
Software Engineering of Machine Control Systems:
An Approach to Lifecycle Economics

Sushi1 Birla Kang Shin

Real-time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, U.S.A.

Abstract

We describe a domain modeling process andframework for
use in lifecycle engineering of sofnvare to monitor and con-
trol agile machining equipment. We focus on an approach
of de$ning initial requirements in a way that facilitatesevo-
lution. The process has been used in an industrial case
study.

1 Introduction
Software for high-performance programmable manufac-
turing equipment has become very costly and difficult to
develop, integrate, extend, and maintain. On the one
hand, there are tremendous benefits from increasing so-
phistication, intelligence, and versatility in the functions of
computer-integrated control, monitoring, diagnostics and
maintenance. On the other hand, development uncertain-
ties, integration costs, and operational risks have become an
obstacle to further innovation in real-time control software
for manufacturing automation. We explore an approach
for agility in software development and integration at the
conceptual foundation level, organizing initial knowledge
about the manufacturing automation domain in a way that
is easier to reuse, extend and integrate incrementally, as and
when resources and economics justify enhancement of the
capability of the manufacturing system.

Current state of controls software: Currently avail-
able commercial programmable controllers, numerical con-
trollers, coordinate-measurement-machine controllers, etc.,
do not provide adequate agility. In the development of
new control software, prior experience is mainly leveraged
through people or ad hoc use of code fragments or library
code that is specific to target environments and supplier or-
ganizations. It is difficult, very costly, and often impossible
to integrate computer-controlled subsystems procured from
different suppliers into a manufacturing cell (Figure 1). En-
hancements and cross-vendor integration in the field are
even more difficult. Knowledge for agility in creating in-
novative and intelligent controls does not exist in an orga-
nized, easily deployable, standardizable form.

Manufacturing automation domain model: The criti-
cal task of organizing knowledge of the (manufacturing)
application domain is known as domain analysis [22], and
its work product is a conceptual model of the domain.
We have organized knowledge in ontologies of processes
and resources. This organization is in an object-oriented
form [4,23]. In our context, an object is an individual
identifiable item, unit, or entity-ither real or abstract-
with a well-defined role in the manufacturing automation
domain. Our model is an abstraction of pertinent prop-
erties and characteristics of manufacturing equipment and
its elements. In this approach, we form cZasses of ob-
jects or instances having the same features or character-
istics. The characteristics of a class were organized in
terms of orthogonal attributes or instance variables or state
variables and operations that may be performed on them.
Classes were organized in a generalization-specialization
hierarchy where the specialized class, i.e., subclass is a
kind of its generic class. For example, one specialization
path is: resource -+ processing-resource,. . . ---f processing-
equipment,. . . + controlled-processing-equipment,. . . -+
Controlled-processing-equipment may be a basic-machine,
or such peripheral-mechanisms as tool-changers and work-
changers, or such auxiliary equipment as hydraulic-power-
units and oil-coolers, or global sensors. Thus, the taxonomy
accommodates equipment not only for material-processing,
but also for associated handling and inspection. We have
also used an aggregation-constituent hierarchy which de-
scribes a part of relationship between classes. For exam-
ple, one constituent-path is cell -+ workstation,. . . -+ basic-
machine,. . . -+ axis-group,. . .-+ joint,. . . -+ rotational-joint-
pair.. . .

Issues: There are several economic and technical issues
in the creation and maintenance of a domain model. The
initial cost [24] to create such a reusable resource is much
higher than the cost of a single-use solution. There are
many uncertainties in amortizing this cost over (future) ap-
plications that are not fully specified at the beginning. As
machines become more easily configurable for agility, the

