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Abstract 
This paper considers the problem of handling sched- 

ule disruptions in a distributed manufacturing system. 
When a cell controller reschedules a manufacturing 
cell in response to some disruption, i t  may disrupt the 
schedule at  some other cell, because schedules at  dif- 
ferent cells may interact. In the approach we propose, 
a controller at  a disrupted cell tries to reschedule in 
a way which is likely to be least disruptive to other 
cells’ schedules, through negotiation with controllers 
at  other cells. This approach, which we call “polite 
rescheduling”, has the advantage of retaining much 
of the original schedule, while avoiding wide propaga- 
tion of the disruption through the rest of the system. 
Simulation results show that a polite rescheduling al- 
gorithm helps isolate disruptions to a small subset of 
cells. 

1 Introduction 
1.1 Motivation 

Manufacturing systems routinely experience unex- 
pected events, such as machine failures and resource 
unavailability. Flexible manufacturing systems must 
be able to recover from such disruptions efficiently. In 
a distributed manufacturing system, intelligent run- 
time coordination is necessary for such flexibility, be- 
cause actions taken at one part of the system can ad- 
versely affect other parts of the system. If a disruption 
occurs at  one cell of the system, that cell’s controller 
must take some action. However, this action may re- 
sult in a disruption in another cell. In such a way, 
a disruption at  one cell may propagate through the 
whole system. 

A good example of this type of propagation of dis- 
ruptions can be seen in the rescheduling of a cellular 
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manufacturing system. If one cell suffers a disrup- 
tion, the jobs at that cell may have to be resched- 
uled. However, because of precedence constraints or 
resource sharing, this rescheduling may disrupt the 
schedules of other cells, by the late arrival of parts or 
resource unavailability. 

1.2 “Polite Replanning” 

We address the problem of recovering from a dis- 
ruption in a distributed plan, specifically a problem 
of how an individual agent handles the recovery from 
such a disruption. In our approach, which we call “po- 
lite replanning” , the affected agent attempts to solve 
locally the problem of finding a response to the dis- 
ruption, in such a way that i t  will be least disruptive 
to other agents. This approach avoids the costs of 
making the local problem a global problem, while it 
remains in a cooperative framework by attempting to 
isolate the effects of the disruption. More importantly, 
by avoiding complete replanning of the system, and by 
attempting to isolate disruptions, i t  attempts to retain 
as much of the distributed plan as possible. 

In order to find a response which is least disruptive 
to other agents, the affected agent must have some 
information about how its actions will affect those 
other agents. Because an individual agent does not 
have global knowledge about the system, some form 
of negotiation is needed as a means of gathering in- 
formation about other agents. Negotiation is a well- 
studied concept in distributed artificial intelligence 
(DAI) [4,6]. The disrupted agent searches for the least 
disruptive response by negotiating with other agents 
which could possibly be disrupted by its actions. 

We explore these issues in the domain of distributed 
job shop rescheduling. While finding a good sched- 
ule given some measure is a very hard problem, han- 
dling the disruption of an already existing schedule 
also presents an important problem. We consider “po- 
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lite rescheduling” , the application of polite replanning 
to  the problem of recovering from such a disruption in 
a distributed group of manufacturing cells. 

This paper is organized as follows. which is related 
to ours. Section 2 presents a formal model and an out- 
line of our polite replanning ideas. Section 3 describes 
the application of our ideas to the job shop reschedul- 
ing domain. Section 4 presents some preliminary re- 
sults of our work. Section 5 presents a summary of 
this work. 

2 Formal Model 
Let C be the set of n cells. For each cell i, there 

is a set Si = { s i l ,  . . . , sim} of states. In the job shop 
scheduling domain, for example, this set would be the 
set of all schedules. For each cell i, there is a set 
D; c Si, which is the set of disrupted states. A state 
in Si which is not in D, is a safe state. A disruption 
is an event which puts a cell into a disrupted state. 
A disrupted state in job shop scheduling would be an 
infeasible schedule. Let set Ai = { a i l ,  . . . , aip} be the 
set of actions which can be taken at cell i. 

