
DOCTOR: An IntegrateD Software Fault InjeCTiOn EnviRonment
for Distributed Real-time Systems *

Seungjae Han, Kang G. Shin, and Harold A. Rosenberg
Real-Time Computing Laboratory

Department of Elec. Engr. and Computer Science
The University of Michigan

Ann Arbor, Michigan 48109-2122.
email: {sjhan, kgshin, rosen}@eecs.umich.edu

Abstract
This paper presents an integrateD sQftware fault

injeCTiQn enviRonment (DOCTOR) which is capa-
ble o f (1) generating synthetic workloads under which
system dependability is evaluated, (2) injecting various
types of faults with different options, and (3) collecting
performance and dependability data. A comprehensive
graphical user interface is also provided. The software-
implemented fault-injection tool supports three types
of faults: memory faults, CPU faults, and communi-
cation faults. Each injected fault may be permanent,
transient or intermittent. A fault-injection plan can be
formulated probabilistically, or based on the past event
history. The modular organization of tools is particu-
larly designed for distributed architectures. DOCTOR
is implemented on a distributed real-time system called
HARTS [l], and its capability has been tested through
numerous experiments.

1 Introduction
In real-time systems the correctness of a compu-

tation depends not only on the logical correctness of
the result but also on the time at which the result
is produced [2]. There are a wide range of real-time
applications, including continuous-media, transaction
processing, and life- and mission-critical controls. Dis-
tributed architectures have proved to be well suited
for meeting the timing and reliability requirements of
these real-time applications. One of the major prob-
lems which the designers of distributed real-time sys-

*The work reported here is supported in part by the Office
of Naval Research under Grants N00014-91-J-1115 and N00014-
94-1-0229, the National Aeronautic and Space Administration
under Grant NAG-1493, and the National Science Foundation
under Grant MIP-9203895. Any opinions, findings, and con-
clusions or recommendations expressed in this paper are those
of the authors and do not necessarily reflect the views of the
funding agencies.

tems face is the difficulty of evaluating their depend-
ability. Numerous approaches have been proposed to
evaluate system dependability, such as formal meth-
ods, analytical modeling, simulation, and experimen-
tal measurements.

Validating distributed real-time systems is a chal-
lenging task, since both performance and reliability
constraints should be considered simultaneously, and
their software and hardware architectures are very
complex. In fact, the growing complexity of dis-
tributed real-time systems, due mainly to their inter-
component communications, makes most of the exist-
ing evaluation approaches intractable except for fault
injection into actual prototype systems. With a com-
mon goal to accelerate the occurrence of faults or er-
rors in the system to be tested during operation, nu-
merous fault-injection tools have been developed us-
ing both software and hardware techniques [3, 4, 5,
6, 7, 8, 9, 101. Although hardware-implemented fault
injectors closely mimic the real world by producing ac-
tual hardware faults, they require additional hardware
which is often very expensive and inflexible. Moreover,
it is difficult to use them to force a distributed sys-
tem into certain states, which are essential for testing
distributed protocols, because the effect of hardware
fault injection is usually unpredictable and hard to
reproduce. Hence, more systematic error injection at
a higher-level than hardware-component level is nec-
essary for the validation of distributed real-time sys-
tems.

Based on the above observations, we have de-
veloped a software-implemented fault injection tool
which can inject communication faults as well as tra-
ditional hardware faults such as memory and CPU
faults. The temporal behavior of a fault may be spec-
ified as transient, intermittent, or permanent. Beside
this basic fault model, it also provides a convenient

0-8186-7059-2195 $04.00 0 1995 IEEE
204

mailto:rosen}@eecs.umich.edu

user interface that allows the user to specify fault-
injection timing, thus enabling the user to construct
more complicated fault-injection scenarios. Another
point we would like to emphasize is the importance
of supporting tools for an integrated experiment en-
vironment. For example, using only a few application
workloads is not sufficient to assess the effects of a wide
range of applications on the underlying fault-tolerance
mechanisms. The dependence of experimental results
on the executing workloads has to be dealt with in a
systematic manner.

For ease in generating workloads of various oper-
ational characteristics under which system depend-
ability may be evaluated, we have developed a syn-
thetic workload generation tool [ll]. Also, to facili-
tate the collection of both performance and reliability
data, an efficient data-collection tool is developed. We
have been developing an automated test case selection
tool [I21 for systematic fault generation on a formal
basis. All these tools are controlled through a unified
graphic user interface. In contrast to others [5, 6, lo],
we integrate tools in a distributed environment.

