
Real-Time Communication in FieldBus Multiaccess Networks

Ching-Chih Han and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan, Ann Arbor, MI 48109-2122
{ cchan, kgshin} @eecs. umich. edu

Abstract

There has been a n increasing need of t imely and pre-
dictable communication services for embedded real-time sys-
tems in automated factories and industrial process con-
trols. Work has been done o n real-time communication
with deadline guarantees in point-to-point, token bus/token
ring/FDDI, and D Q D B (Distributed Queue Dual Bus) net-
works. However, due to the random access nature of the
C S M A / C D type multiaccess networks, they are not suitable
for applications with stringent timing constraints. In this
paper, we consider real-time communication services with
absolute deadline guarantees in multiaccess local area net-
works equipped with a centralized scheduler, such as the SP-
50 FieldBus [I], an industrial standard protocol for process
control and manufacturing applications.

Similar to most token-passing networks, in a centralized-
scheduling multiaccess network, the access t o the bus is con-
trolled by a token. Only the station currently holding the to-
ken has the exclusive right to use the multiaccess bus. Unlike
the token bus, token ring, or FDDI network, the multiaccess
network uses a centralized token scheduling scheme and the
token need not be allocated to the stations in a cyclic fashion.
W e show that the pinwheel [, I and the distance-constrained
[3] scheduling techniques can be adapted to schedule the to-
ken in centralized-scheduling multiaccess networks to guar-
antee message deadlines.

1 Introduction

There has been an increasing need of timely and
predictable communication services for embedded real-
time systems in automated factories and industrial pro-
cess controls. For example, an automated factory is
usually composed of several workcells, each of which
contains devices such as robots, sensors, and transport
mechanisms. All devices in a workcell are connected via
a local area network. Multiple workcells are then con-
nected by bridges. A number of cooperating tasks col-
lectively monitor and control manufacturing equipment
and processes by communicating with one another via
the underlying network. The ability to provide timely

The work reported in this paper was supported in part by the
ONR under Grants N00014-92-J-1080 and N00014-94-1-0229, and
by the NSF under Grant MIP-9203895.

1080-1812195 $04.00 0 1995 IEEE

and predictable inter-process communication is, thus,
of great importance to the underlying network architec-
ture and protocol because failure to meet the message-
transmission deadlines may lead to a disaster.

Several researchers have investigated the problem of
guaranteeing the timely delivery of messages under dif-
ferent network architectures and protocols. The real-
t i m e channel concept originally proposed by Ferrari
and Verma [4] for the problem of meeting message-
transmission deadlines in a wide area point-to-point
network has been widely studied [5,6]. These stud-
ies are mainly concerned with the problem of estab-
lishing real-time point-to-point channels and provid-
ing guarantees of maximum delivery delays. For local
area network, IEEE 802.4 token bus network [7], IEEE
802.5 token ring network [SI, and FDDI [9] adopt the
t imed- token m e d z u m access controZ (MAC) protocol for
providing bounded medium access times. Agrawal et
al. [lo, 111 and Han et al. [la, 131 attempted to solve the
synchronous bandwzdth allocation problem for FDDI
networks to meet the protocol constraint while trans-
mitting all synchronous messages before their dead-
lines. Another protocol which aims to provide time-
constrained communication services is the DQDB (Dis-
tributed Queue Dual Bus) MAC protocol [14]. DQDB
has been adopted by the IEEE as its candidate proto-
col for metropolitan and local area networks. Saha et
al. [15] and Han et al. [16] studied the issue of guaran-
teeing the timely delivery of isochronous messages with
hard deadlines in a DQDB network. However, due to
the random access nature of the multiaccess networks
that adopt the CSMA/CD (IEEE 802.3) protocol, it
is hard to make deadline guarantees for these kinds
of networks. Hence, CSMA/CD type multiaccess net-
works are not suitable for applications requiring abso-
lute deadline guarantees.

In this paper, we consider real-time communi-
cation services with absolute deadline guarantees
in centralized-scheduling multiaccess local area net-
works. Similar to most token-passing networks, in the
centralized-scheduling multiaccess network, the access
to the bus is controlled by a token. Only the station

86

that holds the token is allowed to transmit messages
on the bus. Unlike a token bus, token ring, or FDDI
network, which uses a distributed token-passing proto-
col, we propose a centralized token scheduling scheme
for the multiaccess network. In order to guarantee that
each station on the multiaccess bus is allocated suffi-
cient bandwidth for transmitting its time-critical mes-
sages, a central controller is used to control the allo-
cation and scheduling of the token. Since the central
controller has the full control of the token, it has more
flexibility to achieve the goal of allocating bandwidth
to real-time traffic for meeting message deadlines. Al-
though our proposed token scheduling scheme is not re-
stricted to any particular multiaccess network and can
be used in most centralized-scheduling multiaccess net-
works that meet some minimum architectural require-
ments (to be described in Section 2), to facilitate our
discussion, in the following we briefly describe the most
relevant features of a particular network - the SP-50
FieldBus [l], which is currently being studied by an In-
strument Society of America (ISA) Standards Commit-
tee and will soon become an international standard to
support time-critical communications between automa-
tion system devices in industrial control and manufac-
turing systems.

