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Abstract 

There has been a n  increasing need of t imely and pre- 
dictable communication services for  embedded real-time sys- 
tems in automated factories and industrial process con- 
trols. Work has been done o n  real-time communication 
with deadline guarantees in point-to-point, token bus/token 
ring/FDDI, and D Q D B  (Distributed Queue Dual Bus)  net- 
works. However, due to  the random access nature of the 
C S M A / C D  type multiaccess networks, they are not suitable 
for applications with stringent timing constraints. In this 
paper, we consider real-time communication services with 
absolute deadline guarantees in multiaccess local area net- 
works equipped with a centralized scheduler, such as the SP- 
50 FieldBus [I], an industrial standard protocol for  process 
control and manufacturing applications. 

Similar to most token-passing networks, in a centralized- 
scheduling multiaccess network, the access t o  the bus is con- 
trolled by a token. Only the station currently holding the to- 
ken has the exclusive right to  use the multiaccess bus. Unlike 
the token bus, token ring, or FDDI network, the multiaccess 
network uses a centralized token scheduling scheme and the 
token need not be allocated to  the stations in a cyclic fashion. 
W e  show that the pinwheel [ , I  and the distance-constrained 
[3] scheduling techniques can be adapted to  schedule the to- 
ken  in centralized-scheduling multiaccess networks to guar- 
antee message deadlines. 

1 Introduction 

There has been an increasing need of timely and 
predictable communication services for embedded real- 
time systems in automated factories and industrial pro- 
cess controls. For example, an automated factory is 
usually composed of several workcells, each of which 
contains devices such as robots, sensors, and transport 
mechanisms. All devices in a workcell are connected via 
a local area network. Multiple workcells are then con- 
nected by bridges. A number of cooperating tasks col- 
lectively monitor and control manufacturing equipment 
and processes by communicating with one another via 
the underlying network. The ability to provide timely 
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and predictable inter-process communication is, thus, 
of great importance to the underlying network architec- 
ture and protocol because failure to meet the message- 
transmission deadlines may lead to a disaster. 

Several researchers have investigated the problem of 
guaranteeing the timely delivery of messages under dif- 
ferent network architectures and protocols. The real- 
t i m e  channel concept originally proposed by Ferrari 
and Verma [4] for the problem of meeting message- 
transmission deadlines in a wide area point-to-point 
network has been widely studied [5,6]. These stud- 
ies are mainly concerned with the problem of estab- 
lishing real-time point-to-point channels and provid- 
ing guarantees of maximum delivery delays. For local 
area network, IEEE 802.4 token bus network [7], IEEE 
802.5 token ring network [SI, and FDDI [9] adopt the 
t imed- token  m e d z u m  access controZ (MAC) protocol for 
providing bounded medium access times. Agrawal et 
al. [lo, 111 and Han et al. [la,  131 attempted to solve the 
synchronous bandwzdth allocation problem for FDDI 
networks to meet the protocol constraint while trans- 
mitting all synchronous messages before their dead- 
lines. Another protocol which aims to provide time- 
constrained communication services is the DQDB (Dis- 
tributed Queue Dual Bus) MAC protocol [14]. DQDB 
has been adopted by the IEEE as its candidate proto- 
col for metropolitan and local area networks. Saha et 
al. [15] and Han et al. [16] studied the issue of guaran- 
teeing the timely delivery of isochronous messages with 
hard deadlines in a DQDB network. However, due to 
the random access nature of the multiaccess networks 
that adopt the CSMA/CD (IEEE 802.3) protocol, it 
is hard to make deadline guarantees for these kinds 
of networks. Hence, CSMA/CD type multiaccess net- 
works are not suitable for applications requiring abso- 
lute deadline guarantees. 

In this paper, we consider real-time communi- 
cation services with absolute deadline guarantees 
in centralized-scheduling multiaccess local area net- 
works. Similar to most token-passing networks, in the 
centralized-scheduling multiaccess network, the access 
to the bus is controlled by a token. Only the station 
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that holds the token is allowed to transmit messages 
on the bus. Unlike a token bus, token ring, or FDDI 
network, which uses a distributed token-passing proto- 
col, we propose a centralized token scheduling scheme 
for the multiaccess network. In order to guarantee that 
each station on the multiaccess bus is allocated suffi- 
cient bandwidth for transmitting its time-critical mes- 
sages, a central controller is used to control the allo- 
cation and scheduling of the token. Since the central 
controller has the full control of the token, it has more 
flexibility to  achieve the goal of allocating bandwidth 
to real-time traffic for meeting message deadlines. Al- 
though our proposed token scheduling scheme is not re- 
stricted to any particular multiaccess network and can 
be used in most centralized-scheduling multiaccess net- 
works that meet some minimum architectural require- 
ments (to be described in Section 2), to facilitate our 
discussion, in the following we briefly describe the most 
relevant features of a particular network - the SP-50 
FieldBus [l], which is currently being studied by an In- 
strument Society of America (ISA) Standards Commit- 
tee and will soon become an international standard to 
support time-critical communications between automa- 
tion system devices in industrial control and manufac- 
turing systems. 

