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Abstract — Under the fixed-path e-cube routing in 
mesh multicomputers, we evaluate the performance 
of several low-overhead packet sequencing and flit 
multiplexing methods. In the presence of concur­
rent inter-node communication traffic, we found that 
unless proper packet sequencing is employed, adding 
more communication resources, such as links and 
buffers, can actually degrade the network perfor­
mance. A good packet-sequencing policy combined 
with proper flit multiplexing is shown to improve per­
formance by more than 30%. 

1 Introduction 

The use of virtual channels multiplexed over each 
physical channel was introduced as a mechanism to 
accomplish deadlock-freedom by placing routing re­
strictions at intermediate nodes [1]. Virtual channels 
were also found to improve the network throughput 
via the increased sharing of each physical channel 
and the resulting reduction of packet blocking [2]. 
That is, when there are multiple virtual channels 
per physical channel, packets of these virtual chan­
nels are allowed to time-multiplexed over the phys­
ical channel, thus blocking less number of packets 
(waiting for the physical channel to be available). 

Pipelined-communication mechanisms, such as 
wormhole routing [1], operate based on the princi­
ple that the overall packet latency can be reduced by 
pipelining the transmission of each packet when the 
packet must traverse multiple intermediate nodes. A 
packet is broken up into small flow-control digits or 
flits, each of which serves as the basic unit of com­
munication. The time taken for one flit to cross 
a physical channel is called the flit time. Header 

flits containing routing information establish a path 
through the network from the source to destination. 
Transmission of data flits is then pipelined through 
the path immediately following the header. Worm­
hole routing also has the advantage of requiring only 
a small on-line buffer space per node. While the 
pipelined nature of wormhole routing serves to re­
duce delivery latency, it may also propagate the ef­
fects of such bottlenecks as blocked flits and heavily-
loaded physical channels. It is therefore important 
to devise a means of efficient allocation and manage­
ment of network bandwidth. 

The network under consideration employs worm­
hole routing. Each pair of adjacent nodes are 
connected by a pair of uni-directional physical 
links/channels. A fixed number of uni-directional 
virtual channels are time-multiplexed over each phys­
ical channel. Though most of our discussion may ap­
ply to general networks, we will focus primarily on 
the mesh network topology, which has been widely 
used in evaluating the performance of virtual-channel 
networks [2,3]. Especially, this paper builds on the 
work by Dally [2] and Gaughan [4], where wormhole 
routing was found to significantly reduce packet la­
tency if it is combined with appropriate bandwidth 
allocation and flow control schemes. We extend their 
work by focusing on bandwidth allocation through 
packet sequencing and flit multiplexing. 

In the previous related work [2,4], communication 
traffic in a multicomputer network is often modeled 
as a number of mutually-independent, steady flows. 
However, this type of communication traffic does not 
always represent the real-world situation well, be­
cause network communication tends to be bursty. 
Packet arrival times are often clustered in a short 
period, which can temporarily saturate the network. 
Also, these packets may not be independent, and 
their delivery time as a whole is crucial to the overall 
performance. This tendency is exemplified by such 
algorithms as parallel sorting [5] and parallel Fourier-
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Transform [6]. 

In this paper, we define a communication mission 
to be a set of packets to be exchanged among the 
task modules which have already been assigned to 
processing nodes in the network. During the execu­
tion of a parallel program, inter-node communication 
behaviors can be viewed as several independent com­
munication missions. In addition to the usual mean 
latency, the makespan of a mission will also be used 
for performance evaluation. The makespan of a mis­
sion is defined as the maximum latency of all packets 
in the mission, i.e., the time span from the arrival of 
the first packet until all the packets reach their des­
tination. 

The main intent of this paper is to (i) explore ways 
of sequencing packets and flits so as to better utilize 
network resources, and (ii) improve the overall net­
work performance when more network resources are 
added. Especially, we will focus on the case when 
a substantial number of packets can be transmitted 
through the network concurrently. The paper is or­
ganized as follows. Basic terms and concepts neces­
sary for our discussion are defined in Section 2. We 
formulate and analyze the problem in Section 3. Sim­
ulation results are presented and discussed in Sec­
tion 4. This paper concludes with Section 5. 