The entire network of the FieldBus is composed of
several links, each of which is a multiaccess bus con-
necting all the devices in a workcell. These multiaccess
buses are further connected via bridges. In order to
reduce communication latencies, unlike the OS1 seven
layer model, the FieldBus has only three layers: physi-
cal layer, data link layer, and application layer. In the
data link layer of FieldBus, a Data Link Entity (DLE) is
a logically active object, such as a copy of the execut-
ing program, which can send/receive packets to/from
the interconnection network and acts according to the
data link layer protocol of FieldBus. Therefore, there
could be more than one DLE on a station/node which
is physically attached to the network. There are four
classes of DLEs in the FieldBus data link layer: Ba-
sic, Link Master (LM), Link Active Scheduler (LAS),
and Bridge. Basic and LM classes are conceptually the
same, except that the Basic class DLEs have only the
minimum functions which are absolutely necessary for
adequate operations on a FieldBus network, while the
LM class DLEs are equipped with more functions such
as that of cooperating with other LMs on the same link
in establishing and sharing the link mastership. Unlike
other popular timed-token protocols (e.g., token bus,
token ring, and FDDI), FieldBus has a central control
unit, the LAS DLE, for each link (multiaccess bus).
There is always a copy of LAS DLE physically residing
in the same node with each LM, and hence, each LM

is capable of being a LAS. For each link, exactly one
LAS is active at any time for scheduling messages on
the link. It receives and responds to scheduling requests
from all DLEs on the same link by allocating a token
to one of these DLEs which then assumes the exclusive
right to use the link over some time period specified in
the token. The token is returned upon completion of
its use, or assumed upon its expiration. That is, the
LAS DLE is responsible for allocating and scheduling
the token for real-time messages on the local link by
sending the token, according to a scheduling scheme, to
the next scheduled station with a specified time period
during which the station can hold the token. There is
at least one active LM on each link, which is responsible
for detecting and recovering from the failure of the LAS.
The active LMs contend to become the active LAS at
the initialization or upon detecting the absence of the
LAS. A Bridge DLE, which acts just like a normal LM
DLE within a single link, performs a store-and-forward
function to connect two or more separate multiaccess
links (the function of the Bridge DLEs is out of the
scope of this paper).

Due to the nature of workcells in an automated fac-
tory, most of time-critical communication is likely to
take place between two peer DLEs on the same link,
and hence, it can be handled by the local LAS. In this
paper, we focus on the design of a token scheduling
scheme that can be implemented in the LAS (or called
the lank control mat, LCU, in the following discussion)
to allocaie and schedule the token in such a way that
each DLE on the local link will be allocated sufficient
link bandwidth for guaranteeing the timely delivery of
its real-time messages.

The rest of the paper is organized as follows. In
Section 2, we describe the underlying network model
and the real-time traffic characteristics. In Section 3,
we propose a token scheduling scheme for real-time
messages in a centralized-scheduling multiaccess net-
work. In particular, we show how the prnwheel [2] and
the dzstornce-constrazned [3] scheduling schemes can be
adapted for the real-time communication problem ad-
dressed in this paper without considering the token dis-
patch overhead. In Section 4, we show how to incorpo-
rate the token dispatch overhead into the scheduling
scheme proposed in Section 3. We conclude the paper
with Section 5.

2 Network and message models

2.1 Network model

The llocal area network considered in this paper con-
sists of N stations/nodes connected via a multiaccess
link/bus with a central lank control unit (LCU). The

87

stations communicate with one another via the multi-
access bus. The stations’ access to the bus is controlled
by the LCU, which uses a token dispatch protocol for
medium access control. The stations that have mes-
sages to transmit on the bus must first get the token
from the LCU. When sending the token to a station,
the LCU also specifies the duration, called the Token
Holdzng Tzme (THT), that the station can hold the
token for transmitting its messages. A station, after
receiving the token, is entitled to transmit its messages
on the bus for up to THT units of time. Either upon
completion of its message transmission the station re-
turns the token to the LCU, or when the THT expires
the LCU generates a new token and sends the token
to the next scheduled station. Messages to be trans-
mitted on the bus are divided into fixed-length pack-
ets, or in ATM (Asynchronous Transfer Mode) term,
cells. The transmission on the bus is slotted, i.e., data
bits transmitted on the bus are divided into fixed-length
slots. Each slot can hold one packet/cell and other in-
formation bits (e.g., the source/destination addresses,
the framing bits, etc), i.e., each packet needs one slot
time for its transmission. All stations listen to the bus
all the time. If a station receives a packet destined for
i t , it stores the packet in its internal buffer; otherwise,
it just discards the packet.

There are two salient differences between our
centralized-scheduling multiaccess network and other
token-passing networks such as token bus, token ring,
or FDDI. First, in our network model, the token
scheduling is controlled by a central LCU, while token
bus/token ring/FUUI adopts a distributed timed-token
protocol. Second, in our network model, the token need
not be allocated to stations in a cyclic fashion as in
token bus/token ring/FDDI. Note that our network
model is compatible with the current draft proposal of
the FieldBus protocol [l]. Therefore, the proposed to-
ken scheduling scheme to be discussed in the following
sections can be readily incorporated in the FieldBus
protocol.

2.2 Message model

Each station on the multiaccess bus may have
real-time and/or non-real-time messages to transmit.
Non-real-time messages do not have any timing con-
straints, while each real-time message belongs to a
real-time message stream, which possesses some pre-
defined characteristics, including the deadline of each
message. Each station may have zero, one, or more
real-time message streams emanating from it. Let M
= { M I , Mz, . . . , Mn} be a set of n real-time streams
in the multiaccess network. We consider the following
message model, in which each stream Mi is character-

ized by a tuple (C; , Di), where

0 C; is the maximum number of packets (cells) in
stream M; that can arrive in any time interval of
length Da, and

0 Dd is the transmission deadline (or simply, the
deadline) for the messages in stream Mi, i.e., if
a message of Mi arrives at time t , then it must be
transmitted by time t + Di.

This model is a generalization of the commonly-used
real-time peak-rate message model [17], in which each
stream Mi is characterized by a triple (Ci, Di, Pi),
where

0 Pi is the minimum inter-arrival period for stream
Mi, i.e., if the j-th message of Mi arrives at time
t , then the (j + 1)-th message in the stream will
arrive at a time no earlier than t + Pi for j 2 1,

0 Ci is the maximum message size measured in pack-
ets (cells) in stream Mi, i.e., Ci is the number of
slots needed to transmit a maximum-size message
in stream Mi, and
Di (5 Pi) is the transmission deadline for the mes-
sages in stream Mi.

