoted as t,l, by investigating the effects of several parameters such as task
size, processor capabilities, the system architecture, and the reconfiguration strategy
for the four classes of dynamic reconfiguration.

A . Reconfigurable Duplication

A duplicated system is generally used to provide the capability of fault detection
by comparing two modules’ output^.^ When a fault is detected by a mismatch
between two outputs, the duplicated system can be reconfigured by disconnecting
the faulty module - identified by a diagnostic or test program, a watchdog timer,
a self-checking circuit - and connecting a ‘standby spare’ running in parallel with
the active module. .As shown in Figure 1, a signal generated by a detected mismatch
during comparison triggers reconfiguration through the control line.

Let t , be the time needed for disconnecting the active module and then connecting
the standby spare to the output line, and let t I be the time (overhead) required for
initializing hardware, a microprogram (to set the various control bits or registers),
and the main application program, which enables the new module to have a smooth
transition into full control of the system.) Then, the reconfiguration latency is equal

3A module is defined as a logical block mapping a binary input vector to a binary output vector.

290

Active Processor

Figure 1: Structure of reconfigurable duplication.

" Control ~ i n e

Standby Processor

to the time required for switching two modules and initializing the standby module

t,l = t , + i1. (3.1

__c

where t,.[= t , if the standby module is always executing the same task for comparison-
based fault detection. Since the standby spare is generally ready for performing the
same tasks as the active module, the process of loading program and data is not
necessary. Thus, the reconfiguration latency depends on the switching and/or initial-
ization delay. Note that duplicated modules are generally located on the same bus
and the bus interface unit in each module performs the switching function.

Comparator -

B. Reconfiyurable NMR

The combination of N-modular redundancy and standby sparing, known as hybrid
redundancy, is a promising approach to meeting the requirement. of high reliability
and availability. An NMR core is formed by connecting N identical modules to
a majority voter, and several extra modules are provided as standby spares. The
output of a faulty module differs from the majority-vote result, which is indicated by
a disagreement detector. The reconfiguration process of this scheme corresponds to
switching the faulty module with one of standby modules, which is also signaled by
a disagreement detector.

Let tzrr and tzn be, respectively, the time required for cutting off the faulty module
and the time required for switching in the standby module and settling power-up
transients, and let t , = tzff -I- tz". Let t b and t d be the time required for power-up
BIT on the standby module and the time required for download and initialization on
the spare module, respectively.

A switching strategy decides which modules to be switched in to replace the

29 1

faulty module in the NMR core. In [lo], two switching designs were proposed: (i)
a sequentzal switch where all spares are ordered and the 2-th spare is switched in
to replace the i- th faulty module and (ii) a rotary switch where the spares arrange
themselves in numerically increasing order of the voter positions and the lowest-
numbered spare rotates to the highest voter position. The time spent for switching
(t z f f and ti") depends on the adopted switching strategy and the switch complexity
that intrinsically relies on the number of spares and the core size. The states of
spares are also a key factor in determining the reconfiguration latency. A module
in an unpowered state probably has a lower failure rate, and hence, one may keep
the standby modules unpowered until they are switched in. In such a case, the
reconfiguration latency significantly increases due to the time (= t b + i d) required to
power up the selected spare and load or load & initialize the software (the application
program and/or data of intermediate results) on the spare.

Considering all the parameters mentioned above, we can compute the reconfigu-
ration latency - which depends on the switching strategy and the states of standby
modules - as:

t r [= f z f f + tz" + t b + t d , (3 4

where t b depends on the coverage of the BIT, the complexity of the spare, and BIT
software (requiring a certain degree of hardware assistance). In Section C. we will
examine the factors affecting t d and derive t d using the parameters introduced in Sec-
tion 11.

C. Backup Sparing

In addition to hybrid redundancy using the NMR core, the concept of backup
sparing can be used in general multiprocessor structures like meshes and hypercubes.
If any spare module can be used to replace any other working module, the spares
are said to be bbpooled". An active module periodically checkpoints its state on its
backups so that a selected backup from the set of pooled spares may have state
information to maintain consistency. In other words, the new active module restores
the last checkpoint and re-executes all the operations that were executed by the
previous active module since the checkpoint. The new active module can, then, start
executing the remaining unfinished tasks and service new requests from the consistent
state.

Let t , be the time taken for selecting a spare to take over the remaining unfinished
tasks of the faulty module. In case of dedicated spares which associate some spares
locally with specific groups of active modules in order to minimize interconnection
complexity, t , can be made negligible by using well-controlled procedures. However,

292

Cold spares
I- 4

Switching-off - Selecting - Power-up - BIT - Download - Ini t iahation
-

Figure 2: Reconfiguration steps of backup sparing

it could be considerable if a reconfiguration scheme is to be used for non-dedicated
spares.