2 Preliminaries 

A k-ary n-cube consists of kn nodes arranged in an 
n-dimensional grid. Each node is connected to its 
Cartesian neighbors in the grid. A 2-dimensional 
k × k flat mesh is a subgraph of k-ary 2-cube, is 
not a regular graph, and has less edges than the 
corresponding k-ary 2-cubes (no wrap links at its 
boundary nodes). For convenience, we will call a 
k-ary 2-cube a wrapped mesh, or a w-mesh for short. 
Likewise, we will call a 2-dimensional flat mesh an 
f-mesh. Since an f-mesh is a subgraph of w-mesh 
with the same number of nodes, a w-mesh can also 
be made to function as an f-mesh by not using its 
wrap links. 

Flow control in a virtual-channel network is per­
formed at three levels: routing, packet sequencing, 
and flit multiplexing. Each of these can be imple­
mented with a variety of algorithms, but we will con­
sider only low-complexity, low-overhead flow-control 
mechanisms to deal with concurrent traffic in the net­
work. 

Routing: Selection of a path for each packet. A 
packet is routed to its destination via a fixed, short­
est path. Issues related to fault-tolerance are not 

considered, or physical and virtual channels are as­
sumed to be fault-free. In f-meshes, e-cube routing 
is used. In w-meshes, a modified version of e-cube 
routing is implemented to utilize the extra commu­
nication links so that each packet is routed via a 
shortest path. Deadlock-freedom is ensured by us­
ing the scheme proposed in [1]. That is, the virtual 
channels over each uni-directional physical channel 
are divided into high and low channels. Routing re­
strictions are then imposed such that either a high 
channel or a low channel, but not both, is allocated 
to each given packet. The w-meshes need at least 
two virtual channels per physical channel to achieve 
deadlock-freedom. 

Packet Sequencing: Determining which packet is 
allowed to access a free virtual channel in case of 
contention. When the number of packets to access a 
physical channel at the same time is larger than the 
number of available virtual channels, some of these 
packets have to be queued. So, we need to deter­
mine which packets are allowed to access the virtual 
channels, and which packets to be queued. We will 
consider the FIFO policy (as default), the largest re­
maining bandwidth first (LF) policy, and the smallest 
remaining bandwidth first (SF) policy. The remain­
ing bandwidth of a packet is defined as the product 
of packet length and the distance from the current 
node to its destination. SF and LF can both be eas­
ily implemented by using a priority queue instead of 
an FIFO queue. 

Flit Multiplexing: When there are multiple virtual 
channels per physical channel, the packets allocated 
to these virtual channels are multiplexed over the 
physical channel. Flit multiplexing determines the 
order for these flits from different virtual channels to 
access the physical channel. 

In the default, round-robin(RR), multiplexing, vir­
tual channels take turns in accessing the physical 
channel without using any network or packet infor­
mation. RR multiplexing without any modification 
will henceforth be called strict RR. Like packet se­
quencing, flit multiplexing can be priority-based. LP 
multiplexing awards priority to the virtual channel 
containing a packet of larger remaining bandwidth 
requirement. By contrast, SP multiplexing gives pri­
ority to the one of smaller remaining bandwidth re­
quirement. As pointed out in [2], these multiplexing 
methods can all be implemented with combinational 
logic which operates on the contents of the status 
register associated with each virtual channel. The 
added hardware cost should not be a concern if the 
number of virtual channels is not too excessive. 
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If each virtual channel is allocated a fixed physical 
bandwidth regardless whatever the virtual channel 
is in use or not, this can lead to a substantial waste 
of physical bandwidth. Demand-driven{D~D) alloca­
tion can be used to rectify this problem. With DD 
allocation, virtual channels will contend for use of a 
physical channel only if they have flits to send. DD 
allocation can be easily implemented by adding low-
complexity combinational circuit to any multiplexing 
method. 

With CTS (Clear-To-Send) lookahead, virtual 
channels only contend for use of a physical chan­
nel if each of them has a flit to send and the re­
ceiving node has room for it. This can further re­
duce the waste of physical bandwidth. When CTS 
lookahead is implemented, the receiving-end of each 
virtual channel must send a status bit back to the 
sending-end. These signals can be sent via separate 
wires [1], which requires extra hardware. Or they 
can be sent over the physical channel in the oppo­
site direction, which can result in a non-negligible 
bandwidth overhead. 