Note that in the first message model, the inter-arrival
time of two consecutive messages in stream Mi is not
required to be larger than or equal to Di (i.e., more
than one message may arrive in a time interval of length
5 Di). However, the total message size measured in
packets (cells) in Mi that arrive in any time interval
of length D; should be bounded by Ci. In the second
model, during any time interval of length Pi, at most
one message with message size at most Ci will arrive.
And, Di 5 P; implies that the total message size in Mi
that arrive in any time interval of length Di is bounded
by Ci. It is easy to see that the second message model
is just a special case of the first one. Thus, unless oth-
erwise specified, we will assume that real-time message
streams conform to the first model.

For convenience of discussion, we will henceforth call
Di the deadline (constraint), and Ci the (maximum)
message size (within a time interval of length Di) of
stream Mi. Moreover, without loss of generality, we
assume that the time unit is one slot, Di is measured
in slot times, and the message arrival times align with
the beginning of a slot. Note that as mentioned earlier,
packet size matches the payload size of a slot, so we can
also think of Ci measured in slots.

In order to guarantee the timely delivery of real-time
messages, the LCU must allocate sufficient bandwidth
to each real-time message stream. For the two message
models defined above, it is easy to see that if we can
guar antee that

88

(Pl) during any time interval of length Di the LCU
will allocate the token to stream Mi and let Mi
hold the token for (at least) Ci units of time,

then we can guarantee the deadline constraint of any
message in stream Mi. Therefore, in the following dis-
cussion, we will concentrate on how to generate a to-
ken allocation schedule so that the above (Pl) is sat-
isfied. Especially, we propose a centralized-scheduling
multiple access (CS/MA)~ protocol for our multiaccess
network. The CS/MA protocol discussed in this paper
uses a centralized controller to allocate the token to sta-
tions/nodes such that conflict-free multiple access can
be achieved and timely delivery of the real-time mes-
sages can be guaranteed.

3 Proposed token scheduling scheme
The proposed token scheduling scheme is based on

the pinwheel [2] and the Distance-Constrained (DC) [3]
scheduling techniques. Tn this section, we first briefly
describe the pinwheel and the DC scheduling problems
and their scheduling schemes. Especially, we will de-
scribe the Schedulers Sx and Sr originally designed for
scheduling pinwheel instances and distance-constrained
task sets, respectively. We then show how Sx/Sr can
be modified to schedule the token for real-time message
streams on the stations of a multiaccess network.

3.1 Pinwheel and distance-constrained
scheduling schemes

The theoretical base of our token scheduling scheme
is grounded on some of the results in the pinwheel and
the DC scheduling problems.

The Pinwheel Problem: ([2,lS]) Given a multiset
of n positive integers A = { a l , a2, . . . , U,}, find an infi-
nite sequence (schedule) over the symbols { 1,2, . . . , n}
such that there is at least one symbol ‘(i” within any
subsequence of ai consecutive symbols (slots).

For example, given a multiset A = {2,4,5}, one solu-
tion sequence is (1, 2, 1, 3, 1, 2, 1, 3, ...) where the
subsequence (1 ,2 ,1 ,3) repeats forever. In this solution
sequence, we can find one “1” in every a1 = 2 con-
secutive symbols, one “2” in every a2 = 4 consecutive
symbols, and (at least) one “3” in every a3 = 5 consec-
utive symbols.

The question of how to schedule a pinwheel instance
has been studied in [2,19]. Define p(A) = Cyzl l/ai
to be the (to ta l) density of the pinwheel instance A.
Holte et al. [18] have shown that if a pinwheel instance

0

‘To distinguish the type of protocol discussed in this paper
from the well-known carrier sense multiple access (CSMA) pro-
tocol, we use CS/MA as the acronym for OUT protocol.

A with total density 5 1 consists solely of multiples
(i.e., ai (evenly) divides aj for all i < j , and p(A) =
Cy=l] / a i 5 l), then A is schedulable. For convenience
of reference, we list this result in the following theorem.

Theorem 1: ([lS]) Given a pinwheel instance A =
{ a l , a2, . . . , U,}, if ai divides aj for i < j , and p(A) 5 1,
then A. is schedulable. 0

Based on this result, Chan and Chin [2] have devised
two schedulers, Sa and Sx, to schedule larger classes of
pinwheel instances. The basic idea of Sa and Sx is
the single-integer reduction technique, which aims to
transfo’rm an arbitrary instance A to another instance
B = { b l , 6 2 , . . . , b,} which consists solely of multiples
and bi < ai for all i . From Theorem 1, we know that
B can be feasibly scheduled (for example, by the algo-
rithm {Specialsingle in [2]) if and only if p(B) 5 1.
Since bi 5 ai (i.e., B is more restricted than A), if we
find a schedule for B, then the schedule also satisfies
the ori,ginal constraints for A. However, since bi 5 ai
for all i, p(B) 2 p(A) . Therefore, if the total density
of A is larger than 1, it is impossible to find a feasible
schedulle for A, i.e., total density less than or equal to
1 is a n.ecessary condition for an instance to be schedu-
lable. The density threshold p* of A is then derived in
such a way that as long as the total density of A is less
than or equal to p* then p(B) 5 1 (i.e., B is schedula-
ble). In other words, with the single-integer reduction
technique, one can schedule all pinwheel instances with
total densities 5 p * . Note, however, that if a pinwheel
instance A has a total density larger than p * , it does
not nec.essarily mean that the instance is not schedula-
ble by Scheduler Sa or Sx. A can be feasibly scheduled
as long as the total density of the transformed set B is
less thatn or equal to 1.