IEEE lnternatlonal Conference
on Robotics and Automatlon - 1086 -
0-7803-1965-6/95 54.00 0 1 995 IEEE

quantity of units over which specific software can be amor-
tized will reduce. To further add to the complexity of the
economics, the process of defining the “right abstractions”
for the “right domains” is iterative by its very nature [4,22].
We considered two approaches to deal with these difficul-
ties. The first approach was to search for ways to bound
the domain to obtain stability in the requirements of the in-
cluded application. The second approach was to find a mod-
eling technique that makes evolution easy. Both approaches
are open research questions [22]. We have found it eas-
ier to pursue a combined approach-mostly bottom-up-in
which we incrementally extend the domain.
Relation to prior work: Economic benefits from reusing
software assets have only been validated through common
experience in a few non-real-time applications where the
domains have been very narrowly defined [15,22], e.g.,
application-generators. There is no published empirical
proof that the programming technique of systematic soft-
ware reuse reduces program development time, duration,
cost, skill-requirements, or defect-density on any practical-
scale project [&lo, 11,211. To make software evolution
easier, Dijkstra [9] and Parnas [18] recommended that any
particular program be developed as though it is a mem-
ber of a family of potential programs that share some com-
mon properties, facilitated through appropriate abstraction
of these commonalities. The concept of program families
evolved into the notion that reusable assets focused on a
well-defined domain, in the context of a domain-specific
architecture, show more promise in reducing development
time [2,6,22]. The Synthesis Process [6] is a domain-
oriented approach that encompasses all the work products
of software development. The Software Productivity Con-
sortium reports [25] that the process is at an exploratory
level, i.e., it is immature and incompletely developed, rec-
ommended only for pilot and low-risk projects, under the
guidance of specialists in this process. In a recent pilot
project [7], the Synthesis Process was applied to a subdo-
main of a command-and-control application once only. The
pilot project was declared a success, although no metrics
were collected. The object orientation (00) paradigm facil-
itated Parnas’ concept of abstracting commonalities across
program families [19]. There is strong analytical support
and wide intuitive belief that the 00 paradigm facilitates
reuse and evolution of software, especially the higher-level
work products [5]. However, economics issues, reusability,
and extensibility of real-time software have not been stud-
ied systematically-related work in that field has focused
on formal specification methods. Our work focuses on the
software economics issues. We have defined a framework
and domain analysis process (Section 2) and tested it in an
industrial case study. The organization of domain knowl-
edge for the production and maintenance of real-time con-
trol software is novel.

Organization of paper: In Section 2, we describe the ap-
proach followed in this study. In Section 3, we describe
how we bound the domain and its subdomains in an ex-
tensible manner. In turn, it becomes appropriate to define
a reference architecture, as done in Section 4 by glean-
ing, adapting and synthesizing from existing architectural
models. In Section 5, we define subdomains for each class
of components in manufacturing equipment. In Section 6,
we describe how we model subsystems and the equipment-
system as compositions of their constituents. In Section 8,
we summarize the contributions and direction of further re-
search. The whole process is reported more completely in
[31.
Conceptual framework Since models are only approx-
imations of reality, they can be dependable and useful only
within some context. Our conceptual framework (Figure 2)
defines that context in a layered arrangement. First, the ab-
stractions have to be directed to some defined purpose+
the outermost or global part of the framework. Differ-
ent software engineering methods (the second layer in Fig-
ure 2) exist for capturing and organizing these abstrac-
tions. Unfortunately, the respective models are not eas-
ily inter-convertible. We chose the object-oriented method,
since it is emerging as the most comprehensive and unify-
ing method across the fields of databases, artificial intel-
ligence, and software engineering. The object model also
provides us independence from the implementation level of
programming languages. The domain-definition and con-
trol architecture layers in our context-setting framework are
treated in Sections 3 and 4.

M A “ G
CELL

I -
Figure 1: A manufacturing cell

2 Domain modeling process
We devised the following procedure for analyzing the do-
main of programmably controlled servo-actuated manufac-

1087

p u p e -> objeckes

apprwch -> methodolog/

&finifon of domain & err4rmment

nested hierarchical architecture

models of elemerrtr &primitives
of manufacturing machines

sy~lhesb m&

Figure 2: Conceptual framework for cell model

turing equipment, assimilating and adapting ideas from dif-
ferent sources [12,20].

