
IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 5, MAY 1994 613

[IO] P. Ramanathan and K. G. Shin, “Reliable broadcast in hypercube
multicomputers,” IEEE Trans. Compuf., vol. C-37, pp. 1654-1657, Dec.
1988.

[I l l Y. Saad and M. H. Schultz, “Topological properties of hypercubes,”
IEEE Trans. Compuf., vol. C-37, pp. 867-872, July 1988.

[I21 S. B. Tien, C. S. Raghavendra, and M. A. Sridhar, “Reconfiguration
embedded task graphs in faulty hypercubes by automorphisms,” in Proc.
Hawaii Int. Con$ Sysf. Sci., 1990, pp. 91-100.

[I31 S. B. Tien and C. S. Raghavendra, “Algorithms and bounds for shortest
paths and diameter in faulty hypercubes,” in Proc. 28th Allerfon Con$
Commun., Contr., Comput., Univ. Illinois, Urbana-Champaign, Oct.
1990.11, pp. 216225.

[141 P. J. Yang, S. B. Tien, and C. S. Raghavendra, “Embedding of rings
and meshes onto faulty hypercubes,” Tech. Rep., Dep. Elec. Eng., Univ.
South. Calif.. 1991.

Assignment of Task Modules in Hypercube
Multicomputers with Component

Failures for Communication Efficiency

Bing-rung Tsai and Kang G. Shin

Abstract-The problem of assigning task modules within a hypercube
multicomputer with possible link failures is investigated. A concept of
indirect optimimtion is introduced and a function, called communication
@a&, is proposed as the objective of optimization. The assignments
obtained from optimizing this function are shown to significantly improve
the actual communication performance measure, called communication
turnaround time, over random assignments.

Index Terms-Task assignment, communication traffic and cost, NP-
hard problem, link failures, fault-tolerant routing algorithms.

I. INTRODUCTION

While the abundance of nodes in a hypercube multicomputer
allows for executing tasks that require a large number of nodes,
internode communication is still a major bottleneck in achieving the
overall speedup. To achieve communications efficiency, considerable
efforts have been made to improve routing algorithms and switching
mechanisms, which are basically concerned with system-level imple-
mentations. Communication efficiency must also be improved on a
per-task basis by exploiting the communication locality among task
modules.

To assign task modules for an “optimal” performance, the run-time
behavior of these modules must be known a priori to some extent.
However, as stated in the Halting Problem in computing theory, there
is no way to predict the exact run-time behavior of a program before
it is actually executed. In case of distributed computation, it is also
very difficult to predict the timing of communication events before a
set of task modules are actually executed.

Manuscript received July 8, 1991; revised January 15, 1992 and July 20,
1992. This work was supported in part by the Office of Naval Research under
Grants N00014-85-K-0122 and N00014-91-J-1115. Any opinions, findings,
and recommendations in this paper are those of the authors and do not reflect
the views of the ONR.

The authors are with Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, MI 48109-2122.

In the graph-mapping approach (e.g., [3]) the timing aspects of
module communication are ignored, and a simple objective function
is proposed for optimization. It is generally difficult to relate this
objective to any of the well-known performance measures, such as
task execution time. By contrast, any more complicated approach
(e.g., [5]) requires a substantial amount of knowledge of the run-
time behavior of task modules, which may not be available unless
the task is tested thoroughly beforehand.

Our primary goal in this correspondence is to optimize commu-
nication performance. We use a relatively simple objective func-
tion and verify (with simulations) that optimizing this function
actually leads to better communication performance, especially for
assigning communication-bound tasks. Focusing on communication
performance differentiates our work from others related to more
generic aspects of task assignment. Taking a communication-oriented
approach to the task assignment problem is hardly a limitation,
since internode communication is of the utmost importance to the
performance and fault-tolerance of any distributed system.

This correspondence is organized as follows. In Section 11, we
present the basic system model and assumptions used. Our problem
is also formally stated there. In Section 111, the NP-hardness of
minimizing communication traffic is stated first in order to justify
the use of heuristic algorithms. Several heuristic algorithms are
then used to find good suboptimal solutions. These algorithms are
tested extensively for various inputs to assess the quality of the
assignments obtained from them. We then simulate these algorithms
to verify the actual quality of the assignments found by minimizing
communication traffic. The effects of inaccuracy in describing the
task behavior are also discussed there. Section IV deals with the
case where an alternative fault- tolerant routing scheme is used. The
correspondence concludes with Section V.