The entire network of the FieldBus is composed of 
several links, each of which is a multiaccess bus con- 
necting all the devices in a workcell. These multiaccess 
buses are further connected via bridges. In order to 
reduce communication latencies, unlike the OS1 seven 
layer model, the FieldBus has only three layers: physi- 
cal layer, data link layer, and application layer. In the 
data link layer of FieldBus, a Data Link Entity (DLE) is 
a logically active object, such as a copy of the execut- 
ing program, which can send/receive packets to/from 
the interconnection network and acts according to the 
data link layer protocol of FieldBus. Therefore, there 
could be more than one DLE on a station/node which 
is physically attached to the network. There are four 
classes of DLEs in the FieldBus data link layer: Ba- 
sic, Link Master (LM), Link Active Scheduler (LAS), 
and Bridge. Basic and LM classes are conceptually the 
same, except that the Basic class DLEs have only the 
minimum functions which are absolutely necessary for 
adequate operations on a FieldBus network, while the 
LM class DLEs are equipped with more functions such 
as that of cooperating with other LMs on the same link 
in establishing and sharing the link mastership. Unlike 
other popular timed-token protocols (e.g., token bus, 
token ring, and FDDI), FieldBus has a central control 
unit, the LAS DLE, for each link (multiaccess bus). 
There is always a copy of LAS DLE physically residing 
in the same node with each LM, and hence, each LM 

is capable of being a LAS. For each link, exactly one 
LAS is active at any time for scheduling messages on 
the link. It receives and responds to scheduling requests 
from all DLEs on the same link by allocating a token 
to one of these DLEs which then assumes the exclusive 
right to use the link over some time period specified in 
the token. The token is returned upon completion of 
its use, or assumed upon its expiration. That is, the 
LAS DLE is responsible for allocating and scheduling 
the token for real-time messages on the local link by 
sending the token, according to a scheduling scheme, to 
the next scheduled station with a specified time period 
during which the station can hold the token. There is 
at least one active LM on each link, which is responsible 
for detecting and recovering from the failure of the LAS. 
The active LMs contend to become the active LAS at 
the initialization or upon detecting the absence of the 
LAS. A Bridge DLE, which acts just like a normal LM 
DLE within a single link, performs a store-and-forward 
function to connect two or more separate multiaccess 
links (the function of the Bridge DLEs is out of the 
scope of this paper). 

Due to the nature of workcells in an automated fac- 
tory, most of time-critical communication is likely to 
take place between two peer DLEs on the same link, 
and hence, it can be handled by the local LAS. In this 
paper, we focus on the design of a token scheduling 
scheme that can be implemented in the LAS (or called 
the lank control mat, LCU, in the following discussion) 
to allocaie and schedule the token in such a way that 
each DLE on the local link will be allocated sufficient 
link bandwidth for guaranteeing the timely delivery of 
its real-time messages. 

The rest of the paper is organized as follows. In 
Section 2,  we describe the underlying network model 
and the real-time traffic characteristics. In Section 3, 
we propose a token scheduling scheme for real-time 
messages in a centralized-scheduling multiaccess net- 
work. In particular, we show how the prnwheel [2] and 
the dzstornce-constrazned [3] scheduling schemes can be 
adapted for the real-time communication problem ad- 
dressed in this paper without considering the token dis- 
patch overhead. In Section 4, we show how to incorpo- 
rate the token dispatch overhead into the scheduling 
scheme proposed in Section 3. We conclude the paper 
with Section 5. 

2 Network and message models 

2.1 Network model 

The llocal area network considered in this paper con- 
sists of N stations/nodes connected via a multiaccess 
link/bus with a central lank control unit (LCU). The 
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stations communicate with one another via the multi- 
access bus. The stations’ access to the bus is controlled 
by the LCU, which uses a token dispatch protocol for 
medium access control. The stations that have mes- 
sages to transmit on the bus must first get the token 
from the LCU. When sending the token to a station, 
the LCU also specifies the duration, called the Token 
Holdzng Tzme (THT), that the station can hold the 
token for transmitting its messages. A station, after 
receiving the token, is entitled to transmit its messages 
on the bus for up to THT units of time. Either upon 
completion of its message transmission the station re- 
turns the token to the LCU, or when the THT expires 
the LCU generates a new token and sends the token 
to the next scheduled station. Messages to be trans- 
mitted on the bus are divided into fixed-length pack- 
ets, or in ATM (Asynchronous Transfer Mode) term, 
cells. The transmission on the bus is slotted, i.e., data 
bits transmitted on the bus are divided into fixed-length 
slots. Each slot can hold one packet/cell and other in- 
formation bits (e.g., the source/destination addresses, 
the framing bits, etc), i.e., each packet needs one slot 
time for its transmission. All stations listen to the bus 
all the time. If a station receives a packet destined for 
i t ,  it stores the packet in its internal buffer; otherwise, 
it just discards the packet. 

There are two salient differences between our 
centralized-scheduling multiaccess network and other 
token-passing networks such as token bus, token ring, 
or FDDI. First, in our network model, the token 
scheduling is controlled by a central LCU, while token 
bus/token ring/FUUI adopts a distributed timed-token 
protocol. Second, in our network model, the token need 
not be allocated to stations in a cyclic fashion as in 
token bus/token ring/FDDI. Note that our network 
model is compatible with the current draft proposal of 
the FieldBus protocol [l]. Therefore, the proposed to- 
ken scheduling scheme to be discussed in the following 
sections can be readily incorporated in the FieldBus 
protocol. 

2.2 Message model 

Each station on the multiaccess bus may have 
real-time and/or non-real-time messages to transmit. 
Non-real-time messages do not have any timing con- 
straints, while each real-time message belongs to a 
real-time message stream, which possesses some pre- 
defined characteristics, including the deadline of each 
message. Each station may have zero, one, or more 
real-time message streams emanating from it. Let M 
= { M I ,  Mz,  . . . , Mn}  be a set of n real-time streams 
in the multiaccess network. We consider the following 
message model, in which each stream Mi is character- 

ized by a tuple (C; , Di), where 

0 C; is the maximum number of packets (cells) in 
stream M; that can arrive in any time interval of 
length Da, and 

0 Dd is the transmission deadline (or simply, the 
deadline) for the messages in stream Mi,  i.e., if 
a message of Mi arrives at  time t ,  then it must be 
transmitted by time t + Di. 