Without loss of generality, in the following discus-
sion, wle assume that a1 5 a2 < . . . < a,. Let a denote
the smallest number in A, i.e., a = a l . In Scheduler
Sa, it finds a bi for each ai such that

bi = a . 2 j < ai < a . 2j+’ = 2b. 2 1

for some integer j 2 0. Chan and Chin [2] call this
operatiton specializing A with respect t o { U } . Since the
instanc’e B = { b l , b 2 , . . . , b,} consists solely of multi-
ples, aei long as p(B) < 1, Sa can then use the algo-
rithm Specialsingle [2] to find a feasible schedule for
B. And, since bi <_ ai for all i, the schedule found for
B is also a feasible schedule for A.

Scheduler Sx is based on the same technique as
Scheduller Sa except that A is specialized with respect
to {z}, where z is an integer and a1/2 < z 5 ai. Start-
ing from . = a l , Sx specializes A with respect to {.}
until z 2 a1/2 + 1 and chooses an z that minimizes

89

p(B), or until it finds an 2 which makes p(B) 5 1 (or
until i t finds that no such integer exists). Note that
finding an z that minimizes p(A’) can be done in O(n)
time [a]. Therefore, Sx is more powerful than Sa in the
sense that every pinwheel instance that can be sched-
uled by Sa can also be scheduled by Sx. For exam-
ple, Sa specializes A = {4,7,8,13,24,28} (with a total
density of 0.672.. . w 2/3) with respect to (4) to get
B = {4,4,8,8,16,16} with a total density of 7/8. In
comparison, Sx specializes A with respect to (3) to
get B’ = {3,6,6,12,24,24} with a total density of 5/6

It has been shown in [2] that the density thresholds
for Schedulers Sa and Sx are 1/2 and 13/20, respec-
tively. That is, as long as the total density of A is less
than or equal to 1/2, the total density of the resulting
set after specializing A with respect to { U } will be less
than or equal to 1, and hence, the resulting specialized
set is schedulable (and so is the original set A). Simi-
larly, as long as the total density of A is less than or
equal to 13/20, the minimum total density of the re-
sulting sets after specializing A with respect to {z}, for
a1/2 < 2 5 a l , will be less than or equal to 1.

Distance-constrained task system model. In [3]
we proposed a new real-time system model, called the
Distance- Constrained Task System (DCTS), to charac-
terize real-time tasks that have temporal distance con-
straints [20]. In the conventional real-time task system
model [21], it is assumed that every task must be exe-
cuted once during a certain fixed period. The execution
of a task in one period is independent of the execution
of the same task in any other period. In the DCTS
model, we assume that two consecutive executions of
the same task must be “close” to each other. Specif-
ically, given a DCTS task set T = {Tl,T2,. . .,Tn},
where each task Ti has an execution time Ci and a (tem-
poral) distance constraint Di, if fij denotes the finish
time of the j- th execution/invocation of task Ti, then
the distance constraint Di for Ti requires that fil 5 Di
and fi,j+l - fij 5 Di for all j >_ 1. In [3], we pro-
posed a scheduling algorithm, Scheduler Sr, for DCTS
task sets. Given a DCTS task set T = { E = (Ca, Di) I
1 5 i 5 n} with Dl 5 Dz 5 . . . 5 Dn, Scheduler
Sr first specializes the distance constraint (mu1ti)set D
= (01, Dz, . . . , Dn} with respect to { T } , where T is a
(real) number chosen from the interval (D1/2, Dl] such
that it minimizes the total density of the specialized
task set, where the density of a DCTS task set T is
p(T) = cy=l Ci/Di. Scheduler Sr then uses an ap-
proach similar to the rate-monotonic (RM) scheduling
algorithm [21] to schedule the specialized DCTS task
set whose distance constraint (mu1ti)set consists solely
of multiples. It has also been shown that as long as

(< 7/81,

the total density p(T) of the task set T is less than
or equal to n(2’/” - l) , Scheduler Sr can guarantee to
generate a feasible schedule for T. Note, again, that if
p(T) > n(21/n - l) , it does not necessarily mean that
Sr cannot generate a feasible schedule for T. As long
as the total density of the task set after specializing D
with respect to { F } is less than or equal to 1, Sr can
generate a feasible schedule for T. Another important
property of Scheduler Sr is that during any time inter-
val of length Di, the scheduling algorithm will allocate
Ci time units for task Ti for all i. Note that both Di
and C, are not necessarily integral; they can be any
positive real numbers.

As mentioned earlier, if the token scheduling scheme
of the LCU can allocate (at least) Ci slots to stream
Mi during any time interval of length Di for all i, then
all the messages are guaranteed to be transmitted be-
fore their deadlines. Therefore, we can think of the to-
ken scheduling problem as an extension of the pinwheel
problem (Ci isn’t necessarily equal to 1), and our token
scheduling scheme uses a discrete version of the DCTS
scheduling algorithm (both Di and Ci are integers).

In what follows, we describe how t o adapt the
scheduling algorithms originally designed for the pin-
wheel and the DCTS scheduling problems t o schedule
the token so that within any time interval of length Di,
the token is guaranteed to be allocated to stream Mi
for at least Ci slots.

3.2 TokenAllocator and Tokenscheduler
processes

We now describe in detail how to allocate the to-
ken t o message streams. We first assume that to-
ken dispatch overhead is small (as compared to the
message size) and can be ignored or is included
in C,’s (note that token dispatch overhead corre-
sponds to preemption/context-switching overhead in
task scheduling). Later, we will relax this assumption
and show how to deal with the token dispatch overhead.