11. PRELIMINARIES

The communication volume between each pair of modules is
expressed in the number of packets to be exchanged between them.
A message may be composed of a number of packets. Intermodule
communications are assumed to be accomplished via message pass-
ing. A message is routed from the source to the destination via a
fault-free shortest path under circuit or message switching.

Since most existing hypercubes do not support a per-node multi-
programming environment, it is assumed that at most one module is
assigned to a node, Le., the mapping between nodes and modules is
one-to-one. For a task with M modules such that 2”-’ < J P < 2”
for some integer 7 1 , one can add some “dummy” modules and make
it a task with 2’l modules. So, we will henceforth assume 31 = 2”
where n is the dimension of the subcube allocated by the host to
execute the task, and thus the mapping of modules into subcube
nodes is one-to-one and onto.

For a network of nodes, we define a communication event between
modules (CEBM) as an instance that a module needs to send a
message to another module, while defining a communication event
between nodes (CEBN) as an instance of a node needing to send
a message to some other node. In circuit switching, these two are
indistinguishable. In message switching, however, a single CEBM can
become several CEBN’s. For example, when a pair of modules reside
in two different nodes which are 2 hops apart, in circuit switching
a CEBM from one module to the other is just a CEBN from one
node to the other node. For message switching, however, this CEBM

IEEE Log Number 9209042. becomes two CEBN’s: one from the source to the intermediate node,

0018-9340/94$04.00 0 1994 IEEE

614 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43. NO. 5. MAY 1994

node0 nod91 node2 node3

IlnkY2 ' lInkY3

time +

node 1 to node 3

node 0 to node 2

CIRCUIT SWITCHING

llnkX1

llnk a2

llnkY3

MESSAGE SWITCHING

llnkY1

link a2

llnkX3

CTT

Fig. I . An example to demonstrate the definition of CTT

and the other from the intermediate node to the destination. We said
there is an outstanding CEBN if a message is to be sent by a node.
An outstanding CEBN is said to be processed if it is sent from the
source node to a neighboring destination node. An outstanding CEBN
may not be processed immediately due to the limited link resources
available. A CEBN is said to be blocked if it is not processed
immediately.

The goodness of a task assignment for hypercubes is measured
by the communication turnaround time (CTT), which is the time
span from the first CEBN becoming outstanding to all CEBN's being
processed. As an illustrative example, in Fig. 1 we have a simple
network of 4 nodes with 3 CEBM's. The status of each link during
the execution under both circuit and message switching is shown
in this figure. Note that the computation time needed is invariant
among different assignments, since at most one module is assigned
to each node. Therefore, CTT is the main source of difference in the
completion time of a task.

CTT cannot be easily described as a mathematical function, and the
exact value of CTT depends largely on the timing of communication
events, thus making it impractical to use any direct optimization of
CTT. However, as we shall see, for communication-bound tasks,
minimizing a certain simple function can usually minimize CTT.

The communication cost in executing a set of task modules is
defined as the sum of time units during which links are kept busy with
the messages among these modules. In other words, it is a measure
of the total communication resources used by an instance of task
execution measured in time units.

Suppose c(h) is the number of time units links are kept busy with
a packet sent over a path of h hops. The sum of time units links are
kept busy for related purposes other than packet transmission-such
as establishing a connection-and are assumed to be negligible. For

message-switched hypercubes, c(h) = hc(l) , but this relation may
not be accurate for circuit- switched hypercubes. However, if the "call
request" signal to hunt for a free path occupies each link only for a
very short time, then this expression would be a good approximation
even for circuit-switched hypercubes.

By defining c(1) as a unit of communication traffic (Le., the
link usage by one packet traversing one link), the communication
traffic resulting from executing a task under assignment a becomes:
k(a) = i u Z , where 711 is the number of packets traversing
over i links. One can easily see that cosf,.,,(a) rx k(a).

In both types of switching, communication traffic is proportional
to the total link occupation time, two communicating modules placed
far apart will require more communication resources, and there is a
higher possibility that some other instances of communication will be
blocked andor delayed, which in turn leads to an increase of CTT.
Therefore, reduction of communication traffic is crucial to the CTT
associated with communication-bound tasks.