As shown in Figure 2, the reconfiguration process for this class is generally com-
posed of (i) switching in power and bus connections, (i i) running BIT on the selected
spare module, (iii) loading programs and data, (iv) initializing the software, some
steps of which are not always needed depending on the state of on-line spares. When
a spare to be switched in is determined upon fault detection and isolation. the se-
lected spare is powered up and ready to become active. Since unpowered modules are
likely to have a lower failure rate and the standby power requirements are lower than
the active ones. unpowered spares are often kept in the form of cold spares despite
their large time overhead to become active. Extensive testing is usually done dur-
ing power-up before starting any normal operation, such as a comprehensive memory
test. As mentioned in Section B, the time required for this power-up BIT (t b) depends
upon the complexity of the module, the accuracy of BIT, and the degree of hardware
support for BIT software. In case cold spares are used, the reconfiguration latency is
computed as:

(3 . 3) t - t o f f
rl - + t w + tzn + t b + i d .

While cold spares require the time to settle power-up transients and to run BIT
ensuring that a healthy (nonfaulty) module is switched in the system, warm spares
are kept powered up on-line ready to load and run the application software. Using
Figure 2, we get the reconfiguration latency of warm spares:

Note that the term t:ff + t , in the above expressions (3 . 3) and (3.4) needs to be
replaced by m m {t:ff, t w) if cutting off the faulty module and selecting a replacement
module can be done in parallel.

293

I

The software program that is downloaded from a certain permanent storage to a
spare CPU generally causes the largest delay. Let to, tp, tg, and tI be the time re-
quired for setting up data transfer plus the operating system overhead, the processing
time for the transfer, the transfer time on the bus/interconnection, and the time for
initialization, respectively. Then, for a task of size S T , we have:

where to, tp, and t I are sensitive to the change of CPU speed, and tg is sensitive
to the change of bus/interconnection speed. If these parameters are measured to
be {t:,tL,t:,t:} for a certain protocol with s: and s i , the estimated values of
{ t o , t ~ , t p , t ~ } for different sc and S B are calculated by:

where cc and CB are the coefficients indicating the degree of change in { to , tl, tp} and
tg based on sc and s g , respectively. Although there are other factors affecting cc
and cg (for example. cc and CB also depend on the inherent synchronization factors
and the type of buffering, respectively), we consider only the effects of sc and S B

because they have most predominant effects. cc and cg are inversely proportional
to the module throughput (CPU speed sc) and transfer rate of bus/interconnection
(bus/interconnection speed sB), respectively. (Note that cc and cg are decreased by
using better sc and SB.) Hence, we get

(3.7)

For example, from the actual measurements of a pooled-spares system imple-
mented in Phase 1 of the DRDS Program in [7], i.e., 2.2 1750A Digital Avionics In-
formation System (DAIS) MIPS and sg = 4.21 [Mbytes/second] (bus bandwidth 200
[Mbyteslsecond] for 16 bit bus-width and memory access time 250 [nanoseconds]),
we obtain:

t: + t: = 29.8 [milliseconds],
t; = 0.2375 [milliseconds/l Ii'byte],
t: = 0.3375 [milliseconds/lKbyte],

where cc = 2.2/sc and CB = 4.21/s~.

By using Eqs. (3.5), (3.6), and (3.7), we estimate the value of t d under the various
conditions of S T , sc and sg. When we change only the task size ST while keeping s c

294

and SB constant, we obtain a h e a r equation for td:

td = AST + B,

where

(3.8)

0
S C 0

S C
B = t o + t l = cc(t ; + t ;) = -(to + t?) .

When only the CPV speed sc varies for fixed ST and S B , we obtain an equation
containing two constants A and B for i d :

where

Likewise, for various S B values we obtain td as:

A
S B

td = - + B,

(3.9)

(3.10)

where

In case of hot spares that are always on-line executing the target software in paral-
lel with the active hardware (dedicated hot spares) as in Section A, the reconfiguration
latency reduces to:

t T l - - t o f f s + t I , (3.11)

which is suitable for applications requiring short latencies because all the steps but
switching-off and initialization are not necessary for hot spares.

D. Graceful Degradation

When an error is detected and the faulty module is located in a multiprocessor
system, the system is reconfigured to isolate the faulty module from the rest of the

system. The faulty module may be replaced by a backup spare as discussed in Sec-
tion C, or it may simply be switched off, thus degrading the system capability, i.e.,
graceful degradation. This technique uses redundant hardware as part of the nor-
mal operating resources at all times and allows the system performance to degrade
gracefully while compensating for failures.

