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Assignment of Task Modules in Hypercube 
Multicomputers with Component 

Failures for Communication Efficiency 

Bing-rung Tsai and Kang G. Shin 

Abstract-The problem of assigning task modules within a hypercube 
multicomputer with possible link failures is investigated. A concept of 
indirect optimimtion is introduced and a function, called communication 
@a&, is proposed as the objective of optimization. The assignments 
obtained from optimizing this function are shown to significantly improve 
the actual communication performance measure, called communication 
turnaround time, over random assignments. 

Index Terms-Task assignment, communication traffic and cost, NP- 
hard problem, link failures, fault-tolerant routing algorithms. 

I. INTRODUCTION 

While the abundance of nodes in a hypercube multicomputer 
allows for executing tasks that require a large number of nodes, 
internode communication is still a major bottleneck in achieving the 
overall speedup. To achieve communications efficiency, considerable 
efforts have been made to improve routing algorithms and switching 
mechanisms, which are basically concerned with system-level imple- 
mentations. Communication efficiency must also be improved on a 
per-task basis by exploiting the communication locality among task 
modules. 

To assign task modules for an “optimal” performance, the run-time 
behavior of these modules must be known a priori to some extent. 
However, as stated in the Halting Problem in computing theory, there 
is no way to predict the exact run-time behavior of a program before 
it is actually executed. In case of distributed computation, it is also 
very difficult to predict the timing of communication events before a 
set of task modules are actually executed. 
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In the graph-mapping approach (e.g., [3]) the timing aspects of 
module communication are ignored, and a simple objective function 
is proposed for optimization. It is generally difficult to relate this 
objective to any of the well-known performance measures, such as 
task execution time. By contrast, any more complicated approach 
(e.g., [ 5 ] )  requires a substantial amount of knowledge of the run- 
time behavior of task modules, which may not be available unless 
the task is tested thoroughly beforehand. 

Our primary goal in this correspondence is to optimize commu- 
nication performance. We use a relatively simple objective func- 
tion and verify (with simulations) that optimizing this function 
actually leads to better communication performance, especially for 
assigning communication-bound tasks. Focusing on communication 
performance differentiates our work from others related to more 
generic aspects of task assignment. Taking a communication-oriented 
approach to the task assignment problem is hardly a limitation, 
since internode communication is of the utmost importance to the 
performance and fault-tolerance of any distributed system. 

This correspondence is organized as follows. In Section 11, we 
present the basic system model and assumptions used. Our problem 
is also formally stated there. In Section 111, the NP-hardness of 
minimizing communication traffic is stated first in order to justify 
the use of heuristic algorithms. Several heuristic algorithms are 
then used to find good suboptimal solutions. These algorithms are 
tested extensively for various inputs to assess the quality of the 
assignments obtained from them. We then simulate these algorithms 
to verify the actual quality of the assignments found by minimizing 
communication traffic. The effects of inaccuracy in describing the 
task behavior are also discussed there. Section IV deals with the 
case where an alternative fault- tolerant routing scheme is used. The 
correspondence concludes with Section V. 

11. PRELIMINARIES 

The communication volume between each pair of modules is 
expressed in the number of packets to be exchanged between them. 
A message may be composed of a number of packets. Intermodule 
communications are assumed to be accomplished via message pass- 
ing. A message is routed from the source to the destination via a 
fault-free shortest path under circuit or message switching. 

Since most existing hypercubes do not support a per-node multi- 
programming environment, it is assumed that at most one module is 
assigned to a node, Le., the mapping between nodes and modules is 
one-to-one. For a task with M modules such that 2”-’ < J P  < 2” 
for some integer 7 1 ,  one can add some “dummy” modules and make 
it a task with 2’l modules. So, we will henceforth assume 31 = 2” 
where n is the dimension of the subcube allocated by the host to 
execute the task, and thus the mapping of modules into subcube 
nodes is one-to-one and onto. 

For a network of nodes, we define a communication event between 
modules (CEBM) as an instance that a module needs to send a 
message to another module, while defining a communication event 
between nodes (CEBN) as an instance of a node needing to send 
a message to some other node. In circuit switching, these two are 
indistinguishable. In message switching, however, a single CEBM can 
become several CEBN’s. For example, when a pair of modules reside 
in two different nodes which are 2 hops apart, in circuit switching 
a CEBM from one module to the other is just a CEBN from one 
node to the other node. For message switching, however, this CEBM 
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Fig. I .  An example to demonstrate the definition of CTT 

and the other from the intermediate node to the destination. We said 
there is an outstanding CEBN if a message is to be sent by a node. 
An outstanding CEBN is said to be processed if it is sent from the 
source node to a neighboring destination node. An outstanding CEBN 
may not be processed immediately due to the limited link resources 
available. A CEBN is said to be blocked if it is not processed 
immediately. 