When introducing the notion of communication cost and commu-
nication traffic, we deliberately avoided the low-level timing details.
We only consider the total number of packets to be sendreceived
between a pair of task modules during the whole mission time, thus
allowing for a simple objective function that can be translated into a
simple combinatorial optimization problem.

The following notation will be used throughout the correspondence.
n: the dimension of a subcube available for executing the task

under consideration.
U: an M x A4 communication volume matrix, where iYLJ is

the communication volume from m L to m, expressed in number
of packets, and M is the number of task modules. As mentioned
earlier, we will assume AI = 2" unless specified otherwise. Note
that I.it, = OV'", since a module does not send messages to itself.
a: a 1 x M vector denoting an assignment, the ith component

of which represents the fact that 7n, is assigned to a node whose
address is n , , O 5 i 5 ,VI - 1.

D(n <, n ,): the distance (i.e., the length of a shortest path) between
node T I I and n ,, and is dependent upon the routing algorithm used.
For now, we will assume D (n l . n ,) = D(n, . nz). (The case where
D (n , , n ,) can be different from D (n , , n ,) will be discussed in
Section VI.) Before making a module assignment, D (n , . n,)'s are
calculated for a subcube assigned to the task under consideration
with a shortest-path routing algorithm. Note that the distance between
a pair of nodes may be greater than their Hamming distance, and
depends on the number of faulty links and the routing scheme used.

111. OPTIMIZATION ALGORITHMS AND PERFORMANCE EVALUATION

Although the objective function we proposed is simple in nature,
optimizing it is still a difficult problem, as formally stated in the
following theorem.

Theorem 1: Given an ,211 x i1.I task communication volume matrix
U where 321 = 2", it is NP-hard to find an optimal mapping a of an
-11-module task onto an I I -dimensional fault-free hypercube.

The theorem can be proved by restricting to the fault-free hyper-
cube embedding problem discussed in [4]. The proof is presented in
[6] and will not be repeated here.

Thus, there is no known polynomial-time algorithm to find an
optimal mappinghssignment. Note that minimizing CTT, rather than
communication traffic itself, is our ultimate goal. As we shall see,
good heuristic algorithms will suffice in most situations. An optimal
solution that minimizes communication traffic is usually computation-
ally expensive, and may only improve slightly over fast algorithms
in terms of minimizing CTT, our actual objective.

One simple greedy heuristic which has been tested to work well
in fault-free cases [6] is given below. Consider each task as a

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 5, MAY 1994 615

weighted graph with vertices representing modules and edge weights
representing communication volumes. For any two nodes z and y
under the shortest-path routing, D (z , y) = D(y, x). Therefore, it is
sufficient to use an undirected graph with U,, + C,, as the weight
on the edge connecting m, and m,. We want to find a Hamiltonian
cycle in this task graph with as high a total edge-weight as possible,
and then embed this cycle into a Hamiltonian cycle in the hypercube.
A Hamiltonian cycle in a fault-free hypercube can be easily found
with Gray-code enumeration.

In an injured hypercube with faulty links, however, there may not
be any Hamiltonian cycle available for embedding. So, we define a
weighted relaxed (WR) Hamiltonian cycle in an injured hypercube
(with no disconnected node) as a relaxed version of Hamiltonian
cycle, such that two nodes s and y can be linked in the cycle via
a virtual edge which may be a path from r to y through some
intermediate nodes. The weight on each virtual edge of the cycle is
the number of physical edges on it. The greedy algorithm embeds the
Hamiltonian cycle in the task graph with the maximum weight (found
by a greedy approach) into the minimum-weight WR Hamiltonian
cycle in the injured hypercube (also found via a greedy approach).

Two other (more complex) heuristic algorithms are also imple-
mented and tested: a bottom-up approach algorithm similar to the
one proposed in [3], and a top-down approach proposed in [2]. Both
of these algorithms are modified to handle cases with broken links. A
third nondeterministic approach using the simulated annealing method
is also implemented and tested, where 2-opting is used as the perturb
function.

To compare the quality of the assignments found by these al-
gorithms with respect to communication traffic, we simulated these
algorithms using input tasks with randomly generated communication
volumes among their modules.

