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Abstract 
This paper presents an integrateD sQftware fault 

injeCTiQn enviRonment (DOCTOR) which is capa- 
ble o f  (1) generating synthetic workloads under which 
system dependability is evaluated, (2) injecting various 
types of faults with different options, and (3) collecting 
performance and dependability data. A comprehensive 
graphical user interface is also provided. The software- 
implemented fault-injection tool supports three types 
of faults: memory faults, CPU faults, and communi- 
cation faults. Each injected fault may be permanent, 
transient or intermittent. A fault-injection plan can be 
formulated probabilistically, or based on the past event 
history. The modular organization of tools is particu- 
larly designed for distributed architectures. DOCTOR 
is implemented on a distributed real-time system called 
HARTS  [l], and its capability has been tested through 
numerous experiments. 

1 Introduction 
In real-time systems the correctness of a compu- 

tation depends not only on the logical correctness of 
the result but also on the time at which the result 
is produced [2]. There are a wide range of real-time 
applications, including continuous-media, transaction 
processing, and life- and mission-critical controls. Dis- 
tributed architectures have proved to be well suited 
for meeting the timing and reliability requirements of 
these real-time applications. One of the major prob- 
lems which the designers of distributed real-time sys- 

*The work reported here is supported in part by the Office 
of Naval Research under Grants N00014-91-J-1115 and N00014- 
94-1-0229, the National Aeronautic and Space Administration 
under Grant NAG-1493, and the National Science Foundation 
under Grant MIP-9203895. Any opinions, findings, and con- 
clusions or recommendations expressed in this paper are those 
of the authors and do not necessarily reflect the views of the 
funding agencies. 

tems face is the difficulty of evaluating their depend- 
ability. Numerous approaches have been proposed to 
evaluate system dependability, such as formal meth- 
ods, analytical modeling, simulation, and experimen- 
tal measurements. 

Validating distributed real-time systems is a chal- 
lenging task, since both performance and reliability 
constraints should be considered simultaneously, and 
their software and hardware architectures are very 
complex. In fact, the growing complexity of dis- 
tributed real-time systems, due mainly to their inter- 
component communications, makes most of the exist- 
ing evaluation approaches intractable except for fault 
injection into actual prototype systems. With a com- 
mon goal to accelerate the occurrence of faults or er- 
rors in the system to be tested during operation, nu- 
merous fault-injection tools have been developed us- 
ing both software and hardware techniques [3, 4, 5, 
6, 7, 8, 9, 101. Although hardware-implemented fault 
injectors closely mimic the real world by producing ac- 
tual hardware faults, they require additional hardware 
which is often very expensive and inflexible. Moreover, 
it is difficult to use them to force a distributed sys- 
tem into certain states, which are essential for testing 
distributed protocols, because the effect of hardware 
fault injection is usually unpredictable and hard to 
reproduce. Hence, more systematic error injection at 
a higher-level than hardware-component level is nec- 
essary for the validation of distributed real-time sys- 
tems. 

Based on the above observations, we have de- 
veloped a software-implemented fault injection tool 
which can inject communication faults as well as tra- 
ditional hardware faults such as memory and CPU 
faults. The temporal behavior of a fault may be spec- 
ified as transient, intermittent, or permanent. Beside 
this basic fault model, it also provides a convenient 
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user interface that allows the user to specify fault- 
injection timing, thus enabling the user to construct 
more complicated fault-injection scenarios. Another 
point we would like to emphasize is the importance 
of supporting tools for an integrated experiment en- 
vironment. For example, using only a few application 
workloads is not sufficient to assess the effects of a wide 
range of applications on the underlying fault-tolerance 
mechanisms. The dependence of experimental results 
on the executing workloads has to be dealt with in a 
systematic manner. 

For ease in generating workloads of various oper- 
ational characteristics under which system depend- 
ability may be evaluated, we have developed a syn- 
thetic workload generation tool [ll]. Also, to facili- 
tate the collection of both performance and reliability 
data, an efficient data-collection tool is developed. We 
have been developing an automated test case selection 
tool [I21 for systematic fault generation on a formal 
basis. All these tools are controlled through a unified 
graphic user interface. In contrast to others [5, 6, lo], 
we integrate tools in a distributed environment. 