The goodness of a task assignment for hypercubes is measured 
by the communication turnaround time (CTT), which is the time 
span from the first CEBN becoming outstanding to all CEBN's being 
processed. As an illustrative example, in Fig. 1 we have a simple 
network of 4 nodes with 3 CEBM's. The status of each link during 
the execution under both circuit and message switching is shown 
in this figure. Note that the computation time needed is invariant 
among different assignments, since at most one module is assigned 
to each node. Therefore, CTT is the main source of difference in the 
completion time of a task. 

CTT cannot be easily described as a mathematical function, and the 
exact value of CTT depends largely on the timing of communication 
events, thus making it impractical to use any direct optimization of 
CTT. However, as we shall see, for communication-bound tasks, 
minimizing a certain simple function can usually minimize CTT. 

The communication cost in executing a set of task modules is 
defined as the sum of time units during which links are kept busy with 
the messages among these modules. In other words, it is a measure 
of the total communication resources used by an instance of task 
execution measured in time units. 

Suppose c( h ) is the number of time units links are kept busy with 
a packet sent over a path of h hops. The sum of time units links are 
kept busy for related purposes other than packet transmission-such 
as establishing a connection-and are assumed to be negligible. For 

message-switched hypercubes, c( h )  = hc( l ) ,  but this relation may 
not be accurate for circuit- switched hypercubes. However, if the "call 
request" signal to hunt for a free path occupies each link only for a 
very short time, then this expression would be a good approximation 
even for circuit-switched hypercubes. 

By defining c(1) as a unit of communication traffic (Le., the 
link usage by one packet traversing one link), the communication 
traffic resulting from executing a task under assignment a becomes: 
k(a) = i u Z ,  where 711 is the number of packets traversing 
over i links. One can easily see that cosf,.,,(a) rx k(a). 

In both types of switching, communication traffic is proportional 
to the total link occupation time, two communicating modules placed 
far apart will require more communication resources, and there is a 
higher possibility that some other instances of communication will be 
blocked andor  delayed, which in turn leads to an increase of CTT. 
Therefore, reduction of communication traffic is crucial to the CTT 
associated with communication-bound tasks. 

When introducing the notion of communication cost and commu- 
nication traffic, we deliberately avoided the low-level timing details. 
We only consider the total number of packets to be sendreceived 
between a pair of task modules during the whole mission time, thus 
allowing for a simple objective function that can be translated into a 
simple combinatorial optimization problem. 

The following notation will be used throughout the correspondence. 
n: the dimension of a subcube available for executing the task 

under consideration. 
U: an M x A4 communication volume matrix, where iYLJ is 

the communication volume from m L  to m, expressed in number 
of packets, and M is the number of task modules. As mentioned 
earlier, we will assume AI = 2" unless specified otherwise. Note 
that I.it, = OV'", since a module does not send messages to itself. 
a: a 1 x M  vector denoting an assignment, the ith component 

of which represents the fact that 7n, is assigned to a node whose 
address is n , , O  5 i 5 ,VI - 1. 

D(  n <, n , ): the distance (i.e., the length of a shortest path) between 
node T I  I and n ,, and is dependent upon the routing algorithm used. 
For now, we will assume D ( n l . n , )  = D(n, .  nz). (The case where 
D ( n , , n , )  can be different from D ( n , , n , )  will be discussed in 
Section VI.) Before making a module assignment, D ( n , .  n,)'s are 
calculated for a subcube assigned to the task under consideration 
with a shortest-path routing algorithm. Note that the distance between 
a pair of nodes may be greater than their Hamming distance, and 
depends on the number of faulty links and the routing scheme used. 

111. OPTIMIZATION ALGORITHMS AND PERFORMANCE EVALUATION 

Although the objective function we proposed is simple in nature, 
optimizing it is still a difficult problem, as formally stated in the 
following theorem. 

Theorem 1: Given an ,211 x i1.I task communication volume matrix 
U where 321 = 2", it is NP-hard to find an optimal mapping a of an 
-11-module task onto an I I  -dimensional fault-free hypercube. 

