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Abstract 

Numerous methods have been proposed to  integrate real- 
t ime and non-real-time services of the timed-token medium 
access control ( M A C )  protocol. One of the key  issues i n  
tailoring the timed-token M A C  protocol for  real-time appli- 
cations is the synchronous bandwidth allocation ( S B A )  prob- 
lem whose objective is to meet both the protocol and deadline 
constraints. 

Several non-optimal local S B A  schemes and an  optimal 
global scheme have been proposed [l-31. Local S B A  schemes 
use only information available locally to each node, and 
are thus preferred to  global schemes because of their lower 
network-management overhead. Unfortunately, it  has been 
formally proved in [4] that there does not exist any  optimal 
local S B A  scheme. Chen et  al. [2] proposed the only-known 
optimal global S B A  scheme which is based o n  an  iterative 
approach. However, their algorithm may not terminate the- 
oretically. I n  this paper, we present an  optimal global S B A  
scheme of polynomial-time worst-case complexity. 

1 Introduction 

The problem of guaranteeing the timely delivery of 
messages has been studied by numerous researchers, es- 
pecially in the context of voice/video data transmis- 
sion over a data network, and in the context of com- 
munications in embedded real-time systems. Among 
all the methods designed to integrate real-time and 
non-real-time applications, the timed-token MAC pro- 
tocol has attracted considerable attention because of 
its bounded access time. The timed-token protocol 
groups messages into two classes: synchronous and 
asynchronous. Synchronous messages arrive at regu- 
lar intervals and are usually associated with delivery 
deadlines. Asynchronous messages have no such time 
constraints. At network initialization, a protocol pa- 
rameter called Target Token Rotation Time (TTRT) is 
negotiated among the nodes to  specify the expected to- 
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ken rotation time. Each node i is assigned a portion Hi 
of TTRT as its synchronous bandwidth. The assignment 
of Hi is subject to the protocol constraint that the to- 
tal bandwidth allocated for synchronous traffic over all 
nodes/stations should not exceed TTRT (minus various 
protocol-dependent overheads). Whenever a node re- 
ceives the token, it transmits its synchronous messages, 
if any, up to Hi units of time. The node can transmit 
its asynchronous messages only if the time interval be- 
tween the previous token arrival and the current token 
arrival is less than TTRT. 

Many researchers studied the access time bounds 
and other timing properties of the timed-token pro- 
tocol. In particular, Johnson el al. [5,6] proved that 
the average token cycle time is bounded by TTRT, 
and the maximum token cycle time is bounded by 2 
x TTRT. Agrawal et al. [1,2] extended Johnson’s re- 
sult and proved that the time elapsed between k con- 
secutive token’s visits to  a node is bounded by k x 
TTRT. They also formulated a synchronous bandwidth 
allocation (SBA) problem and attempted to  calculate 
the synchronous bandwidth Hi that should be allocated 
to node i, for all i, to meet the protocol constraint and 
transmit all synchronous messages before their dead- 
lines. Succinctly, Hi should be assigned so that the 
minimum time available for node i to transmit a syn- 
chronous message after its arrival but before its deliv- 
ery deadline is greater than or equal to  the worst-case 
message transmission time. This timing constraint in 
calculating Hi’s is called the deadline constraint. 

As discussed in [l], SBA schemes can be classified 
as local or global. A local SBA scheme uses only in- 
formation available locally to a node, while a global 
scheme uses the parameters of all nodes’ synchronous 
message streams in computing Hi’s. The extra infor- 
mation on other nodes used by a global scheme may 
help it find better values of Hi’s. However, any change 
in a node’s message stream parameters may require the 
global scheme to adjust the synchronous bandwidths of 
all  nodes, since all nodes use these parameters in calcu- 
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lating their synchronous bandwidths. By contrast, in a 
local scheme, if the message stream parameters of node 
i change, only Hi needs to be re-calculated. Thus, local 
schemes are preferable to global schemes from network 
management’s perspective. 

As the global SBA schemes use global information 
to allocate synchronous bandwidths, they are natu- 
rally expected to  achieve a better performance. To our 
best knowledge, there are only one optimal global SBA 
scheme [2] and several non-optimal local SBA schemes 
[1,3] reported in the open literature. By an “optimal” 
SBA scheme, we mean an SBA scheme that finds a 
feasible set of Hi’s subject to the protocol and dead- 
line constraints whenever such a set exists. Unfortu- 
nately, it has been formally proved in [4] that there 
does not exist any optimal local SBA scheme. The only 
currently-known optimal global SBA scheme [a], which 
uses an iterative approach to find the minimum syn- 
chronous bandwidth allocations, theoretically, may not 
terminate. One important remaining issue is to deter- 
mine if there exists any polynomial-time optimal global 
SBA scheme. In this paper, we propose an optimal SBA 
scheme of polynomial-time worst-case complexity. 