In real-time systems where time is the most pre-
cious resource, fault injection and data collection must
be performed with minimum overhead to the target
system. Otherwise, the correctness of the validation
itself becomes questionable. To minimize the per-
formance overhead of fault injection, only essential
functions are performed on the same processor under
test and relatively simple fault-injection techniques
are employed, which enhances the portability of tools
as well. To increase the accuracy and to minimize the
overhead of data collection, we have designed a dedi-
cated hardware for data collection.

The proposed software-implemented fault-injection
environment, called an integrateD sQftware fault-
injeCTiQn envibnment , or DOCTOR for short,
is implemented on HARTS. In the duplicate-match
fault-detection experiment, the evaluated dependabil-
ity measures such as detection coverage & latency are
compared with other fault-injection tools. Communi-
cation fault injection is used to evaluate a probabilistic
distributed diagnosis algorithm. The results show that
the algorithm performs better than its predicted worst
case, but it is quite sensitive to various coverage and
inter-processor test parameters.

The paper is organized as follows. Section 2
presents the motive of our approach by discussing new
requirements for fault injection in distributed real-
time systems. Section 3 describes the organization of
DOCTOR and its components. Section 4 presents the
fault model used in DOCTOR. In Section 5, we discuss

the implementation issues. Section 6 presents experi-
ments and their results to demonstrate the usefulness
of DOCTOR. The paper concludes with Section 7.

2 Fault-Injection Requirements
There are four major attributes of fault injection:

a set of faults P, a set of activations A which specify
the workload used to exercise the system, a set of read-
outs R, and a set of derived measures M which cor-
respond to dependability measures such as MTTF [5].
The FARMsets for fault injection in distributed real-
time systems are more complex than those for single
processor systems, because the fault-tolerance mech-
anisms of distributed real-time systems utilize multi-
ple processors connected by communication networks.
Considerable complexities or difficulties exist in evalu-
ating distributed diagnosis, processor group member-
ship, replicated process group for fault masking or re-
covery, fault-tolerant communication, and so on. A
sophisticated fault-injection scenario in both time and
space dimension should be constructed to test execu-
tion paths that may occur very rarely during normal
operation.

The requirements for fault injection in distributed
real-time systems are enumerated below.

1. The fault model should include faults on com-
munication links and communication adaptor cir-
cuitry as well as faults inside a processing node
such as memory faults, CPU faults, or bus faults.

The fault injector should be able to coerce the
whole target system to follow a certain intended
execution path, which requires it to orchestrate
all participants’ behaviors. This is not achiev-
able by randomly selecting fault type and injec-
tion timing. A systematic fault-selection aid tool
and a flexible user interface are necessary for this
purpose.

The operational characteristics of workload
should be easily adjustable, especially in terms
of the communication activities.

Fault injection or data collection must require as
little modification to the target system code as
possible. The performance overhead or interfer-
ence by these two should also be minimized and
quantifiable.

To obtain high-resolution timing data such as
error-propagation delay or error-recovery latency,
a special time-stamping technique should be
employed, because clock-synchronization skews

205

Host Computer Target System
. . ~ ~ .._........... ~_......._._..... ~~ ~ I ._... ~ I

Ethmet Syslem Network

Figure 1: The organization of DOCTOR

among different processing nodes may cause un-
acceptably inaccurate time measurements. We
solve this problem by using dedicated hardware.

3 Integrated Experiment Environment
We provide a complete set of tools for automated

fault-injection experiments. As mentioned earlier, this
tool set is intended for use in distributed real-time
systems (whereas most of other existing tools are in-
tended for single processor systems). Figure 1 shows
the organization of DOCTOR which forms a modular
software architecture. In the distributed system archi-
tecture assumed, a host computer works as a console
node and several processing nodes are connected via a
system communication network and linked to the host
node by an Ethernet. Each node can be a bus-based
multiprocessor group.

One distinct feature of this organization is the sepa-
ration of components of the host computer from those
of the target system. It has the advantage of reduc-
ing the run-time interference with the target system
caused by fault injection, because each component
runs separately and only essential components are exe-
cuted on the target system. It also increases the porta-
bility of DOCTOR, since the highly system-dependent
part is isolated from the rest.