This model is a generalization of the commonly-used 
real-time peak-rate message model [17], in which each 
stream Mi is characterized by a triple (Ci, Di, Pi), 
where 

0 Pi is the minimum inter-arrival period for stream 
Mi,  i.e., if the j-th message of Mi arrives at time 
t ,  then the ( j  + 1)-th message in the stream will 
arrive at a time no earlier than t + Pi for j 2 1, 

0 Ci is the maximum message size measured in pack- 
ets (cells) in stream Mi, i.e., Ci is the number of 
slots needed to transmit a maximum-size message 
in stream Mi,  and 
Di (5  Pi) is the transmission deadline for the mes- 
sages in stream Mi. 

Note that in the first message model, the inter-arrival 
time of two consecutive messages in stream Mi is not 
required to be larger than or equal to Di (i.e., more 
than one message may arrive in a time interval of length 
5 Di). However, the total message size measured in 
packets (cells) in Mi that arrive in any time interval 
of length D; should be bounded by Ci. In the second 
model, during any time interval of length Pi, at most 
one message with message size at most Ci will arrive. 
And, Di 5 P; implies that the total message size in Mi 
that arrive in any time interval of length Di is bounded 
by Ci. It is easy to see that the second message model 
is just a special case of the first one. Thus, unless oth- 
erwise specified, we will assume that real-time message 
streams conform to the first model. 

For convenience of discussion, we will henceforth call 
Di the deadline (constraint), and Ci the (maximum) 
message size (within a time interval of length Di) of 
stream Mi. Moreover, without loss of generality, we 
assume that the time unit is one slot, Di is measured 
in slot times, and the message arrival times align with 
the beginning of a slot. Note that as mentioned earlier, 
packet size matches the payload size of a slot, so we can 
also think of Ci measured in slots. 

In order to guarantee the timely delivery of real-time 
messages, the LCU must allocate sufficient bandwidth 
to each real-time message stream. For the two message 
models defined above, it is easy to see that if we can 
guar antee that 
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(Pl) during any time interval of length Di the LCU 
will allocate the token to  stream Mi and let Mi 
hold the token for (at least) Ci units of time, 

then we can guarantee the deadline constraint of any 
message in stream Mi. Therefore, in the following dis- 
cussion, we will concentrate on how to generate a to- 
ken allocation schedule so that the above (Pl) is sat- 
isfied. Especially, we propose a centralized-scheduling 
multiple access (CS/MA)~ protocol for our multiaccess 
network. The CS/MA protocol discussed in this paper 
uses a centralized controller to  allocate the token to  sta- 
tions/nodes such that conflict-free multiple access can 
be achieved and timely delivery of the real-time mes- 
sages can be guaranteed. 

3 Proposed token scheduling scheme 
The proposed token scheduling scheme is based on 

the pinwheel [2] and the Distance-Constrained (DC) [3] 
scheduling techniques. Tn this section, we first briefly 
describe the pinwheel and the DC scheduling problems 
and their scheduling schemes. Especially, we will de- 
scribe the Schedulers Sx and Sr originally designed for 
scheduling pinwheel instances and distance-constrained 
task sets, respectively. We then show how Sx/Sr can 
be modified to  schedule the token for real-time message 
streams on the stations of a multiaccess network. 

3.1 Pinwheel and distance-constrained 
scheduling schemes 

The theoretical base of our token scheduling scheme 
is grounded on some of the results in the pinwheel and 
the DC scheduling problems. 

The Pinwheel Problem: ([2,lS]) Given a multiset 
of n positive integers A = { a l ,  a2, . . . , U,}, find an infi- 
nite sequence (schedule) over the symbols { 1,2,  . . . , n}  
such that there is at least one symbol ‘(i” within any 
subsequence of ai consecutive symbols (slots). 

For example, given a multiset A = {2,4,5}, one solu- 
tion sequence is (1, 2, 1, 3, 1, 2, 1, 3, ...) where the 
subsequence (1 ,2 ,1 ,3)  repeats forever. In this solution 
sequence, we can find one “1” in every a1 = 2 con- 
secutive symbols, one “2” in every a2 = 4 consecutive 
symbols, and (at least) one “3” in every a3 = 5 consec- 
utive symbols. 

The question of how to schedule a pinwheel instance 
has been studied in [2,19]. Define p(A) = Cyzl l/ai  
to  be the ( to ta l )  density of the pinwheel instance A. 
Holte et al. [18] have shown that if a pinwheel instance 

0 

‘To distinguish the type of protocol discussed in this paper 
from the well-known carrier sense multiple access (CSMA) pro- 
tocol, we use CS/MA as the acronym for OUT protocol. 

A with total density 5 1 consists solely of multiples 
(i.e., ai (evenly) divides aj for all i < j ,  and p(A) = 
Cy=l ] / a i  5 l), then A is schedulable. For convenience 
of reference, we list this result in the following theorem. 