The rest of the paper is organized as follows. In Sec- 
tion 2,  we discuss the synchronous message model used 
for real-time applications and give a brief overview of 
the timed-token protocol. In Section 3 ,  we present sev- 
eral timing properties for the timed-token protocol and 
discuss the timing requirements imposed by the mes- 
sages with delivery deadlines on the protocol. In Sec- 
tion 4, we formulate the SBA problem and describe our 
polynomial-time optimal SBA scheme. We conclude the 
paper with Section 5. 

2 Message model and MAC protocol 

In this section, we first discuss the synchronous mes- 
sage model suitable for real-time applications. To make 
the paper self-contained, we also briefly review the 
timed-token MAC protocol used in FDDI networks and 
some of its timing properties. A more detailed descrip- 
tion of the timed-token protocol and FDDI token rings 
can be found in [7,8]. 

2.1 Message model 

Let n be the number of nodes in the system. With- 
out loss of generality, we assume that there is one 
synchronous message stream at each node. The mes- 
sage stream at  node i can be described by a triple 
(Pi, Ci, Di), where 

Pi is the minimum inter-arrival period for the mes- 
sage stream at  node i, i.e., if the j - th  message ar- 
rives at node i at t imet ,  then the ( j+l)- th  message 

will arrive at time t + Pi or later, for all j 2 1, 
0 C; is the maximum message transmission time at 

node i, i.e., Ci is the time needed to transmit a 
maximum-size message, and 

0 Di is the relative deadline for the message stream 
at node i, i.e., if a message arrives at time t ,  then 
it must be transmitted by time t + Di. 

The objective of an SBA scheme is to  properly set 
the parameters of the MAC protocol so as to  guarantee 
the delivery of each message in node i’s synchronous 
message stream within a time period 5 Di after its 
arrival, as long as the message inter-arrival time is 2 Pa 
and the message transmission time is 5 Ci. 

2.2 MAC protocol 

The key idea of the MAC protocol is to  control the 
token rotation time. A protocol parameter called the 
target t oken  rotat ion t i m e  (TTRT) is determined upon 
network initialization, and specifies the expected token 
rotation time. The TTRT is chosen to  be sufficiently 
small so that responsiveness requirements at every node 
may be met. 

Each node i is assigned a portion Hi of TTRT, known 
as its synchronous bandwidth,  which is the maximum 
time a node is permitted to transmit synchronous mes- 
sages every time it receives the token. The token is 
then forced by the protocol to circulate with sufficient 
speed so that all nodes receive their allocated fractions 
of bandwidth for transmitting synchronous traffic. This 
is achieved by transmitting asynchronous messages only 
when the token rotates sufficiently fast so that it returns 
to a node within the TTRT, i.e., it arrives early .  Specif- 
ically, each node has two timers and one counter: 

The t oken  rotat ion t i m e r  (TRT) records the time 
elapsed since the last token’s visit (if the TRT has 
not yet expired). It is initialized to TTRT, and 
counts down (i) until it expires (i.e., reaches zero) 
or (ii) until the token is received and the time 
elapsed since its last visit is less than TTRT. In 
either case, TRT is reset to TTRT and continues 
to count down from the newly-set value. 

The t oken  holding t i m e r  (THT) records the amount 
of time by which the token has arrived early, i.e., 
the amount of time which can be used to  transmit 
asynchronous messages. It is initialized to  zero, 
is set to  the value of TRT when the token arrives 
early, and counts down during the transmission of 
asynchronous messages. 

The late counter  (LC) records the number of times 
its TRT has expired since the last token’s visit to  
the node. It is initialized to zero, is incremented 
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whenever TRT expires, and is reset to zero each 
time the node receives the token. 

After the TTRT value is negotiated among the nodes 
during network initialization, each node i initializes its 
timers and counter as follows: TRT +- TTRT; THT +- 

0; LC +- 0. TRT is enabled during all ring operations 
and always counts down until one of the following three 
events occurs: 

El .  TRT reaches zero: The following steps are taken: 
(i) TRT t TTRT,  and TRT continues to count 
down, and (ii) LC +- LC $1. 