The fault injector, the core part of DOCTOR, con-
sists of three modules: Experiment Generation Mod-
ule (EGM), Experiment Control Module (ECM), and
Fault Injection Agent (FIA). Data Collection Module
(DCM) collects experimental data during each exper-
iment, and they are analyzed off-line after completing
the experiment by Data Analysis Module (DAM). To
obtain more accurate timing data with smaller perfor-
mance overhead, Hardware MONitor (HMON) can be
used in the place of DCM. Synthetic Workload Gen-

erator (SWG) [ll] is provided to generate various ar-
tificial workloads. A tool for systematic fault selec-
tion [12] is currently under development. In addition,
a comprehensive Graphic User Interface (GUI) and an
automated multi-run experiment facility are provided
to facilitate and automate the design and execution
of fault-injection experiments. Fault-injection experi-
ments are completely transparent to the workloads.

Each fault-injection experiment with specific work-
loads is called a run. In a fault-injection experiment,
one of the factors that determine the quality of analy-
sis results will be the number of runs. Therefore, it is
very useful to automate multi-run experiments. The
key problem in experiment automation is the synchro-
nization and re-initialization of several processes in-
volved. The level of re-initialization required depends
on the status of the target system after completing
each run. In some cases, it may be necessary to reset
the whole system, and in some other cases, the restart
of workloads may suffice. We support both levels.
3.1 EGM

The first role of EGM is to generate executable im-
ages of workloads which will be downloaded (from the
host) to the target system. A workload could be run
on a single processing node or be. distributed among
a number of nodes. The user can use real programs
as workloads, or can rely on SWG for artificially-
generated workloads. In either case, when the work-
loads are compiled, the symbol-table information is
extracted to be referenced by ECM.

The second role of EGM is to parse the experi-
ment description file supplied by the user. The exper-
iment description file describes the experiment plan
which contains the information about the fault type
and injection timing. EGM generates an experiment
parameter file for each node involved in the experi-
ment. These files are used by ECM to determine when
to start fault injection, which type of fault to be in-
jected, and how many times the experiment will be
run, and so on.
3.2 FIA & ECM

FIA receives commands from ECM via Ethernet
and executes them by injecting faults or making work-
loads wait/start/stop. It also reports its activities to
DCM or HMON, such as the injection time, location,
type, etc. FIA is a separate process which runs on the
same processor where the workload is running.

ECM functions as an external controller. It syn-
chronizes the start/end of each run among several
nodes, and sets up an experiment environment by
downloading executable images of the workload, FIAs,
DCMs, and even system software if needed. ECM uti-

206

lizes the experiment parameter files and the informa-
tion received from FIAs to create proper commands
to FIAs. For example, the symbol-table information
which is contained in the experiment parameter files
is used to decide memory fault-injection locations. At
the same time, the information about run-time stack
location from FIA is used. FIA and ECM share the re-
sponsibility of past event history management, which
is particularly important for communication fault in-
jection.

3.3 SWG
To evaluate the dependability of fault-tolerance

mechanisms, we must measure dependability parame-
ters like detection coverage and latency while execut-
ing appropriate workloads. A workload produces de-
mands for the system resources, so the structure and
behavior of the workload may affect the experimental
result significantly. In DOCTOR, the user can use a
synthetic workload produced by SWG instead of real
programs, so that experiments can be conducted un-
der various workload conditions. Because a synthetic
workload is parameterized in the high-level descrip-
tion format, the user can easily control the workload
characteristics.

3.4 DCM&HMON
The basic function of these tools is to log the events

generated by the monitored object. The FIAs and
fault-tolerance mechanisms under test generate such
events, and if performance is monitored together with
dependability, the event triggering instructions need
to be placed in the operating system kernel. These
events are the categorized, time-stamped information
about the activities which we want to monitor. For
example, in fault-detection experiments, two types of
data are needed for the post analysis. One is the his-
tory of fault-injection reports, and the other is that
of error-detection reports. Generation of events is the
only overhead to the monitored object. DCM/HMON
runs continuously during experiments, and its func-
tion is fairly passive.

If the goal of an experiment requires very high-
resolution timing measurements, the time-stamp res-
olution supported by the underlying operating system
or hardware may not be sufficient. Moreover, if the
objects to be monitored are distributed among several
nodes, the timestamps of collected events are diffi-
cult to compare, because the tightness of clock syn-

'To minimize performance interference, DCM usually runs
on a processor different from those on which workloads or fault-
tolerance mechanisms run, but on the same backplane-bus(on
the same node). The collected data are stored in files and used
later for post data analysis.