Procedure for modeling equipment elements:

SI: Consider common equipment configurations.
SZ: Identify their functions.
S3: Identify classes of physical components from which

S4: Identify elemental functions from which these func-

S5: Identify the conceptual primitives from which these el-

S6: Model the conceptual primitives.
S7: Model common patterns of inter-relationships.
SS: Build models of component functions and classes suc-

cessively from the conceptual primitives, employing
generalized relationships at each level.

these functions can be composed.

tions can be composed.

emental functions can be composed.

Steps S S S S yield classes of objects (Section 5) , from
which many more machines can be composed than the num-
ber in the initial collection. The process will be incremental
and iterative [4].

Approach taken for extensibility:

S1: Envision scope of extensions early.
S2: Conceive a top-level architectural model over this

S3: Selectively start modeling well-known concepts “bot-

S4: Consult domain experts for additional concepts.
S5: Take chances in foundation being larger than necessary

scope.

tom up”.

initially.

The cost of S5 is low relative to cost of discovering inade-
quacy later. We believe that the conceptual framework, thus
established, will reduce the disadvantages of iterative and
incremental growth, namely, difficulty of maintaining data
integrity and the conceptual integrity of the whole system.

3 Bounding the domain
We are systematically and incrementally approximating the
definition of an ontology and semantics [2] for the do-
main. We analyzed the case of equipment for machining
automotive cylinder blocks, cylinder heads, transmission
cases, and other parts that fit within the requirements enve-
lope of these parts. However, as these products evolve and
their manufacturing processes change, we want our equip-
ment models to be reusable and extensible at minimum life-
cycle-cost. It requires a balance between too much and too
little initial engineering. Prolonged initial engineering in-
creases the initial investment, delays the start of benefits,
delays the start of validation (increasing risk), and increases
exposure to changes. Inadequate initial engineering may re-
duce reusability, especially if future iterations are not per-
formed by the original engineering team. We approached
the tradeoff by starting with readily available manufactur-
ing engineering knowledge and organizing it in an extensi-
ble framework.

3.1 Scope of equipment
Figure 1 depicts the scope in terms of a cell that performs a
family of processes on a family of products in some given
environment, meeting specified goals of quality, quantity,
timing, and cost. By family, we mean that the domain of
potential members is well-defined and bounded, although
the specific members may not be known ahead of time. To
facilitate quick, inexpensive, easy extension, i.e., agility,
we organized specification knowledge about products, pro-
cesses, environment, and equipment in orthogonal dimen-
sions. We bounded the system by bounding the scope in
these three dimensions [31. We characterized the equip-
ment in terms of design intent parameters and configura-
tions, e.g., the property of linearity within the designed op-
erating range. We limited kinematic configurations to non-
redundant mechanisms that can be modeled in terms of the
IS0 standard for representing kinematics [13]. Our scope
is limited to machines which will provide an unambiguous
correspondence between a monitored or controlled function
and a constituent unit. We use this constraint to advantage
in architectural simplification, as shown in Section 4.

3.2 Scope of monitoring and control
The purpose is limited to manufacturing parts safely, cor-
rectly, and productively and to stop operation, if the equip-
ment is not able to provide this service. Roducitivity goals
include minimizing the execution time, and the parasitic
losses, e.g., consequences of failures.

Task hierarchy: Physical processes are organized in a
task hierarchy corresponding to the levels in the control
architecture (Section 4). We decomposed control system
tasks into the following monitoring, control, and cognitive
tasks, from which a wide range of procedures can be com-
posed.