Theorem 1: ([lS]) Given a pinwheel instance A = 
{ a l ,  a2, . . . , U,}, if ai divides aj for i < j ,  and p(A) 5 1, 
then A. is schedulable. 0 

Based on this result, Chan and Chin [2] have devised 
two schedulers, Sa and Sx, to  schedule larger classes of 
pinwheel instances. The basic idea of Sa and Sx is 
the single-integer reduction technique, which aims to 
transfo’rm an arbitrary instance A to  another instance 
B = { b l ,  6 2 ,  . . . , b,} which consists solely of multiples 
and bi < ai for all i .  From Theorem 1, we know that 
B can be feasibly scheduled (for example, by the algo- 
rithm {Specialsingle in [2]) if and only if p(B) 5 1. 
Since bi 5 ai (i.e., B is more restricted than A), if we 
find a schedule for B, then the schedule also satisfies 
the ori,ginal constraints for A. However, since bi 5 ai 
for all i, p(B) 2 p(A) .  Therefore, if the total density 
of A is larger than 1, it is impossible to  find a feasible 
schedulle for A, i.e., total density less than or equal to  
1 is a n.ecessary condition for an instance to be schedu- 
lable. The density threshold p* of A is then derived in 
such a way that as long as the total density of A is less 
than or equal to  p* then p(B) 5 1 (i.e., B is schedula- 
ble). In other words, with the single-integer reduction 
technique, one can schedule all pinwheel instances with 
total densities 5 p * .  Note, however, that if a pinwheel 
instance A has a total density larger than p * ,  it does 
not nec.essarily mean that the instance is not schedula- 
ble by Scheduler Sa or Sx. A can be feasibly scheduled 
as long as the total density of the transformed set B is 
less thatn or equal to  1. 

Without loss of generality, in the following discus- 
sion, wle assume that a1 5 a2 < . . . < a,. Let a denote 
the smallest number in A,  i.e., a = a l .  In Scheduler 
Sa, it finds a bi for each ai such that 

bi = a .  2 j  < ai < a .  2j+’ = 2b.  2 1  

for some integer j 2 0. Chan and Chin [2]  call this 
operatiton specializing A with respect t o  { U } .  Since the 
instanc’e B = { b l ,  b 2 , .  . . , b,} consists solely of multi- 
ples, aei long as p(B) < 1, Sa can then use the algo- 
rithm Specialsingle [2] to  find a feasible schedule for 
B.  And, since bi <_ ai for all i, the schedule found for 
B is also a feasible schedule for A. 

Scheduler Sx is based on the same technique as 
Scheduller Sa except that A is specialized with respect 
to {z}, where z is an integer and a1/2 < z 5 ai. Start- 
ing from . = a l ,  Sx specializes A with respect to  {.} 
until z 2 a1/2 + 1 and chooses an z that minimizes 
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p(B), or until it finds an 2 which makes p(B) 5 1 (or 
until i t  finds that no such integer exists). Note that 
finding an z that minimizes p(A’) can be done in O(n)  
time [a]. Therefore, Sx is more powerful than Sa in the 
sense that every pinwheel instance that can be sched- 
uled by Sa can also be scheduled by Sx. For exam- 
ple, Sa specializes A = {4,7,8,13,24,28} (with a total 
density of 0.672.. . w 2/3) with respect to  (4) to get 
B = {4,4,8,8,16,16} with a total density of 7/8. In 
comparison, Sx specializes A with respect to  (3) to  
get B’ = {3,6,6,12,24,24} with a total density of 5/6 

It has been shown in [2] that the density thresholds 
for Schedulers Sa and Sx are 1/2 and 13/20, respec- 
tively. That  is, as long as the total density of A is less 
than or equal to  1/2, the total density of the resulting 
set after specializing A with respect to { U }  will be less 
than or equal to  1, and hence, the resulting specialized 
set is schedulable (and so is the original set A). Simi- 
larly, as long as the total density of A is less than or 
equal to  13/20, the minimum total density of the re- 
sulting sets after specializing A with respect to {z}, for 
a1/2 < 2 5 a l ,  will be less than or equal to  1. 

Distance-constrained task system model. In [3] 
we proposed a new real-time system model, called the 
Distance- Constrained Task System (DCTS), to  charac- 
terize real-time tasks that have temporal distance con- 
straints [20]. In the conventional real-time task system 
model [21], it is assumed that every task must be exe- 
cuted once during a certain fixed period. The execution 
of a task in one period is independent of the execution 
of the same task in any other period. In the DCTS 
model, we assume that two consecutive executions of 
the same task must be “close” to  each other. Specif- 
ically, given a DCTS task set T = {Tl,T2,. . .,Tn}, 
where each task Ti has an execution time Ci and a (tem- 
poral) distance constraint Di, if fij denotes the finish 
time of the j- th execution/invocation of task Ti, then 
the distance constraint Di for Ti requires that fil 5 Di 
and fi,j+l - fij 5 Di for all j >_ 1. In [3], we pro- 
posed a scheduling algorithm, Scheduler Sr, for DCTS 
task sets. Given a DCTS task set T = { E  = (Ca, Di) I 
1 5 i 5 n} with Dl 5 Dz 5 . . .  5 Dn, Scheduler 
Sr first specializes the distance constraint (mu1ti)set D 
= (01, Dz, . . . , Dn} with respect to { T } ,  where T is a 
(real) number chosen from the interval (D1/2, Dl] such 
that it minimizes the total density of the specialized 
task set, where the density of a DCTS task set T is 
p(T) = cy=l Ci/Di. Scheduler Sr then uses an ap- 
proach similar to the rate-monotonic (RM) scheduling 
algorithm [21] to  schedule the specialized DCTS task 
set whose distance constraint (mu1ti)set consists solely 
of multiples. It has also been shown that as long as 

(< 7/81, 

the total density p(T) of the task set T is less than 
or equal to n(2’/” - l ) ,  Scheduler Sr can guarantee to  
generate a feasible schedule for T. Note, again, that if 
p(T) > n(21/n - l ) ,  it does not necessarily mean that 
Sr cannot generate a feasible schedule for T. As long 
as the total density of the task set after specializing D 
with respect to  { F }  is less than or equal to  1, Sr can 
generate a feasible schedule for T. Another important 
property of Scheduler Sr is that  during any time inter- 
val of length Di, the scheduling algorithm will allocate 
Ci time units for task Ti for all i. Note that both Di 
and C, are not necessarily integral; they can be any 
positive real numbers. 