For each pair of cells i and k, there is a transition 
function 3 i k  : Ai x sk + sk which describes how an 
action taken by cell i affects cell k. Thus, if cell k is 
in state s and cell i takes action a ,  then cell k will be 
put into state Fik(a, s) .  If cell i takes an action which 
puts cell j into a disrupted state, we say cell j has 
been disrupted by cell i. If cell i is in state s, and then 
takes action a ,  it will itself be put into state Fii(a, s ) .  

For cell i and state s E D , ,  let RA;(s)  = { a  : a E 
Ai ,  Fii(a,  s )  E Si - D i }  be the set of recovery ac- 
tions for cell i while it is in disrupted state s. For 
cell i and state s E Di,  let GAi(s )  = { a  : a E 
RAi(s ) ,3 i ; . j (a , s ’ )  = s ’ f o r a l l s ’ E  S j , j  E C , j  # i} 
be the set of guaranteed-local recovery actions. A 
guaranteed-local recovery action will not affect any 
other cell, regardless of what state it is in. For cell i, 
let T, = { s  : s E Di,  GAi(s )  # 8) be the set of semi- 
safe states for cell i. A semi-safe state is a disrupted 
state from which a cell can recover with a guaranteed- 
local recovery action. For cell i and action a E Ai ,  let 
Mi(.) = { j  : j E C,  j # i, 3s E S j , 3 i j ( ~ ,  S) E Dj } 
be the set of remote cells which could possibly be dis- 
rupted by cell i taking action a. Clearly, if a E GAi(s )  
for some cell i and action a, then Mi(.) = 8. 

Disruptions can be classified by how much they re- 
sult in propagation of disruptions. Consider a system 
state x in which cell i is in disrupted state xi = sd E 
Di,  and in which every other cell is in a safe or semi- 
safe state. We call the disruption which caused cell i to 

be disrupted a disruption of type U if GAi(sd) # 8. By 
taking an action a E GAi,  cell i can recovery from a 
type 0 disruption without disrupting other cells. Like- 
wise, we call the disruption a disruption of type I ,  
where 1 > 0, if there is an action a E RAi(sd) such 
that Mi(.) # 8, and a cell k E Mi(a) ,  such that 
F i j ( ~ , ~ j )  E for all j E Mi(a) ,  j # k ,  and such 
that, if cell k is disrupted by action a (that is, if state 
Fik(a, 2 k )  E Dk),  it is a disruption of type 1 - 1. Cell 
i can recover from a disruption of type n without the 
disruption being propagated more that 1 levels. If a 
disruption is not of any of these types, then this model 
cannot describe how the system can recover from this 
disruption. 

Outline of Approach 

In our ‘polite replanning’ approach, we assume 
that, in searching for the lowest cost response to an 
outside disruption, it is best to try to  limit the prop- 
agation of the disruptions. Even though the best so- 
lution might entail the disruption of every cell in the 
system, we limit the search space by trying to  find a 
solution which involves the least disruption propaga- 
t ion. 

When a cell experiences a disruption, it tries to 
determine whether this disruption is of type 0. If it 
determines this, then it takes a recovery action which 
will not result in a disruption of another cell. If not, 
then it tries to determine through negotiation with 
other cells whether the disruption is of type 1. If it 
determines this, it takes the action which results in 
a propagation of the disruption of at most one level. 
Here we do not go beyond disruptions of type 1, but 
this approach can be extended, at the cost of much 
more communication in the negotiation process. 

Consider a disruption which puts cell i into dis- 
rupted state sd. The controller a t  cell i uses some 
heuristic G to try to find a guaranteed-local action 
a E GA(sd) .  If it can find such an action, it will take 
that action. If not, some communication is necessary 
for the selection of a good recovery action. Thus, the 
controller at cell i uses some heuristic H to select a 
recovery action a’ E RA(sd) which seems likely, given 
local information, not to be very disruptive to  other 
cells. Cell i then sends a proposal message to all mem- 
bers of M,(a’) ,  proposing action a’. 