E2. The token arrives early: This is identified by LC 
= 0 at the time of token arrival. In this case, the 
following steps are taken: (i) THT +- TRT, and 
THT counts down only during the transmission of 
asynchronous messages, (ii) TRT +- TTRT, and 
TRT continues to  count down, (iii) asynchronous 
messages, if any, are transmitted until THT expires 
or until all asynchronous messages are transmit- 
ted, whichever occurs first, and (iv) synchronous 
messages are transmitted up to Hi units of time 
or until all synchronous messages are transmitted, 
whichever occurs first.’ 

E3. The token arrives late: That is, LC # 0 at the time 
of token arrival. In this case, the following steps 
are taken: (i) LC + 0, (ii) TRT is not reset, and 
continues to  count down, and (iii) only synchronous 
messages can be transmitted up to H; units of time, 
and no asynchronous messages can be transmitted. 

3 Protocol timing properties and real- 
time requirements 

In this section, we discuss several interesting timing 
properties associated with the MAC protocol and the 
timing requirements imposed on the MAC protocol by 
the messages with delivery deadlines. 

We define following notation: 

0 T :  the TTRT of an FDDI network. 

0 r: the portion of the synchronous bandwidth un- 
available for transmitting synchronous messages. r 
includes medium propagation delay, token trans- 
mission time, station latency, token capture delay, 
and various protocol-dependent overheads [6]. 

0 I?: vector ( H I ,  H2 , .  . . ,  H n ) ,  where H; is the syn- 
chronous bandwidth allocated to node i. 

0 Xi: the minimum time available for node i to trans- 
mit synchronous messages in an interval (t  , t + D;] . 

‘In the MAC protocol, it is not specified which of synchronous 
or asynchronous traffic will be transmitted first. 

e fg , fi: the functions which represent the global and 
local synchronous bandwidth allocation schemes, 
respectively. That is, -a globai ailoc_ation scheme 
can be represented as H = f,(C, D ,  P ,  T,  r ) ,  where 
c‘ = (C1,CZ , . . . ,  Cn), P‘ = (P1,Pz , . . . ,  P,), and 
D = (01 ,  Dz, . . .,on). A local allocation scheme 
can be represented as Hi = fi(Ci, Di, Pi, T ,  r ) ,  for 
i =  1 , 2  , ” ’ ,  12. 

4 

Note that a node i can transmit its synchronous mes- 
sages only up to its assigned synchronous bandwidth Hi ,  
and can transmit its asynchronous messages only when 
the token arrives early and only up to the amount of 
time by which the token arrived early. 

Timing properties of MAC protocol. The proto- 
col constraint on the allocation of synchronous band- 
width states that the total bandwidth allocated to syn- 
chronous traffic among all nodes in a timed-token ring 
should not exceed the available portion T - r of TTRT,  
i.e., Hi 5 T - r .  Violation of the protocol con- 
straint will make the ring unstable and oscillate between 
“claiming” and “operational.” 

Under the timed-token protocol constraint, the fol- 
lowing well-known result for the MAC protocol is for- 
mally proved in [5,6]. 

Theorem 1: (Johnson and Sevcik’s Theorem) 
For the timed-token protocol, the worst-case token ro- 
tation time - the time elapsed between any two con- 
secutive token’s visits to  a node - is bounded by 
T + CJn=, Hj + 5 2 .  T. 0 

A more general result has also been obtained by 
Agrawal et al. [1,9]: 

Corollary 1: For the timed-token protocol, the time 
elapsed between any c + 1 consecutive token’s visits to  
a node is bounded by c .  T + ET=, Hj + r 5 ( c  + 1).  T .  
0 

A proof of the above theorem and an example showing 
that the bound is tight can be found in [9]. A simpler 
proof can also be found in [4], in which a more general 
result is also derived. 

The deadline constraint. Every synchronous mes- 
sage for real-time applications must be transmitted 
to meet its delivery deadline. That is, the minimum 
amount of time, Xi, available for node i to transmit its 
synchronous messages in an interval ( t ,  t+Di] should be 
no less than the required maximum message transmis- 
sion time. Using Corollary 1, Agrawal et al. [1,2] de- 
rived a lower bound for the time available for a node to 
transmit its synchronous messages within a given time 
period Di as follows. 
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Figure 1: Worst-case token visit scenarios. 

Theorem 2: Assume that a t  time t ,  a synchronous 
message with deadline Di arrives at node i (1 5 i 5 n). 
Then, the minimum amount of time, Xi, available for 
node i to transmit this synchronous message before its 
deadline is given by 

xi(lj) = (q,-l) .Hi+max(o,min(ri-(  H , + ~ ) , H , ) ) .  