As mentioned earlier, if the token scheduling scheme 
of the LCU can allocate (at least) Ci slots to  stream 
Mi during any time interval of length Di for all i, then 
all the messages are guaranteed to  be transmitted be- 
fore their deadlines. Therefore, we can think of the to- 
ken scheduling problem as an extension of the pinwheel 
problem (Ci isn’t necessarily equal to  1), and our token 
scheduling scheme uses a discrete version of the DCTS 
scheduling algorithm (both Di and Ci are integers). 

In what follows, we describe how t o  adapt the 
scheduling algorithms originally designed for the pin- 
wheel and the DCTS scheduling problems t o  schedule 
the token so that within any time interval of length Di, 
the token is guaranteed to  be allocated to  stream Mi 
for at least Ci slots. 

3.2 TokenAllocator and Tokenscheduler 
processes 

We now describe in detail how to allocate the to- 
ken t o  message streams. We first assume that to- 
ken dispatch overhead is small (as compared to the 
message size) and can be ignored or is included 
in C,’s (note that token dispatch overhead corre- 
sponds to  preemption/context-switching overhead in 
task scheduling). Later, we will relax this assumption 
and show how to deal with the token dispatch overhead. 

Let M = { M ,  = (Ci,Di) I 1 5 i 5 n} be a set of 
real-time message streams. Define the (message) den- 
sity of stream Mi to  be p(M,) = Ci/Di,  and the (total) 
denszty of the set M to be p(M) = Cy=l Ci/D;. Given 
a set M of streams with D, divides Dj for all i < j ,  and 
p(M) 5 1, the algorithm TokenAllocator (Figure 1) 
will allocate the token to  the streams in such a way that 
during any time interval of length D,, the algorithm 
will allocate (not necessarily consecutive) C, time slots 
to  stream M,. The TokenAllocator process uses the 
rate-monotonic (RM) [21] scheduling algorithm to as- 
sign message priorities so that the streams with tighter 
deadline constraints get higher priorities. Specifically, 
TokenAllocator treats each stream M, = (C,, 0;) as 
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TokenAllocat or 

/* di: slack time of the current message of Mi. */ 
/ * c i :  remaining transmission time w.r.t. current di. */ 
/* send(P,message): send a message to  process P 

and wait for its reception by P.  */ 
/* receive(P,message): wait for and receive a message 

from process P .  */ 
/* M = {Mi  = (Ci, Di) I 1 5 i 5 n} is a set of message 

streams with Di I Dj for all i < j and p(M) 5 1. */ 

1. receive(TokenScheduler, M); 
/* note that D1 5 D2 5 . . . 5 Dn */ 
2. f o r  i := 1 to n do { ci := Ci; di := Di; } 
3. do{ 
4. i t 1; 
5. while (i 5 n and ci = 0) { i := i + 1 } 
6. if i 5 n then { 
7. H := min(ci, dl);  
/* allocate H slots to Mi */ 
8. send(TokenSchedu1er , i, H ) ;  

10. } else { 

/* allocate H slots to  non-real-time traffic */ 
12. send(TokenScheduler,  0, H ) ;  
13. } 
14. 

16. 
17. } 
18. } forever 

9. ci := ci - H ;  

11. H : = d l ;  

for j := 1 to n do { 
15. d j  := dj  - H ;  

if (dj == 0) { cj := Cj; dj  := Dj;  ] 

Figure 1: The TokenAllocator  process. 

a periodic task with execution time Ci and period (= 
deadline) Di. TokenAllocator  always allocates the to- 
ken to  the stream with the highest priority among those 
active streams, where an active stream is one whose 
slot requirements are unfulfilled at the current, period 
interval. In TokenAllocator ,  the while-loop (Line 5) 
is used to  locate the highest-priority stream (i.e., the 
smallest index i) that has unfulfilled slot requirement 
(i.e., ci > 0) with respect to  the current di. After locat- 
ing the highest-priority active stream Mi,  TokenAl- 
locator allocates min(ci, d l ,  d 2 , .  . . , di-1) = min(ci, dl)  
time slots to  Mi. The Tokenscheduler  process (Fig- 
ure 2) implements the token scheduling scheme which 
sends the token with token holding time H to the sta- 
tion that contains (the source of) the stream Mi (more 
on Tokenscheduler will be discussed later). If there 
is no stream with the unfulfilled slot requirement (i.e., 

TokenScheduler 

/* Assume M = {Mi = (Ci, Di) I 1 < - i _< n}, where 
D1 <I 0 2  5 . . .  _< D,. */ 

/* Upon system initialization */ 
1. collect M and the station id that each message 

2. specialize the deadline constraint multiset D of M 

3. if (p(M’) > 1) reject M and exit; 
4. else { 

strea,m emanates from; 

to  get D’ (M’); 

5. 
6. 
7. 
8. 
9. 

10. 
11. 

12 
13. 

14. 

15. 