The theorem can be proved by restricting to the fault-free hyper- 
cube embedding problem discussed in [4]. The proof is presented in 
[6] and will not be repeated here. 

Thus, there is no known polynomial-time algorithm to find an 
optimal mappinghssignment. Note that minimizing CTT, rather than 
communication traffic itself, is our ultimate goal. As we shall see, 
good heuristic algorithms will suffice in most situations. An optimal 
solution that minimizes communication traffic is usually computation- 
ally expensive, and may only improve slightly over fast algorithms 
in terms of minimizing CTT, our actual objective. 

One simple greedy heuristic which has been tested to work well 
in fault-free cases [6] is given below. Consider each task as a 
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weighted graph with vertices representing modules and edge weights 
representing communication volumes. For any two nodes z and y 
under the shortest-path routing, D ( z ,  y )  = D(y, x). Therefore, it is 
sufficient to use an undirected graph with U,,  + C,, as the weight 
on the edge connecting m, and m,. We want to find a Hamiltonian 
cycle in this task graph with as high a total edge-weight as possible, 
and then embed this cycle into a Hamiltonian cycle in the hypercube. 
A Hamiltonian cycle in a fault-free hypercube can be easily found 
with Gray-code enumeration. 

In an injured hypercube with faulty links, however, there may not 
be any Hamiltonian cycle available for embedding. So, we define a 
weighted relaxed (WR) Hamiltonian cycle in an injured hypercube 
(with no disconnected node) as a relaxed version of Hamiltonian 
cycle, such that two nodes s and y can be linked in the cycle via 
a virtual edge which may be a path from r to y through some 
intermediate nodes. The weight on each virtual edge of the cycle is 
the number of physical edges on it. The greedy algorithm embeds the 
Hamiltonian cycle in the task graph with the maximum weight (found 
by a greedy approach) into the minimum-weight WR Hamiltonian 
cycle in the injured hypercube (also found via a greedy approach). 

Two other (more complex) heuristic algorithms are also imple- 
mented and tested: a bottom-up approach algorithm similar to the 
one proposed in [3], and a top-down approach proposed in [2]. Both 
of these algorithms are modified to handle cases with broken links. A 
third nondeterministic approach using the simulated annealing method 
is also implemented and tested, where 2-opting is used as the perturb 
function. 

To compare the quality of the assignments found by these al- 
gorithms with respect to communication traffic, we simulated these 
algorithms using input tasks with randomly generated communication 
volumes among their modules. 

Each algorithm was executed for 1000 randomly generated tasks 
where CTz,’s are characterized by a normally distributed random 
variable with mean p and variance u2. Changing the value of p is 
found to have little effect on the relative performance of assignments 
found with different algorithms as long as the ratio u / p  remains 
constant. It is also found that, as u/ / i  approaches zero, the difference 
in communication traffic between random assignments and those 
assignments found with the above three algorithms gets smaller, while 
the difference gets larger as u / p  increases. This is consistent with 
the fact that when all LTtJ’s are identical, all assignments will lead 
to an identical communication traffic, and all assignment algorithms 
will perform 

For the input tasks used to obtain the plots in Fig. 2, l - t J ’ s  
are characterized with p, = 20 and a = 15; the horizontal axis 
depicts the number of faulty links while the vertical axis represents 
communication traffic. In this figure, “Al”  represents the greedy 
algorithm, while “AT’ represents the communication traffic achieved 
with either top-down or bottom-up algorithms, whichever yields 
smaller communication traffic. This is to enhance the readability 
of the plots since the performance of the top-down and bottom-up 
algorithms tums out to be very close to each other. 

It can be seen from the above result that the greedy approach 
performs surprisingly well. Complex (Le., top-down and bottom-up) 
approaches outperform the simple greedy approach only by a small 
margin. Furthermore, as the number of faulty links increases, the gap 
between the two curves gets narrower. This can be explained by the 
fact that both the top-down and bottom-up approaches are best suited 
for fault-free (thus regular) hypercubes. For hypercubes with faulty 
links, the interconnection structure is no longer symmetric or regular. 
in such a case, the partitioning mechanism in the top-down approach 
and the combining mechanism in the bottom-up approach must use 
less accurate heuristic decisions, hence degrading the performance. 

Fig. 2. Comparison of communication traffic. 