(3 .1)  
where qi = [D; /T]  and ri = Di - qi . T .  

j=1, .. ., n 
3 f i  

0 

Note that Eq. (3.1) can be re-written as 

Also, note that the time available for a node to trans- 
mit a synchronous message before its deadline becomes 
minimal when the message arrives right after the to- 
ken’s departure. Figure 1 depicts the scenarios where 
Case 1, 2, or 3 may arise. Since the time elapsed be- 
tween any c +  l consecutive token’s visits is bounded by 
c . T + E,”,, Hj + T, 
Case 1. if ri 2 Cj  Hj+r ,  then Di 2 qi.T+Cj Hj+r ,  

and Di can “accommodate” the qi-th token’s visit 
since the message arrival. 

Case 2. if Cjfi H j  + r < ri < Cj Hj + r ,  then Di can 

accommodate the first (qi - 1) token’s visits and 
part of the qi-th token’s visit. 

Case 3. if ri 5 C j f i  Hj + T, then, in the worst case, 
Di = q i . T + r i  5 qi .T+C. 3 f a  . H j + r ,  and Di 
cannot accommodate the qi-th token’s visit since 
the message arrival. However, Di 2 qi . T 2 (qi  - 
1) . T + C .  H j  + T ,  and Di can accommodate the 
first (qi - lj token’s visits since the message arrival. 

For Di 5 Pi, the timing requirements of synchrogous 
messages impose the deadline constraint that  X ; ( H )  2 
Ci, for i = 1 , 2 , .  . . , n .  

4 SBA problem and solution algorithm 

In the following discussion, we assume that Di-5 Pi, 
for all i .  In such a case, fg ( f l )  is independent of P (Pi), 
and hence (Pi) can be dropped from the argument list 

We first give a formal mathematical formulation of 
the SBA problem and then describe the proposed algo- 
rithm. 

Problem 1: (The SBA Problem) Given the num- 
ber of nodes (or synchronous message streams), n, 
the maximum message transmission time veztor, 
6 = (C1,C2,. . . ,C,) ,  the deadline vector, D = 
( D l  , D2, . . . , Dn), and the negotiated TTRT, T, the ob- 
jective of a global SBA scheme is to find an algorithm 
that realizes the function fg : 

of f g  (fl). 

I? = (HI, H 2 , .  . . , H,) = f g ( E , f i , T ,  T), (4.1) 
and the objective of a local SBA scheme is to  find an 
algorithm that realizes the function fl  : 

Hi = f / (Ci ,  Di, T ,  T), for i = 1 , 2 , .  . . , n, (4.2) 
subject to 

protocol constraint: 2 Hi 5 T - 7, (4.3) 
i=l  

deadline constraint: Xi(@) 2 Ci, (4.4) 

where X g ( 2 )  is defined in Eq. (3.1). 0 

A fea_sible solution for the above SBA problem is a vec- 
tor H that satisfies both the protocol and deadline con- 
straints. An optimal global (local) SBA scheme is the 
one that realizes the function fg ( f i )  whenever such a 
solution exists. 

As mentioned in Section 1, whether or not there ex- 
ists any polynomial-time optimal global SBA scheme 
remains unknown since the only previously-known op- 
timal global SBA scheme (proposed by Chen e2 al. [2]), 
theoretically, may not terminate. For convenience of 
reference, we include their algorithm in Figure 2 and 
some of the results they derived below. Note that their 
algorithm assumes that qi 2 2,  for all i. For convenience 
of discussion, we also make the same assumption. (In- 
terested readers are referred to  [lo] for the details of 
how to relax this assumption.) 

Let II be the set of solutions for Eq. (4.4), i.e., 

II = {I? I 2 ci, for all i}. (4.5) 
Also, for two given vectors l?’ and I?!’, we define 
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Procedure Min-H; 
1. For a = 1 to n do H ,  := 2; 
2. Repeat 
3. 
4. 

6. 
7. Until none of b,'s are larger than zero; 

Allocation Scheme MCA 
1.  Call procedure Min-H to obtain d* ;  
2.  If E:=, H: 5 T - r then return(success, d * )  
3. else return(fail, nil) 

For i = 1 to n do calculate X ,  as defined in Eq. (3.1); 
For i = 1 to n do { 

5. bl := C, - X , ;  
If b, > 0 then HI := HI + & }; 

Figure 2: The optimal SBA scheme proposed in [Z]. 