1 Fault types
Single bit I Set

Location
Stack/Heap

Compensating
Single byte
Multi bytes
User defined

Table 1: Memory fault options

Reset Global variables
Toggle User-code
User defined OS Kernel area

User defined

chronization among the nodes may not reach the de-
sired time-stamp resolution. In order to obtain high-
resolution timestamps (e.g., 25 nsec), a hardware-
implemented monitor (HMON) is developed. When a
log request arrived through the backplane-bus, HMON
generated a time-stamp and stores the time-stamped
event into its local memory. It also maintains its own
synchronization network so that necessary events are
signaled to other HMONs. As a result, the measure-
ment accuracy becomes independent of the system
clock synchronization.

4 Fault Model
Hardware or software faults affect the various as-

pects of the system state or operational behavior, such
as memory or register contents, program control flow,
clock value, the condition of communication links, and
so on. Modifying memory contents has been a ba-
sic technique used in software-implemented fault in-
jectors. Faults are likely to (eventually) contaminate
certain parts of memory, so memory faults can rep-
resent not only RAM errors but also emulate faults
occurring in the other parts of the system. Though
the memory fault model is quite powerful, some faults
may affect system memory contents in a very subtle
and nondeterministic way, and hence, it is very diffi-
cult to emulate such a faulty behavior with memory
fault injection alone. A more sophisticated fault model
is therefore required.

Currently, DOCTOR supports three types of faults:
memory faults, CPU faults, and communication
faults. The user can choose any combination of these
three types to induce appropriate abnormal condi-
tions. For each fault type, one can specify a number
of options as shown in Tables 1, 2 and 3. We are also
adding the capability of system-level error injection,
such as making processes slow or fast, terminating or
suspending processes, corrupting clock/timer services,
corrupting system-call services, and so forth.
4.1 Memory Faults & CPU Faults

A memory fault can be injected as a single bit, two-
bit (compensating), whole byte, or burst (of multiple
bytes) error. The contents of memory at the selected

207

U Fault types I Location U specify whether outgoing, incoming, or all messages
are lost at the faulty link. Messages can be lost in-
termittently, with a probability distribution specified
by the user, or alternately, every message can be lost
during a certain period. Messages may be altered in
a similar manner as memory faults, i.e., by corrupting
single bit, two-bit compensating, or burst errors. The
user can specify whether the error is to be injected into

Address registers
Stack pointers

Table 2: CPU fault options

1 User defined I Delay control

0 Fault types 1 Options U

Alter messages Altered location
Delay messages Altering operation

I
Table 3: Communication fault options

address are partially or totally set, reset, or toggled.
Beside the fault type, it is important to control the
location of memory to be contaminated. The injec-
tion location either can be explicitly specified by the
user, or can be chosen randomly from the physical
memory space. It is sometimes desirable for a fault
to be injected only into a memory section, such as the
user program code, the user stack/heap, or the system
software area.

CPU faults can occur in data registers, address reg-
isters, the data fetching unit, control registers, the
op-code decoding unit, ALU, and so on. The exact
effect of faults in each processor component is highly
architecture-dependent. Therefore, to emulate actual
faults more directly, the utilization of detailed knowl-
edge about the specific CPU architecture is required.
However, depending on the underlying hardware and
system software, accessibility to hardware components
varies widely. One way to overcome this limitation
is to inject erroneous effects rather than faults them-
selves. We chose to emulate the consequences of CPU
faults in the architecture-independent level. For ex-
ample, the control flow may be altered by bus line er-
rors, instruction decoding logic errors, condition code
flag errors, or control register errors (e.g., program
counter). Instead of dealing with each possible case,
the contents of CPU registers are used as the targets
of fault injection.
4.2 Communication Faults

The communication faults in DOCTOR can cause
messages to be lost, altered, duplicated, or delayed.
If a node has multiple incoming and outgoing links,

the body of a message or into its header. For delayed
messages, the delay time can either be deterministic
or follow some probability distribution. In addition
to this set of predefined communication fault types,
the user can define additional communication faults.
These user-defined faults may be combinations of the
predefined fault types, and may be based on the con-
tents of individual messages or on the past message
history. This variety of communication failures, and
the ability to combine existing fault types and define
new fault types, allow for the injection of a variety of
failure semantics, including Byzantine failures.

