
1994 International Conference on Parallel Processing

SEQUENCING OF CONCURRENT COMMUNICATION TRAFFIC IN A
MESH MULTICOMPUTER WITH VIRTUAL CHANNELS

Bing-rung Tsai and Kang G. Shin
Real-Time Computing Laboratory

Department of EECS, The University of Michigan
Ann Arbor, MI 48109-2122

Email: {iast,keshin)@eecs.umich.edu

Abstract — Under the fixed-path e-cube routing in
mesh multicomputers, we evaluate the performance
of several low-overhead packet sequencing and flit
multiplexing methods. In the presence of concur­
rent inter-node communication traffic, we found that
unless proper packet sequencing is employed, adding
more communication resources, such as links and
buffers, can actually degrade the network perfor­
mance. A good packet-sequencing policy combined
with proper flit multiplexing is shown to improve per­
formance by more than 30%.

1 Introduction

The use of virtual channels multiplexed over each
physical channel was introduced as a mechanism to
accomplish deadlock-freedom by placing routing re­
strictions at intermediate nodes [1]. Virtual channels
were also found to improve the network throughput
via the increased sharing of each physical channel
and the resulting reduction of packet blocking [2].
That is, when there are multiple virtual channels
per physical channel, packets of these virtual chan­
nels are allowed to time-multiplexed over the phys­
ical channel, thus blocking less number of packets
(waiting for the physical channel to be available).

Pipelined-communication mechanisms, such as
wormhole routing [1], operate based on the princi­
ple that the overall packet latency can be reduced by
pipelining the transmission of each packet when the
packet must traverse multiple intermediate nodes. A
packet is broken up into small flow-control digits or
flits, each of which serves as the basic unit of com­
munication. The time taken for one flit to cross
a physical channel is called the flit time. Header

flits containing routing information establish a path
through the network from the source to destination.
Transmission of data flits is then pipelined through
the path immediately following the header. Worm­
hole routing also has the advantage of requiring only
a small on-line buffer space per node. While the
pipelined nature of wormhole routing serves to re­
duce delivery latency, it may also propagate the ef­
fects of such bottlenecks as blocked flits and heavily-
loaded physical channels. It is therefore important
to devise a means of efficient allocation and manage­
ment of network bandwidth.

The network under consideration employs worm­
hole routing. Each pair of adjacent nodes are
connected by a pair of uni-directional physical
links/channels. A fixed number of uni-directional
virtual channels are time-multiplexed over each phys­
ical channel. Though most of our discussion may ap­
ply to general networks, we will focus primarily on
the mesh network topology, which has been widely
used in evaluating the performance of virtual-channel
networks [2,3]. Especially, this paper builds on the
work by Dally [2] and Gaughan [4], where wormhole
routing was found to significantly reduce packet la­
tency if it is combined with appropriate bandwidth
allocation and flow control schemes. We extend their
work by focusing on bandwidth allocation through
packet sequencing and flit multiplexing.

In the previous related work [2,4], communication
traffic in a multicomputer network is often modeled
as a number of mutually-independent, steady flows.
However, this type of communication traffic does not
always represent the real-world situation well, be­
cause network communication tends to be bursty.
Packet arrival times are often clustered in a short
period, which can temporarily saturate the network.
Also, these packets may not be independent, and
their delivery time as a whole is crucial to the overall
performance. This tendency is exemplified by such
algorithms as parallel sorting [5] and parallel Fourier-

I - 1 2 6

Proceedings of the International Conference on Parallel Processing (ICPP'94)
0-8493-2493-9/0-6 $20.00 © 1994

I-127

Transform [6].

In this paper, we define a communication mission
to be a set of packets to be exchanged among the
task modules which have already been assigned to
processing nodes in the network. During the execu­
tion of a parallel program, inter-node communication
behaviors can be viewed as several independent com­
munication missions. In addition to the usual mean
latency, the makespan of a mission will also be used
for performance evaluation. The makespan of a mis­
sion is defined as the maximum latency of all packets
in the mission, i.e., the time span from the arrival of
the first packet until all the packets reach their des­
tination.