Let M = { M , = (Ci,Di) I 1 5 i 5 n} be a set of
real-time message streams. Define the (message) den-
sity of stream Mi to be p(M,) = Ci/Di, and the (total)
denszty of the set M to be p(M) = Cy=l Ci/D;. Given
a set M of streams with D, divides Dj for all i < j , and
p(M) 5 1, the algorithm TokenAllocator (Figure 1)
will allocate the token to the streams in such a way that
during any time interval of length D,, the algorithm
will allocate (not necessarily consecutive) C, time slots
to stream M,. The TokenAllocator process uses the
rate-monotonic (RM) [21] scheduling algorithm to as-
sign message priorities so that the streams with tighter
deadline constraints get higher priorities. Specifically,
TokenAllocator treats each stream M, = (C,, 0;) as

90

TokenAllocat or

/* di: slack time of the current message of Mi. */
/ * c i : remaining transmission time w.r.t. current di. */
/* send(P,message): send a message to process P

and wait for its reception by P. */
/* receive(P,message): wait for and receive a message

from process P . */
/* M = {Mi = (Ci, Di) I 1 5 i 5 n} is a set of message

streams with Di I Dj for all i < j and p(M) 5 1. */

1. receive(TokenScheduler, M);
/* note that D1 5 D2 5 . . . 5 Dn */
2. f o r i := 1 to n do { ci := Ci; di := Di; }
3. do{
4. i t 1;
5. while (i 5 n and ci = 0) { i := i + 1 }
6. if i 5 n then {
7. H := min(ci, dl);
/* allocate H slots to Mi */
8. send(TokenSchedu1er , i, H) ;

10. } else {

/* allocate H slots to non-real-time traffic */
12. send(TokenScheduler, 0, H) ;
13. }
14.

16.
17. }
18. } forever

9. ci := ci - H ;

11. H : = d l ;

for j := 1 to n do {
15. d j := dj - H ;

if (dj == 0) { cj := Cj; dj := Dj;]

Figure 1: The TokenAllocator process.

a periodic task with execution time Ci and period (=
deadline) Di. TokenAllocator always allocates the to-
ken to the stream with the highest priority among those
active streams, where an active stream is one whose
slot requirements are unfulfilled at the current, period
interval. In TokenAllocator , the while-loop (Line 5)
is used to locate the highest-priority stream (i.e., the
smallest index i) that has unfulfilled slot requirement
(i.e., ci > 0) with respect to the current di. After locat-
ing the highest-priority active stream Mi, TokenAl-
locator allocates min(ci, d l , d 2 , . . . , di-1) = min(ci, dl)
time slots to Mi. The Tokenscheduler process (Fig-
ure 2) implements the token scheduling scheme which
sends the token with token holding time H to the sta-
tion that contains (the source of) the stream Mi (more
on Tokenscheduler will be discussed later). If there
is no stream with the unfulfilled slot requirement (i.e.,

TokenScheduler

/* Assume M = {Mi = (Ci, Di) I 1 < - i _< n}, where
D1 <I 0 2 5 . . . _< D,. */

/* Upon system initialization */
1. collect M and the station id that each message

2. specialize the deadline constraint multiset D of M

3. if (p(M’) > 1) reject M and exit;
4. else {

strea,m emanates from;

to get D’ (M’);

5.
6.
7.
8.
9.

10.
11.

12
13.

14.

15.

16.
17.
18.
19. }

send(Token Allocator , M) ;
do {

receive(TokenAllocator,i, H) ;
if (i # 0) {

send the token with THT H to the
node containing stream Mi;

send a non-real-time token with THT H
to the next scheduled node;

} else {

1
wait for the token to expire or until the
(non-real-time) token is returned early;
if token is returned early by H’ slots and

H’ - T > 0 then {
send a non-real-time token with THT
H’ - r to the next scheduled node;
goto Line 13;

} /* if */
} forever

Figure 2: The Tokenscheduler process.

ci = 0 for all i) with respect to the current di, the LCU
issues a, non-real-time token with a THT equal to the
beginning time of the next closest scheduled activity
minus the current time, i.e., min(dl,dz, . . . ,dn) = d l
(Line 11 of TokenAllocator). Note that the index 0
in Line 12 represents that the token is to be sent to
a station for transmitting its non-real-time messages.
This non-real-time token can be issued to the stations
on the network in a predefined fashion (such as round-
robin).

Note that the TokenAllocator process will generate
exactly the same schedule that the RM algorithm will
generate given a periodic task set with the i-th task
having a period Di and an execution time Ci, and Di
divides Dj for all i < j .

Theorlem 2: For a set of real-time message streams

91

M = {Mi = (Ci , Di) I 1 5 i 5 n}, if Di divides Dj for
all i < j , and p(M) 5 1, then TokenAllocator will
allocate Ci slots to stream Mi in any time interval of
length Di . 0

The proof of the above theorem is omitted due to lim-
ited space.

Suppose the LCU sends a real-time token with a to-
ken holding time H slots to stream Mi which emanates
from station Nk. If the total size of the real-time mes-
sages of Mi currently waiting to be transmitted is less
than H slots (packets), then, after transmitting these
messages of Mi, node Nk can use the remaining unused
token holding time to transmit its non-real-time mes-
sages. However, whenever new messages of Mi arrive,
the transmission of non-real-time messages should be
preempted, and Nk should use the remaining THT to
transmit the newly-arrived real-time messages of Mi.
The token will not be returned to the LCU even when
node Nk has neither real-time messages of Mi nor non-
real-time messages to transmit because new messages
of Mi might still arrive at Nk before the current token
holding time expires. When the current token holding
time expires, the LCU will generate a new token and
send it to the next scheduled station.

However, if the LCU sends a non-real-time token
with H slots of THT to a node and the node does not
use up all H slots to transmit its non-real-time mes-
sages, the node should return the token to the LCU.
After receiving the returned non-real-time token, the
LCU sends the (non-real-time) token t o the next sched-
uled node according to the predefined sequence with H‘
slots of THT, where H’ is the amount of time (number
of slots) by which the token is returned early.

We now describe the function of the LCU scheduler,
the Tokenscheduler process (Figure 2), which incor-
porates TokenAllocator to allocate token to the mes-
sage streams. Note that in Lines 14 and 15 of Token-
Scheduler, T is the token dispatch time to be discussed
in the next section. Currently, we can simply think that
T = 0 since the token dispatch overhead is ignored.

To schedule the token for a set of general message
streams M (i.e., Di may not evenly divides Dj for some
i and j) , the scheduler Tokenscheduler does the fol-
lowing steps.