3 Formulation and Analysis 

In this section, we discuss the tradeoffs among differ­
ent packet-sequencing policies and flit-multiplexing 
methods under the following assumptions. 

• A physical channel takes one unit of time to 
transmit a single flit. This unit of time will also 
be called a physical-channel cycle. 

• There is a single-flit buffer associated with each 
virtual channel. 

• A packet arriving at its destination is consumed 
immediately without waiting. 

• There are an even number of virtual channels 
associated with each physical channel in a w-
mesh. 

The latency of a packet ptj from node t to node 
j , denoted as tij, is the time span from a packet's 
arrival to acceptance of the last flit of the packet 
by its destination. We will use i to represent the 
mean latency of a mission. The makespan, denoted 
as i, of a communication mission is the maximum 
latency of all packets in the mission. We will evaluate 
the performance of a network with both the mean 
mission latency and makespan. Then, 

The first term, t°j, denotes the time span between the 
arrival of pij at the source node i and the arrival of its 
header flit at the destination node j . <°∙ is composed 
of two components: accumulated queueing delay t?■ 
and accumulated head flit-multiplexing delay tf ■. tf■ 
is the sum of queueing times at all nodes in the path 
for available virtual channels, ff ■ is the sum of times 
Pij's header flit waits at all nodes on its path for use 
of physical channels. The second term, (l/r,j)(Aj — 
1), represents the time required for all other flits of 
Pij to reach node j , which is determined by the length 
of ptj, denoted as tij, and the transmission rate, r^■, 
of the pipeline setup for pij. Depending on the flit-
multiplexing method used, r!;∙ may change with time 
during a mission. 

Packet Sequencing 

Given a communication mission and a fixed number 
of virtual channels, t9 will be affected by the underly­
ing packet-sequencing scheme. Under the LF policy, 
packets requiring larger bandwidths are given pri­
ority. Since those packets farther away from their 
destinations are more likely to have larger f's, by 
minimizing their tg,s, we may minimize the variance 
of packet latencies. Similarly, the second term of tij 
is larger for longer packets. By giving these packets 
higher priority in using virtual channels, the balanc­
ing effect of smaller tq 's and hence smaller t° 's can 
also minimize the variance of packet latencies. How­
ever, in wormhole routing, a blocked packet does not 
release resources already allocated to it. A packet 
farther away from its destination is more likely to be 
blocked and may therefore result in more resources 
being held. Also, a longer packet can hold up re­
sources in the path for a longer time, thus block­
ing more of the other packets. Under the SF pol­
icy, packets requiring smaller bandwidths are given 
higher priority. This heuristic is proposed based 
on the conjecture that if these packets are deliv­
ered to their destinations quickly then there will be 
less packets contending for communication resources 
and the overall concurrent communication traffic can 
be reduced, and thus, the remaining packets may 
be sent through the network encountering less con­
tention. 

Flit Multiplexing 

Generally, tq decreases with the increase of the num­
ber of virtual channels per physical link, denoted by 
v. However, under strict RR multiplexing without 
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DD allocation or CTS lookahead, rij = 1/v Vi, j . 
So, l / r , j increases with v and tx may also increase 
because a flit may need to wait more cycles for use 
of the physical channel. That is, there is a tradeoff 
between tq and r^, and also between tq and tx, when 
more virtual channels are added. Usually when v is 
increased to a certain point, the improvement in re­
ducing tq reaches a plateau, and adding more virtual 
channels only increases packet latency. 

In case of strict RR, a large portion of physi­
cal bandwidth can be wasted on idle virtual chan­
nels. With DD allocation (denoted as DD-RR), r̂ ■ 
is bounded below by max{l/i>, l/fc,∙;■}, where k{j is 
the degree of congestion of the path, i.e., the maxi­
mal number of packets to share a physical link in the 
path oipij. In the worst case, r,∙;■ = 1/v and latency 
tij is the same as in the case of strict RR. But, if at 
any instant there are less than v packets contending 
for a physical channel, then no physical channel will 
be allocated to any idle virtual channel. Packets can 
be transmitted at a rate > 1/v. 