The main intent of this paper is to (i) explore ways
of sequencing packets and flits so as to better utilize
network resources, and (ii) improve the overall net­
work performance when more network resources are
added. Especially, we will focus on the case when
a substantial number of packets can be transmitted
through the network concurrently. The paper is or­
ganized as follows. Basic terms and concepts neces­
sary for our discussion are defined in Section 2. We
formulate and analyze the problem in Section 3. Sim­
ulation results are presented and discussed in Sec­
tion 4. This paper concludes with Section 5.

2 Preliminaries

A k-ary n-cube consists of kn nodes arranged in an
n-dimensional grid. Each node is connected to its
Cartesian neighbors in the grid. A 2-dimensional
k × k flat mesh is a subgraph of k-ary 2-cube, is
not a regular graph, and has less edges than the
corresponding k-ary 2-cubes (no wrap links at its
boundary nodes). For convenience, we will call a
k-ary 2-cube a wrapped mesh, or a w-mesh for short.
Likewise, we will call a 2-dimensional flat mesh an
f-mesh. Since an f-mesh is a subgraph of w-mesh
with the same number of nodes, a w-mesh can also
be made to function as an f-mesh by not using its
wrap links.

Flow control in a virtual-channel network is per­
formed at three levels: routing, packet sequencing,
and flit multiplexing. Each of these can be imple­
mented with a variety of algorithms, but we will con­
sider only low-complexity, low-overhead flow-control
mechanisms to deal with concurrent traffic in the net­
work.

Routing: Selection of a path for each packet. A
packet is routed to its destination via a fixed, short­
est path. Issues related to fault-tolerance are not

considered, or physical and virtual channels are as­
sumed to be fault-free. In f-meshes, e-cube routing
is used. In w-meshes, a modified version of e-cube
routing is implemented to utilize the extra commu­
nication links so that each packet is routed via a
shortest path. Deadlock-freedom is ensured by us­
ing the scheme proposed in [1]. That is, the virtual
channels over each uni-directional physical channel
are divided into high and low channels. Routing re­
strictions are then imposed such that either a high
channel or a low channel, but not both, is allocated
to each given packet. The w-meshes need at least
two virtual channels per physical channel to achieve
deadlock-freedom.

Packet Sequencing: Determining which packet is
allowed to access a free virtual channel in case of
contention. When the number of packets to access a
physical channel at the same time is larger than the
number of available virtual channels, some of these
packets have to be queued. So, we need to deter­
mine which packets are allowed to access the virtual
channels, and which packets to be queued. We will
consider the FIFO policy (as default), the largest re­
maining bandwidth first (LF) policy, and the smallest
remaining bandwidth first (SF) policy. The remain­
ing bandwidth of a packet is defined as the product
of packet length and the distance from the current
node to its destination. SF and LF can both be eas­
ily implemented by using a priority queue instead of
an FIFO queue.

Flit Multiplexing: When there are multiple virtual
channels per physical channel, the packets allocated
to these virtual channels are multiplexed over the
physical channel. Flit multiplexing determines the
order for these flits from different virtual channels to
access the physical channel.

In the default, round-robin(RR), multiplexing, vir­
tual channels take turns in accessing the physical
channel without using any network or packet infor­
mation. RR multiplexing without any modification
will henceforth be called strict RR. Like packet se­
quencing, flit multiplexing can be priority-based. LP
multiplexing awards priority to the virtual channel
containing a packet of larger remaining bandwidth
requirement. By contrast, SP multiplexing gives pri­
ority to the one of smaller remaining bandwidth re­
quirement. As pointed out in [2], these multiplexing
methods can all be implemented with combinational
logic which operates on the contents of the status
register associated with each virtual channel. The
added hardware cost should not be a concern if the
number of virtual channels is not too excessive.