In real-time systems where time is the most pre- 
cious resource, fault injection and data collection must 
be performed with minimum overhead to the target 
system. Otherwise, the correctness of the validation 
itself becomes questionable. To minimize the per- 
formance overhead of fault injection, only essential 
functions are performed on the same processor under 
test and relatively simple fault-injection techniques 
are employed, which enhances the portability of tools 
as well. To increase the accuracy and to minimize the 
overhead of data collection, we have designed a dedi- 
cated hardware for data collection. 

The proposed software-implemented fault-injection 
environment, called an integrateD sQftware fault- 
injeCTiQn envibnment , or DOCTOR for short, 
is implemented on HARTS. In the duplicate-match 
fault-detection experiment, the evaluated dependabil- 
ity measures such as detection coverage & latency are 
compared with other fault-injection tools. Communi- 
cation fault injection is used to evaluate a probabilistic 
distributed diagnosis algorithm. The results show that 
the algorithm performs better than its predicted worst 
case, but it is quite sensitive to various coverage and 
inter-processor test parameters. 

The paper is organized as follows. Section 2 
presents the motive of our approach by discussing new 
requirements for fault injection in distributed real- 
time systems. Section 3 describes the organization of 
DOCTOR and its components. Section 4 presents the 
fault model used in DOCTOR. In Section 5, we discuss 

the implementation issues. Section 6 presents experi- 
ments and their results to demonstrate the usefulness 
of DOCTOR. The paper concludes with Section 7. 

2 Fault-Injection Requirements 
There are four major attributes of fault injection: 

a set of faults P, a set of activations A which specify 
the workload used to exercise the system, a set of read- 
outs R, and a set of derived measures M which cor- 
respond to dependability measures such as MTTF [5]. 
The FARMsets  for fault injection in distributed real- 
time systems are more complex than those for single 
processor systems, because the fault-tolerance mech- 
anisms of distributed real-time systems utilize multi- 
ple processors connected by communication networks. 
Considerable complexities or difficulties exist in evalu- 
ating distributed diagnosis, processor group member- 
ship, replicated process group for fault masking or re- 
covery, fault-tolerant communication, and so on. A 
sophisticated fault-injection scenario in both time and 
space dimension should be constructed to test execu- 
tion paths that may occur very rarely during normal 
operation. 

The requirements for fault injection in distributed 
real-time systems are enumerated below. 

1. The fault model should include faults on com- 
munication links and communication adaptor cir- 
cuitry as well as faults inside a processing node 
such as memory faults, CPU faults, or bus faults. 

The fault injector should be able to coerce the 
whole target system to follow a certain intended 
execution path, which requires it to orchestrate 
all participants’ behaviors. This is not achiev- 
able by randomly selecting fault type and injec- 
tion timing. A systematic fault-selection aid tool 
and a flexible user interface are necessary for this 
purpose. 

The operational characteristics of workload 
should be easily adjustable, especially in terms 
of the communication activities. 

Fault injection or data collection must require as 
little modification to the target system code as 
possible. The performance overhead or interfer- 
ence by these two should also be minimized and 
quantifiable. 

To obtain high-resolution timing data such as 
error-propagation delay or error-recovery latency, 
a special time-stamping technique should be 
employed, because clock-synchronization skews 
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Figure 1: The organization of DOCTOR 

among different processing nodes may cause un- 
acceptably inaccurate time measurements. We 
solve this problem by using dedicated hardware. 

3 Integrated Experiment Environment 
We provide a complete set of tools for automated 

fault-injection experiments. As mentioned earlier, this 
tool set is intended for use in distributed real-time 
systems (whereas most of other existing tools are in- 
tended for single processor systems). Figure 1 shows 
the organization of DOCTOR which forms a modular 
software architecture. In the distributed system archi- 
tecture assumed, a host computer works as a console 
node and several processing nodes are connected via a 
system communication network and linked to the host 
node by an Ethernet. Each node can be a bus-based 
multiprocessor group. 

