
Polite Rescheduling: Responding to Local Schedule Disruptions
in Distributed Manufacturing Systems

Thomas Tsukada Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, MI 48109-2122

Abstract
This paper considers the problem of handling sched-

ule disruptions in a distributed manufacturing system.
When a cell controller reschedules a manufacturing
cell in response to some disruption, i t may disrupt the
schedule at some other cell, because schedules at dif-
ferent cells may interact. In the approach we propose,
a controller at a disrupted cell tries to reschedule in
a way which is likely to be least disruptive to other
cells’ schedules, through negotiation with controllers
at other cells. This approach, which we call “polite
rescheduling”, has the advantage of retaining much
of the original schedule, while avoiding wide propaga-
tion of the disruption through the rest of the system.
Simulation results show that a polite rescheduling al-
gorithm helps isolate disruptions to a small subset of
cells.

1 Introduction
1.1 Motivation

Manufacturing systems routinely experience unex-
pected events, such as machine failures and resource
unavailability. Flexible manufacturing systems must
be able to recover from such disruptions efficiently. In
a distributed manufacturing system, intelligent run-
time coordination is necessary for such flexibility, be-
cause actions taken at one part of the system can ad-
versely affect other parts of the system. If a disruption
occurs at one cell of the system, that cell’s controller
must take some action. However, this action may re-
sult in a disruption in another cell. In such a way,
a disruption at one cell may propagate through the
whole system.

A good example of this type of propagation of dis-
ruptions can be seen in the rescheduling of a cellular

The work described in this paper was supported in part by the
NSF Under Grant RI-9209031.

manufacturing system. If one cell suffers a disrup-
tion, the jobs at that cell may have to be resched-
uled. However, because of precedence constraints or
resource sharing, this rescheduling may disrupt the
schedules of other cells, by the late arrival of parts or
resource unavailability.

1.2 “Polite Replanning”

We address the problem of recovering from a dis-
ruption in a distributed plan, specifically a problem
of how an individual agent handles the recovery from
such a disruption. In our approach, which we call “po-
lite replanning” , the affected agent attempts to solve
locally the problem of finding a response to the dis-
ruption, in such a way that i t will be least disruptive
to other agents. This approach avoids the costs of
making the local problem a global problem, while it
remains in a cooperative framework by attempting to
isolate the effects of the disruption. More importantly,
by avoiding complete replanning of the system, and by
attempting to isolate disruptions, i t attempts to retain
as much of the distributed plan as possible.

In order to find a response which is least disruptive
to other agents, the affected agent must have some
information about how its actions will affect those
other agents. Because an individual agent does not
have global knowledge about the system, some form
of negotiation is needed as a means of gathering in-
formation about other agents. Negotiation is a well-
studied concept in distributed artificial intelligence
(DAI) [4,6]. The disrupted agent searches for the least
disruptive response by negotiating with other agents
which could possibly be disrupted by its actions.

We explore these issues in the domain of distributed
job shop rescheduling. While finding a good sched-
ule given some measure is a very hard problem, han-
dling the disruption of an already existing schedule
also presents an important problem. We consider “po-

1986
1050-4729/94 $03.00 0 1994 IEEE

lite rescheduling” , the application of polite replanning
to the problem of recovering from such a disruption in
a distributed group of manufacturing cells.

This paper is organized as follows. which is related
to ours. Section 2 presents a formal model and an out-
line of our polite replanning ideas. Section 3 describes
the application of our ideas to the job shop reschedul-
ing domain. Section 4 presents some preliminary re-
sults of our work. Section 5 presents a summary of
this work.

2 Formal Model
Let C be the set of n cells. For each cell i, there

is a set Si = { s i l , . . . , sim} of states. In the job shop
scheduling domain, for example, this set would be the
set of all schedules. For each cell i, there is a set
D; c Si, which is the set of disrupted states. A state
in Si which is not in D, is a safe state. A disruption
is an event which puts a cell into a disrupted state.
A disrupted state in job shop scheduling would be an
infeasible schedule. Let set Ai = { a i l , . . . , aip} be the
set of actions which can be taken at cell i.