1994 International Conference on Parallel Processing

Proceedings of the International Conference on Parallel Processing (ICPP'94)
0-8493-2493-9/0-6 $20.00 © 1994

1994 International Conference on Parallel Processing

If each virtual channel is allocated a fixed physical
bandwidth regardless whatever the virtual channel
is in use or not, this can lead to a substantial waste
of physical bandwidth. Demand-driven{D~D) alloca­
tion can be used to rectify this problem. With DD
allocation, virtual channels will contend for use of a
physical channel only if they have flits to send. DD
allocation can be easily implemented by adding low-
complexity combinational circuit to any multiplexing
method.

With CTS (Clear-To-Send) lookahead, virtual
channels only contend for use of a physical chan­
nel if each of them has a flit to send and the re­
ceiving node has room for it. This can further re­
duce the waste of physical bandwidth. When CTS
lookahead is implemented, the receiving-end of each
virtual channel must send a status bit back to the
sending-end. These signals can be sent via separate
wires [1], which requires extra hardware. Or they
can be sent over the physical channel in the oppo­
site direction, which can result in a non-negligible
bandwidth overhead.

3 Formulation and Analysis

In this section, we discuss the tradeoffs among differ­
ent packet-sequencing policies and flit-multiplexing
methods under the following assumptions.

• A physical channel takes one unit of time to
transmit a single flit. This unit of time will also
be called a physical-channel cycle.

• There is a single-flit buffer associated with each
virtual channel.

• A packet arriving at its destination is consumed
immediately without waiting.

• There are an even number of virtual channels
associated with each physical channel in a w-
mesh.

The latency of a packet ptj from node t to node
j , denoted as tij, is the time span from a packet's
arrival to acceptance of the last flit of the packet
by its destination. We will use i to represent the
mean latency of a mission. The makespan, denoted
as i, of a communication mission is the maximum
latency of all packets in the mission. We will evaluate
the performance of a network with both the mean
mission latency and makespan. Then,

The first term, t°j, denotes the time span between the
arrival of pij at the source node i and the arrival of its
header flit at the destination node j . <°∙ is composed
of two components: accumulated queueing delay t?■
and accumulated head flit-multiplexing delay tf ■. tf■
is the sum of queueing times at all nodes in the path
for available virtual channels, ff ■ is the sum of times
Pij's header flit waits at all nodes on its path for use
of physical channels. The second term, (l/r,j)(Aj —
1), represents the time required for all other flits of
Pij to reach node j , which is determined by the length
of ptj, denoted as tij, and the transmission rate, r^■,
of the pipeline setup for pij. Depending on the flit-
multiplexing method used, r!;∙ may change with time
during a mission.

Packet Sequencing

Given a communication mission and a fixed number
of virtual channels, t9 will be affected by the underly­
ing packet-sequencing scheme. Under the LF policy,
packets requiring larger bandwidths are given pri­
ority. Since those packets farther away from their
destinations are more likely to have larger f's, by
minimizing their tg,s, we may minimize the variance
of packet latencies. Similarly, the second term of tij
is larger for longer packets. By giving these packets
higher priority in using virtual channels, the balanc­
ing effect of smaller tq 's and hence smaller t° 's can
also minimize the variance of packet latencies. How­
ever, in wormhole routing, a blocked packet does not
release resources already allocated to it. A packet
farther away from its destination is more likely to be
blocked and may therefore result in more resources
being held. Also, a longer packet can hold up re­
sources in the path for a longer time, thus block­
ing more of the other packets. Under the SF pol­
icy, packets requiring smaller bandwidths are given
higher priority. This heuristic is proposed based
on the conjecture that if these packets are deliv­
ered to their destinations quickly then there will be
less packets contending for communication resources
and the overall concurrent communication traffic can
be reduced, and thus, the remaining packets may
be sent through the network encountering less con­
tention.