When a cell j receives a proposal message propos- 
ing action a‘, it first determines whether action a’ will 
cause a disruption at  cell j. If not, then it returns an 
ok-0 message. Otherwise, it tries to  determine whether 
the disruption caused by a’ will be one of type 0,  which 
can be handled locally. If so, it returns an ok-1 mes- 
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sage. Otherwise, it will return a not-ok message, per- 
haps along with some information J which can be used 
by the disrupting cell’s heuristic H to propose a better 
solution. 

When the controller a t  the disrupted cell receives 
replies to  its proposal, if all replies are ok-0 messages, 
then it takes the proposed action. If all replies are ei- 
ther ok-0 or ok-1 messages, then the controller can take 
the proposed action. If there is a not-ok reply, then 
the controller knows that action a’ will not isolate the 
disruption to the cells in M;(a‘), so, with whatever in- 
formation has been gathered, it uses heuristic H again 
to propose a new recovery action, unless it determines 
that further negotiation will not be useful. 

Here we have considered only the simplest case in 
which only one cell suffers an initial disruption. This 
approach is of course only a simple outline of an algo- 
rithm for handling this problem. The real issues are 
what kinds of heuristics G and H are, what kinds of in- 
formation J is to  be exchanged, and what to  do when 
no proposal is acceptable to  the other cells. At least 
some of these answers are domain dependent, and can- 
not be more fully described in this very general model. 

A ( i  1 2  ] a  

B 4 I 

C 7 

3 Polite rescheduling 
3.1 Background 

0 

0 0 

In this section, we consider the use of polite replan- 
ning in the domain of scheduling in a cellular manu- 
facturing system. The scheduling domain is chosen to 
investigate this problem because it contains easily de- 
finable interactions among cells, in the form of prece- 
dence constraints among jobs. One important aspect 
of scheduling is the actual execution of an already- 
constructed schedule ( a  preschedule). One approach 
to handling unexpected events is dynamic scheduling, 
in which no preschedule is constructed. All schedul- 
ing decisions are made a t  run-time, by dispatch rules 
[3], or by least-commitment opportunistic planning 
[5]. Another approach is to  construct a new sched- 
ule when events render the old one infeasible. One 
very fast way of doing this is to “push back” the ex- 
isting schedule until it becomes feasible. This method 
is widely used in practice, but very often produces an 
inefficient schedule. 

These approaches, however, do not make use of a 
good preschedule. We choose instead to  follow the 
matchup scheduling approach of Bean el al. [2]. In 
this approach, when unexpected events disrupt the 
preschedule, the scheduler attempts to schedule pro- 
duction so that the system can return to (“match 
up with”) the original preschedule. Thus, the good 

(b) Ptmhd-buk schdde 

Figure 1: A simple example. 

preschedule need not be discarded when disruptions 
occur. 

3.2 Polite rescheduling 

Our approach, as previously discussed, is to  have 
local cell schedule controllers reschedule in response 
to schedule disruption in such a way as to limit the 
disruption, either to the cell itself, or to  a small sub- 
set of cells. In order to evaluate various rescheduling 
approaches, we consider the following class of job shop 
problems. Each job is to  be processed on any machine 
of one specific cell. Jobs may have successors a t  other 
cells; a successor job may start processing only after 
its predecessor has been completed. We assume that a 
preschedule has already been constructed for this set 
of jobs, and that this preschedule tries to minimize 
the sum of tardiness over all the jobs. Tardiness is a 
common measure, but minimizing tardiness for even 
simple problems is NP hard. 