Each algorithm was executed for 1000 randomly generated tasks
where CTz,’s are characterized by a normally distributed random
variable with mean p and variance u2. Changing the value of p is
found to have little effect on the relative performance of assignments
found with different algorithms as long as the ratio u / p remains
constant. It is also found that, as u/ / i approaches zero, the difference
in communication traffic between random assignments and those
assignments found with the above three algorithms gets smaller, while
the difference gets larger as u / p increases. This is consistent with
the fact that when all LTtJ’s are identical, all assignments will lead
to an identical communication traffic, and all assignment algorithms
will perform

For the input tasks used to obtain the plots in Fig. 2, l - t J ’ s
are characterized with p, = 20 and a = 15; the horizontal axis
depicts the number of faulty links while the vertical axis represents
communication traffic. In this figure, “Al” represents the greedy
algorithm, while “AT’ represents the communication traffic achieved
with either top-down or bottom-up algorithms, whichever yields
smaller communication traffic. This is to enhance the readability
of the plots since the performance of the top-down and bottom-up
algorithms tums out to be very close to each other.

It can be seen from the above result that the greedy approach
performs surprisingly well. Complex (Le., top-down and bottom-up)
approaches outperform the simple greedy approach only by a small
margin. Furthermore, as the number of faulty links increases, the gap
between the two curves gets narrower. This can be explained by the
fact that both the top-down and bottom-up approaches are best suited
for fault-free (thus regular) hypercubes. For hypercubes with faulty
links, the interconnection structure is no longer symmetric or regular.
in such a case, the partitioning mechanism in the top-down approach
and the combining mechanism in the bottom-up approach must use
less accurate heuristic decisions, hence degrading the performance.

Fig. 2. Comparison of communication traffic.

TABLE I
TIMING COMPARISONS FOR VARIOUS ALGORITHMS

I CPTJ Time - . . -
Size I Greedy I Top-Down I Bottom-Up I S-Annealing

n = 3 . M = 8 1 ,057 I 4.2 I 7.8 I 125.2
n = 4 , M = 16 I ,178 I 15.3 I 28.3 I 433.6
n = 5, M = 32 I 1.215 I 172.4 I 297.6 I 2537.1

The simulated annealing approach (“A3”), on the other hand,
has shown more consistent performances. Its advantages over other
algorithms become more pronounced as the cube size and the
number of link failures increase. Therefore, we can conclude that
this approach is more adaptable to irregular structures.

In Table I, we show the relative timings of various algorithms used.
The algorithms are tested on a DEC 5000 workstation running Ultrix
operation system. Although we have only shown the performance
data for problem size of n = 4, M = 16, the relative performances
of different algorithms are found to be consistent at least up to the
problem size of 11 = 8.M = 256.

To demonstrate why minimizing communication traffic can be
effective, we also need to compare the CTT’s of those assignments
found with different algorithms. Our simulation model for this
purpose is described below.

Timing: A time unit is selected as the time required to send a
packet over a single communication link.

Routing Algorithm and Mechanism:
Link failures are detected before task assignment and execution.
Each message is routed through a fault-free shortest path deter-
mined prior to the execution of this task. We assume there are
no additional link failures during the execution .of this task.
Under message switching, the routing mechanism at an inter-
mediate node on a path will take a certain amount of time to
forward a message from one link to the next. We assume this
time to be relatively small and absorbed into the length of the
corresponding message.
The propagation delay on a communication path is assumed to
be negligible.

Task Communication Behavior:
T , given for each task, denotes the time span between the
arrival time of the first and the last CEBM’s. The arrival times
of CEBM’s are uniformly distributed in [O, TI. Hence, for a
given task assignment, a larger T represents the task being more
computation-bound, while a smaller T represents the task being
more communication-bound.
Lrnsg denotes the maximum message length measured in number
of packets. The communication volume between each pair of
modules is randomly grouped into messages of lengths within
[I , L”1.