For each pair of cells i and k, there is a transition
function 3 i k : Ai x sk + sk which describes how an
action taken by cell i affects cell k. Thus, if cell k is
in state s and cell i takes action a , then cell k will be
put into state Fik(a, s) . If cell i takes an action which
puts cell j into a disrupted state, we say cell j has
been disrupted by cell i. If cell i is in state s, and then
takes action a , it will itself be put into state Fii(a, s) .

For cell i and state s E D , , let RA;(s) = { a : a E
Ai , Fii(a, s) E Si - D i } be the set of recovery ac-
tions for cell i while it is in disrupted state s. For
cell i and state s E Di, let GAi(s) = { a : a E
RAi(s) ,3 i ; . j (a , s ’) = s ’ f o r a l l s ’ E S j , j E C , j # i}
be the set of guaranteed-local recovery actions. A
guaranteed-local recovery action will not affect any
other cell, regardless of what state it is in. For cell i,
let T, = { s : s E Di, GAi(s) # 8) be the set of semi-
safe states for cell i. A semi-safe state is a disrupted
state from which a cell can recover with a guaranteed-
local recovery action. For cell i and action a E Ai , let
Mi(.) = { j : j E C, j # i, 3s E S j , 3 i j (~ , S) E Dj }
be the set of remote cells which could possibly be dis-
rupted by cell i taking action a. Clearly, if a E GAi(s)
for some cell i and action a, then Mi(.) = 8.

Disruptions can be classified by how much they re-
sult in propagation of disruptions. Consider a system
state x in which cell i is in disrupted state xi = sd E
Di, and in which every other cell is in a safe or semi-
safe state. We call the disruption which caused cell i to

be disrupted a disruption of type U if GAi(sd) # 8. By
taking an action a E GAi, cell i can recovery from a
type 0 disruption without disrupting other cells. Like-
wise, we call the disruption a disruption of type I ,
where 1 > 0, if there is an action a E RAi(sd) such
that Mi(.) # 8, and a cell k E Mi(a) , such that
F i j (~ , ~ j) E for all j E Mi(a) , j # k , and such
that, if cell k is disrupted by action a (that is, if state
Fik(a, 2 k) E Dk), it is a disruption of type 1 - 1. Cell
i can recover from a disruption of type n without the
disruption being propagated more that 1 levels. If a
disruption is not of any of these types, then this model
cannot describe how the system can recover from this
disruption.

Outline of Approach

In our ‘polite replanning’ approach, we assume
that, in searching for the lowest cost response to an
outside disruption, it is best to try to limit the prop-
agation of the disruptions. Even though the best so-
lution might entail the disruption of every cell in the
system, we limit the search space by trying to find a
solution which involves the least disruption propaga-
t ion.

When a cell experiences a disruption, it tries to
determine whether this disruption is of type 0. If it
determines this, then it takes a recovery action which
will not result in a disruption of another cell. If not,
then it tries to determine through negotiation with
other cells whether the disruption is of type 1. If it
determines this, it takes the action which results in
a propagation of the disruption of at most one level.
Here we do not go beyond disruptions of type 1, but
this approach can be extended, at the cost of much
more communication in the negotiation process.

Consider a disruption which puts cell i into dis-
rupted state sd. The controller a t cell i uses some
heuristic G to try to find a guaranteed-local action
a E GA(sd) . If it can find such an action, it will take
that action. If not, some communication is necessary
for the selection of a good recovery action. Thus, the
controller at cell i uses some heuristic H to select a
recovery action a’ E RA(sd) which seems likely, given
local information, not to be very disruptive to other
cells. Cell i then sends a proposal message to all mem-
bers of M,(a’) , proposing action a’.

When a cell j receives a proposal message propos-
ing action a‘, it first determines whether action a’ will
cause a disruption at cell j. If not, then it returns an
ok-0 message. Otherwise, it tries to determine whether
the disruption caused by a’ will be one of type 0, which
can be handled locally. If so, it returns an ok-1 mes-

1987

1-

sage. Otherwise, it will return a not-ok message, per-
haps along with some information J which can be used
by the disrupting cell’s heuristic H to propose a better
solution.