We assume that each cell has knowledge from the 
preschedule about which of its jobs have successor 
jobs, and these times those successor jobs are sched- 
uled to begin processing at  other cells. We call the 
times the precedence deadlines of the predecessor jobs; 
precedence deadlines are not to be confused with due 
times. Likewise, each cell has information about which 
of its jobs have predecessor jobs. However, cells do 
not have any other information about the schedules 
a t  other cells. 

In this type of problem, cells interact solely through 
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Figure 2: A simple example (cont’d). 

precedence constraints among jobs. Consider the very 
simple example in Figure 1. Here there are three cells 
with one machine per cell. Here job 2 has job 5 as a 
successor, which in turn has job 9 as a successor. The 
preschedule is shown in (a). In (b), the machine at 
cell A is unable to process any job from time 0 to time 
2.  Cell A’s schedule has been pushed back, disrupting 
the schedule at cell B because of the late processing 
of job 2.  

The algorithm we propose is based upon the out- 
line described in Section 2.2.  When a disruption is 
identified at  a cell, that cell will try to reschedule it- 
self without disrupting schedules at other cells; such 
rescheduling would be a guaranteed-local recovery ac- 
tion. It will thus try to  find a new schedule in which 
jobs with successors complete processing before their 
successors are scheduled to  begin processing (in the 
preschedule). If such a non-disrupting schedule can 
be found, then the cell will attempt to implement a 
good non-disrupting schedule. 

If such a schedule cannot be found, then the cell 
will try to  find a schedule that is likely to be least dis- 
ruptive to  other cells. It then will propose that sched- 
ule to  the cells which may be affected by it. Each of 
these other cells will either accept this schedule, if it 
determines that it can reschedule in response to any 
disruptions caused by the proposed schedule without 
disrupting other cells, or reject this schedule, if it can- 
not determine this. If all of these cells accept the pro- 
posed schedule, then the originally disrupted cell will 
implement it,  and the cells disrupted will find and im- 
plement new non-disrupting schedules which deal with 
the disruptions caused by the proposed schedule. 

In the simple example described before in Fig- 
ure 1, while the pushed-back schedule in (b) resulted 
in a schedule disruption at cell B, the schedule in (c) 
reschedules cell A without disrupting cell B. In our 

algorithm, cell A would try to  find such a schedule be- 
fore beginning any negotiations with any other cells. 
Had the machine of cell A been down from time 0 to 
time 5 instead, as in Figure 2, then cell A first would 
try to find a non-disruptive schedule, and would fail 
because none exists. It then would try to  find a sched- 
ule least likely to  be disruptive to  cell B. It would then 
propose this schedule. Were it to  propose the pushed- 
back schedule in (a) of Figure 2, cell B would not 
accept the proposal, as it would be unable to avoid 
disrupting the schedule at cell C. The schedule in (b) 
of figure 2, if proposed by cell A, would be accepted 
by cell B, as it can find a non-disruptive schedule to 
address the late completion of job 2. 

3.3 Implementation 

The implementation of this algorithm requires a t  
each cell a negotiator module and a rescheduler mod- 
ule. The negotiator module determines what kinds 
of schedules to propose to  other cells, and determines 
the priorities through the use of information resident 
at the node or gathered through communication. The 
rescheduler produces new schedules according to pri- 
orities determined by the negotiator. These priorities 
determine what kind of schedule will be produced. For 
example, if a disruption has just been identified, then 
the initial action will be to try to  find a non-disrupting 
schedule. The priority for such a schedule is for all 
jobs with successors to  complete processing before 
their precedence deadlines. Except for one machine 
scheduling, even this simple problem of scheduling to 
meet deadlines is NP-hard, so the rescheduler usually 
cannot search for optimal solutions. The following al- 
gorithm is a heuristic for finding non-disruptive sched- 
ule for a cell with one machine: It uses the modified 
due date (MDD) heuristic described in [l] which com- 
bines aspects of the well-known shortest processing 
time and earliest due date heuristics, and is good when 
minimizing tardiness is a goal. 