4.3 The Control of Injection Timing
One important aspect of our fault model is its fine

controllability of the fault-injection timing. In fact,
the capability of injecting a proper fault instance into
a proper location at a proper time is essential to the
fault-injection experiments. Our fault model supports
three temporal types of faults: transient, intermit-
tent, and permanent. A transient fault is injected
only once, and an intermittent fault is injected re-
peatedly. When injecting an intermittent fault, the
user can specify the probability distribution of the
fault recurrence interval. Several types of distribu-
tions like uniform distribution, exponential distribu-
tion, normal distribution, Weibull distribution and bi-
nomial distribution are provided. The user can spec-
ify the necessary constants of each distribution type,
and similar probability distributions are provided for
fault durations. Besides its (pre-defined) probabilis-
tic injection timing control, DOCTOR allows the user
to design fault-injection scenarios with user-specified
timing control in either time-based specification or
history-based specification. So, the user can directly
control injection timing and fault durations with ab-
solute or relative specifications.

5 Implementation on HARTS
The first target system2 of DOCTOR is HARTS.

HARTS is comprised of multiprocessor nodes con-
nected by a point-to-point interconnection network.
Each HARTS node consists of several Application

as in point-to-point architectures, different fault types
can be specified separately for each link. The user can

'We are currently porting DOCTOR to a VxWorks based
distributed real-time system.

208

Processors (APs) and a Network Processor (NP).
The APs are used for executing application tasks,
and the N P handles most of communication pro-
cessing. In the current configuration, the nodes of
HARTS are VMEbus-based Motorola 68040 systems.
Each HARTS node has 1-3 AP cards, an NP card,
and a communication network interface board. Each
node of HARTS runs an operating system called
HARTOS3 [15]. A Sun workstation serves as a con-
sole. Applications and system software are down-
loaded from this workstation through a dedicated
local Ethernet. In implementing the fault injector
on HARTS, we use three techniques to inject faults
concurrently with the execution of workloads. Sim-
ple memory overwrites are used for injecting memory
faults, a special fault-injection protocol layer is used
for injecting communication faults, and modification
of CPU registers is used for injecting CPU faults.

For memory fault injection, when a pre-determined
time is reached, ECM sends the corresponding FIA a
message, which contains the address, the fault dura-
tion and the mask pattern. The content of the ad-
dressed location is masked by the specified pattern
using AND (reset) operation, OR (set) operation, or
XOR (toggle) operation. HARTS does not have any
memory p r ~ t e c t i o n , ~ so FIA can easily overwrite any
memory area. If the type of fault to be injected is per-
manent, the problem is not so easy, because the only
way to facilitate true-permanent memory faults is to
make use of system-provided memory protection sup-
port. Because HARTS is not equipped with memory
protection support, we use pseudo-permanent mem-
ory faults. A permanent fault is emulated as an in-
termittent fault with a very small recurrence interval.
FIA refreshes the contents of the fault location peri-
odically. Another issue in injecting a memory fault
is the problem of deciding the location of injection.
Again, because HARTS does not use virtual memory,
the symbol-table information can be used in an abso-
lute address form.

A transient/intermittent type of CPU fault requires
fault injection a t run-time. The way we use is invok-
ing a trap to the associated process and performing
fault injection while the process is frozen, then allow-
ing the process to continue execution again, which is
similar to [7, lo]. In HARTOS, some of the CPU reg-

~ _ _ _ _

3HARTOS is primarily an extension of the functionality of
pSOS+'" [13]. While pSOStm provides system support within
a node, an extended version of the s-kernel [14] coordinates
communication between nodes.

'Like most other real-time systems, HARTS does not em-
ploy virtual memory or memory protection to reduce the un-
predictability in memory access caused by page faults.

ister contents are saved in the task control block and
others are saved in the run-time stack, when a con-
text switch occurs. The necessary location informa-
tion about the task control block and run-time stack
is obtained through call-out functions provided by the
operating system. Since FIA is assigned a higher
scheduling priority than other processes, it can force
a process to be context-switched and return the con-
trol to the trapped process after modifying the saved
register values. This can be done very quickly because
the context-switching in real-time systems is usually
very fast. However, the efficient injection of perma-
nent CPU faults is difficult to achieve. One possible
way (that we chose) is changing program instructions
at compile time. For example, modifying all of the in-
structions using a faulty ALU can emulate the perma-
nent ALU fault, and overwriting a register's contents
in the middle of the program execution whenever it
is used can emulate the permanent register fault. By
replacing or adding instructions a t the assembly lan-
guage level, more types of permanent CPU faults can
be emulated.