616

220
221
222
308
311

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 5 , MAY 1994

176 175 173 767 653 636 616 2469 2011 1995 1928
177 177 175 769 655 636 617 2474 2026 2005 1940
182 178 176 770 655 637 618 2475 2028 2013 1949
306 305 302 772 657 639 620 2476 2037 2025 1961
308 305 303 775 661 642 622 2478 2048 2031 1993

a -.-A Rand

X - - - X A3
0.0 1.0 2.0 3.0 4.0 S O 6.0 7.0 80 9.0 10.0 11.0

Link Failures

Fig. 3. Comparison of CTT's.

-
T
10
25
50
100
200
300

-

-

TABLE I1
EFFECTS OF CHANCING T UNDER MESSAGE SWITCHING
n = 3 , M = 8 I n = 4 , M = 1 6 I n = 5 , M = 32

A2 1 A3
767 I652 I635 I616 I 2456 I 2007 I 1994 I 1924

Rand 1 A1 I A2 1 A3 1 Rand I A1 1 A2 1 A3 1 Rand 1 A1 I
220 I 176 I 176 1 173 1

Message Scheduling and Queueing: If a link is busy when it is to
be used for transmitting an incoming message, the message is stored
in an FIFO queue at the source end of the link. When more than one
message requests the use of the same link at a time, one of them is
randomly chosen to use the link. This selection procedure is repeated
until all requests are honored.

The goal of our simulation is to comparatively evaluate the
goodness of different assignments under the same execution envi-
ronment, but not to compare the performance of different system
implementations. So, the simulation results should not be used to
determine the relative performance of different switching methods or
routing algorithms.

The assignments found are fed into an event-driven simulator to
evaluate their performance in a close to real-world environment. The
results are plotted in Fig. 3 for message switching systems. Input
tasks used here are the same as those used for Fig. 2. We set Lnrsgc
1 I , 51, and T = 100. Results for circuit-switched hypercubes are found
to be similar in most situations and thus are not presented.

The effects of changing T under the same assignment for a given
task are shown in Table I1 for message switching without link failures.
The results are found to be similar to those under circuit switching.
For the cases of 7 1 = 4, JI = 6, and n = 5 , JI = 32, changing T
in the range [10, 3001 does not have any significant impact on the
relative performance of assignments found with different algorithms.
The assignments found with all of the above algorithms have shown
substantial improvements over random assignments VT E [10, 3001.
This is because the network gets saturated with messages when T
= 300.

In case of 7 1 = 3, *\I = 8, the network becomes less congested at
T z 160 and the differences of CTT's among different assignment
algorithms start to diminish. So, we can conclude that minimizing
communication traffic yields a peak improvement when the task to
be assigned is communication-bound and the communication network
may become highly congested during the execution of this task. For
1 1 = 4, JI = 16, the T value which results in small performance
differences is approximately 750, while for 71 = 5 , JI = 32, it is about
2250. However, when T is relatively small and the network is not
near saturation, the difference in message queue length can be made
smaller by using the assignments obtained from the minimization

,

Link Failures

Fig. 4. Comparison of CTT's with inaccurate L T Z J ' s .

A -.-A Rand
O.-- . . - -O A I *......*
X - - - X A3

of communication traffic. Depending on system implementation, the
performance of a node may also be influenced by the length of
message queue it has to maintain.

The effects of changing Llnsg are more subtle than changing T.
Generally, shorter message lengths result in better performances in
circuit-switched hypercubes, while for message-switched hypercubes,
changing the message length does not affect system performance
notably if the overall communication traffic is fixed.

Our simulation results have indicated that different switching tech-
niques do not matter much to system performance for communication-
bound tasks. Circuit switching is shown to have only a slightly better
performance than message switching for the same task assignments.
However, as mentioned earlier, the actual performance will depend
on system implementation, and thus, the simulation results should not
be used to compare the effectiveness of the two switching methods.

When the number of faulty links grows within our preset range
(i.e., less than one third of all links), CTT also increases. For smaller
hypercubes, such as n = 3, introducing even one more faulty link
can make a significant difference in CTT. This effect gets more
pronounced when the number of link failures becomes larger, as one
can see in Fig. 3. As the cube size increases, there will be more
fault-free links, hence making lesser impacts of a single link failure
on system performance.