Flit Multiplexing

Generally, tq decreases with the increase of the num­
ber of virtual channels per physical link, denoted by
v. However, under strict RR multiplexing without

I - 1 2 8
Proceedings of the International Conference on Parallel Processing (ICPP'94)
0-8493-2493-9/0-6 $20.00 © 1994

I - 1 2 9

DD allocation or CTS lookahead, rij = 1/v Vi, j .
So, l / r , j increases with v and tx may also increase
because a flit may need to wait more cycles for use
of the physical channel. That is, there is a tradeoff
between tq and r^, and also between tq and tx, when
more virtual channels are added. Usually when v is
increased to a certain point, the improvement in re­
ducing tq reaches a plateau, and adding more virtual
channels only increases packet latency.

In case of strict RR, a large portion of physi­
cal bandwidth can be wasted on idle virtual chan­
nels. With DD allocation (denoted as DD-RR), r̂ ■
is bounded below by max{l/i>, l/fc,∙;■}, where k{j is
the degree of congestion of the path, i.e., the maxi­
mal number of packets to share a physical link in the
path oipij. In the worst case, r,∙;■ = 1/v and latency
tij is the same as in the case of strict RR. But, if at
any instant there are less than v packets contending
for a physical channel, then no physical channel will
be allocated to any idle virtual channel. Packets can
be transmitted at a rate > 1/v.

Even with DD allocation, physical bandwidth can
still be wasted if the corresponding input buffer is not
ready to receive a new flit. With CTS lookahead, a
virtual channel will not contend for a physical chan­
nel unless it has a flit ready to be sent and the re­
ceiving end has room for accepting it. Therefore, for
a given multiplexing method, (r^∙ |with neither DD
nor CTS) < (r0∙ |with DD) < (r^ | with DD and
CTS).

Another advantage of CTS is deadlock-freedom.
In priority-based flit multiplexing, a deadlock may
occur if the method is not carefully implemented.
For example, in Fig. 1, each physical channel has
two virtual channels. All packets are routed in the
same direction on node 2. Packet A and B have es­
tablished pipelines from node 0 to node 2, and node
1 to node 2, respectively. So on node 2, the two
packets have occupied both of the output buffers in
the direction which all packets need to be routed to.
Suppose packet C arrives at node 0 later than A, and
occupies the other virtual channel, and the same sit­
uation occurs on node 1 when packet D arrives after
B. If C is given priority over A, then C will access the
physical channel between node 0 and 2. Similarly, D
also has higher priority than B, and monopolizes the
physical channel between node 1 and 2. But on node
2, both of the output buffers are already occupied
by packet A and B, and they cannot be preempted
since wormhole routing is used. Therefore, C and
D will be queued at node 2 indefinitely waiting for
free output buffers, while A and B cannot access the

1994 International Conference on Parallel Processing

physical channels which they need to finish sending
their remaining flits and, release the output buffers
on node 2 that C and D are waiting for. So, a dead­
lock follows.

If CTS lookahead is used in the above example,
then one can avoid the deadlock. Since packet C and
D will not be allowed to contend for physical chan­
nels, A and B will be able to continue sending their
remaining flits. In this paper, we will always evalu­
ate LP and SP flit multiplexing with CTS lookahead
to avoid deadlock.

W- and F- meshes

When compared to an f-mesh with the same num­
ber of nodes, a w-mesh has the advantages of more
physical channels and smaller communication diame­
ter. Also, its regular connectivity may lead to better
communication load balancing, especially in the case
of uniformly-distributed traffic.

However, one main drawback of w-meshes is the
potential deadlock resulting from the addition of
wrap links. To ensure deadlock-freedom, virtual
channels running over each physical channel must be
divided into two halves. When packets are sent be­
tween a pair of nodes between which the Hamming
distance is < k/2 in a k-ary 2-cube, only v/2 virtual
channels are available. If the other v/2 virtual chan­
nels are not in use, they are left idle and their band­
width wasted. Thus, there exists a tradeoff between
these two topologies. Depending on traffic density
and distribution, one can outperform the other. Our
simulation results in the next section demonstrate
this tradeoff.

4 Simulation Results

Under the following assumptions, we developed a
program that simulates the flit-level communication
behavior.