0 H' = H" if and only if Hi = Hi", for all i, 
0 r?' 5 I?' if and only if H;' 5 Hl', for all i, and 

0 < I?" if and only if I?' 5 I?" and r?' # i?" 

4 4  

Chen et  al. proved the following theorem (Theorem 6.1 
in [2]). 

Theorem 3: The set 11 has the following properties: 

0 II is not empty, i.e., Eq. (4.4) is solvable, 

0 t_here is a-, mini_mal element H' in 11, i.e., for any 
4 

H E II, H* 5 H ,  for all i, and 
0 2 5 5 3, for all i. 0 

Their optimal SBA scheme, called MCA (Figure 2), 
uses a _procedure, called Min-H, to-find the minimal ele- 
ment H' in II and then checks if H* satisfies the proJo- 
col constraint. If Procedure M i n H  can alyays find H* , 
MCA is an optimal SBA scheme since H' minimizes 

Hi in the protocol constraint Eq. (4.3) among all 
I? E II. However, although they proved that the value 
of r? calculated in thz Repeat-Until loop of Procedure 
Min-H converges to H ' ,  Procedure Min-H is not guar- 
anteed to  terminate. For example, let T = 30, T = 0, 
pi = 6, ri = 24, and Ci = 30, for i = 1 , 2 , .  . . , 5 .  Let 
b i k )  denote the value of b; at the k-th iteration of the 
loop in their algorithm, then b,(lc) = (f)"-' > 0, for all 
i. Moreover, even if we use a traditional engineering 
approach to stop the algorithm at a certain point, such 
as forcing the algorithm to  terminate when all bi's are 
smaller than a certain threshold, the values of Hi's thus 
found are still unusable since some of them are not large 
enough to satisfy the deadline constraint (bi  > 0). To 
remove this deficiency, we propose another algorithm 
for finding the minimal element r?* E 11, which is guar- 
anteed not only to  terminate but also to  terminate in 

polynomial time. Before describing the algorithm, we 
first study the deadline constraint in more detail. 

As discussed in Section 3,+there are three possible 
regions for the values of Xi(H) (Figure 1). For conve- 
nience of discussion, we say that Xi(l?) (or, simply, Xi 
or H i ,  if r? is unambiguous in the context) is in Re- 
gion I, 11, or 111, if ri > x .  Hj + T, &+ H j  + T < 
ri < xj ~j + 7, or ri 5 hj#i ~j + T, respectively. 
It is easy to see that Xi(r?*) = Ci, for all i, since 
if Xi(l?*) > Ci we can find another vector r?' with 
Hi = Hi' - E ,  H; = Hi', for j # i, and E a very small 
positive number, which also satisfies :he deadline con- 
straint, and hence contradicts that H* is the minimal 
element in II (this property will be used later). There- 
fore, we can conclude that if Hi' is in Region I, 11, or 111, 

then Hf equals 2, q * - l  , or 5, respec- 
tively. Moreover, if we know, for each i, which region 
Hi' falls in, then the values of Hf's can be easily found 
by solving the following system of n linear equations 
with n variables: 

C , - ( T , - Z  HJ-7) 

if Hi' is in Region I, 

xi = , if Hi' is in Region 11, 
if Hi' is in Region 111, 

(4.6) 
for i = 1 ,2 ,  . . . , n. However, since each of Hf 's may fall 
i; one of the three regions, if we try to  find the vector 
H' by guessing the region that each H: falls in, in the 
worst case, we need to solve the system of linear equa- 
tions (Eq. (4.6)) 3" times (and check if they indeed fall 
in the regions we guessed). This means that the SBA 
problem can be solved by an algorithm that is guar- 
anteed to  terminate in exponential time. Now, there 
is still one important theoretical question left: Does 
any polynomial-time optimal global scheme exist for 
the SBA problem? We answer this question positively 
by proposing an algorithm, Procedure PT-Min-H (Fig- 
ure 3), which can find the minimal element r?' in II 
in polynomial time. For convenience of discussion, we 

will call 2, q.-1 , and 5 Formulas I, 
11, and 111, respectively. 

Procedure PT-Min-H works as follows. In Step 1, 
we first "assume" that H: is in Region I, and hence set 
H ,  := k, for all i (note that 2 is the minimum possible 
value of H:),  and set F1 := { 1 , 2 , .  . . , n},  and F2 := 
F3 := 8. During the execution of the algorithm, Fi, i = 
1 ,2 ,3 ,  is the set of indices of Hi's whose current values 
are calculated using Formulas I, 11, and 111, respectively. 
However, the current values of H,'s may not really fall 
in the regions as we expected. Therefore, in Step 2, 
we calculate the correct region that each H ,  falls into. 