Although the proposed assignment scheme requires only minimal
information of run-time task behaviors, we still need the communica-
tion matrix to assign a task. It is obvious that unless the task has been
fully tested and each message length is exactly calculated, the entries
in the communication matrix cannot be absolutely accurate. To study
the effects of an inaccurate communication matrix, we repeated the
simulation for evaluating CTT while introducing uncertainties in the
communication matrix. in Fig. 4, the input tasks are essentially the
same as those in Fig. 3, but there is a maximum of 20% error in each
I-,,, i.e., during an instance of actual task execution, the number
of packets exchanged between m , and 7r t , is LrZ, * 0.21,TzJ. From
Fig. 4, one can see that inaccuracies in C*lJ ' s affect communication
performance, especially when the cube size and number of link
failures are large. However, when the number of link failures is
less than one- sixth of all links, the overall performances of various
assignment algorithms are still quite close to those in the case with
exact I, 's.

IV. AN ALTERNATIVE ROUTING ALGORITHM

Thus far, we have assumed that the hypercube is implemented
with a routing scheme which routes messages from the source to the
destination via fixed, shortest paths determined before the execution
of each task. However, there are several practical problems with
this assumption. For instance, all faulty links must be known before
malung a task assignment, which may not always be possible. Also,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 5 , MAY 1994 617

if additional link failures occur after the assignment, the execution
of the task may become unsuccessful.

To overcome these problems, we must use a routing algorithm that
is more adaptive to system changes. For instance, the DFS routing
scheme proposed in [11 is an adaptive fault-tolerant routing algorithm
which uses only a limited amount of global link status information.
Under this algorithm, the system does not require a priori link status
information, and communications can be completed even if some
unexpected link failures occur during task execution as long as all
nodes involved remain connected. However, due to the adaptive
nature of the DFS routing algorithm, it is difficult to predict the
length of the path used for routing a message during task execution,
especially in the presence of link failures. So, D(.r. y) cannot be
accurately estimated, thus making it difficult to minimize the overall
communication traffic. Furthermore, under some routing scheme like
the DFS routing, due to the lack of global link status information, the
length of the path chosen for communication from node .r to node
y may not be the same as the one chosen for that from y to z. For
example, suppose we have a 3-cube with three broken links, 00*. 0 4 ,
and *01. Then the length of path chosen under the DFS routing from
000 to 11 1 is 3. But the path chosen to route messages from 11 1 to
000 is 111 i 110 -+ 001 + 101 i 001 -+ 110 + 010 -+ 011 -+

001 + 000, which has a length of 9. The routing schemes with this
nature are said to be asymmetric. In most cases, a routing scheme
becomes asymmetric only in the presence of faulty components.

Based on the above observations, one may jump to a conclusion
that there is no way to minimize the communication traffic of an
assignment, and hence it will be impossible to improve communi-
cation efficiency by appropriately placing task modules. However,
as our simulation results show below, use of the proposed objective
function, even by assigning task modules to the nodes as if there
were no faulty links, can still significantly improve communication
performance over random assignments when the number of faulty
links is within a certain range.

Three assignment strategies are compared in our simulation. The
first is the usual random assignment. The second is to apply the
greedy algorithm to the hypercube without knowing which links
are faulty. The third assumes perfect knowledge of link failures
and how each message will be routed during the execution. This
strategy is an unrealistic, ideal case, which gives an upper bound
of performance improvement with communication traffic, whereas
the second strategy provides a lower bound. In real applications,
depending on the knowledge available during the task assignment
phase, the performance should lie somewhere between these two
extremes.

Fig. 5 shows the communication traffic of the assignments under
the DFS routing for the same set of input tasks as in Fig. 2. “SI”
represents the assignments found with no knowledge of faulty links,
while “S2” represents those found with complete knowledge of faulty
links and the routing paths of all messages. It,can be easily seen that
under the DFS routing, the overall communication traffic is higher
than the routing algorithm used before. Nevertheless, the assignments
“S 1” still generate smaller communication traffic than random as-
signments, although the improvement becomes insignificant as the
number of faulty links increases.

The same set of input tasks used in Fig. 3 are employed again for
event-driven simulations, except that the DFS routing is used here.
Since the DFS routing is designed based on the operating principles
of message switching, we only simulate the hypercubes implemented
with this switching method.