Communication faults are injected by a special pro-
tocol layer, which accepts commands from FIA to de-
termine fault instances to be injected and to build the
message history structure. The fault-injection layer
may be placed between any two protocol layers in the
protocol stack, but is normally inserted directly below
the protocol or user program to be tested. The current
implementation takes advantage of the features of the
z-kernel, in which our communication protocols are
implemented. The fault-injection layer is transparent
to other protocol layers and does not add or modify
the message header or data at all. The fault-injection
layer need not be modified when it is placed between
different protocol layers. If more complex fault scenar-
ios are desired, copies of the fault-injection layer may
be placed in multiple places in the protocol graph. The
fault-injection layer operates by intercepting the UP1

operations between the protocol under test and the
lower layer protocols. If it detects an operation during
which a fault should be injected, based on commands
from the FIA, it performs the appropriate fault injec-
tion operation. All other operations are simply passed
through without modification. Outgoing and incom-
ing messages are lost by intercepting the appropriate
send and receive operations, and then discarding the
message. Messages are altered by intercepting the
send or receive operation, and then changing the mes-

5All protocols in the s-kernel are implemented using same
interface between layers, called the Uniform Protocol Interface
(UPI).

209

case 1 case2 case 3 case4
matrix size 30x50~30 30x50~30 40x80~40 40x80~40
sampling freq 1/50 1/150 1/50 1/150

6 Experiments and Analyses
6.1 Error Latency Measurement

The goal of this experiment is to illustrate how the
dependability parameters of a fault-tolerance mecha-
nism can be measured with DOCTOR. Specifically,
we measure error latency and analyze its probabilistic
distribution. Error latency is the elapsed time be-
tween a fault/error injection and its detection. The

0 1 0.2 0.3 0.4 0.5 0.6
EVOI I a b r ~ ~ f l ~)

quency of data sampling for comparison are the fac-
tors to be altered. Memory faults are injected into
the memory section allocated for matrix data. For
simplicity, we chose to inject one byte toggling tran-
sient memory faults. Because the workload keeps on
re-initializing input matrix data after completing the
whole multiplication, some of injected faults are over-
written in the re-initialization step. It is why the in-
jected faults are not always detected. Four cases are

case 1 a I error I I error I I I error trix case has a larger mean error latency, even if the

210

"0 0.2 0.4 0.6 0.8 1 1.2
Emr Ialny(rc)

Figure 4: Fitting cdf of case 4

be distributed exponentially. However, the authors
of [4, 61 observed that this was not true. In [4], Finelli
showed that error latency did not fit an exponential
distribution, but it rather followed the Gamma or
Weibull distribution. On the other hand, in [6], Bar-
ton showed that error latency followed the normal dis-
tribution. To compare our experimental results with
the others mentioned above, we performed the least-
squares fit of our data to three types of distribution:
normal, Weibull, and exponential distributions.

The estimated parameters of each distribution is
given in Table 5 by minimizing the mean square errors.
The experimental data and fitted cumulative distribu-
tion curves are plotted in Figures 3 and 4. The anal-
ysis shows that the Weibull distribution fits our data
best except for case 2. Normal and exponential distri-
butions have "inconsistent" fitting errors. Only when
most errors can be detected soon after fault injection
like case 1, the exponential distribution fits well, as
expected. When matrix size is small but the result
is compared infrequently as in case 2, or when matrix
size is large but the result is compared frequently as in
case 3, the normal distribution fits well, as compared
to other cases. This may be because the random-
ness of latency increases in these cases. These results
conflict Barton's result which also utilized software-
implemented fault injection, but rather match Finelli's
result which was obtained by hardware-implemented
fault injection. This difference can be explained by
the detection mechanism and experiment tools. Al-
though the size of data set is not large enough and
the workload characteristics are varied only in a lim-
ited way, the experimental results indicate that the
experimental accuracy of DOCTOR is close to that of
hardware-implemented fault injector.

Mursumd pusnt d nod.. di4noaod catmdy wlh k 1
I , ,

0.98 .
f 0.88

8 0.94 .

1 0.82 '

61
0.8

0.88

1 0.82 1 y
0 1 2 3 4 5 8 7 8 8 10 11 12 13 14 15 16 17 18 18 20

NumterofroundsdtrUng

0.81 " ' ' * " ' ' " ' ' " ' ' " '
Figure 5: Percent of nodes diagnosed correctly with 1
failure mode, measured

0.45 .
0.4 -

0.35 -
0.3 .

