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Abstract 
Modern parallel and distributed applications have 

a wide range of communication characteristics and 
performance requirements. This paper presents the 
Programmable Routing Controller (PRC), a custom 
ASIC that supports flexible network policies t o  accom- 
modate diverse application requirements. B y  dedicat- 
ing a small programmable processor t o  each incom- 
ing link, the PRC can implement wormhole, virtual 
cut-through, and packet switching, as well as hybrid 
schemes, under a variety of unicast and multicast rout- 
ing algorithms. The PRC can support several applica- 
tions or traf ic  types simultaneously b y  implementing 
multiple routing-switching microcode routines. 

1 Introduction 
In parallel and distributed systems, efficient com- 
munication enables fine-grained cooperation between 
processing nodes. Maximizing system performance 
requires matching application characteristics with a 
suitable network design. However, applications em- 
ploy a wide variety of communication paradigms that 
affect the quantity and frequency of communication 
between nodes. Parallel applications such as scien- 
tific computations, parallel databases, and real-time 
applications generate distinct distributions for packet 
lengths, interarrival times, and target destinations [l, 
21. This paper introduces flexible communication 
hardware that can tune network policies to these di- 
verse characteristics. 

For point-to-point networks, these characteristics 
affect the performance of particular routing and 
switching schemes [3-61. Traditional packet  switching 
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requires an incoming packet to buffer completely be- 
fore transmission to a subsequent node can begin. In 
contrast, cut-through switching schemes, such as vir- 
tual cut-through [7] and wormhole [8], try to forward 
the packet directly to an idle output link; if the link is 
busy, virtual cut-through switching buffers the packet, 
whereas a wormhole packet stalls pending access to the 
link. Most contemporary routers utilize wormhole [8- 
131 or virtual cut-through [14,15] switching for lower 
latency and reduced buffer space requirements. 

The routing algorithm determines which links a 
packet traverses to reach its destination. Oblivious 
routing generates a single outgoing link for an in- 
coming packet, whereas adaptive schemes can consider 
multiple links to balance network load and increase a 
packet’s chance of cutting through intermediate nodes. 
Additionally, adaptive schemes may consider nonmin- 
imal paths in the hope of circumventing network con- 
gestion or faulty links. Although most existing routers 
implement oblivious routing [S-101 , several recent de- 
signs support adaptive routing [12-151. Multicom- 
puter applications can also benefit from router support 
for multicast communication, since sending a message 
to multiple destinations facilitates efficient barrier syn- 
chronization and global reduction operations. 

Each routing and switching policy is best suited 
for traffic with particular characteristics and perfor- 
mance requirements. For example, adaptive routing 
can reduce end-to-end delay, but out-of-order packet 
arrival can complicate protocol processing at the r a  
ceiving node. Opportunities for adaptive routing de- 
pend on the topology and the distance a packet must 
travel. Similarly, wormhole switching achieves low la- 
tency without requiring packet buffers, but virtual 
cut-through and packet switching may achieve bet- 
ter throughput at high loads. Packet size also im- 
pacts network performance, since inter-node commu- 
nication often consists of large data transfers, coupled 
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with small request and acknowledgement packets [2]. 
The network can accommodate this mixture by using 
wormhole switching for long packel,s, while allowing 
short packets to use virtual cut-through switching to 
reduce network contention [5]. 

Since no single routing-switching combination per- 
forms best under all conditions, a flexible network 
should support a range of policies However, most 
existing routers implement a single routing-switching 
combination in hard-wired logic. This paper presents 
a Programmable Routing Controller (PRC) that im- 
plements a variety of routing and switching schemes 
by dedicating a microprogrammable routing engine 
to each incoming link. These small processors can 
parse the routing header of an incoming packet and 
construct a routing-switching decision, based on the 
packet header, the microcode, and prevailing network 
conditions. This design also allows the PRC to sup- 
port multiple routing-switching combinations simulta- 
neously.  Simulation studies of the I’RC have demon- 
strated the benefits of tailoring routing-switching poli- 
cies to application characteristics [6,16-181. 

Flexible control over link and bufler reservation en- 
ables the PRC to implement wormhole, virtual cut- 
through, and packet switching, as well as hybrid 
schemes, each under a variety of unicast and multi- 
cast routing algorithms. The next section of the pa- 
per overviews the PRC architecture, while Section 3 
describes the microarchitecture of the programmable 
routing engines. Section 4 describes the chip’s current 
status and avenues for future work. 