When the controller a t the disrupted cell receives
replies to its proposal, if all replies are ok-0 messages,
then it takes the proposed action. If all replies are ei-
ther ok-0 or ok-1 messages, then the controller can take
the proposed action. If there is a not-ok reply, then
the controller knows that action a’ will not isolate the
disruption to the cells in M;(a‘), so, with whatever in-
formation has been gathered, it uses heuristic H again
to propose a new recovery action, unless it determines
that further negotiation will not be useful.

Here we have considered only the simplest case in
which only one cell suffers an initial disruption. This
approach is of course only a simple outline of an algo-
rithm for handling this problem. The real issues are
what kinds of heuristics G and H are, what kinds of in-
formation J is to be exchanged, and what to do when
no proposal is acceptable to the other cells. At least
some of these answers are domain dependent, and can-
not be more fully described in this very general model.

A (i 1 2] a

B 4 I

C 7

3 Polite rescheduling
3.1 Background

0

0 0

In this section, we consider the use of polite replan-
ning in the domain of scheduling in a cellular manu-
facturing system. The scheduling domain is chosen to
investigate this problem because it contains easily de-
finable interactions among cells, in the form of prece-
dence constraints among jobs. One important aspect
of scheduling is the actual execution of an already-
constructed schedule (a preschedule). One approach
to handling unexpected events is dynamic scheduling,
in which no preschedule is constructed. All schedul-
ing decisions are made a t run-time, by dispatch rules
[3], or by least-commitment opportunistic planning
[5]. Another approach is to construct a new sched-
ule when events render the old one infeasible. One
very fast way of doing this is to “push back” the ex-
isting schedule until it becomes feasible. This method
is widely used in practice, but very often produces an
inefficient schedule.

These approaches, however, do not make use of a
good preschedule. We choose instead to follow the
matchup scheduling approach of Bean el al. [2]. In
this approach, when unexpected events disrupt the
preschedule, the scheduler attempts to schedule pro-
duction so that the system can return to (“match
up with”) the original preschedule. Thus, the good

(b) Ptmhd-buk schdde

Figure 1: A simple example.

preschedule need not be discarded when disruptions
occur.

3.2 Polite rescheduling

Our approach, as previously discussed, is to have
local cell schedule controllers reschedule in response
to schedule disruption in such a way as to limit the
disruption, either to the cell itself, or to a small sub-
set of cells. In order to evaluate various rescheduling
approaches, we consider the following class of job shop
problems. Each job is to be processed on any machine
of one specific cell. Jobs may have successors a t other
cells; a successor job may start processing only after
its predecessor has been completed. We assume that a
preschedule has already been constructed for this set
of jobs, and that this preschedule tries to minimize
the sum of tardiness over all the jobs. Tardiness is a
common measure, but minimizing tardiness for even
simple problems is NP hard.

We assume that each cell has knowledge from the
preschedule about which of its jobs have successor
jobs, and these times those successor jobs are sched-
uled to begin processing at other cells. We call the
times the precedence deadlines of the predecessor jobs;
precedence deadlines are not to be confused with due
times. Likewise, each cell has information about which
of its jobs have predecessor jobs. However, cells do
not have any other information about the schedules
a t other cells.

In this type of problem, cells interact solely through

1988

1 2 1

2 1 3

Figure 2: A simple example (cont’d).

precedence constraints among jobs. Consider the very
simple example in Figure 1. Here there are three cells
with one machine per cell. Here job 2 has job 5 as a
successor, which in turn has job 9 as a successor. The
preschedule is shown in (a). In (b), the machine at
cell A is unable to process any job from time 0 to time
2. Cell A’s schedule has been pushed back, disrupting
the schedule at cell B because of the late processing
of job 2.

The algorithm we propose is based upon the out-
line described in Section 2.2. When a disruption is
identified at a cell, that cell will try to reschedule it-
self without disrupting schedules at other cells; such
rescheduling would be a guaranteed-local recovery ac-
tion. It will thus try to find a new schedule in which
jobs with successors complete processing before their
successors are scheduled to begin processing (in the
preschedule). If such a non-disrupting schedule can
be found, then the cell will attempt to implement a
good non-disrupting schedule.