0.25 .
0.2 -

0.15 -
0.1 -

0.05 -
0 -

0 I

Figure 6: Percent of nodes diagnosed correctly with 1
failure mode, predicted

6.2
In this section, we demonstrate the usefulness of

software fault injection as a tool for validating depend-
ability models of distributed protocols. By using the
communication fault injection capabilities of DOC-
TOR, we are able to collect data on the behavior of a
distributed diagnosis algorithm under a wide range of
conditions. This data can then be used both to vali-
date the predicted performance of the algorithm, and
to assist in the selection of various parameters used
during the execution of the algorithm.

The algorithm we chose to test is the probabilis-
tic distributed diagnosis algorithm given in [16]. This
algorithm is intended for the diagnosis of distributed
systems of arbitrary connectivity. A run of the di-
agnosis algorithm consists of a number of rounds of
testing. For the purposes of the diagnosis algorithm,
a test graph, which is a subgraph of the undirected
processor connectivity graph, is selected. Each node

Evaluation of a Diagnosis Algorithm

211

runs an identical test task on each round, and then
exchanges the results with its neighbors in the test
graph, The local result is then compared with the
results received, and, if the number of mismatches is
greater than some threshold, the node is considered
to have failed that round. This is repeated for some
number of rounds. If the number of rounds in which
the node failed is greater than a second threshold, then
the node is considered to be faulty.

This algorithm has a number of parameters that
determine the effectiveness of the algorithm. Some
of these parameters are selectable by the user, while
others are functions of the system environment. The
parameters that we look at in this experiment are: the
number of rounds of testing (r) , the coverage of inter-
processor tests (c) , and the number of failure modes
of a test (I) . The coverage of a test is the probability
of a faulty processor generating an incorrect result on
that test. The number of failure modes of a test is the
number of possible incorrect results that a faulty pro-
cessor can generate for that test. Other parameters,
which we will fix for these experiments, are the proba-
bility of failure of a processor (p) , the interconnection
topology, and the test graph.

In the experiment, the diagnosis algorithm has two
parameters to be altered, the probability of failure of
a processor, and the interprocessor test coverage. The
fault injection scenario is described in the following.
Each time a run of experiment is initialized, the fault
status of each node is independently chosen, with a
probability of failure, p . On a faulty node, when-
ever a diagnosis-message is sent out by the diagnosis
algorithm, the message history is checked to deter-
mine whether any previous diagnosis-message of the
same round has been sent to another node. If not, the
diagnosis-message contents are altered to a randomly
selected value from the range of failure modes, with a
probability equal to the test coverage. If any message
of the same round had already been sent out, then the
message history is used to ensure that all messages
from the same round are same.

In our experiments, we chose to connect the proces-
sors of HARTS in a 9-node wrapped-square mesh. We
fixed the probability of node failure at 25%. Select-
ing such a high figure allows us to test the algorithm
under worse than expected conditions. The values of
the other parameters were selected to be: c = SO%,
65%, SO%, and 90%; f = 1, 10, 20; r = [1..20]. We
ran 500 iterations of the diagnosis algorithm with each
combination of these parameters. The results of these
experiments are summarized in Figures 5 through 8.
There are a number of observations to be drawn from

Measured percant ot nodes diagnosed corredy wilh M O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of rounds ot tesling

086 " " " " " " ' * " " '

Figure 7: Percent of nodes diagnosed correctly with
10 failure modes, measured

Predicted percent of nodes dagnosed mrreclly wim k 1 0

1=50% -
em% .*--
e%% - --

0.4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Number of rounds ot testng
I

Figure 8: Percent of nodes diagnosed correctly with
10 failure modes, predicted

this data.
The first thing to notice is that in almost all cases,

the measured diagnostic accuracy of the algorithm
exceeded that predicted by the probabilistic model
in [16], in many cases by a significant percentage. This
is because the model makes a number of pessimistic as-
sumptions, and therefore predicts only the worst-case
performance of the algorithm. As a result, this dis-
tributed diagnosis algorithm may actually be appro-
priate for use in more systems than might be expected
based only on the probabilistic model. As we see in
Figure 7, using tests with 10 failure modes, even with
interprocessor test coverage as low as 50%, the algo-
rithm achieves nearly 100% correct diagnosis within 7
rounds of testing. When the test coverage is 95%, only
3 rounds are required to reach 100%. As predicted by
the asymptotic analysis of the algorithm in [16], both
the measured and predicted diagnostic accuracy con-
verge to 100% as the number of tests increase, but the

2 12

measured accuracy starts much higher, and converges
more quickly than predicted.