Transferring a flit between two nodes via a phys­
ical channel takes one unit of time.

At any instant of time, all flits that have been
allocated channels are transferred synchronously
in a single physical channel cycle.

Each virtual channel is assigned a single-flit
buffer.

Traffic is uniformly-distributed. For a given mis­
sion, the probability that node i may send a
packet to node j is fixed.

Proceedings of the International Conference on Parallel Processing (ICPP'94)
0-8493-2493-9/0-6 $20.00 © 1994

1994 International Conference on Parallel Processing

Table 1: Performance with strict RR multiplexing.

In the discussion that follows, the term config­
uration is used to represent a combination of cer­
tain packet-sequencing policy with a flit-multiplexing
method. The simulation results presented here were
obtained using the following parameters:

Unless stated otherwise, all packets are 20 flits
long.

Both w- and f- meshes are of size 16 × 16.

The probability, density, that node i sends a
packet to node j ' is 0.01. In a 16 × 16 network,
the total number of concurrent packets during a
mission is ≈ 0.01 ∙ (162 - l) 2 .

Each data point is obtained by averaging re­
sults from 10,000 iterations. Deviation from the
mean values is found to be (< 5%). Due to
the page limit, results on inputs with variable
packet lengths and other traffic distribution are
not presented. However, general trends of the
results obtained from these alternative inputs do
not deviate significantly from the data shown.

Table 1 shows the makespan (i) and the mean la­
tency (t) of w- and f- meshes with FIFO packet se­
quencing and strict RR flit multiplexing. Clearly,
with strict RR, w-meshes not only perform worse
than f-meshes with the same v, but also worse than
f-meshes with v/2 virtual channels. Thus, addition
of physical and virtual channels in w-meshes actually
degrades the performance if strict RR is used.

Table 2 shows the case of DD allocation. Obvi­
ously, DD allocation greatly improves the perfor­
mance, particularly in the case of w-meshes with
larger D'S. In a certain situation, i and i are re­
duced by more than 50%. For f-meshes, DD also
makes a monotonic improvement of t with the in­
crease of v. Note that with DD-RR, w-meshes start
to have smaller makespans than f-meshes with the
same v > 8. Nevertheless, in the case where both

Table 2: Performance with DD-RR multiplexing.

types of network have equal number of nodes, we
have to take into account that w-meshes have more
physical channels. In a network of 16 × 16 nodes,
a w-mesh has 1024 uni-directional physical channels
while an f-mesh has only 960. Considering this, w-
meshes still have poorer physical channel utilization,
even with v > 12.

From the results in Tables 1 and 2, we conclude
that physical bandwidth is used much more effi­
ciently with DD-RR than strict RR. Since DD allo­
cation can be implemented with minimum hardware
overhead over any configuration, all configurations
will be evaluated with DD allocation. DD-RR with
FIFO will be used as our "default" configuration.
The data in Table 2 will be used as the reference for
other configurations. The makespan and the mean
latency of each configuration are plotted.

Fig. 2 shows the comparison of the LF and SF
packet-sequencing policies with FIFO in w- and f-
meshes. DD-RR multiplexing is assumed in all three
configurations. In w-meshes, SF shows a significant
improvement (> 30%) over FIFO for v = 2. The
margin of improvement decreases with larger v's,
which drops below 10% when v > 8, and reduces to
near 0% after v > 12. The sharp drop after v > 6 can
be attributed to the fact that, when v > 6, adding
virtual channels improves FIFO, and makes the ef­
fect of packet sequencing less significant. On the
other hand, LF does not make any notable improve­
ment over FIFO. Only when v = 2 it shows ≈ 8%
improvement.

In f-meshes, SF shows 10% to 17% improvements
over FIFO for v — 1 and v = 2, and quickly drops to
the same with FIFO when v > 6, while LF is only
marginally effective when v = 1 (≈ 7% improvement)
and is virtually the same with FIFO for any v > 4.