Ct-(p.--CI+, HJ -7) 
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Procedure PT-MinH 
Step 1. For z = 1 to n do H ,  := 2. 

Let FI := { 1 , 2 , .  . . , n } ,  and F2 := F3 := 0. 
Step 2. Partition { 1 , 2 , .  . . , n}  into three subsets R I ,  R2, 

and R3, where RI = { z  I r ,  2 1, H,  + T } ,  Rz = 

{ Z  I E,#, H ,  + T < rI < E, H,  + T } ,  and RY = { z  I 

Step 3. If Fl = RI then d* has been found and the dgo- 
rit hm terminates. 

Step 4. Let R+:= FI - R I ,  and S := R u  F2. Let b ,  := 
C, - X , ( H ) ,  a, := q, - 1, and 6, = LL - H , ,  for 
z E S. Solve the following linear programming (LP) 
formulation: 

T I  I C,#, H,  + T I .  

qr-1  

maximize z = x x ,  
ZES 

subject to I 

(4.7) 

2; 5 6,, and (4.9) 
xt 2 0, (4.10) 

for all i E S .  
Let (zt),  z E S, be the solution of the above LP. 
Reset Hi := H ,  + z:, for all z E S. 
Reset 

Go to Step 2. 

:= R I ,  Fz := { z  E S I x: < 6,}, and F3 := 
F3 U { Z  E S I 2: = bi}. 

Figure 3 :  Polyno_mial-time algorithm for finding the 
minimal element H’ in II. 

During the execution of the algorithm, Ri, i = 1 , 2 , 3 ,  
is the set of indices of Hi’s whose current values fall in 
Regions I ,  11, and 111, respectively. If the formula used in 
calculating Hi matches the region that Hi really falls in, 
then the formula we used to calculate the value of Hi is 
correct. If this is true for all i then it means that all the 
Hi’s have been calculated using the correct formulas, 
and hence the algorithm terminates (Step 3 ) ;  otherwise, 
some of the Hi’s are calculated using wrong formulas, 
i.e., some of the Hi’s should have been calculated using 
Formula I1 or 111, but were calculated using Formula I. 

At the beginning of Step 4, R = Fl - RI is the set 
of indices of Hi’s whose current values are calculated 
using Formula I but actually falls in RegioyII or 111, and 
whose corresponding bi’s (6;  = Ci - X i ( H ) )  are larger 
than 0. That  is, bi > 0 is the “deficiency” of Hi (the 
difference between the maximum message transmission 
time-Ci and the minimum available transmission time 
X ; ( H ) ) ,  for each i E R. It  means that to satisfy the 
deadline constraint, the synchronous bandwidth Hi of 
node i, i E R, should be increased to compensate the 
deficiency. However, the increase of the Hi’s with i E R 

will incur non-zero deficiency for the Hi’s with i E F2 

and also for some of the Hi’s with i E Fl - R. Since we 
are not sure which Hi’s with i E Fl - R will incur non- 
zero deficiency we will only take the Hi’s with i E F2 

into consideration and temporarily leave the Hi’s with 
i E - R fixed at  the value %. (Note that since 5 
is the maximum possible value of Hi’, those Hi’s with 
i E F3 no longer need to  be changed, and hence are also 
fixed at  5.) 

It is easy to see that for each i E S = R $J F2, the 
increase, xi, in Hi makes the increase in X i ( H )  by ai . 
xi. Therefore, Hi should be increased by (at  least) 2 
to compensate the deficiency b i .  However, due to the 
increase, x i ,  of some other Hi with j E S and j # i, 
X i ( @ )  will be decreased by the same amount xj, and 
hence increases the deficiency of Xi by xj . If we let xi be 
the amount of bandwidth increase for Hi, for each i E S, 
then the actual deficiency of Xi will be bi+Cj,=s,jfi xj. 