One other interesting observation can be made by
comparing the graphs in Figures 5 and 6 to those in
Figures 7 and 8, respectively. In the cases where f ,
the number of failure modes, is 1, we observe that the
accuracy of the diagnosis actually improves as the in-
terprocessor test coverage decreases. This is because,
when f=1, the faulty processors will always match
when comparing their results with other faulty pro-
cessors, and thus will be more likely to diagnose them-
selves as correct when the test coverage is high. This
effect appears both in the predicted and observed be-
havior of the algorithm. When f is increased to 10,
this effect disappears. These results indicate that tests
with simple binary (e.g., good/bad) results are not a
good choice when using comparison-based distributed
diagnosis algorithms.

7 Conclusion
In this paper, we have presented an integrated flex-

ible fault-injection environment called DOCTOR. It
utilizes software-implemented fault injection and is in-
tended for the validation and evaluation of distributed
real-time systems. We implemented a fault injector
which supports a wide range of fault type and injec-
tion options, and also developed several supporting
tools such as the data-collection tool, the synthetic
workload generator, and the graphic user interface.
DOCTOR was implemented on a real-time distributed
system, HARTS, and extensive experiments were con-
ducted, demonstrating its power and utility. In ad-
dition, we are extending the functionality of DOC-
TOR in various directions. A hardware-implemented
data collecting mechanism is developed, which pro-
vides high-resolution time-stamps with minimum per-
formance overhead. We are also exploring the issues
involved in formalizing both the specification of fault
injection experiments, and the systematic selection
of the faults to be injected. Once these extensions
are completed, we will conduct more practical exper-
iments, particularly in the area of fault-tolerant real-
time communication.

References
K. Shin, “HARTS: A distributed real-time architec-
ture,” IEEE Computer, vol. 24, no. 5, pp. 25-35, May
1991.

J. Stankovic, “Misconceptions about real-time com-
puting,” IEEE Computer, vol. 21, no. 10, pp. 10-19,
October 1988.

K. Shin and Y. Lee, “Measurement and application
of fault latency,” IEEE Trans. Computers, vol. C-35,
no. 4, pp. 370-375, April 1986.

G. Finelli, “Characterization of fault recovery through
fault injection on ftmp,” IEEE Trans. Reliability, vol.
36, no. 2, pp. 164-170, June 1987.

J. Arlat, Y. Crouzet, and J. Laprie, “Fault injection
for dependability validation of fault-tolerant comput-
ing systems.,” in Proc. FTCS, pp. 348-355, June 1989.

J. Barton, E. Czeck, Z. Segall, and D. Siewiorek,
“Fault injection experiments using fiat,” IEEE Trans.
Computers, vol. 39, no. 4, pp. 575-581, April 1990.

G. Kanawati, N. Kanawati, and J. Abraham, “FER-
RARI: A tool for the validation of system dependabil-
ity properties,” in Proc. FTCS, pp. 336-344. IEEE,
1992.

K. Echtle and M. Leu, “The EFA fault injector for
fault-tolerant distributed system testing,” in Work-
shop on Fault- Tolerant Parallel and Distributed Sys-
tems, pp. 28-35. IEEE, 1992.

H. Rosenberg and K. Shin, “Software fault injection
and its application in distributed systems,” in Proc.
FTCS, pp. 208-217. IEEE, 1993.

W. Kao, R. Iyer, and D. Tang, “FINE: A fault in-
jection and monitoring environment for tracing the
UNIX system behavior under faults,” IEEE Trans.
Software Engineering, vol. 19, no. 11, pp. 1105-1118,
November 1993.

D. Kiskis, Generation of Synthetic Workloads for Dis-
tributed Real- Time Computing Systems, PhD thesis,
University of Michigan, August 1992.

H. Rosenberg and K. Shin, “Specification and gener-
ation of fault-injection experiments,” in Proc. FTCS.
IEEE, 1995. Submitted for publication.
pSOS+/68K User’s Manual, Integrated Systems Inc.,
1992.

N. Hutchinson and L. Peterson, “The %Kernel: An
architecture for implementing network protocols,”
IEEE Trans. Software Engineering, vol. 17, no. 1, pp.
1-13, January 1991.

K. Shin, D. Kandlur, D. Kiskis, P. Dodd, H. Rosen-
berg, and A. Indiresan, “A distributed real-time oper-
ating system,” IEEE Software, pp. 58-68, September
1992.

D. Fussell and S. Rangarajan, “Probabilistic diagno-
sis of multiprocessor systems with arbitrary connec-
tivity,” Proc. FTCS, pp. 560-565, 1989.

2 13