One distinct feature of this organization is the sepa- 
ration of components of the host computer from those 
of the target system. It has the advantage of reduc- 
ing the run-time interference with the target system 
caused by fault injection, because each component 
runs separately and only essential components are exe- 
cuted on the target system. It also increases the porta- 
bility of DOCTOR, since the highly system-dependent 
part is isolated from the rest. 

The fault injector, the core part of DOCTOR, con- 
sists of three modules: Experiment Generation Mod- 
ule (EGM), Experiment Control Module (ECM), and 
Fault Injection Agent (FIA). Data Collection Module 
(DCM) collects experimental data during each exper- 
iment, and they are analyzed off-line after completing 
the experiment by Data Analysis Module (DAM). To 
obtain more accurate timing data with smaller perfor- 
mance overhead, Hardware MONitor (HMON) can be 
used in the place of DCM. Synthetic Workload Gen- 

erator (SWG) [ll] is provided to generate various ar- 
tificial workloads. A tool for systematic fault selec- 
tion [12] is currently under development. In addition, 
a comprehensive Graphic User Interface (GUI) and an 
automated multi-run experiment facility are provided 
to facilitate and automate the design and execution 
of fault-injection experiments. Fault-injection experi- 
ments are completely transparent to the workloads. 

Each fault-injection experiment with specific work- 
loads is called a run. In a fault-injection experiment, 
one of the factors that determine the quality of analy- 
sis results will be the number of runs. Therefore, it is 
very useful to automate multi-run experiments. The 
key problem in experiment automation is the synchro- 
nization and re-initialization of several processes in- 
volved. The level of re-initialization required depends 
on the status of the target system after completing 
each run. In some cases, it may be necessary to  reset 
the whole system, and in some other cases, the restart 
of workloads may suffice. We support both levels. 
3.1 EGM 

The first role of EGM is to generate executable im- 
ages of workloads which will be downloaded (from the 
host) to the target system. A workload could be run 
on a single processing node or be. distributed among 
a number of nodes. The user can use real programs 
as workloads, or can rely on SWG for artificially- 
generated workloads. In either case, when the work- 
loads are compiled, the symbol-table information is 
extracted to be referenced by ECM. 

The second role of EGM is to parse the experi- 
ment description file supplied by the user. The exper- 
iment description file describes the experiment plan 
which contains the information about the fault type 
and injection timing. EGM generates an experiment 
parameter file for each node involved in the experi- 
ment. These files are used by ECM to determine when 
to start fault injection, which type of fault to be in- 
jected, and how many times the experiment will be 
run, and so on. 
3.2 FIA & ECM 

FIA receives commands from ECM via Ethernet 
and executes them by injecting faults or making work- 
loads wait/start/stop. It also reports its activities to 
DCM or HMON, such as the injection time, location, 
type, etc. FIA is a separate process which runs on the 
same processor where the workload is running. 

ECM functions as an external controller. It syn- 
chronizes the start/end of each run among several 
nodes, and sets up an experiment environment by 
downloading executable images of the workload, FIAs, 
DCMs, and even system software if needed. ECM uti- 
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lizes the experiment parameter files and the informa- 
tion received from FIAs to create proper commands 
to FIAs. For example, the symbol-table information 
which is contained in the experiment parameter files 
is used to decide memory fault-injection locations. At 
the same time, the information about run-time stack 
location from FIA is used. FIA and ECM share the re- 
sponsibility of past event history management, which 
is particularly important for communication fault in- 
jection. 

3.3 SWG 
To evaluate the dependability of fault-tolerance 

mechanisms, we must measure dependability parame- 
ters like detection coverage and latency while execut- 
ing appropriate workloads. A workload produces de- 
mands for the system resources, so the structure and 
behavior of the workload may affect the experimental 
result significantly. In DOCTOR, the user can use a 
synthetic workload produced by SWG instead of real 
programs, so that experiments can be conducted un- 
der various workload conditions. Because a synthetic 
workload is parameterized in the high-level descrip- 
tion format, the user can easily control the workload 
characteristics. 