Therefore, we expect to increase the bandwidth Hi by 

an amount ?+‘jes1J#’ a, 2 3  . However, if the value of 2+ 
‘jCs,j*’ becomes larger than 6; = 5 -Hi then Xi 
will move from Region I or I1 to Region 111, and hence 
the synchronous bandwidth Hi need not be increased to  
a value larger than 5. That  is, the increase xi of Hi 

never needs to be greater than min( Si, 2 + c3E::#z 2 3  ). 
Therefore, we have the two inequalities Eq. (4.8) and 
(4.9) in Step 4.  We then solve the linear programming 
(LP) problem with the 3 .  IS1 constraints (including the 
nonnegativity constraints Eq. (4.10)) and the objective 
function (maximize) z = CiEs xi. We will show later 
that the LP defined in Step 4 has exactly one optimal 
solution ( x : )  with i E S, which satisfies either 0 < xa = 

L + C J E S , j * t  x~ < si. 
6; 5 $+ a, 
Note that theaki’s with i E RI a;; exactly those Hi’s 
whose values are fixed a t  2 (Formula I). Therefore, 
we reset FI := R I .  Similarly, those Hi’s with i E S 
and xi’ < Si are exactly those Hi’s whose new values 
are calculated according to  Formula 11, and those Hi’s 
with i E S and x? = 6i, and with i E F3 are exactly 
those Hi’s whose (new) values are calculated or fixed 
at  5 (Formula 111). Therefore, we reset F2 and F3 
accordingly. Now, due to  the increase of those Hj’s with 
j E S, some of the Hi’s with i E RI may now move from 
Region I to Region I1 or 111, and hence the calculation 
of this kind of Hi’s may still use wrong formulas. So, we 
need to go back to  Step 2 and check if further changes 
are needed. 

Before proving the correctness and giving the time 
complexity of Procedure PT-Min-H, we need the fol- 
lowing theorem and lemma. 

a ,  

Ej€s,J#,xj or 0 < 
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Theorem 4: 
ming formulation 

Consider the following linear program- 

k 

maximize z = cci .xi (4.11) 
i=l  

subject to  xi 5 
ai ai 

xi 5 Si, and (4.13) 

xi 2 0, (4.14) 

f o r i  = 1 , 2  , . . . ,  k .  If ai > 0, bi 2 0, Si > 0, ci > 0,  
for all i, and there exists at least one index j such that 
bj  > 0,  then 

(a) the optimal value of the objective function z exists 
and is bounded, 

As mentioned earlier, F l ,  F2, and F3, are the sets 
of indices of Hi’s whose current values are calculated 
according to Formulas I, 11, and 111, respectively. If Hi 
is calculated by Formula I and the values of qi and ri are 
changed to qi + 1 and 0, respectively, then the deadline 
constraint for node i is guaranteed to  be satisfied. A 
similar statement also holds for Ha’s that are calculated 
by Formula 111. Thus, for # E {-, +} we define 

0 a# = qi + 1, r# = 0,  for i E F f ,  

0 qf = q i ,  r# = ri, for i E F f ,  

0 q# = qi, r# = 0, for i E F~ , 

0 x#(@ = 

0 n# = {I? I X f ( E ? >  2 ~ i ,  for all i}. 

# 

(q# - 1) . ~i + max(O,min(rf - 
(&i Hj + T ) ,  Hi)), and 

(b) X* = (x;, z;, . . . , x;) satisfies the following condi- We will also use the following assumptions in Lemma 1 
tion and Theorem 5. 

for each i = 1 , 2 , .  . .,k, where x* is an optimal 
solution for the LP, 

any vector y = (yl, y2, . . . , yk) satisfying 
Eq. (4.15)--(4.16) must have all positive compo- 
nents, i.e., yi > 0, V i, and The following lemma states that assumptions A1-A4 

(d) there is a unique vector satisfying Eq. (4.15)- are loop 
(4.16), i.e., x* is ‘he Only vector Lemma 1: If assumptions A1-A4 are true and as- 
Eq. (4.15)-(4.16). sume R is nonempty,then 

The proof of Theorem 4 is omitted due to  space limita- 
tions. See [lo] for details. Note that the uniqueness of 
the solution of Eq. (4.15)-(4.16) is the key point of the 
optimality of our algorithm, since it means that the new 
values of Hi’s found in each iteration of Step 4 won’t be 
too large. 