Even with DD allocation, physical bandwidth can 
still be wasted if the corresponding input buffer is not 
ready to receive a new flit. With CTS lookahead, a 
virtual channel will not contend for a physical chan­
nel unless it has a flit ready to be sent and the re­
ceiving end has room for accepting it. Therefore, for 
a given multiplexing method, (r^∙ |with neither DD 
nor CTS) < (r0∙ |with DD) < (r^ | with DD and 
CTS). 

Another advantage of CTS is deadlock-freedom. 
In priority-based flit multiplexing, a deadlock may 
occur if the method is not carefully implemented. 
For example, in Fig. 1, each physical channel has 
two virtual channels. All packets are routed in the 
same direction on node 2. Packet A and B have es­
tablished pipelines from node 0 to node 2, and node 
1 to node 2, respectively. So on node 2, the two 
packets have occupied both of the output buffers in 
the direction which all packets need to be routed to. 
Suppose packet C arrives at node 0 later than A, and 
occupies the other virtual channel, and the same sit­
uation occurs on node 1 when packet D arrives after 
B. If C is given priority over A, then C will access the 
physical channel between node 0 and 2. Similarly, D 
also has higher priority than B, and monopolizes the 
physical channel between node 1 and 2. But on node 
2, both of the output buffers are already occupied 
by packet A and B, and they cannot be preempted 
since wormhole routing is used. Therefore, C and 
D will be queued at node 2 indefinitely waiting for 
free output buffers, while A and B cannot access the 
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physical channels which they need to finish sending 
their remaining flits and, release the output buffers 
on node 2 that C and D are waiting for. So, a dead­
lock follows. 

If CTS lookahead is used in the above example, 
then one can avoid the deadlock. Since packet C and 
D will not be allowed to contend for physical chan­
nels, A and B will be able to continue sending their 
remaining flits. In this paper, we will always evalu­
ate LP and SP flit multiplexing with CTS lookahead 
to avoid deadlock. 

W- and F- meshes 

When compared to an f-mesh with the same num­
ber of nodes, a w-mesh has the advantages of more 
physical channels and smaller communication diame­
ter. Also, its regular connectivity may lead to better 
communication load balancing, especially in the case 
of uniformly-distributed traffic. 

However, one main drawback of w-meshes is the 
potential deadlock resulting from the addition of 
wrap links. To ensure deadlock-freedom, virtual 
channels running over each physical channel must be 
divided into two halves. When packets are sent be­
tween a pair of nodes between which the Hamming 
distance is < k/2 in a k-ary 2-cube, only v/2 virtual 
channels are available. If the other v/2 virtual chan­
nels are not in use, they are left idle and their band­
width wasted. Thus, there exists a tradeoff between 
these two topologies. Depending on traffic density 
and distribution, one can outperform the other. Our 
simulation results in the next section demonstrate 
this tradeoff. 

4 Simulation Results 

Under the following assumptions, we developed a 
program that simulates the flit-level communication 
behavior. 

Transferring a flit between two nodes via a phys­
ical channel takes one unit of time. 

At any instant of time, all flits that have been 
allocated channels are transferred synchronously 
in a single physical channel cycle. 

Each virtual channel is assigned a single-flit 
buffer. 

Traffic is uniformly-distributed. For a given mis­
sion, the probability that node i may send a 
packet to node j is fixed. 
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Table 1: Performance with strict RR multiplexing. 

In the discussion that follows, the term config­
uration is used to represent a combination of cer­
tain packet-sequencing policy with a flit-multiplexing 
method. The simulation results presented here were 
obtained using the following parameters: 

Unless stated otherwise, all packets are 20 flits 
long. 

Both w- and f- meshes are of size 16 × 16. 

The probability, density, that node i sends a 
packet to node j ' is 0.01. In a 16 × 16 network, 
the total number of concurrent packets during a 
mission is ≈ 0.01 ∙ (162 - l ) 2 . 

Each data point is obtained by averaging re­
sults from 10,000 iterations. Deviation from the 
mean values is found to be (< 5%). Due to 
the page limit, results on inputs with variable 
packet lengths and other traffic distribution are 
not presented. However, general trends of the 
results obtained from these alternative inputs do 
not deviate significantly from the data shown. 