Step 1. Upon system initialization, gather/maintain
the required information on real-time connection
requests; in particular, (Ci, 0;) for each stream Mi
and the station id that Mi emanates from.

Step 2. Specialize D = { D l , D z , . . . , D n } using the
chosen specialization operation to get the special-
ized stream set M’ with the specialized deadline
constraint (mu1ti)set D’ = {Di, Dk, . . ., DL}. For

I , 2 , , 4 , , 6, , S I ,lo, ,12, ,14, ,16, ,18, 70, 22, ,24, 26, ,28, 90, ,32,

Figure 3: The token allocation schedule for the set of
streams in Example 1.

example, if the specialization operation is the same
as that used in Scheduler Sx, then we find 0: for
each Di such that Da = x.2j 5 Di < x.2j+’ = 2D! 2 1

for some integer j 2 0, where x is an integer
E (D1/2, Dl1 that results in the minimum p(M’).
(Note that D: divides Di for all i < j.)

Step 3. Check whether or not the total message den-
sity of the specialized stream set M’ = { M l =
(Ci, 0:) I 1 5 i 5 n} is less than or equal t o 1, i.e.,
whether p(M’) = Cyzl Ci/D: 5 1, or not. If not,
reject M and stop. Otherwise, proceed to the next
step.

Step 4. Use the TokenAllocator process to get the
stream id i and the token holding time H . If i > 0,
assign the token t o stream Mi (send the token to
the station that Mi emanates from) with a token
holding time H . If i = 0, send a non-real-time
token with H slots of THT to the next node ac-
cording to the predefined sequence.

Step 5. Wait for the expiration of the token (holding
time), or the early return of the (non-real-time)
token. (Note that the real-time token will not be
returned.) If the token expires, repeat Step 4 for
the next scheduled activity. If the (non-real-time)
token is returned early by H’ slots and H’ - T >
0, send the token to the next node according to
the predefined sequence with H’ - T slots of THT,
where T is the token dispatch time (to be discussed
in the next section).

Example 1: Consider a set of real-time message
streams M = {Ma = (Ci,Di) I i = 1,2,3} =
{(2,9), (3,17), (7,35)}. Assume that Mi emanates from
node Ni for i = 1 ,2 ,3 , respectively. Also, assume that
non-real-time tokens are sent to the nodes in a round-
robin fashion staring from node N I . If we specialize the
deadline constraint set D = (9, 17, 35) with respect to
{8}, we will get the specialized deadline constraint set
D’ = (8, 16, 32). Since D: divides D(i for all i < j , and
p(M’) = 2/8+3/16+7/32 = 21/32 < 1, by Theorem 2,
we know that M’ is schedulable by TokenAllocator.
The subschedule from slot 1 to slot 32 produced by To-
kenAllocator is shown in Figure 3. According to this

92

schedule, the LCU will first send a token to node NI
and let it hold the token for two time slots to transmit
messages of M I . When the token expires, the LCU will
send another token to N2 with 3 slots of THT. Then,
upon expiration of the token, another token is sent to
N3 with 3 slots of THT. The next two steps are: send a
token with 2 slots of THT to N I , and then, send a token
with 4 slots of THT to N3. Now, since there is no real-
time token scheduled for the next two slots, the LCU
will send a non-real-time token to N1 for transmitting
its non-real-time messages, if any. (Note that non-real-
time token allocation is not shown in the schedule of
Figure 3.) The following steps are left for the reader.
This subschedule repeats (virtually) forever.

It is easy to see that TokenAllocator will generate
an infinite sequence of stream ids and token holding
times for the set of real-time streams such that there
are Ci time slots allocated to stream Mi in any time
interval of length D[(5 Di). So, all real-time messages
are guaranteed to be transmitted before their deadlines.
0

4 Incorporating token dispatch over-
head

In the previous discussion, we ignored the token dis-
patch overhead. We now show how to deal with the
token dispatch overhead and how to incorporate it into
the TokenAllocator process. We will use T to denote
the token dispatch time, i.e., it takes the LCU 7 time
slots to send/dispatch the token to a station. We first
use an example to show the effect of the token dispatch
overhead.

Consider a set of real-time streams {Mi = (Ci, Di) 1
i = 1 ,2 ,3} = {(l ,8) , (2,16), (5,32)}. (Note that Di di-
vides Dj for i < j .) If the token dispatch overhead is
ignored or included in Ci’s, the schedule generated by
the TokenAllocator process is shown in Figure 4(a).
In the schedule, the token will be allocated to each
stream Mi for Ci time slots within any time interval
of length Di slots. However, if the token dispatch over-
head needs to be considered, some time slots must be
used to send the token to the nodes that have messages
to transmit. For example, if token dispatch needs two
slots,2 then time slots 1 and 2 must be used to send
the token to the node that contains stream M I . Note
that the nodes do not return the real-time token to the
LCU. The real-time token is assumed upon its expira-
tion, and the LCU will issue a new token to the next
scheduled node upon expiration of the current (real-

’The token dispatch time (T) is, in general, much smaller than
the time needed to transmit a message of size C;. The numbers
for T and Ci’s in this example are chosen for the purpose of
illustration.