In a complex multiprocessor like a mesh or a hypercube, faulty modules are dis-
connected upon fault detection and identification, because a faulty module cannot be
immediately repaired in many cases (nor replaced in the mode of graceful degrada-
tion). The remaining modules should be reconfigured into a small connected network
and/or tasks are also redistributed by assigning the tasks of the failed modules to
the remaining functional modules. For our analysis, we assume that each module can
test its neighboring modules to determine their states (fault or fault-free), and the
neighboring modules exchange predetermined test information and intermediate task
results a t regular intervals. The intermediate results of each module are stored in
some of its neighbors and will be used by those neighbors for reconfiguration in case
the module fails. We also assume that this procedure of testing and updating the
intermediate results is synchronized throughout the system.

The reconfiguration latency is equal to the time spent for transferring and ini-
tializing the unfinished tasks of faulty modules. We assume that it takes t , for a
certain reconfiguration strategy to decide which modules to take over the tasks of
the faulty modules, as has been done in various system architectures [1,2,6,8,12]. We
define n R as the number of interconnections between the faulty module and a module
taking over the tasks of the faulty module. Let t , be the time to transfer a unit of
task (say 1 [Ir 'byte]) between the faulty module and its replacement module, which
is called the network latency and depends upon the speed/bandwidth of an intercon-
nection network and the distance (number of interconnections/links to go through).
The network latency includes both the overhead to prepare for transferring a task
in the source module (address generation, packetizing, etc.) and the overhead in the
destination module induced due to acknowledgement, error check, and depacketizing.
If the total size of the remaining unfinished tasks is ST and the tasks are transferred
in the block-data transfer mode, in which one unit of latency is required for a block
of dataltask elements. the reconfiguration latency is:

(3.12)

where
t , = to + tI + (n R - l)h ,

and the effects of sc and s g upon {to,tl,tp,tg} were described in Section C. In
the mode of single-data transfer where each data/task element requires one unit of

296

Table 1: t d for various task sizes (S T) [KBytes].

S T

t d

1 2 4 8 16 32 64] 128
30.38 30.95 32.1 34.4 39 48.2 I 66.6 I 103.4

Table 2: t d for various CPU speeds (s c) [M1PL!5']

-

CC

t d

ii Sr 11 1 1 2 1 2 . 2 1 5 1 10 I 50 1 100 I 1000 1 1
I

2.2 1.1 1 0.44 0.22 0.044 0.022 0.0022
81.24 42.52 39 19.29 11.54 5.35 4.57 3.88

latency and the time to transfer it, the reconfiguration latency becomes:

(3.13)

IV. EXAMPLE

In this section, we present an example of evaluating the reconfiguration latency
for the demonstration system of [7] using milliseconds as the basic time unit. In
the measurements of a pooled-spares system implemented in Phase 1 of the DRDS
Program using 2.2 DAIS MIPS experimental system, the data of {t:, t:, t:] is given
as {28.8,0.2375,0.3375} with the condition of ST = 16 [Kby te] , s'& = 2.2 [M I P S] ,
and sg = 4.21 [li 'bytes/millisecond]. Suppose that t:ff = 1 > w t = 5, tzn = 80.
t b = 20, and ty = 1 are observed, and { t z f f , t , , tb , t?} are inversely proportional to
the CPU speed sc.

First, we begin with evaluating the time required for download and initialization
t d . which is most sensitive to task size and processor-capability parameters. Under
the given condition, t d is computed as 28.8 + 1 + 16 x (0.2375 + 0.337.5) = 39. If we
change S T , se. or s g , then id ' s are estimated using Eqs. (3.8)) (3.9) and (3.10), as
given in Tables 1, 2 , and 3.

Table 3: t d for various bus speeds (sg) [h'bytes/mzllisecond].
c

sg 2.105 4.21 8.42 16.84 I 33.68 I 42.1 I 67.36 I 84.2
1 0.5 0.25 I 0.125 I 0.1 I 0.0625 I 0.05

297

I I I I I I

cold
220%

I \ warm ++ 1

6 o t \2 1
I I I I I

1

Figure 3: Reconfiguration
[K by t es / mi 11 i seconds].

Similarly, we derive t ,

2 5 10 50 100 200 500

CPU Speed (S C) [M I P S]

atency vs. CPU speed for three types of spares: sg = 4.21

under various conditions, i.e., type of spares, the CPU
speed, and the bus/interconnection speed, with a fixed s~ = 16 [K b y t e s] . Figure 3
plots the value of t,! while varying sc over three types of spares. Since most steps of
system reconfiguration are sensitive to the CPU speed, t,l is decreased significantly
as s c increases. However, t,l of cold spares is not decreased below a certain value due
to the insensitiveness of the time required for power-up transients to settle. The t,l
values of both warm spares and cold spares are not scaled directly with the CPU speed
(but hot spares are directly scaled down) because the bus/interconnection transfer
time t B as well as tzn is independent of SC. In Figure 4, we also plot t,l while varying
SB. In this case, t,l does not significantly change because the time required for only
one step in system reconfiguration (t B) relies on s g .