3.4 DCM&HMON 
The basic function of these tools is to log the events 

generated by the monitored object. The FIAs and 
fault-tolerance mechanisms under test generate such 
events, and if performance is monitored together with 
dependability, the event triggering instructions need 
to be placed in the operating system kernel. These 
events are the categorized, time-stamped information 
about the activities which we want to monitor. For 
example, in fault-detection experiments, two types of 
data are needed for the post analysis. One is the his- 
tory of fault-injection reports, and the other is that 
of error-detection reports. Generation of events is the 
only overhead to the monitored object. DCM/HMON 
runs continuously during experiments, and its func- 
tion is fairly passive. 

If the goal of an experiment requires very high- 
resolution timing measurements, the time-stamp res- 
olution supported by the underlying operating system 
or hardware may not be sufficient. Moreover, if the 
objects to be monitored are distributed among several 
nodes, the timestamps of collected events are diffi- 
cult to compare, because the tightness of clock syn- 

'To minimize performance interference, DCM usually runs 
on a processor different from those on which workloads or fault- 
tolerance mechanisms run, but on the same backplane-bus(on 
the same node). The collected data are stored in files and used 
later for post data analysis. 

1 Fault types 
Single bit I Set 

Location 
Stack/Heap 

Compensating 
Single byte 
Multi bytes 
User defined 

Table 1: Memory fault options 

Reset Global variables 
Toggle User-code 
User defined OS Kernel area 

User defined 

chronization among the nodes may not reach the de- 
sired time-stamp resolution. In order to obtain high- 
resolution timestamps (e.g., 25 nsec), a hardware- 
implemented monitor (HMON) is developed. When a 
log request arrived through the backplane-bus, HMON 
generated a time-stamp and stores the time-stamped 
event into its local memory. It also maintains its own 
synchronization network so that necessary events are 
signaled to other HMONs. As a result, the measure- 
ment accuracy becomes independent of the system 
clock synchronization. 

4 Fault Model 
Hardware or software faults affect the various as- 

pects of the system state or operational behavior, such 
as memory or register contents, program control flow, 
clock value, the condition of communication links, and 
so on. Modifying memory contents has been a ba- 
sic technique used in software-implemented fault in- 
jectors. Faults are likely to (eventually) contaminate 
certain parts of memory, so memory faults can rep- 
resent not only RAM errors but also emulate faults 
occurring in the other parts of the system. Though 
the memory fault model is quite powerful, some faults 
may affect system memory contents in a very subtle 
and nondeterministic way, and hence, it is very diffi- 
cult to emulate such a faulty behavior with memory 
fault injection alone. A more sophisticated fault model 
is therefore required. 

Currently, DOCTOR supports three types of faults: 
memory faults, CPU faults, and communication 
faults. The user can choose any combination of these 
three types to induce appropriate abnormal condi- 
tions. For each fault type, one can specify a number 
of options as shown in Tables 1, 2 and 3. We are also 
adding the capability of system-level error injection, 
such as making processes slow or fast, terminating or 
suspending processes, corrupting clock/timer services, 
corrupting system-call services, and so forth. 
4.1 Memory Faults & CPU Faults 

A memory fault can be injected as a single bit, two- 
bit (compensating), whole byte, or burst (of multiple 
bytes) error. The contents of memory at the selected 
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U Fault types I Location U specify whether outgoing, incoming, or all messages 
are lost at the faulty link. Messages can be lost in- 
termittently, with a probability distribution specified 
by the user, or alternately, every message can be lost 
during a certain period. Messages may be altered in 
a similar manner as memory faults, i.e., by corrupting 
single bit, two-bit compensating, or burst errors. The 
user can specify whether the error is to be injected into 

Address registers 
Stack pointers 

Table 2: CPU fault options 

1 User defined I Delay control 

0 Fault types 1 Options U 

Alter messages Altered location 
Delay messages Altering operation 

I 
Table 3: Communication fault options 

address are partially or totally set, reset, or toggled. 
Beside the fault type, it is important to control the 
location of memory to be contaminated. The injec- 
tion location either can be explicitly specified by the 
user, or can be chosen randomly from the physical 
memory space. It is sometimes desirable for a fault 
to be injected only into a memory section, such as the 
user program code, the user stack/heap, or the system 
software area. 