The measured CTT’s of these assignments are plotted in Fig. 6.
It is found that, without knowledge of faulty links, assignment “SI”
still improves over random assignments with a margin of a least 10%

n -.-A Rand
s1

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 * ” ” ” * s2
Link Failures

Fig. 5. Comparison of communication traffic under the DFS routing.

0.0 1.0 2.0 3.0 4.0 5 0 6.0 7.0 8.0 9.0 10.0 11.0

A
0

Rmd
SI
s2

Link Failures

Fig. 6. Comparison of CTT’s under the DFS routing.

when the number of faulty links is more than one-eighth of the total
links. This margin increases as the number of faulty links increases,
but starts to level off when the percentage of faulty links approaches
33%. The assignment “S2” shows even larger improvements and
improves over random assignments with a steadily increasing margin
as the number of link failures increases.

By comparing Fig. 6 to Fig. 3, one can see that, although the DFS
routing results in an overall higher communication traffic, it results
in smaller CTT’s when the number of faulty links is relatively small.
This is due to the fact that the DFS routing chooses communication
paths in a more “spread out” fashion and causes less congestion than
the shortest fixed-path scheme used before. This advantage diminishes
after the number of faulty links grows beyond one-fifth of all links.
When the percentage of faulty links reaches 25%, the DFS routing
begins to yield larger CTT’s than the shortest path routing. This
is because paths available between nodes are becoming fewer, so
messages cannot be spread out to more paths under the DFS routing.
Also, the greater communication traffic overhead of the DFS routing
starts to have dominant effects. Note, however, that implementation
details will be crucial in actual applications, and these simulation
results should not be used to judge the relative merits of different
routing algorithms.

V. CONCLUDING REMARKS
Using a simple objective function, we formulated and solved the

problem of mapping a task which is composed of multiple interacting
modules into a hypercube with possible faulty links. The goal was to
optimize communication performance, measured in communication
turnaround time. Due to the difficulties in optimizing this objec-
tive directly, a function called communication traffic is proposed.
By minimizing this function, we could find assignments with the
optimal communication performance using heuristic combinatorial
techniques. Several algorithms that find assignments by minimizing
communication traffic are implemented and comparatively evaluated.
The assignments found with these algorithms are also evaluated with

618 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 5, MAY 1994

simulations. It has been shown that for communication-bound tasks,
they have significant improvements over random assignments with
respect to an actual communication performance measure, i.e., the
communication turnaround time.

We also analyzed the case where an alternative routing algorithm
like the DFS routing is used. Our task assignment criterion is again
shown to work well in this case.

Although we have focused our attention on hypercube multicom-
puters, the objective function we developed can be generalized to
other distributed systems with different interconnection topologies. In
fact, when we consider hypercubes with faulty links, they are actually
no longer hypercubes, but they are subgraphs of hypercubes. For
systems with other interconnection topologies, as long as they adopt
message switching or circuit switching and the length of the path
chosen by the routing scheme between each pair of nodes is known
before a task assignment, or assignment criterion can be applied to
these architectures.

REFERENCES
M.-S. Chen and K. G. Shin, “Depth-first search approach for fault-
tolerant routing in hypercube multicomputers,” IEEE Trans. Parallel
Distrib. Syst., vol. I , pp. 152-159, Apr. 1990.
F. Ercal, J. Ramanujam, and P. Sadayappan, “Task allocation onto
a hypercube by recursive mincut bipartitioning,” in Proc. 3rd Conf
Hypercube Concurrent Comput. Appl., Jan. 1988, pp. 210-221.
S. Horiike, “A task mapping method for a hypercube by combining
subcubes,” in Proc. 5th Disrrib. Memory Comput. Conf, Apr. 1990, pp.
909-9 14.
D. W. Krumme, K. N. Venkataraman, and G. Cybenko, “Hypercube
embedding i s NP-complete,” in Proc. 1st Conf Hypercube Concurrent
Comput. Appl., Aug. 1985, pp. 148-157.
V. M. Lo, “Temporal communication graphs: A new graph theoretic
model for mapping and scheduling in distributed memory systems,” in
Proc. 6th Distrib. Memory Comput. Conf, Apr. 1991, pp. 248-252.
B.-R. Tsai and K. G. Shin, “Communication-oriented assignment of task
modules in hypercube multicomputers,” in Proc. 12th Int. Con$ Disrib.
Comput. Syst., June 1992, pp. 3845.