Table 1 shows the makespan (i) and the mean la­
tency (t) of w- and f- meshes with FIFO packet se­
quencing and strict RR flit multiplexing. Clearly, 
with strict RR, w-meshes not only perform worse 
than f-meshes with the same v, but also worse than 
f-meshes with v/2 virtual channels. Thus, addition 
of physical and virtual channels in w-meshes actually 
degrades the performance if strict RR is used. 

Table 2 shows the case of DD allocation. Obvi­
ously, DD allocation greatly improves the perfor­
mance, particularly in the case of w-meshes with 
larger D'S. In a certain situation, i and i are re­
duced by more than 50%. For f-meshes, DD also 
makes a monotonic improvement of t with the in­
crease of v. Note that with DD-RR, w-meshes start 
to have smaller makespans than f-meshes with the 
same v > 8. Nevertheless, in the case where both 

Table 2: Performance with DD-RR multiplexing. 

types of network have equal number of nodes, we 
have to take into account that w-meshes have more 
physical channels. In a network of 16 × 16 nodes, 
a w-mesh has 1024 uni-directional physical channels 
while an f-mesh has only 960. Considering this, w-
meshes still have poorer physical channel utilization, 
even with v > 12. 

From the results in Tables 1 and 2, we conclude 
that physical bandwidth is used much more effi­
ciently with DD-RR than strict RR. Since DD allo­
cation can be implemented with minimum hardware 
overhead over any configuration, all configurations 
will be evaluated with DD allocation. DD-RR with 
FIFO will be used as our "default" configuration. 
The data in Table 2 will be used as the reference for 
other configurations. The makespan and the mean 
latency of each configuration are plotted. 

Fig. 2 shows the comparison of the LF and SF 
packet-sequencing policies with FIFO in w- and f-
meshes. DD-RR multiplexing is assumed in all three 
configurations. In w-meshes, SF shows a significant 
improvement (> 30%) over FIFO for v = 2. The 
margin of improvement decreases with larger v's, 
which drops below 10% when v > 8, and reduces to 
near 0% after v > 12. The sharp drop after v > 6 can 
be attributed to the fact that, when v > 6, adding 
virtual channels improves FIFO, and makes the ef­
fect of packet sequencing less significant. On the 
other hand, LF does not make any notable improve­
ment over FIFO. Only when v = 2 it shows ≈ 8% 
improvement. 

In f-meshes, SF shows 10% to 17% improvements 
over FIFO for v — 1 and v = 2, and quickly drops to 
the same with FIFO when v > 6, while LF is only 
marginally effective when v = 1 (≈ 7% improvement) 
and is virtually the same with FIFO for any v > 4. 

Fig. 3 compares the mean latency, i, of the three 
packet-sequencing policies. In w-meshes, SF reduced 
the mean latency by more than 30% for v = 2 but 
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the margin reduces gradually down to less than 10% 
when v = 6 and later drops to near 0% after v > 8. 
Similarly, in f-meshes, SF is effective for a small num­
ber of virtual channels(v = 1 and v — 2), reducing t 
by at least 12%. But it performs virtually the same 
as FIFO for v > 4. In both the topologies, LF makes 
virtually no improvement over FIFO in terms of i at 
any value of v and is not shown in the plot. 

CTS lookahead can effectively minimize the waste 
of physical channel cycles, but its higher implemen­
tation cost may not be justifiable if the margin of 
improvement is small. In [4], it is shown that with 
pipelined circuit-switching, CTS is not very effective. 
As for wormhole routing, it was shown in [2] that in a 
network with 32-bit flits and v = 15, without adding 
extra wires for the lookahead signals, an additional 
12.5% traffic overhead is required to implement CTS 
lookahead. Therefore, CTS lookahead should pro­
vide at least 12.5% improvement to justify its imple­
mentation overhead. 

The effects of adding CTS lookahead on the three 
packet-sequencing policies are plotted in Figs. 4 and 
5. CTS lookahead is very effective in w-meshes, re­
ducing t over the corresponding non-CTS lookahead 
version for 10% to 30% when 2 < v < 12, and i for 
at least 15% when 2 < v < 8. 

CTS lookahead is less effective in f-meshes, how­
ever. The greatest improvement (℅ 10%) in t over 
non-CTS versions occurred when v = 4. The im­
provement margin gradually decreases down to 0% 
when v is increased to 16. It reduces i by at most 
10% when v = 2 or v = 4. 