CPU faults can occur in data registers, address reg- 
isters, the data fetching unit, control registers, the 
op-code decoding unit, ALU, and so on. The exact 
effect of faults in each processor component is highly 
architecture-dependent. Therefore, to emulate actual 
faults more directly, the utilization of detailed knowl- 
edge about the specific CPU architecture is required. 
However, depending on the underlying hardware and 
system software, accessibility to hardware components 
varies widely. One way to overcome this limitation 
is to inject erroneous effects rather than faults them- 
selves. We chose to emulate the consequences of CPU 
faults in the architecture-independent level. For ex- 
ample, the control flow may be altered by bus line er- 
rors, instruction decoding logic errors, condition code 
flag errors, or control register errors (e.g., program 
counter). Instead of dealing with each possible case, 
the contents of CPU registers are used as the targets 
of fault injection. 
4.2 Communication Faults 

The communication faults in DOCTOR can cause 
messages to be lost, altered, duplicated, or delayed. 
If a node has multiple incoming and outgoing links, 

the body of a message or into its header. For delayed 
messages, the delay time can either be deterministic 
or follow some probability distribution. In addition 
to this set of predefined communication fault types, 
the user can define additional communication faults. 
These user-defined faults may be combinations of the 
predefined fault types, and may be based on the con- 
tents of individual messages or on the past message 
history. This variety of communication failures, and 
the ability to combine existing fault types and define 
new fault types, allow for the injection of a variety of 
failure semantics, including Byzantine failures. 

4.3 The Control of Injection Timing 
One important aspect of our fault model is its fine 

controllability of the fault-injection timing. In fact, 
the capability of injecting a proper fault instance into 
a proper location at a proper time is essential to the 
fault-injection experiments. Our fault model supports 
three temporal types of faults: transient, intermit- 
tent, and permanent. A transient fault is injected 
only once, and an intermittent fault is injected re- 
peatedly. When injecting an intermittent fault, the 
user can specify the probability distribution of the 
fault recurrence interval. Several types of distribu- 
tions like uniform distribution, exponential distribu- 
tion, normal distribution, Weibull distribution and bi- 
nomial distribution are provided. The user can spec- 
ify the necessary constants of each distribution type, 
and similar probability distributions are provided for 
fault durations. Besides its (pre-defined) probabilis- 
tic injection timing control, DOCTOR allows the user 
to design fault-injection scenarios with user-specified 
timing control in either time-based specification or 
history-based specification. So, the user can directly 
control injection timing and fault durations with ab- 
solute or relative specifications. 

5 Implementation on HARTS 
The first target system2 of DOCTOR is HARTS. 

HARTS is comprised of multiprocessor nodes con- 
nected by a point-to-point interconnection network. 
Each HARTS node consists of several Application 

as in point-to-point architectures, different fault types 
can be specified separately for each link. The user can 

'We are currently porting DOCTOR to a VxWorks based 
distributed real-time system. 
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Processors (APs) and a Network Processor (NP). 
The APs are used for executing application tasks, 
and the N P  handles most of communication pro- 
cessing. In the current configuration, the nodes of 
HARTS are VMEbus-based Motorola 68040 systems. 
Each HARTS node has 1-3 AP cards, an NP card, 
and a communication network interface board. Each 
node of HARTS runs an operating system called 
HARTOS3 [15]. A Sun workstation serves as a con- 
sole. Applications and system software are down- 
loaded from this workstation through a dedicated 
local Ethernet. In implementing the fault injector 
on HARTS, we use three techniques to inject faults 
concurrently with the execution of workloads. Sim- 
ple memory overwrites are used for injecting memory 
faults, a special fault-injection protocol layer is used 
for injecting communication faults, and modification 
of CPU registers is used for injecting CPU faults. 