16. 
17. 
18. 
19. } 

send( Token Allocator ,  M) ; 
do { 

receive(TokenAllocator,i, H ) ;  
if (i # 0) { 

send the token with THT H to  the 
node containing stream Mi; 

send a non-real-time token with THT H 
to  the next scheduled node; 

} else { 

1 
wait for the token to expire or until the 
(non-real-time) token is returned early; 
if token is returned early by H’ slots and 

H’ - T > 0 then { 
send a non-real-time token with THT 
H’ - r to the next scheduled node; 
goto Line 13; 

} /* if */ 
} forever 

Figure 2: The Tokenscheduler process. 

ci = 0 for all i) with respect to the current di, the LCU 
issues a, non-real-time token with a THT equal to  the 
beginning time of the next closest scheduled activity 
minus the current time, i.e., min(dl,dz, .  . . ,dn) = d l  
(Line 11 of TokenAllocator).  Note that the index 0 
in Line 12 represents that the token is to  be sent to  
a station for transmitting its non-real-time messages. 
This non-real-time token can be issued to  the stations 
on the network in a predefined fashion (such as round- 
robin). 

Note that the TokenAllocator  process will generate 
exactly the same schedule that the RM algorithm will 
generate given a periodic task set with the i-th task 
having a period Di and an execution time Ci, and Di 
divides Dj for all i < j .  

Theorlem 2: For a set of real-time message streams 
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M = {Mi = (Ci , Di) I 1 5 i 5 n}, if Di divides Dj for 
all i < j ,  and p(M) 5 1, then TokenAllocator will 
allocate Ci slots to  stream Mi in any time interval of 
length Di . 0 

The proof of the above theorem is omitted due to lim- 
ited space. 

Suppose the LCU sends a real-time token with a to- 
ken holding time H slots to  stream Mi which emanates 
from station Nk. If the total size of the real-time mes- 
sages of Mi currently waiting to be transmitted is less 
than H slots (packets), then, after transmitting these 
messages of Mi,  node Nk can use the remaining unused 
token holding time to  transmit its non-real-time mes- 
sages. However, whenever new messages of Mi arrive, 
the transmission of non-real-time messages should be 
preempted, and Nk should use the remaining THT to 
transmit the newly-arrived real-time messages of Mi. 
The token will not be returned to the LCU even when 
node Nk has neither real-time messages of Mi nor non- 
real-time messages to transmit because new messages 
of Mi might still arrive at Nk before the current token 
holding time expires. When the current token holding 
time expires, the LCU will generate a new token and 
send it to  the next scheduled station. 

However, if the LCU sends a non-real-time token 
with H slots of THT to a node and the node does not 
use up all H slots to  transmit its non-real-time mes- 
sages, the node should return the token to  the LCU. 
After receiving the returned non-real-time token, the 
LCU sends the (non-real-time) token t o  the next sched- 
uled node according to the predefined sequence with H‘ 
slots of THT,  where H’ is the amount of time (number 
of slots) by which the token is returned early. 

We now describe the function of the LCU scheduler, 
the Tokenscheduler process (Figure 2), which incor- 
porates TokenAllocator to  allocate token to the mes- 
sage streams. Note that in Lines 14 and 15 of Token- 
Scheduler, T is the token dispatch time to  be discussed 
in the next section. Currently, we can simply think that 
T = 0 since the token dispatch overhead is ignored. 

To schedule the token for a set of general message 
streams M (i.e., Di may not evenly divides Dj for some 
i and j ) ,  the scheduler Tokenscheduler does the fol- 
lowing steps. 

Step 1. Upon system initialization, gather/maintain 
the required information on real-time connection 
requests; in particular, (Ci, 0;) for each stream Mi 
and the station id that Mi emanates from. 

Step 2. Specialize D = { D l , D z ,  . .  . , D n }  using the 
chosen specialization operation to  get the special- 
ized stream set M’ with the specialized deadline 
constraint (mu1ti)set D’ = {Di, Dk, . . ., DL}. For 

I , 2 ,  , 4 ,  , 6, , S I  ,lo, ,12, ,14, ,16, ,18, 70, 22, ,24, 26, ,28, 90, ,32, 

Figure 3: The token allocation schedule for the set of 
streams in Example 1. 

example, if the specialization operation is the same 
as that used in Scheduler Sx, then we find 0: for 
each Di such that Da = x.2j 5 Di < x.2j+’ = 2D! 2 1  

for some integer j 2 0,  where x is an integer 
E (D1/2, Dl1 that results in the minimum p(M’). 
(Note that D: divides Di for all i < j.) 

Step 3. Check whether or not the total message den- 
sity of the specialized stream set M’ = { M l  = 
(Ci, 0:) I 1 5 i 5 n} is less than or equal t o  1, i.e., 
whether p(M’) = Cyzl Ci/D: 5 1, or not. If not, 
reject M and stop. Otherwise, proceed to  the next 
step. 

Step 4. Use the TokenAllocator process to  get the 
stream id i and the token holding time H .  If i > 0,  
assign the token t o  stream Mi (send the token to 
the station that Mi emanates from) with a token 
holding time H .  If i = 0, send a non-real-time 
token with H slots of THT to the next node ac- 
cording to the predefined sequence. 

Step 5. Wait for the expiration of the token (holding 
time), or the early return of the (non-real-time) 
token. (Note that the real-time token will not be 
returned.) If the token expires, repeat Step 4 for 
the next scheduled activity. If the (non-real-time) 
token is returned early by H’ slots and H’ - T > 
0, send the token to  the next node according to 
the predefined sequence with H’ - T slots of THT, 
where T is the token dispatch time (to be discussed 
in the next section). 