2 PRC Architecture 
As shown in Figure 1, the PRC manages bidi- 

rectional communication with four other nodes, with 
three virtual channels [19] on each unidirectional link. 
The controlling host processor has direct, memory- 
mapped access to the PRC across the VME bus; ap- 
plications may run on this host or 011 another proces- 
sor that uses the host, coupled with the PRC, as a 
dedicated communication engine. The PRC’s network 
interface manages the inter-node links and implements 
routing and switching for incoming packets, while the 
host interface transfers data between the buffer mem- 
ory and the network. 
2.1 Host Interface 

To reduce the complexity of both 1,he hardware and 
software protocols, the PRC coordinates data transfer 
in terms of pages .  Each packet consifits of one or more 
(possibly non-contiguous) pages. The host transmits 
a packet by feeding page tags to a t ransmi t ter  f e t c h  
unit  (TFU); each page tag includes a memory address 
and the number of words to transmit. Similarly, the 

host processor supplies each network interface receiver 
(NIRX) with pointers to free pages in the buffer mem- 
ory, for use by arriving packets. 

The twelve incoming and outgoing virtual channels 
share access to the external buffer memory, interleav- 
ing at the word level. Since the PRC does not in- 
clude internal buffers for blocked packets, packets that 
buffer at intermediate nodes are stored in this SRAM; 
the host coordinates further transmission of this traf- 
fic by feeding a TFU with the packet’s page tags. The 
PRC logs the transmission and reception of individ- 
ual pages in an internal event queue. The host reads 
this event queue to perform free-list maintenance and 
assemble incoming packets. 

Page-level data transfer facilitates scatter-gather 
DMA between the buffer memory and the network 
and allows the host to avoid unnecessary data copy- 
ing by constructing packet headers on a separate page 
from the data. Since the PRC does not restrict 
packet format, the protocol software can weigh the 
cost-performance trade-offs for selecting packet sizes. 
To better accommodate different sizes, the PRC al- 
lows packets to consist of either 256-byte or 1024-byte 
pages; larger pages allow the PRC to operate longer 
without host intervention, while smaller pages reduce 
fragment at ion. 

The transmission and reception datapaths incorpo- 
rate transparent error detection via cyclic redundancy 
code (CRC) generation and checking, as well as packet 
timestamping useful for controlling clock drift between 
nodes. The first page tag for a packet can specify a 
number of words to exclude from the CRC calcula- 
tion, allowing subsequent nodes to modify a packet’s 
routing header without invalidating the original CRC 
checksum. If desired, the microprogrammable rout- 
ing engines can implement separate error detection or 
correction on the packet header. 

2.2 Network Interface 
While the host manages communication at the page 

level, the PRC coordinates the fine-grain interaction 
between incoming and outgoing virtual channels. The 
PRC communicates with other nodes via four pairs 
of serial links. Each outgoing link is controlled by a 
module containing three network interface transmit-  
t e r s  (NITXs), each implementing a single outbound 
virtual channel. The NITXs perform the necessary 
interleaving of virtual channels on the physical links, 
on a word-by-word basis. 

The PRC treats the NITXs as individually reserv- 
able resources, allowing the device to support a variety 
of routing and switching schemes through flexible con- 
trol over channel allocation policies; the reservation 
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Figure 1: PRC architecture 

status unit handles requests to reserve or relinquish 
NITXs. The network interface components commu- 
nicate over the cut-through bus (CTBUS), a demand- 
slotted, time-division multiplexed bus. To match the 
bandwidth of the eight unidirectional links, the 32-bit 
CTBUS operates at twice the byte-transmission speed 
of a link; since the links run at half the PRC’s clock 
frequency] a pair of outgoing links share a single set of 
pins, reducing the package size of the chip. The links 
are implemented using AMD TAXI chips operating 
in a synchronous mode where each link transmits 10 
bits of information (8 bits data, 2 bits control) every 
link cycle; the control information is used by the PRC 
to transfer commands, flow-control acknowledgments, 
and virtual channel identifiers. 

The CTBUS protocol includes commands to trans- 
fer data and reserve/relinquish NITXs. The DTX, 
MARK, and EOP commands each transfer a word 
of data, with an EOP tag marking the last word in 
a packet. The MARK command tags page bound- 
aries] allowing the destination node to reconstruct the 
packet’s page structure upon reception; this can en- 
sure that protocol header pages are separate from data 
pages on the receiving node. Each CTBUS command 
includes a 13-bit slave mask to address the memory in- 
terface and any of the 12 NITXs. The address mask, 
coupled with the bus interconnect, enables a single 
CTBUS transaction to spawn transmissions on sev- 
eral output links simultaneously; this allows an arriv- 
ing packet to generate multiple copies at each hop in 
its route, facilitating efficient multicast algorithms. 