For memory fault injection, when a pre-determined 
time is reached, ECM sends the corresponding FIA a 
message, which contains the address, the fault dura- 
tion and the mask pattern. The content of the ad- 
dressed location is masked by the specified pattern 
using AND (reset) operation, OR (set) operation, or 
XOR (toggle) operation. HARTS does not have any 
memory p r ~ t e c t i o n , ~  so FIA can easily overwrite any 
memory area. If the type of fault to be injected is per- 
manent, the problem is not so easy, because the only 
way to facilitate true-permanent memory faults is to 
make use of system-provided memory protection sup- 
port. Because HARTS is not equipped with memory 
protection support, we use pseudo-permanent mem- 
ory faults. A permanent fault is emulated as an in- 
termittent fault with a very small recurrence interval. 
FIA refreshes the contents of the fault location peri- 
odically. Another issue in injecting a memory fault 
is the problem of deciding the location of injection. 
Again, because HARTS does not use virtual memory, 
the symbol-table information can be used in an abso- 
lute address form. 

A transient/intermittent type of CPU fault requires 
fault injection a t  run-time. The way we use is invok- 
ing a trap to the associated process and performing 
fault injection while the process is frozen, then allow- 
ing the process to continue execution again, which is 
similar to  [7, lo]. In HARTOS, some of the CPU reg- 

~ _ _ _ _  

3HARTOS is primarily an extension of the functionality of 
pSOS+'" [13]. While pSOStm provides system support within 
a node, an extended version of the s-kernel [14] coordinates 
communication between nodes. 

'Like most other real-time systems, HARTS does not em- 
ploy virtual memory or memory protection to reduce the un- 
predictability in memory access caused by page faults. 

ister contents are saved in the task control block and 
others are saved in the run-time stack, when a con- 
text switch occurs. The necessary location informa- 
tion about the task control block and run-time stack 
is obtained through call-out functions provided by the 
operating system. Since FIA is assigned a higher 
scheduling priority than other processes, it can force 
a process to be context-switched and return the con- 
trol to the trapped process after modifying the saved 
register values. This can be done very quickly because 
the context-switching in real-time systems is usually 
very fast. However, the efficient injection of perma- 
nent CPU faults is difficult to achieve. One possible 
way (that we chose) is changing program instructions 
at compile time. For example, modifying all of the in- 
structions using a faulty ALU can emulate the perma- 
nent ALU fault, and overwriting a register's contents 
in the middle of the program execution whenever it 
is used can emulate the permanent register fault. By 
replacing or adding instructions a t  the assembly lan- 
guage level, more types of permanent CPU faults can 
be emulated. 

Communication faults are injected by a special pro- 
tocol layer, which accepts commands from FIA to de- 
termine fault instances to be injected and to build the 
message history structure. The fault-injection layer 
may be placed between any two protocol layers in the 
protocol stack, but is normally inserted directly below 
the protocol or user program to be tested. The current 
implementation takes advantage of the features of the 
z-kernel, in which our communication protocols are 
implemented. The fault-injection layer is transparent 
to other protocol layers and does not add or modify 
the message header or data at all. The fault-injection 
layer need not be modified when it is placed between 
different protocol layers. If more complex fault scenar- 
ios are desired, copies of the fault-injection layer may 
be placed in multiple places in the protocol graph. The 
fault-injection layer operates by intercepting the UP1 

operations between the protocol under test and the 
lower layer protocols. If it detects an operation during 
which a fault should be injected, based on commands 
from the FIA, it performs the appropriate fault injec- 
tion operation. All other operations are simply passed 
through without modification. Outgoing and incom- 
ing messages are lost by intercepting the appropriate 
send and receive operations, and then discarding the 
message. Messages are altered by intercepting the 
send or receive operation, and then changing the mes- 

5All protocols in the s-kernel are implemented using same 
interface between layers, called the Uniform Protocol Interface 
(UPI). 
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case 1 case2  case 3 case4  
matrix size 30x50~30 30x50~30 40x80~40 40x80~40 
sampling freq 1/50 1/150 1/50 1/150 

6 Experiments and Analyses 
6.1 Error Latency Measurement 

The goal of this experiment is to illustrate how the 
dependability parameters of a fault-tolerance mecha- 
nism can be measured with DOCTOR. Specifically, 
we measure error latency and analyze its probabilistic 
distribution. Error latency is the elapsed time be- 
tween a fault/error injection and its detection. The 