If such a schedule cannot be found, then the cell
will try to find a schedule that is likely to be least dis-
ruptive to other cells. It then will propose that sched-
ule to the cells which may be affected by it. Each of
these other cells will either accept this schedule, if it
determines that it can reschedule in response to any
disruptions caused by the proposed schedule without
disrupting other cells, or reject this schedule, if it can-
not determine this. If all of these cells accept the pro-
posed schedule, then the originally disrupted cell will
implement it, and the cells disrupted will find and im-
plement new non-disrupting schedules which deal with
the disruptions caused by the proposed schedule.

In the simple example described before in Fig-
ure 1, while the pushed-back schedule in (b) resulted
in a schedule disruption at cell B, the schedule in (c)
reschedules cell A without disrupting cell B. In our

algorithm, cell A would try to find such a schedule be-
fore beginning any negotiations with any other cells.
Had the machine of cell A been down from time 0 to
time 5 instead, as in Figure 2, then cell A first would
try to find a non-disruptive schedule, and would fail
because none exists. It then would try to find a sched-
ule least likely to be disruptive to cell B. It would then
propose this schedule. Were it to propose the pushed-
back schedule in (a) of Figure 2, cell B would not
accept the proposal, as it would be unable to avoid
disrupting the schedule at cell C. The schedule in (b)
of figure 2, if proposed by cell A, would be accepted
by cell B, as it can find a non-disruptive schedule to
address the late completion of job 2.

3.3 Implementation

The implementation of this algorithm requires a t
each cell a negotiator module and a rescheduler mod-
ule. The negotiator module determines what kinds
of schedules to propose to other cells, and determines
the priorities through the use of information resident
at the node or gathered through communication. The
rescheduler produces new schedules according to pri-
orities determined by the negotiator. These priorities
determine what kind of schedule will be produced. For
example, if a disruption has just been identified, then
the initial action will be to try to find a non-disrupting
schedule. The priority for such a schedule is for all
jobs with successors to complete processing before
their precedence deadlines. Except for one machine
scheduling, even this simple problem of scheduling to
meet deadlines is NP-hard, so the rescheduler usually
cannot search for optimal solutions. The following al-
gorithm is a heuristic for finding non-disruptive sched-
ule for a cell with one machine: It uses the modified
due date (MDD) heuristic described in [l] which com-
bines aspects of the well-known shortest processing
time and earliest due date heuristics, and is good when
minimizing tardiness is a goal.

1. Schedule predecessor jobs in ascending
order of precedence deadline;

2. For each predecessor job in order:
2.1 . Order the unscheduled jobs

by smallest MDD;
2.2. If there is an unscheduled job

which can be inserted into
the schedule without making a
precedence job late, insert the
lowest such job and go t o 2.1;

3. Schedule the remaining jobs by MDD.

The goal of this algorithm is to find a non-disruptive

1989

I I I I I I I I

0.0 I 1 I 1 I l l 1
0.0 25ao m.0 780.0 10w.o iz50.0 1mo.o 1780.0 zom.0

L q h of D e (avmrago pb pmcmwhg lino I 100)

Cell Dknqtbn (40% of pa have succ;.ssora)

Figure 3: Disruption Propagation

schedule. However, because it uses MDD in scheduling
the jobs without successors, it also attempts to find a
low tardiness schedule.

4 Evaluation
We evaluate the priority scheduling algorithm

through simulation of disruptions in a generic man-
ufacturing system. In these simulations we compare
the results from our “polite” priority rescheduling al-
gorithm (POL) with the results from two similarlyfast
algorithms which do not consider how the rescheduling
of one cell may affect another: the pushback algorithm
(PB), in which schedules at disrupted cells are sim-
ply pushed back, and the MDD algorithm, in which
disrupted cells use the modified due date heuristic to
reschedule from the point of disruption.