TABLE I 
TIMING COMPARISONS FOR VARIOUS ALGORITHMS 

I CPTJ Time - . . - 
Size I Greedy I Top-Down I Bottom-Up I S-Annealing 

n = 3 . M = 8  1 ,057 I 4.2 I 7.8 I 125.2 
n = 4 , M  = 16 I ,178 I 15.3 I 28.3 I 433.6 
n = 5, M = 32 I 1.215 I 172.4 I 297.6 I 2537.1 

The simulated annealing approach (“A3”), on the other hand, 
has shown more consistent performances. Its advantages over other 
algorithms become more pronounced as the cube size and the 
number of link failures increase. Therefore, we can conclude that 
this approach is more adaptable to irregular structures. 

In Table I, we show the relative timings of various algorithms used. 
The algorithms are tested on a DEC 5000 workstation running Ultrix 
operation system. Although we have only shown the performance 
data for problem size of n = 4, M = 16, the relative performances 
of different algorithms are found to be consistent at least up to the 
problem size of 11 = 8.M = 256. 

To demonstrate why minimizing communication traffic can be 
effective, we also need to compare the CTT’s of those assignments 
found with different algorithms. Our simulation model for this 
purpose is described below. 

Timing: A time unit is selected as the time required to send a 
packet over a single communication link. 

Routing Algorithm and Mechanism: 
Link failures are detected before task assignment and execution. 
Each message is routed through a fault-free shortest path deter- 
mined prior to the execution of this task. We assume there are 
no additional link failures during the execution .of this task. 
Under message switching, the routing mechanism at an inter- 
mediate node on a path will take a certain amount of time to 
forward a message from one link to the next. We assume this 
time to be relatively small and absorbed into the length of the 
corresponding message. 
The propagation delay on a communication path is assumed to 
be negligible. 

Task Communication Behavior: 
T ,  given for each task, denotes the time span between the 
arrival time of the first and the last CEBM’s. The arrival times 
of CEBM’s are uniformly distributed in [O, TI. Hence, for a 
given task assignment, a larger T represents the task being more 
computation-bound, while a smaller T represents the task being 
more communication-bound. 
Lrnsg  denotes the maximum message length measured in number 
of packets. The communication volume between each pair of 
modules is randomly grouped into messages of lengths within 
[ I ,  L”1. 



616 

220 
221 
222 
308 
311 

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 5 ,  MAY 1994 

176 175 173 767 653 636 616 2469 2011 1995 1928 
177 177 175 769 655 636 617 2474 2026 2005 1940 
182 178 176 770 655 637 618 2475 2028 2013 1949 
306 305 302 772 657 639 620 2476 2037 2025 1961 
308 305 303 775 661 642 622 2478 2048 2031 1993 

a -.-A Rand 

X -  - - X  A3 
0.0 1.0 2.0 3.0 4.0 S O  6.0 7.0 80 9.0 10.0 11.0 

Link Failures 
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Message Scheduling and Queueing: If a link is busy when it is to 
be used for transmitting an incoming message, the message is stored 
in an FIFO queue at the source end of the link. When more than one 
message requests the use of the same link at a time, one of them is 
randomly chosen to use the link. This selection procedure is repeated 
until all requests are honored. 

The goal of our simulation is to comparatively evaluate the 
goodness of different assignments under the same execution envi- 
ronment, but not to compare the performance of different system 
implementations. So, the simulation results should not be used to 
determine the relative performance of different switching methods or 
routing algorithms. 

The assignments found are fed into an event-driven simulator to 
evaluate their performance in a close to real-world environment. The 
results are plotted in Fig. 3 for message switching systems. Input 
tasks used here are the same as those used for Fig. 2. We set Lnrsgc 
1 I ,  51, and T = 100. Results for circuit-switched hypercubes are found 
to be similar in most situations and thus are not presented. 

The effects of changing T under the same assignment for a given 
task are shown in Table I1 for message switching without link failures. 
The results are found to be similar to those under circuit switching. 
For the cases of 7 1  = 4, JI  = 6, and n = 5 ,  JI = 32, changing T 
in the range [ 10, 3001 does not have any significant impact on the 
relative performance of assignments found with different algorithms. 
The assignments found with all of the above algorithms have shown 
substantial improvements over random assignments VT E [ 10, 3001. 
This is because the network gets saturated with messages when T 
= 300. 