0 1  0.2 0.3 0.4 0.5 0.6 
EVOI I a b r ~ ~ f l ~ )  

quency of data sampling for comparison are the fac- 
tors to be altered. Memory faults are injected into 
the memory section allocated for matrix data. For 
simplicity, we chose to inject one byte toggling tran- 
sient memory faults. Because the workload keeps on 
re-initializing input matrix data after completing the 
whole multiplication, some of injected faults are over- 
written in the re-initialization step. It is why the in- 
jected faults are not always detected. Four cases are 

case 1 a I error I I error I I I error trix case has a larger mean error latency, even if the 
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Figure 4: Fitting cdf of case 4 

be distributed exponentially. However, the authors 
of [4, 61 observed that this was not true. In [4], Finelli 
showed that error latency did not fit an exponential 
distribution, but it rather followed the Gamma or 
Weibull distribution. On the other hand, in [6], Bar- 
ton showed that error latency followed the normal dis- 
tribution. To compare our experimental results with 
the others mentioned above, we performed the least- 
squares fit of our data to three types of distribution: 
normal, Weibull, and exponential distributions. 

The estimated parameters of each distribution is 
given in Table 5 by minimizing the mean square errors. 
The experimental data and fitted cumulative distribu- 
tion curves are plotted in Figures 3 and 4. The anal- 
ysis shows that the Weibull distribution fits our data 
best except for case 2. Normal and exponential distri- 
butions have "inconsistent" fitting errors. Only when 
most errors can be detected soon after fault injection 
like case 1, the exponential distribution fits well, as 
expected. When matrix size is small but the result 
is compared infrequently as in case 2, or when matrix 
size is large but the result is compared frequently as in 
case 3, the normal distribution fits well, as compared 
to other cases. This may be because the random- 
ness of latency increases in these cases. These results 
conflict Barton's result which also utilized software- 
implemented fault injection, but rather match Finelli's 
result which was obtained by hardware-implemented 
fault injection. This difference can be explained by 
the detection mechanism and experiment tools. Al- 
though the size of data set is not large enough and 
the workload characteristics are varied only in a lim- 
ited way, the experimental results indicate that the 
experimental accuracy of DOCTOR is close to that of 
hardware-implemented fault injector. 
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Figure 5: Percent of nodes diagnosed correctly with 1 
failure mode, measured 
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Figure 6: Percent of nodes diagnosed correctly with 1 
failure mode, predicted 

6.2 
In this section, we demonstrate the usefulness of 

software fault injection as a tool for validating depend- 
ability models of distributed protocols. By using the 
communication fault injection capabilities of DOC- 
TOR, we are able to collect data on the behavior of a 
distributed diagnosis algorithm under a wide range of 
conditions. This data can then be used both to vali- 
date the predicted performance of the algorithm, and 
to assist in the selection of various parameters used 
during the execution of the algorithm. 

The algorithm we chose to test is the probabilis- 
tic distributed diagnosis algorithm given in [16]. This 
algorithm is intended for the diagnosis of distributed 
systems of arbitrary connectivity. A run of the di- 
agnosis algorithm consists of a number of rounds of 
testing. For the purposes of the diagnosis algorithm, 
a test graph, which is a subgraph of the undirected 
processor connectivity graph, is selected. Each node 
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runs an identical test task on each round, and then 
exchanges the results with its neighbors in the test 
graph, The local result is then compared with the 
results received, and, if the number of mismatches is 
greater than some threshold, the node is considered 
to have failed that round. This is repeated for some 
number of rounds. If the number of rounds in which 
the node failed is greater than a second threshold, then 
the node is considered to be faulty. 

This algorithm has a number of parameters that 
determine the effectiveness of the algorithm. Some 
of these parameters are selectable by the user, while 
others are functions of the system environment. The 
parameters that we look at in this experiment are: the 
number of rounds of testing ( r ) ,  the coverage of inter- 
processor tests ( c ) ,  and the number of failure modes 
of a test ( I ) .  The coverage of a test is the probability 
of a faulty processor generating an incorrect result on 
that test. The number of failure modes of a test is the 
number of possible incorrect results that a faulty pro- 
cessor can generate for that test. Other parameters, 
which we will fix for these experiments, are the proba- 
bility of failure of a processor ( p ) ,  the interconnection 
topology, and the test graph. 