Fig. 3 compares the mean latency, i, of the three
packet-sequencing policies. In w-meshes, SF reduced
the mean latency by more than 30% for v = 2 but

I - 1 3 0

Proceedings of the International Conference on Parallel Processing (ICPP'94)
0-8493-2493-9/0-6 $20.00 © 1994

I - 1 3 1

1994 International Conference on Parallel Processing

the margin reduces gradually down to less than 10%
when v = 6 and later drops to near 0% after v > 8.
Similarly, in f-meshes, SF is effective for a small num­
ber of virtual channels(v = 1 and v — 2), reducing t
by at least 12%. But it performs virtually the same
as FIFO for v > 4. In both the topologies, LF makes
virtually no improvement over FIFO in terms of i at
any value of v and is not shown in the plot.

CTS lookahead can effectively minimize the waste
of physical channel cycles, but its higher implemen­
tation cost may not be justifiable if the margin of
improvement is small. In [4], it is shown that with
pipelined circuit-switching, CTS is not very effective.
As for wormhole routing, it was shown in [2] that in a
network with 32-bit flits and v = 15, without adding
extra wires for the lookahead signals, an additional
12.5% traffic overhead is required to implement CTS
lookahead. Therefore, CTS lookahead should pro­
vide at least 12.5% improvement to justify its imple­
mentation overhead.

The effects of adding CTS lookahead on the three
packet-sequencing policies are plotted in Figs. 4 and
5. CTS lookahead is very effective in w-meshes, re­
ducing t over the corresponding non-CTS lookahead
version for 10% to 30% when 2 < v < 12, and i for
at least 15% when 2 < v < 8.

CTS lookahead is less effective in f-meshes, how­
ever. The greatest improvement (℅ 10%) in t over
non-CTS versions occurred when v = 4. The im­
provement margin gradually decreases down to 0%
when v is increased to 16. It reduces i by at most
10% when v = 2 or v = 4.

The effects of SP and LP multiplexing (with CTS
lookahead to avoid deadlocks) are plotted in Figs. 6-
9. In w-meshes, as compared to the corresponding
configurations with CTS lookahead only, the SP ver­
sion further reduces t by ≈ 10% when 4 < v < 8. But
the margin of improvement gradually decreases when
v reaches 12, and actually has worse performance for
larger v's. In f-meshes, SP multiplexing improves the
CTS-only version slightly. The maximum margin of
improvement occurs at v = 4.

SP multiplexing is very effective in reducing i. As
can be seen in Fig. 7, for 2 < v < 32, this mul­
tiplexing method reduces i significantly for FIFO,
and clearly outperforms the CTS-only counterpart
for larger v's, i.e., v > 4 in w-meshes and v > 4 in f-
meshes. The performance in i of LF and SF policies
with SP multiplexing is very close to FIFO-SP and
hence is not plotted.

LP multiplexing is less effective overall than SP: it
has virtually no improvement in t over the CTS-only
counterpart. But it still reduces t effectively when
v > 8 for both w- and f- meshes, though not to the
same extent of SP multiplexing.

From the data discussed above for SP and LP mul­
tiplexing, one can conclude that they are quite effec­
tive in reducing the variance of packet latencies, and
the makespan is sacrificed somewhat for large v's.

We also ran simulations for the general case where
packet length is not uniform. Results are found to
be consistent with the uniform packet-length case,
and bandwidth-sensitive packet sequencing and flit-
multiplexing methods are found to be more effective
when the variance of packet length is increased.

The simulation results discussed thus far are sum­
marized as follows.

SF packet sequencing outperforms LF in almost
all situations. This is surprising since in [7],
LF sequencing is shown to be much more ef­
fective than SF in a network with large-buffer
switching methods like store-and-forward and
virtual cut-through. We can thus conclude that
in a wormhole routing network, resource man­
agement should be quite different from large-
buffer switching networks.

Demand-driven allocation and CTS lookahead
are extremely effective in reducing the waste of
physical bandwidth, especially when the number
of virtual channels is large.