1088 -

Monitoring tasks: 4 Architectural modell
The domain knowledge is organized around architectural
structures, which, in turn, are also a reusable resource.
By architecture, we mean the structure(s)-fixed for some
time-period-from which specific applications cm be com-
posed with minimum additional engineering time and cost.
We resort to a reference model [l] architecture, for the
application domain, for further organization and partition-
ing of information in the system to improve timeliness, ef-
fectiveness, and computational efficiency. The architec-
ture is based on deploying hierarchies of generalization-
specialization, constituents or aggregation, tasks, control,
and resolution-relevance (spatial, temporal) [141. The spa-
tial span and resolution at the innermost nested level have
the smallest values. Spatial span increases and resolution
gets coarser at each successive outer level. Figure 3 shows
the overall information architecture.

1.
2.

3.

4.

5.

6.

7.

8.

Acquire value of some sensed variable.

Collect a prescribed time-history of such values.

Reduce this time history to some meaningful param-
eter, using a prescribed procedure, which may use
equipment models.

Compute the expected value of the sensed or derived
parameter, possibly using equipment models.
Compare the sensed value or the derived parameter
with its expected value.
Compare the deviation with allowable limit.
Trigger prescribed action upon reaching the limit.

Store intermdiate computational results as prescribed
for later use, possibly for further reduction, possibly
using equipment models.

Control tasks: They build on monitoring tasks: Timing: Each level up to level m performs an execution
cycle within a guaranteed time limit, i.e., these levels are
real-time subsystems. Efficient and timely communication
is made possible by organizing world models into objects
corresponding to the levels-information is kept closest to
where it is most needed. For examole, servo-sensor infor-

1. Acquire value of some controlled variable or param-
eter from prescribed plan of execution (typically de-
composed from aprogram for processing workpieces).

2- Decompose Or transform *is acquired value to values
of variables or parameters to be controlled by execu-
tion agents. These transformations would use equip-
ment models.

3 . Distribute or transfer the values to these execution
agents. The ultimate resulting values are set as outputs
to some controlled actuators.

Cognitive tasks: Here we describe less structured mon-
itoring and control tasks that acquire knowledge, or refine
it. One type of cognitive tasks is machine learning. Our
scope of machine learning is limited to the fitting of pa-
rameter values in previously prescribed models, using pre-
scribed model-fitting procedures. The purpose is to sup-
port the tasks of monitoring, control, prognostics, preven-
tive maintenance, diagnostics, corrective maintenance, and
enhancement or engineering improvements. The data for
machine learning may come from operational data or from
controlled calibration tests. Our domain model provides the
needed structures. Modeled causal laws also allow estima-
tion of the reaction time needed for each physical function
to be serviced and the response time needed by the physi-
cal serving mechanism. The domain model provides an or-
ganization for tracking these estimates. Similarly, we sup-
port learning about perception. Most of the lime the per-
ception is not at the point of interest, but at some remote
location. Thus, feedback is correspondingly distorted and
contains systemic errors, uncertainty and noise of measure-
ment, in addition to similar deviations from the monitored
process. Established causal laws and quantitative informa-
tion do not allow clear isolation of these factors.

A .

mation is most detailed at level 1, and as we go upward it is
successively reduced or abstracted.
Component models for different contexts: The model
provides for abstraction of monitored information into the
levels in the control architecture shown in Figure 3. The
domain model provides for specialization of the attributes
within the same system, depending on the context of us-
age. For example, even though the dynamics-model may
be complicated over the whole operating range, it can of-
ten be simplified over the narrow range in which a servo-
loop is operating in any particular context. The nested hier-
archical architecture sets up these contexts. A higher level
in the hierarchy may give a different simplified model at dif-
ferent times to different lower levels nested within it. The
proposed architecture provides for categorizing goals [16]
which help determine which models and which approxi-
mations and simplifications are appropriate when in pur-
suit of a goal of a particular category. This modeling ap-
proach, including the nested hierarchy, provides scalability
to cover different cost-performance tradeoff aspects, versa-
tility to accommodate different kinds of devices, and exten-
sibility beyond the initially known applications. The result-
ing knowledge architecture provides a foundation for incor-
porating artificial intelligence in real time.