Before any further discussion, we need the following 
notation. Let F,- and F? denote the values of Fi before 
and after the execution of Step 4 in an iteration of :he 
loop trom Step 2 to Step 4, respectively, and let H -  
and H f  be similarly defined. Let V E {Ri’s, R, S ,  bi’s, 
Si’s} denote the value of the corresponding variable in 
the current iteration of Step 4, and let V+ denote the 
value of the corresponding variable in the next iteration 
of Step 4, i.e., RT = {i I ri 2 CjHT + T } ,  Ri = 
{i I Cjfi HT -t T < ri < C j  HT + T }  R i  = {i I 
ri 5 Cjzi HT + r } ,  R+ = F;’ - Rt, S+ = R+ U F;, 
b f  = Ci - X i ( a + ) ,  and 6: = LL - Hi+. 

q,-1 

L2.L q,-l , for i E F A  
( c )  b f  = 0, for all i E F:, and b: > 0, for all i E 

R+ = FT - RT, and 6: > 0, for all i E S+, and 
R t  = {i I ri 2 Cj HT + T}, and 

(d) I?+ is the minimal element in II+. 0 

The proof of the lemma is omitted due to  space limita- 
tions. See [lo] for a detailed account. We now prove the 
correctness and give the time complexity of Procedure 
PT-Min-H in the following theorem. 

Theorem 5: Let be the value of 2 before the 
execution of the k-th iteration of Step 3 in the loop 
from Step 2 to Step 4. We have 
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assumptions Al-A4 are true for all iterations of the 
loop from Step 2 to  Step 4; in particular, Ef(k) 5 
if*, for all IC, 

procedure PT-MinH terminates, and at termina- 
tion (assuming after the I-th iteration of Step 3) 
I?(’) = g * ,  and 

the time complexity of Procedure PT-MinH is at 
most O ( n M ) ,  where M is the time complexity for 
solving an LP with 3n constraints and n variables. 

Proof: We prove (a) by induction on k. The first time 
when the algorithm goes to Step 3,  Hi’) = 2 5 H,’, for 
all i ,  Fl = ( 1 , 2 , .  . . , n } ,  and Fz = F3 = 0. It is easy to 
check that assumptions A l ,  A2, and A4 are true (note 
that assumption A3 is meaningful only if the algorithm 
goes to Step 4). If the algorithm terminates at t h e  first 
iteration of Step 3,  then for all i, r; 2 cj HI1)  + T and 
X i ( f 8 l ) )  = Ci. Therefore, I?(’) = I?*. If the algorithm 
goes to Step 4, it means that R = F1 - RI # 8, and 
ri < Cj  H;’) + T ,  for i E R. Therefore, bi = C; - 
Xi($’)) > 0 (note that F2 = 0). Hence, assumption 
A3 is true. 

Assume (a) is true at the beginning of the k-th iter- 
ation of Step 4.  By Lemma 1, (a) is still true after the 
execution of Step 4. Therefore, by the logic of induction 
proof, (a) is true. 

Next, since for each iteration, the size of Fl will be 
decreased by [RI = IF1 - RlI, and if IRI = 0 the algo- 
rithm will terminate. Therefore, the algorithm is guar- 
anteed to terminate after (at most) n iterations of Step 
4, and when the algorithm terminates at the I-th iter- 
ation of Step 3, R = @, which means that the current 
value of Hi is calculated by Formula I, 11, or I11 (i.e., 
i E F;,  i = 1 ,2 ,3 , )  if and only if Hi is in Region I, 11, 
or, I11 (i.e., i E R;, i = 1 ,2 ,3 ) ,  respectively. Therefore, 
Xi(&‘)) = Ci, for all i, and hence, l8) = g * .  Thus, 
(b) is proved. 

It is easy to see that the time complexity of the algo- 
rithm is dominated by the LP described in Step 4,  which 
has a t  most 3n constraints and n variables. Since there 
are at most n iterations of Step 4, we need to solve the 
LP at most n times. Therefore, the time complexity of 
the algorithm is given as in (c). 0 

Note that although the famous simplex method 
for solving LP has an exponential-time worst-case 
complexity,’ LP has been proved to be polynomial- 
time solvable. Therefore, Procedure PT-Min-H is a 
polynomial-time algorithm. 

However, in practice, the simplex method performs exceed- 
ingly well. 

5 Conclusion 

We have presented an optimal global SBA scheme 
which is guaranteed to find a feasible solution in polyno- 
mial time for allocating synchronous bandwidths when 
such an allocation exists. In the only previously-known 
optimal global SBA scheme proposed in [2], although 
the computation is proved to  converge to  the optimal 
solution, it may not terminate in polynomial time, or, 
theoretically, may not terminate a t  all. Moreover, even 
though a traditional engineering approach can be ap- 
plied in their SBA scheme to stop the algorithm at  
a certain point, the synchronous bandwidths found in 
their algorithm are still unusable. The algorithm de- 
scribed in this paper is, to  our best knowledge, the first 
polynomial-time optimal global SBA scheme. 
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