I , 2 , , 4 , , 6 , , 8 , ,lO, ,12, ,14, ,16, ,l8, JO, 22, ,?4, 126, ,28, ,34 1321

4x..- h h h I

MI”

~~~~ I 

L d  I m I I  
(b) token dispatch time T = 2 

Figure 4: The effect of the token dispatch overhead. 

time) token. So, no real-time token return overhead 
needs to be considered. However, as discussed earlier, 
a non-real-time token will be returned and sent to an- 
other node if the token does not expire and there is 
no non-real-time message to transmit on the node that 
currently holds the (non-real-time) token. The (non- 
real-time) token return overhead is easily taken care of 
by the TokenScheduler process in Figure 2. (Note 
that the new THT, HI,  in Tokenscheduler is defined 
to be the amount of time the token is returned early, 
and hence, the token return time is not included in HI.)  

In order to guarantee that during any time interval 
of length, Di, there must be at least Ci slots allocated 
to stream M8,  a schedule as shown in Figure 4(b) must 
be generated (assuming token dispatch to require two 
slots). In Figure 4(b), the shaded areas are the slots 
used to ,send the token to the nodes that contain the 
corresponding streams. The token with Cl = 1 slot 
of THT is allocated to M I  once every D1 = 8 time 
slots. E:ach time the token is allocated to  the node 
that contains M I ,  two slots must be used to send the 
token. If we think of the token dispatch overhead as 
part of the message transmission time (message size), 
it is equivalent to allocating Ci = C1 + 2 = 3 slots 
to M I  within every time interval of length D1. We 
will call C: the eflec-tive message size of M I .  Also, the 
token with C2 = 2 slots of THT is allocated to M2 once 
every = 16 time slots. Slots 4 and 5 (20 and 21) are 
used to send the token to the node that contains stream 
M2. Thus, the effective message size of Mz is C$ = 4. 
Similarl,y, the token is allocated to M3 twice with 3 and 
2 slots (C3 = 5) of THT, respectively, every D3 = 32 
slots. Slots 12 and 13 (and also slots 28 and 29) are used 
to send the token to the node that contains M3. Note 
that the token is allocated to M3 twice in the interval 
[l, D3] iin Figure 4(b), instead of once as in Figure 4(a). 
Also, noltice that slot 8 (and also slot 24) is not enough 
to transmit the token to the node that contains M3, and 

93 



Figure 5: The “compressed)) schedule. 

thus, the LCU will not send the token to  the node that 
contains M3 at these two time instants. Instead, the 
LCU will leave time slot 8 (and 24) idle intentionally. 
Although we will later show that these idle slots can 
actually be “compressed” by “advancing” the schedule, 
we will still consider these idle slots (8 and 24) as the 
overhead caused by token dispatch. Thus, the effective 
message size of M3 is Ch = 11 , instead of C, + 2 . 2  = 9. 
Note that slot 32 is also left idle intentionally. However, 
it is not considered as the token dispatch overhead for 
any real-time stream, and hence, i t  is not included in 
the effective message size of any real-time stream. 

Given a set of streams M = {Mi = (Ci, Di) I 1 5 
i <_ n} with Di dividing Dj for all i < j ,  we define the 
total eflective message density p’(M) to  be 

where Oi is the total token dispatch overhead (including 
the slots left idle intentionally due to insufficient time 
for sending the token) for stream Mi in the interval 
[l, Di] by using TokenAllocator .  

As mentioned earlier, we don’t really need to  leave 
the slots idle if they are not long enough to send the 
token to  a station. We can just “compress” the schedule 
by sending the token to  the next scheduled station. The 
compressed version of the schedule in Figure 4(b) is 
shown in Figure 5. It is easy to see that the compressed 
schedule still satisfies the requirement that during any 
time interval of length Di, the token is allocated to  Mi 
for at least Ci time slots (excluding the token dispatch 
overhead). 

We now show how to modify the TokenAllocator  
process in Figure 1 to incorporate the token dispatch 
overhead. Let r denote the token dispatch time. The 
modified TokenAllocator process which incorporates 
the token dispatch overhead is shown in Figure 6. Note 
that if H 5 0 in Line 8 or Line 13, it means that 
H = dl  - r 5 0. Thus, in Line 16, d3 := d j  - H - r 
is equivalent to  d j  := dJ - d l ,  which, in turn, is equiva- 
lent to  compressing/advancing the schedule by d l  slots. 
Also, notice that the token holding time N sent to the 
Tokenscheduler process does not include the token 
dispatch time T .  

TokenAllocator  (modified) 

1. receive(TokenScheduler, M); 
/* Note that D1 <_ Dz 5 . . . 5 D, */ 
2. for i := 1 to n do { ci := C,; di := Di; } 
3. do { 
4. i t  1; 
5. 
6. 
7. 
8. 
9. send(TokenScheduler, i, H ) ;  
10. 
11. } else  { 
12. H :=dl  - 7; 

13. 
14 1 
15. 
16. 
17. 
18. } 
19. } forever  

while (i 5 n and ci = 0) { i := i +  1 } 
if i 5 n then { 

H := min(c,, d l  - r ) ;  
if H > 0 then { 

ci := ci - H ;  } 

if H > 0 then send(TokenScheduler,  0, H ) ;  

for j := 1 to n do { 
7; d . - d . - H -  

3 .- 9 
if ( d j  == 0 )  { c3 := C.. 3 ,  d .  3 := D j ;  } 

Figure 6: The (modified) TokenAllocator  process. 

A theorem parallel to  Theorem 2 can also be derived 
for the modified TokenAllocator process. 

Theorem 3: For a set of real-time streams M = 
{Mi  = (ci, Da) I 1 1. i 5 n},  if Di divides D3 for all 
i < j ,  and p’(M) = C:=lCi/Di 5 1, then the (modi- 
fied) TokenAllocator  process in Figure 6 will allocate 
Ci (not Cl) slots to stream Ma in any time interval of 

The proof of the above theorem is omitted due to  lim- 
ited space. 

Now, let’s go back to  the Tokenscheduler process 
in Figure 2 .  In Line 14, if a token is returned early by 