1.  Schedule predecessor jobs in ascending 
order of precedence deadline; 

2. For each predecessor job in order: 
2.1 .  Order the unscheduled jobs 

by smallest MDD; 
2.2. If there is an unscheduled job 

which can be inserted into 
the schedule without making a 
precedence job late, insert the 
lowest such job and go t o  2.1; 

3.  Schedule the remaining jobs by MDD. 

The goal of this algorithm is to  find a non-disruptive 
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Figure 3: Disruption Propagation 

schedule. However, because it uses MDD in scheduling 
the jobs without successors, it also attempts to find a 
low tardiness schedule. 

4 Evaluation 
We evaluate the priority scheduling algorithm 

through simulation of disruptions in a generic man- 
ufacturing system. In these simulations we compare 
the results from our “polite” priority rescheduling al- 
gorithm (POL) with the results from two similarlyfast 
algorithms which do not consider how the rescheduling 
of one cell may affect another: the pushback algorithm 
(PB), in which schedules at  disrupted cells are sim- 
ply pushed back, and the MDD algorithm, in which 
disrupted cells use the modified due date heuristic to 
reschedule from the point of disruption. 

In these simulations, a preschedule is constructed 
for a generic manufacturing system of ten cells of two 
machines each. The preschedule is generated from a 
randomly generated set of 250 jobs. Each job is either 
a member of a predecessor-successor pair, or else does 
not any precedence relations with any other job. Only 
jobs with no successors have due times. In each sim- 
ulation, one of the machines at  one cell is disrupted, 
and the system is rescheduled using each of the three 
rescheduling methods described above. 

The measures we use to compare these reschedul- 
ing methods are the average tardiness for each job in 
the schedule, and the number of cells disrupted in the 
rescheduling process. Average tardiness is the mea- 
sure used in constructing the original preschedule, and 
it is a measure of the quality of the schedule. The 
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Figure 4: Disruption Propagation 

number of cells disrupted is a measure of how disrup- 
tive the rescheduling process is to the manufacturing 
system. When a schedule of a cell is disrupted, the 
work in that cell is disrupted not only because of the 
need to reschedule, but also because the other sched- 
ules such as those governing transportation of parts 
and availability of tools may also be disrupted. 

Figure 3 shows the number of cells eventually dis- 
rupted from the propagation of one original disrup- 
tion, versus the length of the original disruption. 
These results show that the priority scheduling algo- 
rithm isolates disruptions much more than the other 
two rescheduling methods. Figure 4 shows the number 
of cells eventually disrupted from the propagation of 
one original disruption versus the proportion of jobs 
with successors. These results demonstrate that  iso- 
lating disruptions becomes harder as scheduling con- 
straints become tighter. 

Figure 5 shows the average tardiness over the whole 
schedule versus the length of the original disruption. 
These results show the cost of attempting to  isolate 
disruptions. The priority scheduling algorithm has a 
higher tardiness cost because i t  emphasizes meeting 
precedence constraints over meeting due dates. As 
shown in figure 6, for the originally disrupted cell, the 
priority scheduling algorithm has a much higher tardi- 
ness cost than the MDD method. However, as shown 
in figure 7, for the other cells, it has a smaller tardiness 
cost, because of the effects of the original disruption 
on remote cells has been reduced. 
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Figure 5 :  Tardiness 

5 Summary 
We have presented a new approach to handling 

schedule disruptions in a distributed manufacturing 
system. Our approach takes into consideration the 
possibility that  responding to a disruption in one part 
of the system may cause disruptions in other parts of 
the system. "Polite rescheduling" thus attempts to  
respond to disruptions local to one manufacturing cell 
so that  other cells are disrupted as little as possible. 
Our preliminary results show the advantages of using a 
scheduling algorithm tha t  emphasizes precedence con- 
straints over due dates. Our  future work will further 
explore and evaluate these and other applications of 
DAI techniques to this area. 
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