A Multiaccess Frame Buffer Architecture

D. T. Harper, 111

Abstract-Many current graphical display systems are based around
a memory array commonly known as a frame buffer. In these systems,
the frame buffer contains the array of pixels currently being displayed.
Updates to the display are accomplished by modifying the values in the
frame buffer. This brief contribution demonstrates how the performance
of frame buffer based systems can be improved by decreasing the number
of accesses to the frame buffer memory array. The proposed architecture,
referred to as a multiaccess frame buffer, allows parallel access to
constant area rectangles of the array of pixels stored in the frame buffer
rather than the row oriented accesses required by most current frame
buffer architectures. By allowing more general types of access, a given
update can be performed with fewer frame buffer accesses.

Index Terms-Frame buffers, Parallel memory architecture, computer
graphics, interleaved memories, computer architecture.

Manuscript received July 22, 1991; revised January 13, 1993. This work
was supported by the National Science Foundation under Grant CCR-8908612
and by the Texas Advanced Research Program under Grant 9741-004.

The author is with the Department of Electrical Engineering, The University
of Texas at Dallas, Richardson, TX 75983-0688.

IEEE Log Number 9212765.

I. INTRODUCTION

As the demand for larger and faster graphical display systems in-
creases, the limiting factor in raster display performance is becoming
the rate at which the frame buffer can be updated. Because large
amounts of memory are required to implement display systems, it is
usually impractical, due to cost and memory density considerations,
to use high-performance static RAM technology. Therefore, it is
necessary to use parallelism in the display system architecture to
achieve high memory bandwidths.

Recent work by Gharachorloo et al. has evaluated several
techniques that have been proposed to increase display system
performance [5]. Within the category of frame buffer rasterization
techniques, the authors distinguish between techniques based
on the number of pixels processes in parallel and whether or
not processors are embedded in the memory array as bas been
proposed in the Pixel Planes [4] and scan-line access memory
(SLAM) architectures [2]. Although these systems are capable
of very high performance, they also require significant custom
hardware.

Rasterization techniques that use standard memory chips achieve
parallelism on a lower scale by reading and writing multiple pixels
in parallel. Most raster displays limit parallel access to consecutive
pixels on a single row of the display. This is the architecture of choice
because pixels must be read from the frame buffer in row order
to drive the video circuitry. A disadvantage of these architectures
is understood by considering the display of a vertical line. In this
case, one write to the frame buffer must be made for each pixel
on the line. To improve the performance of the system on vertical
lines, Ostapko [I 11 has proposed on architecture that permits reading
and writing of rows and columns. For similar reasons, Sproull ef
a1 . [13] and Gupta et al. [6] have proposed an architecture that
permits writing to 8 x 8 rectangles; their intent is to provide an
efficient mechanism ti fill areas while also providing some degree
of parallelism during row (vertical line) and column (horizontal line)
access to the memory. Whelan [14] has proposed a display system
architecture that permits a rectangular area to be filled in parallel-the
system effectively broadcasts a common value to an array of pixels;
it does not allow different values to be written to different locations
in the rectangle.

In this brief contribution, a frame buffer architecture is proposed
which consists of A; = 2” independent memory banks or modules.
The array of pixel values that is to be displayed is stored in the
modules. The size of the pixel array is assumed to be R x C where
C is a power of two (C = 2“). For example, for a typical 1280 x 1024
pixel display device, R = 1280 ,C = 1024. and c = 10. The exact
value of R does not affect the frame buffer architecture and is not
considered further.

The proposed system permits parallel access to any N/2 pixel
rectangle within the R x C array which has dimensions that are
powers of 2 (that is, the rectangle that 2‘ rows and 2q columns and
p + q = n - 1). Thus, the architecture supports full parallel access to
rows (rectangles with q = 0), columns (rectangles with q = n - l) ,
and any other constant area rectangle that has a column dimension
equal to a power of 2 and less than N (Fig. 1). The rectangles, also
referred to as blocks in this brief contribution, may begin at any
position within the pixel array with the only constraint on orientation
being that all pixels which lie in a single row of the block, also
lie within a single row of the pixel array. The architecture will be
referred to as a multiaccess frame buffer.

0018-9340/94$04.00 0 1994 IEEE