In case of 7 1  = 3, *\I = 8, the network becomes less congested at 
T z 160 and the differences of CTT's among different assignment 
algorithms start to diminish. So, we can conclude that minimizing 
communication traffic yields a peak improvement when the task to 
be assigned is communication-bound and the communication network 
may become highly congested during the execution of this task. For 
1 1  = 4, JI  = 16, the T value which results in small performance 
differences is approximately 750, while for 71 = 5 ,  JI = 32, it is about 
2250. However, when T is relatively small and the network is not 
near saturation, the difference in message queue length can be made 
smaller by using the assignments obtained from the minimization 
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Fig. 4. Comparison of CTT's with inaccurate L T Z J ' s .  
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of communication traffic. Depending on system implementation, the 
performance of a node may also be influenced by the length of 
message queue it has to maintain. 

The effects of changing Llnsg are more subtle than changing T.  
Generally, shorter message lengths result in better performances in 
circuit-switched hypercubes, while for message-switched hypercubes, 
changing the message length does not affect system performance 
notably if the overall communication traffic is fixed. 

Our simulation results have indicated that different switching tech- 
niques do not matter much to system performance for communication- 
bound tasks. Circuit switching is shown to have only a slightly better 
performance than message switching for the same task assignments. 
However, as mentioned earlier, the actual performance will depend 
on system implementation, and thus, the simulation results should not 
be used to compare the effectiveness of the two switching methods. 

When the number of faulty links grows within our preset range 
(i.e., less than one third of all links), CTT also increases. For smaller 
hypercubes, such as n = 3, introducing even one more faulty link 
can make a significant difference in CTT. This effect gets more 
pronounced when the number of link failures becomes larger, as one 
can see in Fig. 3. As the cube size increases, there will be more 
fault-free links, hence making lesser impacts of a single link failure 
on system performance. 

Although the proposed assignment scheme requires only minimal 
information of run-time task behaviors, we still need the communica- 
tion matrix to assign a task. It is obvious that unless the task has been 
fully tested and each message length is exactly calculated, the entries 
in the communication matrix cannot be absolutely accurate. To study 
the effects of an inaccurate communication matrix, we repeated the 
simulation for evaluating CTT while introducing uncertainties in the 
communication matrix. in Fig. 4, the input tasks are essentially the 
same as those in Fig. 3, but there is a maximum of 20% error in each 
I-,,, i.e., during an instance of actual task execution, the number 
of packets exchanged between m ,  and 7r t ,  is LrZ, * 0.21,TzJ. From 
Fig. 4, one can see that inaccuracies in C*lJ ' s  affect communication 
performance, especially when the cube size and number of link 
failures are large. However, when the number of link failures is 
less than one- sixth of all links, the overall performances of various 
assignment algorithms are still quite close to those in the case with 
exact I, 's. 

IV. AN ALTERNATIVE ROUTING ALGORITHM 

Thus far, we have assumed that the hypercube is implemented 
with a routing scheme which routes messages from the source to the 
destination via fixed, shortest paths determined before the execution 
of each task. However, there are several practical problems with 
this assumption. For instance, all faulty links must be known before 
malung a task assignment, which may not always be possible. Also, 
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if additional link failures occur after the assignment, the execution 
of the task may become unsuccessful. 

To overcome these problems, we must use a routing algorithm that 
is more adaptive to system changes. For instance, the DFS routing 
scheme proposed in [ 11 is an adaptive fault-tolerant routing algorithm 
which uses only a limited amount of global link status information. 
Under this algorithm, the system does not require a priori link status 
information, and communications can be completed even if some 
unexpected link failures occur during task execution as long as all 
nodes involved remain connected. However, due to the adaptive 
nature of the DFS routing algorithm, it is difficult to predict the 
length of the path used for routing a message during task execution, 
especially in the presence of link failures. So, D(.r. y )  cannot be 
accurately estimated, thus making it difficult to minimize the overall 
communication traffic. Furthermore, under some routing scheme like 
the DFS routing, due to the lack of global link status information, the 
length of the path chosen for communication from node .r to node 
y may not be the same as the one chosen for that from y to z. For 
example, suppose we have a 3-cube with three broken links, 00*. 0 4 ,  
and *01. Then the length of path chosen under the DFS routing from 
000 to 11 1 is 3. But the path chosen to route messages from 11 1 to 
000 is 111 i 110 -+ 001 + 101 i 001 -+ 110 + 010 -+ 011 -+ 

001 + 000, which has a length of 9. The routing schemes with this 
nature are said to be asymmetric. In most cases, a routing scheme 
becomes asymmetric only in the presence of faulty components. 