In these simulations, a preschedule is constructed
for a generic manufacturing system of ten cells of two
machines each. The preschedule is generated from a
randomly generated set of 250 jobs. Each job is either
a member of a predecessor-successor pair, or else does
not any precedence relations with any other job. Only
jobs with no successors have due times. In each sim-
ulation, one of the machines at one cell is disrupted,
and the system is rescheduled using each of the three
rescheduling methods described above.

The measures we use to compare these reschedul-
ing methods are the average tardiness for each job in
the schedule, and the number of cells disrupted in the
rescheduling process. Average tardiness is the mea-
sure used in constructing the original preschedule, and
it is a measure of the quality of the schedule. The

I t I I

0.0 10.0 20.0 30.0 40.0 50.0
0.0 I I I I 1

P e r m d Job. wlm Suocbgon

all DWtpbM (d m lenph I 10 x avo pb pmcurng bno)

Figure 4: Disruption Propagation

number of cells disrupted is a measure of how disrup-
tive the rescheduling process is to the manufacturing
system. When a schedule of a cell is disrupted, the
work in that cell is disrupted not only because of the
need to reschedule, but also because the other sched-
ules such as those governing transportation of parts
and availability of tools may also be disrupted.

Figure 3 shows the number of cells eventually dis-
rupted from the propagation of one original disrup-
tion, versus the length of the original disruption.
These results show that the priority scheduling algo-
rithm isolates disruptions much more than the other
two rescheduling methods. Figure 4 shows the number
of cells eventually disrupted from the propagation of
one original disruption versus the proportion of jobs
with successors. These results demonstrate that iso-
lating disruptions becomes harder as scheduling con-
straints become tighter.

Figure 5 shows the average tardiness over the whole
schedule versus the length of the original disruption.
These results show the cost of attempting to isolate
disruptions. The priority scheduling algorithm has a
higher tardiness cost because i t emphasizes meeting
precedence constraints over meeting due dates. As
shown in figure 6, for the originally disrupted cell, the
priority scheduling algorithm has a much higher tardi-
ness cost than the MDD method. However, as shown
in figure 7, for the other cells, it has a smaller tardiness
cost, because of the effects of the original disruption
on remote cells has been reduced.

1990

Figure 5 : Tardiness

5 Summary
We have presented a new approach to handling

schedule disruptions in a distributed manufacturing
system. Our approach takes into consideration the
possibility that responding to a disruption in one part
of the system may cause disruptions in other parts of
the system. "Polite rescheduling" thus attempts to
respond to disruptions local to one manufacturing cell
so that other cells are disrupted as little as possible.
Our preliminary results show the advantages of using a
scheduling algorithm tha t emphasizes precedence con-
straints over due dates. Our future work will further
explore and evaluate these and other applications of
DAI techniques to this area.

References
(11 K. R. Baker and J . W. hi . Bertrand. A dynamic

priority rule for sequencing against due dates. J.
Opns. Mgmf., 337-42, 1982.

[2] J . C. Bean et al. Matchup schedulinn with multi- -
pie resources, release dates and disruptions. Oper-
at ions Research, 39(3):470-483, May-June 1991.

J . H. Blackstone, D. T. Phillips, and G. L. Hogg. A
state-of-the-art survey of dispatch rules for manu-
facturing job shop operations. Zntematronal Jour-
nal of Production Research, 20(1):27-45, 1982.

S. E. Conry et al. hlultistage negotiation for dis-
tributed constraint satisfaction. IEEE Trans. on
Sysiems, Man. and C y b e m e f i c s , 21(6): 1462-14'77 I

November 1991.

Figure 6: Tardiness at Itemote Cells

Figure 7: Tardiness at Remote Cells

[5] P. S. Ow and S. F. Smith. \'iewing scheduling as
an opportunist.ic problem-solving process. Annals
of Operation Research. 12:85-10$. 1988.

(61 Ii. Sycara et al. Distributed constrained heuris-
tic search. I € € € Trans. on Systcms. Man. a n d
Cybernei tcs . 21(6):1446-116 1. Sovemher 1991.

1991