Example 1: Consider a set of real-time message 
streams M = {Ma = (Ci,Di) I i = 1,2,3} = 
{(2,9), (3,17), (7,35)}. Assume that Mi emanates from 
node Ni for i = 1 ,2 ,3 ,  respectively. Also, assume that 
non-real-time tokens are sent to the nodes in a round- 
robin fashion staring from node N I .  If we specialize the 
deadline constraint set D = (9, 17, 35) with respect to  
{8}, we will get the specialized deadline constraint set 
D’ = (8, 16, 32). Since D: divides D(i for all i < j ,  and 
p(M’) = 2/8+3/16+7/32 = 21/32 < 1, by Theorem 2, 
we know that M’ is schedulable by TokenAllocator. 
The subschedule from slot 1 to slot 32 produced by To- 
kenAllocator is shown in Figure 3. According to this 
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schedule, the LCU will first send a token to node NI 
and let it hold the token for two time slots to transmit 
messages of M I .  When the token expires, the LCU will 
send another token to N2 with 3 slots of THT. Then, 
upon expiration of the token, another token is sent to 
N3 with 3 slots of THT. The next two steps are: send a 
token with 2 slots of THT to N I ,  and then, send a token 
with 4 slots of THT to N3. Now, since there is no real- 
time token scheduled for the next two slots, the LCU 
will send a non-real-time token to N1 for transmitting 
its non-real-time messages, if any. (Note that non-real- 
time token allocation is not shown in the schedule of 
Figure 3.) The following steps are left for the reader. 
This subschedule repeats (virtually) forever. 

It is easy to see that TokenAllocator will generate 
an infinite sequence of stream ids and token holding 
times for the set of real-time streams such that there 
are Ci time slots allocated to  stream Mi in any time 
interval of length D[ (5  Di). So, all real-time messages 
are guaranteed to be transmitted before their deadlines. 
0 

4 Incorporating token dispatch over- 
head 

In the previous discussion, we ignored the token dis- 
patch overhead. We now show how to deal with the 
token dispatch overhead and how to incorporate it into 
the TokenAllocator process. We will use T to denote 
the token dispatch time, i.e., it  takes the LCU 7 time 
slots to send/dispatch the token to a station. We first 
use an example to show the effect of the token dispatch 
overhead. 

Consider a set of real-time streams {Mi = (Ci, Di) 1 
i = 1 ,2 ,3}  = {( l ,8) ,  (2,16), (5,32)}. (Note that Di di- 
vides Dj for i < j . )  If the token dispatch overhead is 
ignored or included in Ci’s, the schedule generated by 
the TokenAllocator process is shown in Figure 4(a). 
In the schedule, the token will be allocated to each 
stream Mi for Ci time slots within any time interval 
of length Di slots. However, if the token dispatch over- 
head needs to be considered, some time slots must be 
used to send the token to the nodes that have messages 
to transmit. For example, if token dispatch needs two 
slots,2 then time slots 1 and 2 must be used to send 
the token to the node that contains stream M I .  Note 
that the nodes do not return the real-time token to the 
LCU. The real-time token is assumed upon its expira- 
tion, and the LCU will issue a new token to the next 
scheduled node upon expiration of the current (real- 

’The token dispatch time ( T )  is, in general, much smaller than 
the time needed to transmit a message of size C;. The numbers 
for T and Ci’s in this example are chosen for the purpose of 
illustration. 

I , 2 ,  , 4 ,  , 6 ,  , 8 ,  ,lO, ,12, ,14, ,16, ,l8, JO, 22, ,?4, 126, ,28, ,34 1321 