In the experiment, the diagnosis algorithm has two 
parameters to be altered, the probability of failure of 
a processor, and the interprocessor test coverage. The 
fault injection scenario is described in the following. 
Each time a run of experiment is initialized, the fault 
status of each node is independently chosen, with a 
probability of failure, p .  On a faulty node, when- 
ever a diagnosis-message is sent out by the diagnosis 
algorithm, the message history is checked to deter- 
mine whether any previous diagnosis-message of the 
same round has been sent to another node. If not, the 
diagnosis-message contents are altered to a randomly 
selected value from the range of failure modes, with a 
probability equal to the test coverage. If any message 
of the same round had already been sent out, then the 
message history is used to ensure that all messages 
from the same round are same. 

In our experiments, we chose to connect the proces- 
sors of HARTS in a 9-node wrapped-square mesh. We 
fixed the probability of node failure at 25%. Select- 
ing such a high figure allows us to test the algorithm 
under worse than expected conditions. The values of 
the other parameters were selected to be: c = SO%, 
65%, SO%, and 90%; f = 1, 10, 20; r = [1..20]. We 
ran 500 iterations of the diagnosis algorithm with each 
combination of these parameters. The results of these 
experiments are summarized in Figures 5 through 8. 
There are a number of observations to be drawn from 
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Figure 7: Percent of nodes diagnosed correctly with 
10 failure modes, measured 
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Figure 8: Percent of nodes diagnosed correctly with 
10 failure modes, predicted 

this data. 
The first thing to notice is that in almost all cases, 

the measured diagnostic accuracy of the algorithm 
exceeded that predicted by the probabilistic model 
in [16], in many cases by a significant percentage. This 
is because the model makes a number of pessimistic as- 
sumptions, and therefore predicts only the worst-case 
performance of the algorithm. As a result, this dis- 
tributed diagnosis algorithm may actually be appro- 
priate for use in more systems than might be expected 
based only on the probabilistic model. As we see in 
Figure 7, using tests with 10 failure modes, even with 
interprocessor test coverage as low as 50%, the algo- 
rithm achieves nearly 100% correct diagnosis within 7 
rounds of testing. When the test coverage is 95%, only 
3 rounds are required to reach 100%. As predicted by 
the asymptotic analysis of the algorithm in [16], both 
the measured and predicted diagnostic accuracy con- 
verge to 100% as the number of tests increase, but the 
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measured accuracy starts much higher, and converges 
more quickly than predicted. 

One other interesting observation can be made by 
comparing the graphs in Figures 5 and 6 to those in 
Figures 7 and 8, respectively. In the cases where f ,  
the number of failure modes, is 1, we observe that the 
accuracy of the diagnosis actually improves as the in- 
terprocessor test coverage decreases. This is because, 
when f=1, the faulty processors will always match 
when comparing their results with other faulty pro- 
cessors, and thus will be more likely to diagnose them- 
selves as correct when the test coverage is high. This 
effect appears both in the predicted and observed be- 
havior of the algorithm. When f is increased to 10, 
this effect disappears. These results indicate that tests 
with simple binary (e.g., good/bad) results are not a 
good choice when using comparison-based distributed 
diagnosis algorithms. 

7 Conclusion 
In this paper, we have presented an integrated flex- 

ible fault-injection environment called DOCTOR. It 
utilizes software-implemented fault injection and is in- 
tended for the validation and evaluation of distributed 
real-time systems. We implemented a fault injector 
which supports a wide range of fault type and injec- 
tion options, and also developed several supporting 
tools such as the data-collection tool, the synthetic 
workload generator, and the graphic user interface. 
DOCTOR was implemented on a real-time distributed 
system, HARTS, and extensive experiments were con- 
ducted, demonstrating its power and utility. In ad- 
dition, we are extending the functionality of DOC- 
TOR in various directions. A hardware-implemented 
data collecting mechanism is developed, which pro- 
vides high-resolution time-stamps with minimum per- 
formance overhead. We are also exploring the issues 
involved in formalizing both the specification of fault 
injection experiments, and the systematic selection 
of the faults to  be injected. Once these extensions 
are completed, we will conduct more practical exper- 
iments, particularly in the area of fault-tolerant real- 
time communication. 
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