5 Modeling equipment elements
Our primary purpose of modeling is to represent real-world
machines in a way that captures their characteristics essen-
tial to the applications (Section 3) . Secondly, we want to

- 1089 -

m

j
0

I I

--

I-

I
I ' I , /
I -I- --
! I

--t
I

~~

Figure 3: Control hierarchy for a cell.

xcpresent this howlcdge in a way that maximizes reusabil-

We abstract a single ,oint or axis of motion as an aggrega-
J r (re *elute or prismatic), drivetrain, dnve,
sensot We abstract their common proper-

ties in a generdizat) n or superclass component. The gen-
:h includes abstractions of input and

I n conceptual primitives at the level
sntities. To continue the example of
d in Section 1, class drive is mod-

ekd as m aggregi ion of classes actuator and power-
regulator. Anz exarr. Be specialization path is: actuator ---f
e&ectrical-actua2or,. 4 dc-brush-tgpe servo-motor-,. . ~ --+
PO~UJ d.c.-brush-ty, ? servo-motor The structure makes
provision for a wid. range of ac rs, e.g., an air cylin-
er9 ~~~0~~~ differ€ I s specialization branches. Similarly,

the p o ~ e r - r e g u ~ a ~ o ~ may be a pulse-width-modulated elee-

ity

tronic amplifier or an fluid-supply on-off control valve.
Modeling joint dynamics: A joint is modeled as a net-
work of nominally linear system components. The com-
posed property of interest is the dynamics between the in-
put at an actuator and the output motion at some reference
point on the joint. We use well-known mathematical trans-
formations to derive the dynamics model for joints of the
type used in production machine tools. However, we can
improve accuracy of the information, knowing the operat-
ing point.
Usage and performance history: The generic compo-
nent model includes attributes that are useful in prognro-
sis, preventive maintenance, diagnosis, and re spedfi-
cation and design for maintainability. It captures usage his-
tory factors affecting life-consumption that are easily avail-
able during operation, e.g., duration for which the moni-
tored element is subject to some load, speed, or lempera-
ture. However, typical controllers of manufacturing ma-
chinery do not provide on-line facilities to capture this data.
Typically, separate maintenance-management systems z e
installed to monitor the equipment, but without
fit of the crucial Operational data, e.g., the time history of
load, speed, and temperature eo which the component is
subjected. The model also has attributes concerning com-
ponent life, degradation, and life-consumption, so that ap-
plication software can update this infomation, base
usage history factors captured in the model. Other appli-
cation software can use the computed results. Our model
also provides for capturing and tracking dynmic model
parameters, so that monitoring software can detect devia-
tions from designed operational limits, e.g., significant non-
linearity.

6 Modeling machines
Ideally, previously-modeled knowledge about components
should be reusable in obtaining models of their composi-
tions, e.g., joints. However, the state of the art is far from
this ideal. Often properties of an assembly are modeled as
a simple union of the properties of its constituents. This
approach is not adequate for modeling a servo-conkrolled
joint, axis-group, or macnine. The ass
new properties and conditions that do not exist in its com-
ponents. For example, W e a %axis machine where each
axis individually has a csrtain range of t r a ~ l . However,
when the three axes are cmsidered together, certain posi-
tions of one axis may prevent interference-free travel of an-
other axis. More such irtderences arise as a result of other
attachments to the machin.: (e.g., fixture, tool). Our model
provides for a more gejierd specification of constraints to
be defined explicitly by user.
Modeling machine kir ematies: Our kinematic model is
based on an I S 0 standard ' 131. We have exteaded it to in-
clude connectivity of a ,groups or s ~ b ~ & ~ s h c ~ e s BO PTO-