H’ slots, and if H’ is long enough (i.e., H’ - r > 0), 
then the LCU (the Tokenscheduler process) will issue 
a non-real-time token with THT = H’ - r to  the next 
scheduled station. The “- r” in the THT H’ - r is 
because the THT sent to  a station does not include the 
token dispatch time. If the current token expires, or 
if the token is returned early but H’ - r 5 0, then 
the LCU just uses the TokenAllocator  to  schedule 
the next activity (in the latter case, it is equivalent to 
compressing the schedule by H‘ slots). 

5 Conclusion 

length D; . 0 

In this paper, we proposed a token scheduling scheme 
for allocating the bandwidth of a multiaccess bus and 

94 



guaranteeing the timely delivery of real-time messages 
in a centralized-scheduling multiaccess network such as 
the soon-to-be industrial standard, FieldBus. Our pro- 
posed scheme is based on the pinwheel and the distance 
constrained scheduling schemes. It is predictable since 
it can feasibly schedule a set of streams with total mes- 
sage density less than or equal to  a certain density 
threshold (e.g., 0.65 for using the specialization oper- 
ation of Scheduler Sx). It is also simple and easy to 
implement since it uses a fast on-line scheduling algo- 
rithm to  decide which station the next token should be 
sent to  and how much time the station can hold the 
token for transmitting its messages. 

The most significant contribution of this paper comes 
from the fact that timely and predictable communica- 
tion services are essential to  embedded real-time ap- 
plications, such as automated factories and industrial 
process controls. Our proposed scheme provides an 
effective and simple mechanism for supporting intra- 
workcell time-critical communications in a computer- 
integrated manufacturing system, in which the ability 
to  provide timely and predictable inter-process commu- 
nication is of great importance because failure to  com- 
plete specified message transmissions before their dead- 
lines may risk failure of the functions of the commu- 
nicating processes, risking equipment, plant and even 
human safety. 

References 

[l] “Industrial Automation Systems-Systems Integration 
and Communications-Fieldbus (draft) (ISA/SP50- 
1993).” Instrument Society of America, 1993. 

[2] M. Y. Chan and F. Chin, “Schedulers for larger classes 
of pinwheel instances,” Algorithmica, vol. 9, pp. 425- 
462, 1993. 

[a] C.-C. Han and K.-J. Lin, “Scheduling distance- 
contrained real-time tasks,” Proc. IEEE Real- Time 
Systems Symposium, pp. 300-308, Dec. 1992. 

[4] D. Ferrari and D. C. Verma, “A scheme for real- 
time channel establishment in wide-area networks,” 
IEEE Journal on Selected Areas in Communications, 
vol. SAC-8, pp. 368-379, April 1990. 

[5] D. D. Kandlur, K. G. Shin, and D. Ferrari, “Real-time 
communication in multi-hop networks,” IEEE Trans. 
on Parallel and  Distributed Systems, vol. 5, Oct. 1994. 

[6] Q. Zheng and K.  G. Shin, “On the ability of es- 
tablishing real-time channels in partially-connected 
networks,” IEEE Transactions on Communications, 
vol. 42, pp. 1096-1105, February/March/April 1994. 

[7] “Token passing bus access method and physical layer 
specifications.” ANSI/IEEE Standard, 802.4-1985, 
1985. 

[8] ‘‘Token ring access method and physical layer specifi- 
cations.” ANSI/IEEE Standard, 802.5-1985, 1985. 

[9] “Fiber Distributed Data Interface (FDDI) - Token 
Ring Media Access Control (MAC).” American Na- 
tional Standard, ANSI X3.139-1987, 1987. 

[lo] G. Agrawal, B. Chen, W. Zhao, and S. Davari, “Guar- 
anteeing synchronous message deadlines with the timed 
token medium access control protocol,” IEEE Trans. 
on Computers, vol. 43, pp. 327-350, March 1994. 

Ell] B. Chen, G. Agrawal, and W. Zhao, “Optimal syn- 
chronous capacity allocation for hard real-time com- 
munications with the timed token protocol,” in Proc. 
of Real-Time Systems Symposium, Dec. 1992. 

[12] C.-C. Han and K. G. Shin, “A polynomial-time opti- 
mal synchronous bandwidth allocation scheme for the 
timied-token MAC protocol,” in Proc. of IEEE INFO- 
COM’95, (Boston, Massachusetts), April 1995. 

1131 C.-C. Han, K. G. Shin, and C.-J. Hou, “Synchronous 
bandwidth allocation for real-time communications 
witlh the timed-token MAC protocol.” submitted to J. 
of ACM, 1994. 

[14] “IEEE Standards for Local and Metropolitan Area Net- 
works: Distributed Queue Dual Bus (DQDB) Subnet- 
work of a Metropolitan Area Network (MAN).” IEEE 
802.6, July 1991. 

[15] D. Saha, M. C. Saksena, S. Mukherjee, and S. K. Tri- 
pathi, “On guaranteed delivery of time-critical mes- 
sages in DQDB,” in Proc. of IEEE INFOCOM’94, 
vol. 1,  pp. 272-279, June 1994. 

[16] C.-C. Han, C.-J. Hou, and K. G. Shin, “On slot al- 
location for time-constrained messages in DQDB net- 
works,” in Proc. of INFOCOM’95, April 1995. 

[17] C. M. Aras, J. F. Kurose, D. S. Reeves, and 
H. Schulzrinne, “Real-time communication in packet- 
switched networks,” Proceedings of the IEEE, vol. 82, 
pp. 122-139, January 1994. 

[18] R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and 
D. Varvel, “The pinwheel: A real-time scheduling prob- 
lem,” in Proc. of the 22nd Hawaii International Con- 
fenelace on System Science, pp. 693-702, January 1989. 

[19] M. Y. Chan and F. Chin, “General schedulers for the 
pinwheel problem based on double-integer reduction,” 
I E E E  Trans. on Computers, vol. 41, June 1992. 

[20] C.-C. Han, K.-J. Lin, and J. W . 3 .  Liu, “Scheduling 
jobs with temporal distance constraints,” to appear in 
SL4M J .  on Computing, 1995. 

[21] C. L. Liu and J. W. Layland, “Scheduling algorithms 
for multiprogramming in a hard-real-time environ- 
ment,” J. of AGM, vol. 20, no. 1,  pp. 46-61, 1973. 

95 