The effects of SP and LP multiplexing (with CTS 
lookahead to avoid deadlocks) are plotted in Figs. 6-
9. In w-meshes, as compared to the corresponding 
configurations with CTS lookahead only, the SP ver­
sion further reduces t by ≈ 10% when 4 < v < 8. But 
the margin of improvement gradually decreases when 
v reaches 12, and actually has worse performance for 
larger v's. In f-meshes, SP multiplexing improves the 
CTS-only version slightly. The maximum margin of 
improvement occurs at v = 4. 

SP multiplexing is very effective in reducing i. As 
can be seen in Fig. 7, for 2 < v < 32, this mul­
tiplexing method reduces i significantly for FIFO, 
and clearly outperforms the CTS-only counterpart 
for larger v's, i.e., v > 4 in w-meshes and v > 4 in f-
meshes. The performance in i of LF and SF policies 
with SP multiplexing is very close to FIFO-SP and 
hence is not plotted. 

LP multiplexing is less effective overall than SP: it 
has virtually no improvement in t over the CTS-only 
counterpart. But it still reduces t effectively when 
v > 8 for both w- and f- meshes, though not to the 
same extent of SP multiplexing. 

From the data discussed above for SP and LP mul­
tiplexing, one can conclude that they are quite effec­
tive in reducing the variance of packet latencies, and 
the makespan is sacrificed somewhat for large v's. 

We also ran simulations for the general case where 
packet length is not uniform. Results are found to 
be consistent with the uniform packet-length case, 
and bandwidth-sensitive packet sequencing and flit-
multiplexing methods are found to be more effective 
when the variance of packet length is increased. 

The simulation results discussed thus far are sum­
marized as follows. 

SF packet sequencing outperforms LF in almost 
all situations. This is surprising since in [7], 
LF sequencing is shown to be much more ef­
fective than SF in a network with large-buffer 
switching methods like store-and-forward and 
virtual cut-through. We can thus conclude that 
in a wormhole routing network, resource man­
agement should be quite different from large-
buffer switching networks. 

Demand-driven allocation and CTS lookahead 
are extremely effective in reducing the waste of 
physical bandwidth, especially when the number 
of virtual channels is large. 

If reducing the mean latency is the main goal, 
then priority-based multiplexing is most effec­
tive. Especially, in the case of f-meshes with 
a large number of virtual channels, no other 
packet-sequencing policy or flit-multiplexing 
methods can stop the trend of increasing i's with 
larger v's. With SP multiplexing, i is also re­
duced when v is small. 

When v = 1 or v = 2, f-meshes should be consid­
ered a better topology than w-meshes. For the 
case of v = 2, f-meshes outperform w-meshes in 
both t and i with less resources. Moreover, w-
meshes cannot function with v = 1 unless they 
are used as f-meshes. 

Reducing the makespan of a mission does not 
necessarily reduce i, and vice versa. Net­
work configurations should be evaluated care­
fully with both measures before making any con­
clusion on their performance. 
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5 Conclusion 

We have evaluated the performance of several packet-
sequencing policies and flit-multiplexing methods in 
a mesh network with wormhole routing and vir­
tual channels. We focused on w-meshes (fc-ary 
2-cubes) and f-meshes(k × k meshes) with e-cube 
routing under concurrent traffic. We considered 
primarily low-complexity flow control mechanisms. 
Simulations have been performed for three packet-
sequencing policies, FIFO, SF and LF, and their 
combinations with flit-multiplexing methods such as 
demand-driven (DD) allocation, CTS lookahead, and 
priority-based multiplexing. 

We used two performance measures in evaluating 
these configurations: t, the makespan of a communi­
cation mission, and i, the mean latency. It was found 
that DD allocation and CTS lookahead are both es­
sential to minimize the waste of physical bandwidth. 
With a small amount of extra hardware, SF packet 
sequencing and the SP flit multiplexing can improve 
network performance significantly. Also, w-meshes, 
though with more communication resources, may 
perform worse than f-meshes in certain situations. 
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Figure 6: Makespan comparison. Figure 9: Mean latency comparison. 
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Figure 5: Mean latency comparison. Figure 8: Makespan comparison. 

Figure 7: Mean latency comparison. Figure 4: Makespan comparison. 
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