- 1090 -

vide for the inclusion of kinematic models for fixtures,
workpieces, and tooling, and to to indude kinematic errors
of motion. The composed property of interest is the mo-
tion of the work-point as a result of motions of the joints
(or vice versa), The kinematics-model of a machine is a
composition of the models of ths joints in the specified
connectivity-order. From rdatively few building blocks, a
much larger number of cornbinatio% can be generated. A
model of a maclmine 0rgani2ed in ahis manner can be applied
to lathes, milling machines, drilling machines, machining
centers, grinders, coordin& measurement machines, and
robotic mechanisms.

hpleme iSSln63

We desciibed agility and intelligence attributes of automa-
tion, envisioning a factory environment of &-striouted kitel-
iigence. Manufacturing cells (Figure 1) will be autonomous
entities, with self-sufficient computing resources. The cell-
level of the control system (Figure 3) includes an objece-
orimted information base. New engineering information
could be brought through portable m d i a or through a com-
munication network.

Open architecture needed: Tb& economics of our pro-
posed software process depends spon its adoption by a
community of Its users and &heir acceptance of a common
domain model and architecture h e manufacturing au-
tomation community in the U.S.A. bas invested significant
effort in developing a n.ext geneik;&i..~l contrdkr specifica-
tion for an open systems xchikexwe standard 1171. How-
ever, it does not propose abstractior s for modeling the kine-
matics and dynamics of a machine ~r its elements (Sec-
tions 5 and 6). Its absuaceions (shomt in Ils domain model)
for sensors, axis, and machine are no\. sufficiently genenc.
For example, it lacks a rraachine c1:wification independent
of processes. Thus, i t is limited in i ts 5exibility and ewtensi-
bility. Other projects known to us 5 G ao‘i defining a domain
model and architecture at the level. of sensor-servo interac-

ojects providing support for capturing
and abstracting sensor-servo interamcm history.

CORdUSiQla

We have performed a case study l\f agile machining sys-
tems in the automotive industry to c’evelop reusable models
of manufacturing equipawt. We c.eveloped md applied a
process for modeling the 6omdn ‘
controlled equiprrient th~ugBE &IS

is a novel synthesis of ideas fiom I w y s o t ~ e s .
We have proposed a nested bieiarchy of model-
specializations to suit &e pwpost rl ~ ~ ~ n ~ - c o n s ~ a ~ ~ t s
of lower control levcls. TCJ our lreno dge, such systematic
specialization in the same systcrr L a not been reported
elsewhere.

Future work: The major technical limitation 1s the iter-
ative and increment nature of the modeling process. To
facilitate rapid iteration and evolution, we arc building a
testbed for conuol systems ha t will enable manufacturing
automation researchers to experiment with various config-
urations, functionality, and performance levels.
~ o n E ~ o ~ ~ e ~ performance validatbn: To validate a
s c r v o - c o n ~ ~ ~ loop after a new configuration is statically

e technology base exists design and si
tools are commercially available, but they have to be
integrated. However, there is weakness in the technology
base bo analyze performance of tbe control software in
a working controller. The technology base for dynamic
reconfigoration is also weak. For example, if a model is
switched while a machine is running, its effect on control
stability has to be checked, but there are no tools to support
on-line validation. Our contribution is to make more of the
necessary knowledge about the equilpment available and
accessible when and where it is needed. This information
will make it easier to test and validate control ideas and
their implementation in software.
Software process effectiveness: We plan to document
effort required and difficulties encountered at each modifi-
cation to the control system, the software library, and the
conceptual model. The effectiveness of our process will
be evaluated in terms of effort saved in creating control
software for a specific machine and the number of such
application-development cycles required to recover the in-
vestment in building the domain model.

eferences
[I] J. S. Albus, “RCS: A reference model architecture for

intelligent control,” Computer, vol. 25, no. 5 , pp. 5 6 -
59, May 1992.

[2] @. Arango, “From art form to engineering discipline,”
in Proceedings of the 5th bntemational WorkJhop
on Software Spec$cations and Design, pp, 152-159,
1989.

irla, “Conceptual modeling ~ ~ ~ ~ ~ ~ ~ u ~ ~ n g
automation,” Technical report, Wn 2; crsity of Michi-
gan, Ann Arbor, Michigan, 1994.