Using the slave address mask, a CTBUS master 
can reserve one or more NITXs with a single RESV 
command; the CTBUS’s bus interconnect serializes 
reservation requests, simplifying the design of the 

reservation status unit. The TFUs and NIRXs re- 
linquish channel reservations with the FREE com- 
mand; any NITX slaves forward the FREE command 
to the subsequent link(s) in the route to clear any 
downstream channel reservations. Although a FREE 
typically follows an EOP, separate commands allow 
the PRC to establish connections that outlive individ- 
ual packets. The CTBUS commands, coupled with 
the NITX/NIRX state machines] handle the routine 
tasks of channel reservation, arbitration, flow control, 
and data transfer, allowing the routing engines to 
focus completely on constructing intelligent routing- 
switching decisions for incoming packets. 

3 Receiver Architecture 
While supporting multiple routing and switching 

schemes requires flexibility in manipulating packet 
headers, hardwired state machines can handle the re- 
mainder of data transfer. Since header processing time 
is small relative to data transfer time, multiple virtual 
channels can share a single routing engine. The rout- 
ing engine hm an instruction set designed to interpret 
the wide variety of header formats used in routing- 
switching policies. The NIRX state machines exe- 
cute a simple routzng przmitave that facilitates efficient 
sharing of the routing engine’s intelligence. 
3.1 Receiver Module 

Each routing engine is a small, 8-bit microcontroller 
with a 256-word control store for microprograms, as 
shown in Figure 2. The host uses the control inter- 
face to download the microprograms during system 
initialization and to adjust microcode operation at 
run-time through the notification FIFOs. A 16-byte 
register file stores an arriving packet header, as well 
as constants and intermediate computations. The 8- 
bit arithmetic logic unit (ALU) includes a variety of 
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integer and boolean operations for manipulating and 
updating routing headers; the results of ALU opera- 
tions are stored in the 8-bit accumulator (acc) and 
two boolean flags (carry and zero). The registers 
and flags, coupled with the ALU, enable the routing 
engine to parse incoming packet headers and construct 
a routing-switching decision. 

The routing engine interacts with the NIRXs and 
the CTBUS through the network interface data regis- 
ters (nid) and the CTBUS data registers (ctd). Ar- 
riving packet headers are initially stored in the ap- 
propriate NIRX’s reception queue; upon receiving the 
first header word, the NIRX signals the routing en- 
gine. After selecting this NIRX for service, the routing 
engine moves the header data into its internal regis- 
ters, triggering a flow-control acknowledgement to the 
adjacent node. This process repeats until the rout- 
ing engine accumulates enough header words to con- 
struct a routing-switching decision. The microcode 
manipulates and updates the routing header, and pos- 
sibly reserves outgoing virtual channels, before return- 
ing control to the NIRX. After receiving the routing 
primitive, the NIRX acquires any necessary channel 
reservations and forwards the header to the CTBUS 
slave devices. The NIRX transfers the remainder of 
the packet directly from its reception queue, bypassing 
the routing engine entirely, until an incoming FREE 
command resets the NIRX. 

The routing engine controls NIRX operation 
through routing primitives, as shown in Figure 1. In 
addition to the header data, the routing primitive in- 

cludes a lbb i t  address mask to select the memory in- 
terface and any of the outgoing virtual channels. Con- 
trol flags indicate how the NIRX state machine should 
interpret this address mask. The routing primitive’s 
resvd flag can instruct the NIRX state machine to 
monitor a collection of NITXs. However, for maxi- 
mum flexibility, the routing engine can also directly 
access the CTBUS to reserve idle channels. This al- 
lows the routing engine to consider candidate NITXs 
in a particular order, defined by the routing algo- 
rithm, while allowing the NIRXs to wait on a collec- 
tion of busy channels. The routing engine can imple- 
ment a variety of adaptive routing algorithms simply 
by changing what order it inspects possible outgoing 
links. 

The resvd flag is crucial for efficiently implement- 
ing wormhole switching, since a stalled packet can re- 
quire monitoring the status of candidate NITX(s) for 
an indefinite period of time. Instructing the NIRX 
to wait on busy channels frees the routing engine to 
process other arriving packets. If resvd is not set, 
the NIRX reserves one, or all, of the selected NITXs 
as they become available, depending upon the all bit 
which differentiates multicast routing algorithms from 
adaptive unicast routing schemes. 
3.2 Instruction Set 

The routing engine implements instructions for ma- 
nipulating header data, controlling external interfaces, 
and branching based on internal conditions, as shown 
in Table 2. The routing engine employs the alu in- 
structions to parse and modify fields in a packet’s rout- 

Figure 2: Receiver module 
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Command I Function Register( s) 
c td3  - ctdO 
c t addr 
c t c t l  

crcflg 
resvd 
all 

Function( s) 
next word to transmit 
selects memory, NITXs 
boolean control flags: 

include word in CRC 
slaves already reserved 
reserve all/one of slaves 

Table 1: Routing primitive 

ing header, using the ALU’s zero and carry flags for 
conditional branches in the microcode. The l d c  in- 
struction loads constants, such as predetermined ad- 
dress masks and control tags, into registers, while the 
xf e r  instructions copy data between these registers. 
The routing engine issues routing primitives and CT- 
BUS commands as maskable side effects of the l d c  and 
xf e r  instructions; since microprograms typically write 
to the CTBUS registers just before accessing the in- 
terface, this optimization reduces both microcode size 
and execution time. 