Cold spares are generally useful for applications that require low fault rates of
spares (faults occur more frequently in powered states) and do not have tight control
system deadlines. In this type of spares, it takes longer to become operational due

298

I I 1 I I I I I
cold -

warm * -
hot 4 3 -

-

A
U

140 - -

20
15
10

5

50
1 I I I I I I
I I I I I I I

-

-

r-

n n n n n n

I I I I I I

c3 Y Y €1

25 1 I I I I I I I
I I I I I I

Figure 4: Reconfiguration latency vs. bus/interconnection speed for three types of
spares: sc: = 2.2 [M I P S] .

mainly to large tzn and t b relative to the time required for other steps of reconfigura-
tion. In Section 111, we observed that the time required for most steps with cold (and
warm) spares depends on the CPU speed. A fast CPU speed significantly decreases
t,r of cold or warm spares as shown in Figure 3, which allows cold or warm spares
to be used effectively for meeting a certain system deadline. A higher transfer rate
of bus/interconnection enhances the usefulness of cold or warm spares, as shown in
Figure 4. However, only hot spares can satisfy stringent control system deadlines,
requiring the reconfiguration latency of less than 1 [millisecond] in the example, for
which sc should be improved to have tens of MIPS for even hot spares.

299

V. CONCLUSION

We evaluated the reconfiguration latency of four classes of reconfiguration by using
the time required for all reconfiguration steps. Specifically, we analyzed the effects of
the task size, the CPU speed, and the bus/interconnection speed (and the number of
links between a faulty module and its replacement module) upon the download and
initialization time, which is a predominant contributor to the reconfiguration latency
in backup sparing as well as graceful degradation. The reconfiguration latency can
be decreased to meet a given control system deadline by using, for example, a fast
CPC or a high transfer rate of bus/interconnection, in case of cold or warm spares.
However, hot spares should be used to satisfy a tight control system deadline, because
the time required for some steps of reconfiguration in using cold (or warm) spares is
insensitive to these improved capabilities.

References

[l] P. Banerjee, “Strategies for reconfiguing hypercubes under faults,” in Proc. both Annu.
Int. Symp. on Fault-Tolerant Computing, 1990.

[2] C. Chen, A. Feng, T. Kikuno, and K. Tori, “Reconfiguration algorithm for fault-
tolerant arrays with minimum number of dangerous processors,” in Proc. 21st Annu.
Int. Synip. on Fault-Tolerant Computing, 1991.

[3] H. Kim and K. G. Shin, “Evaluation of fault-tolerance latency from real-time applica-
tion’s perspectives,” Technical Report CSE-TR-201-94, CSE Division, EECS Depart-
ment, The University of Michigan, 1994.

[4] H. Kim and K . G. Shin, “On the maximum feedback delay in a linearlnonlinear control
system with input disturbances caused by controller-computer failures,” IEEE Trans.
on Control Systems Technology, vol. 2 , no. 2, pp. 110-122, June 1994.

[5] J. H. Lala, “Fault detection, isolation and configuration in FTMP: Methods and ex-
perimental results,” in Proc. 5th IEEE/AIAA Digital Avionics Systems Conf., pp.
2 1.3.1-2 1.3.9. 1983,

[6] Y. H. Lee and K. G. Shin, “Optimal reconfiguration strategy for a degradable multi-
module computing system,” Journal of the ACM., vol. 34, pp. 326-348, April 1987.

[7] D. Paul, C. Roark, and D. Struble, “Technical report on phase one of the dynamic
reconfiguration demonstration system program,” Technical report, Texas Instruments,
Inc. NAWC-DRDS-P1-TR-0003, April 1992.

300

[8] C. V. Ramamoorthy and Y. W. Eva Ma, “Optimal reconfiguration strategies for re-
configurable systems with no repair,” IEEE Trans. on Computers, vol. (2-35: no. 3, pp.
278-280, March 1986.

[9] C. Roark, D. Paul, D. Struble, D. Kohalmi, and J. Newport, “Pooled spares and
dynamic reconfiguration,” in Proceedings of NAECON’93, pp. 173-179, May 1993.

[lo] D. P. Siewiorek and E. J. McCluskey, “Switch complexity in systems with hybrid
redundancy,” IEEE Trans. on Computers, vol. C-22, no. 3, pp. 276-283, March 1973.

[ll] T. B. Smith I11 and J . H. Lala, “Development and evaulation of a fault-tolerant multi-
processor (FTMP) computer. Volume IV: FTMP executive summary. NASA Contract
Rep. 172286,” Technical report, NASA Langley Research Center, Langley, Va, February
1984.

[12] M. Uyar and A. Reeves, “Dynamic fault reconfiguration in a mesh-connected MIMD
environment,” IEEE Trans. on Computers, vol. 37, no. 10, pp. 1191-1205, October
1988.

301

I