141 G. Booch, Object Orrented Design with Applications,
The BenjaminlCummings Publjshk- ~ o m ~ ~ y , 390
Bridge Parkway, Redwood Ciry, * ‘difornia 94065,
1991.

161 G. Campbell, S. Faulk, and D. Weiss, “Intro-
duction to synthesis,” Technical Report In-
tro~Synthesis~Process~90019_N, Software Productiv-
ity Consortium, 2214 Rock Hill Road, Hemdon, VA
22070,1990.

[7] J. 0. Connor, C. Mansour, J. Turner-Harris, and
G. Campbell, “Reuse in command-and-control sys-
tems,” IEEE Software, vol. 11, no. 5 , pp. 70-79, Sept
1994.

[8] S. Conte, A. Dunsmore, and V. §hen, Soware en-
gineering metrics and models, Benjamin Cummings,
Reading, Mass, 1986.

[9] E. Dijkstra, 0. Dahl, and C. Hoare, “Notes on struc-
tured programming,” in Structured Programming, pp.
1-82, Academic Press, 1972.

[lo] W. Frakes, “An empirical framework for software
reuse research,” Technical Report 9014, Syracuse
University CASE Center, 1990. Proceedings of the
Third Workshop on Methods and Tools for Reuse.

[111 W. Frakes, “Software reuse empirical studies,” in Soft-
ware reusability, chapter 6, Ellis Horwood, 1994.

1121 P. Freeman, editor, Tutorial: Software Reusability,
IEEE Computer Society Press, Washington, D.C.,
1987.

1131 I S 0 Cl3 10303-105 Product Model Data Representa-
tion and Exchange: Part 105--Kinematics, Intema-
tional Standards Organization, july 1991.

[14] C. Isik and A. Meystel, “Pilot level of a hierarchical
controller for an unmanned mobile robot,” IEEE Jour-
nal ofRoboticsandAutomation, vol. 4, no. 3 , pp. 241-
255,1988,

[15] C. Krueger, “Software reuse,” in acm computing sur-
veys, S. March, editor, pp. 131-183, Association for
Computing Machinery, Inc., 1515 Broadway, New
York, 10036, June 1992.

[I61 S. Lytinen, “Conceptual dependency and its descen-
dants,” Computer Math. Applic., vol. 23, no. 2-5, pp.
51-73,1992.

1171 Next Generation Controller Specifcation for an Open
Systems Architecture Standard, Manufacturing Tech-
nology Directorate Wright Laboratory, September
1994. W1-TR-94-8033.

[19] D. L. Parnas, “Designing software for ease of exten-
sion and contraction,” IEEE Trans. Software Engk-
neering, vol. SE-5, no. 2, pp. 128-138, March 1979.

[20] R. Prieto-Diaz, “Domain analysis for reusability,” in
Proceedings of COMPSAC ’87, pp. 23-29. IEEE,
1987.

[21] R. Meto-Diaz, “Historical overview,” in Software re-
suability, chapter 1, Ellis Horwood, 1994.

[22] R. Prieto-Diaz and G. Arango, Domain Analysis and
Software Systems Modeling, The EEE Computer So-
ciety Press, Los Alamitos, California, 1991.

[23] J. Rumbaugh et al., Object-Oriented Modeling and
Design, Prentice Hall, Englewood Cliffs, New Jersey
07632,1991.

[24] M. A. Simos, “The domain-oriented software life cy-
cle: Towards an extended process model for reusabil-
ity,” in Proceedings of the Workshop on Software
Reusability and Maintainability. The National Insti-
tute of Software Quality muad Productivity, October
1987.

[251 Reuse-driven software process guidebook, Software
Productivity Consortium, 1993.

[18] D. L. Panas, “On the design and development of pro-
gram families,” IEEE Trans. Software Engineering,
vol. SE-2, pp. 1-9, March 1976.

- 1092