Microprograms use the jump instruction to react to 
flags, including the ALU’s zero and carry bits, as 
well as reservation status flags for the NITXs. The 
reservation flags allow the routing engine to identify 
free outbound channels without accessing the CTBUS. 
The routing engine can also check the status of a col- 
lection of NITXs simultaneously based on the bit mask 
in the CTBUS address registers; this facility is es- 
pecially useful for multicast routing algorithms. The 
microcode uses the f l a g  instruction to set, clear, and 
load user-controlled flags to temporarily store boolean 
conditions; for example, an algorithm may save the re- 
sult of a bit-mask or comparison operation on a rout- 
ing header. The jump instruction can branch based 
on these condition bits. When a jump instruction in- 
cludes the save qualifier, the routing engine stores the 
address of the next microinstruction, so the microse- 
quencer can r e t u r n  to the main instruction flow when 
the subroutine completes; this restricted implementa- 
tion of subroutines reduces microprogram size by en- 
abling code reuse. 

Efficiently sharing the routing engine requires a 
flexible method for selecting which NIRX to service. 
Consequently, the routing engine’s instruction set in- 
cludes a three-way blocking branch to wait for a packet 
header to arrive on one of the three incoming virtual 
channels. This wait instruction blocks until a header 
word arrives to one (or more) of the NIRX reception 
queues; the instruction’s arguments also determine 
which NIRX to service when multiple NIRXs have 

I a l u  I boolean/arithmetic operation 
l d c  
xf e r  
go n i r x  
go ctbus 
jump 
r e t u r n  
f l a g  

load constant into register 
copy register contents 
trigger routing primitive 
trigger CTBUS access 
conditional branch 
return from subroutine 
set, clear, and copy flags 

I w a i t  I three-way, blocking branch 

Table 2: Routing engine instruction set 

packet headers. To simplify the microcode, the wait 
instruction also sets an internal flag to identify the se- 
lected NIRX and automatically transfers the header 
word to the internal n i d  registers. 

4 Conclusions 
The PRC has been fully designed using a .8pm, 

three-metal process and Epoch design tools from Cas- 
cade Design Automation; the chip is scheduled for fab- 
rication in the summer of 1995. The physical and tim- 
ing specifications of the PRC are shown in Table 3.  
The memory interface consumes approximately one- 
third of the chip area, while the remaining two-thirds 
is used by the network interface. Within the network 
interface, the NIRXs and routing engines utilize two- 
thirds of the area, since these devices provide most of 
the PRC’s flexibility. The memory interface, on the 
other hand, divides its area almost equally between 
the datapath (for buffering, timestamping, and veri- 
fying data) and the address/control logic. 

Verilog simulations were used to test a single 
PRC, with the outgoing links connected to the recep- 
tion ports, under random and contrived workloads. 
Network-level simulations were also performed with a 
separate simulator incorporating a cycle-level model 
of the PRC [20]. After fabrication, the PRC will be 
tested using an HP 82000 tester, using scan chains to 
access the chip’s critical state machines. Since all traf- 
fic traverses the CTBUS, the chip includes special pins 
for monitoring this internal bus. 

The PRC design emphasizes flexible, low-level sup- 
port for routing and switching to accommodate appli- 
cation characteristics and performance requirements. 
The chip provides a unique experimental platform for 
investigating the subtle interplay between application 
characteristics and routing-switching performance. In 
this context, we are investigating software mechanisms 
for exercising router flexibility to improve application 
performance. 
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Parameter 

Transistors 489,572 
Size 
Pins 

Component 
Transmitters 
Receivers 
Control interface 
Memory interface 
Internal switch 

Clocking 
15 MHz, synch 
15 MHz, asynch 
10 MHz, asynch 
20 MHz, synch 
30 MHz, synch 

Peak bandwidth 
150 Mbits/sec 
150 Mbits/sec 

80 MBytes/sec 
120 MBytes/sec 

N/A 

(a) Physical specifications (b) Timing specifications 

Table 3: PRC specifications 
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