4x..- h h h I 

MI” 

~~~~ I 

L d  I m I I  
(b) token dispatch time T = 2 

Figure 4: The effect of the token dispatch overhead. 

time) token. So, no real-time token return overhead 
needs to be considered. However, as discussed earlier, 
a non-real-time token will be returned and sent to an- 
other node if the token does not expire and there is 
no non-real-time message to transmit on the node that 
currently holds the (non-real-time) token. The (non- 
real-time) token return overhead is easily taken care of 
by the TokenScheduler process in Figure 2. (Note 
that the new THT, HI,  in Tokenscheduler is defined 
to be the amount of time the token is returned early, 
and hence, the token return time is not included in HI.)  

In order to guarantee that during any time interval 
of length, Di, there must be at least Ci slots allocated 
to stream M8,  a schedule as shown in Figure 4(b) must 
be generated (assuming token dispatch to require two 
slots). In Figure 4(b), the shaded areas are the slots 
used to ,send the token to the nodes that contain the 
corresponding streams. The token with Cl = 1 slot 
of THT is allocated to M I  once every D1 = 8 time 
slots. E:ach time the token is allocated to  the node 
that contains M I ,  two slots must be used to send the 
token. If we think of the token dispatch overhead as 
part of the message transmission time (message size), 
it is equivalent to allocating Ci = C1 + 2 = 3 slots 
to M I  within every time interval of length D1. We 
will call C: the eflec-tive message size of M I .  Also, the 
token with C2 = 2 slots of THT is allocated to M2 once 
every = 16 time slots. Slots 4 and 5 (20 and 21) are 
used to send the token to the node that contains stream 
M2. Thus, the effective message size of Mz is C$ = 4. 
Similarl,y, the token is allocated to M3 twice with 3 and 
2 slots (C3 = 5) of THT, respectively, every D3 = 32 
slots. Slots 12 and 13 (and also slots 28 and 29) are used 
to send the token to the node that contains M3. Note 
that the token is allocated to M3 twice in the interval 
[l, D3] iin Figure 4(b), instead of once as in Figure 4(a). 
Also, noltice that slot 8 (and also slot 24) is not enough 
to transmit the token to the node that contains M3, and 
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Figure 5: The “compressed)) schedule. 

thus, the LCU will not send the token to  the node that 
contains M3 at these two time instants. Instead, the 
LCU will leave time slot 8 (and 24) idle intentionally. 
Although we will later show that these idle slots can 
actually be “compressed” by “advancing” the schedule, 
we will still consider these idle slots (8 and 24) as the 
overhead caused by token dispatch. Thus, the effective 
message size of M3 is Ch = 11 , instead of C, + 2 . 2  = 9. 
Note that slot 32 is also left idle intentionally. However, 
it is not considered as the token dispatch overhead for 
any real-time stream, and hence, i t  is not included in 
the effective message size of any real-time stream. 

Given a set of streams M = {Mi = (Ci, Di) I 1 5 
i <_ n} with Di dividing Dj for all i < j ,  we define the 
total eflective message density p’(M) to  be 

where Oi is the total token dispatch overhead (including 
the slots left idle intentionally due to insufficient time 
for sending the token) for stream Mi in the interval 
[l, Di] by using TokenAllocator .  

As mentioned earlier, we don’t really need to  leave 
the slots idle if they are not long enough to send the 
token to  a station. We can just “compress” the schedule 
by sending the token to  the next scheduled station. The 
compressed version of the schedule in Figure 4(b) is 
shown in Figure 5. It is easy to see that the compressed 
schedule still satisfies the requirement that during any 
time interval of length Di, the token is allocated to  Mi 
for at least Ci time slots (excluding the token dispatch 
overhead). 

We now show how to modify the TokenAllocator  
process in Figure 1 to incorporate the token dispatch 
overhead. Let r denote the token dispatch time. The 
modified TokenAllocator process which incorporates 
the token dispatch overhead is shown in Figure 6. Note 
that if H 5 0 in Line 8 or Line 13, it means that 
H = dl  - r 5 0. Thus, in Line 16, d3 := d j  - H - r 
is equivalent to  d j  := dJ - d l ,  which, in turn, is equiva- 
lent to  compressing/advancing the schedule by d l  slots. 
Also, notice that the token holding time N sent to the 
Tokenscheduler process does not include the token 
dispatch time T .  

TokenAllocator  (modified) 

1. receive(TokenScheduler, M); 
/* Note that D1 <_ Dz 5 . . . 5 D, */ 
2. for i := 1 to n do { ci := C,; di := Di; } 
3. do { 
4. i t  1; 
5. 
6. 
7. 
8. 
9. send(TokenScheduler, i, H ) ;  
10. 
11. } else  { 
12. H :=dl  - 7; 

13. 
14 1 
15. 
16. 
17. 
18. } 
19. } forever  

while (i 5 n and ci = 0) { i := i +  1 } 
if i 5 n then { 

H := min(c,, d l  - r ) ;  
if H > 0 then { 

ci := ci - H ;  } 

if H > 0 then send(TokenScheduler,  0, H ) ;  

for j := 1 to n do { 
7; d . - d . - H -  

3 .- 9 
if ( d j  == 0 )  { c3 := C.. 3 ,  d .  3 := D j ;  } 

Figure 6: The (modified) TokenAllocator  process. 

A theorem parallel to  Theorem 2 can also be derived 
for the modified TokenAllocator process. 

Theorem 3: For a set of real-time streams M = 
{Mi  = (ci, Da) I 1 1. i 5 n},  if Di divides D3 for all 
i < j ,  and p’(M) = C:=lCi/Di 5 1, then the (modi- 
fied) TokenAllocator  process in Figure 6 will allocate 
Ci (not Cl) slots to stream Ma in any time interval of 

The proof of the above theorem is omitted due to  lim- 
ited space. 

Now, let’s go back to  the Tokenscheduler process 
in Figure 2 .  In Line 14, if a token is returned early by 
H’ slots, and if H’ is long enough (i.e., H’ - r > 0), 
then the LCU (the Tokenscheduler process) will issue 
a non-real-time token with THT = H’ - r to  the next 
scheduled station. The “- r” in the THT H’ - r is 
because the THT sent to  a station does not include the 
token dispatch time. If the current token expires, or 
if the token is returned early but H’ - r 5 0, then 
the LCU just uses the TokenAllocator  to  schedule 
the next activity (in the latter case, it is equivalent to 
compressing the schedule by H‘ slots). 

5 Conclusion 

length D; . 0 

In this paper, we proposed a token scheduling scheme 
for allocating the bandwidth of a multiaccess bus and 
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guaranteeing the timely delivery of real-time messages 
in a centralized-scheduling multiaccess network such as 
the soon-to-be industrial standard, FieldBus. Our pro- 
posed scheme is based on the pinwheel and the distance 
constrained scheduling schemes. It is predictable since 
it can feasibly schedule a set of streams with total mes- 
sage density less than or equal to  a certain density 
threshold (e.g., 0.65 for using the specialization oper- 
ation of Scheduler Sx). It is also simple and easy to 
implement since it uses a fast on-line scheduling algo- 
rithm to  decide which station the next token should be 
sent to  and how much time the station can hold the 
token for transmitting its messages. 

The most significant contribution of this paper comes 
from the fact that timely and predictable communica- 
tion services are essential to  embedded real-time ap- 
plications, such as automated factories and industrial 
process controls. Our proposed scheme provides an 
effective and simple mechanism for supporting intra- 
workcell time-critical communications in a computer- 
integrated manufacturing system, in which the ability 
to  provide timely and predictable inter-process commu- 
nication is of great importance because failure to  com- 
plete specified message transmissions before their dead- 
lines may risk failure of the functions of the commu- 
nicating processes, risking equipment, plant and even 
human safety. 
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