If reducing the mean latency is the main goal,
then priority-based multiplexing is most effec­
tive. Especially, in the case of f-meshes with
a large number of virtual channels, no other
packet-sequencing policy or flit-multiplexing
methods can stop the trend of increasing i's with
larger v's. With SP multiplexing, i is also re­
duced when v is small.

When v = 1 or v = 2, f-meshes should be consid­
ered a better topology than w-meshes. For the
case of v = 2, f-meshes outperform w-meshes in
both t and i with less resources. Moreover, w-
meshes cannot function with v = 1 unless they
are used as f-meshes.

Reducing the makespan of a mission does not
necessarily reduce i, and vice versa. Net­
work configurations should be evaluated care­
fully with both measures before making any con­
clusion on their performance.

Proceedings of the International Conference on Parallel Processing (ICPP'94)
0-8493-2493-9/0-6 $20.00 © 1994

5 Conclusion

We have evaluated the performance of several packet-
sequencing policies and flit-multiplexing methods in
a mesh network with wormhole routing and vir­
tual channels. We focused on w-meshes (fc-ary
2-cubes) and f-meshes(k × k meshes) with e-cube
routing under concurrent traffic. We considered
primarily low-complexity flow control mechanisms.
Simulations have been performed for three packet-
sequencing policies, FIFO, SF and LF, and their
combinations with flit-multiplexing methods such as
demand-driven (DD) allocation, CTS lookahead, and
priority-based multiplexing.

We used two performance measures in evaluating
these configurations: t, the makespan of a communi­
cation mission, and i, the mean latency. It was found
that DD allocation and CTS lookahead are both es­
sential to minimize the waste of physical bandwidth.
With a small amount of extra hardware, SF packet
sequencing and the SP flit multiplexing can improve
network performance significantly. Also, w-meshes,
though with more communication resources, may
perform worse than f-meshes in certain situations.

References
[1] W. J. Dally, "Deadlock-free message routing in

multiprocessor interconnection networks," IEEE
Trans, on Computers, vol. C-36, no. 5, pp. 547-
553, May 1987.

[2] W. J. Dally, "Virtual-channel flow control,"
IEEE Trans, on Parallel and Distributed Sys­
tems, vol. 3, no. 2, pp. 194-205, March 1992.

[3] W. J. Dally, "Performance analysis of k-ary n-
cube interconnection networks," IEEE Trans. on
Computers, vol. 39, no. 6, pp. 775-785, June
1990.

[4] P. T. Gaughan and S. Yalamanchili, "Analytical
models of bandwidth allocation in pipelined k-
ary n-cubes," submitted to publication, 1993.

[5] T. Tang, "Parallel sorting on the hypercube con­
current processor," in Proc. of the 5th Distributed
Memory Computing Conference, pp. 237-240,
April 1990.

[6] L. Desbat and D. Trystram, "Implementing
the discrete Fourier Transform on a hypercube
vector-parallel computer," in Proc. of the 4th
Distributed Memory Computing Conference, pp.
407-410, March 1989.

I - 1 3 2

Figure 3: Mean latency comparison.

Figure 2: Makespan comparison.

Figure 1: A deadlock caused by flit multiplexing.

[7] B. R. Tsai and K. G. Shin, "Combined rout­
ing and scheduling of concurrent communication
traffic in hypercube multicomputers," submitted
to publication, 1993.

1994 International Conference on Parallel Processing

Proceedings of the International Conference on Parallel Processing (ICPP'94)
0-8493-2493-9/0-6 $20.00 © 1994

Figure 6: Makespan comparison. Figure 9: Mean latency comparison.

I -133

Figure 5: Mean latency comparison. Figure 8: Makespan comparison.

Figure 7: Mean latency comparison. Figure 4: Makespan comparison.

1994 International Conference on Parallel Processing

Proceedings of the International Conference on Parallel Processing (ICPP'94)
0-8493-2493-9/0-6 $20.00 © 1994