Based on the above observations, one may jump to a conclusion 
that there is no way to minimize the communication traffic of an 
assignment, and hence it will be impossible to improve communi- 
cation efficiency by appropriately placing task modules. However, 
as our simulation results show below, use of the proposed objective 
function, even by assigning task modules to the nodes as if there 
were no faulty links, can still significantly improve communication 
performance over random assignments when the number of faulty 
links is within a certain range. 

Three assignment strategies are compared in our simulation. The 
first is the usual random assignment. The second is to apply the 
greedy algorithm to the hypercube without knowing which links 
are faulty. The third assumes perfect knowledge of link failures 
and how each message will be routed during the execution. This 
strategy is an unrealistic, ideal case, which gives an upper bound 
of performance improvement with communication traffic, whereas 
the second strategy provides a lower bound. In real applications, 
depending on the knowledge available during the task assignment 
phase, the performance should lie somewhere between these two 
extremes. 

Fig. 5 shows the communication traffic of the assignments under 
the DFS routing for the same set of input tasks as in Fig. 2. “SI” 
represents the assignments found with no knowledge of faulty links, 
while “S2” represents those found with complete knowledge of faulty 
links and the routing paths of all messages. It,can be easily seen that 
under the DFS routing, the overall communication traffic is higher 
than the routing algorithm used before. Nevertheless, the assignments 
“S 1” still generate smaller communication traffic than random as- 
signments, although the improvement becomes insignificant as the 
number of faulty links increases. 

The same set of input tasks used in Fig. 3 are employed again for 
event-driven simulations, except that the DFS routing is used here. 
Since the DFS routing is designed based on the operating principles 
of message switching, we only simulate the hypercubes implemented 
with this switching method. 

The measured CTT’s of these assignments are plotted in Fig. 6. 
It is found that, without knowledge of faulty links, assignment “SI” 
still improves over random assignments with a margin of a least 10% 

n -.-A Rand 
s1 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 * ” ” ” *  s2 
Link Failures 

Fig. 5.  Comparison of communication traffic under the DFS routing. 
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Fig. 6.  Comparison of CTT’s under the DFS routing. 

when the number of faulty links is more than one-eighth of the total 
links. This margin increases as the number of faulty links increases, 
but starts to level off when the percentage of faulty links approaches 
33%. The assignment “S2” shows even larger improvements and 
improves over random assignments with a steadily increasing margin 
as the number of link failures increases. 

By comparing Fig. 6 to Fig. 3, one can see that, although the DFS 
routing results in an overall higher communication traffic, it results 
in smaller CTT’s when the number of faulty links is relatively small. 
This is due to the fact that the DFS routing chooses communication 
paths in a more “spread out” fashion and causes less congestion than 
the shortest fixed-path scheme used before. This advantage diminishes 
after the number of faulty links grows beyond one-fifth of all links. 
When the percentage of faulty links reaches 25%, the DFS routing 
begins to yield larger CTT’s than the shortest path routing. This 
is because paths available between nodes are becoming fewer, so 
messages cannot be spread out to more paths under the DFS routing. 
Also, the greater communication traffic overhead of the DFS routing 
starts to have dominant effects. Note, however, that implementation 
details will be crucial in actual applications, and these simulation 
results should not be used to judge the relative merits of different 
routing algorithms. 

V. CONCLUDING REMARKS 
Using a simple objective function, we formulated and solved the 

problem of mapping a task which is composed of multiple interacting 
modules into a hypercube with possible faulty links. The goal was to 
optimize communication performance, measured in communication 
turnaround time. Due to the difficulties in optimizing this objec- 
tive directly, a function called communication traffic is proposed. 
By minimizing this function, we could find assignments with the 
optimal communication performance using heuristic combinatorial 
techniques. Several algorithms that find assignments by minimizing 
communication traffic are implemented and comparatively evaluated. 
The assignments found with these algorithms are also evaluated with 
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simulations. It has been shown that for communication-bound tasks, 
they have significant improvements over random assignments with 
respect to an actual communication performance measure, i.e., the 
communication turnaround time. 

We also analyzed the case where an alternative routing algorithm 
like the DFS routing is used. Our task assignment criterion is again 
shown to work well in this case. 

Although we have focused our attention on hypercube multicom- 
puters, the objective function we developed can be generalized to 
other distributed systems with different interconnection topologies. In 
fact, when we consider hypercubes with faulty links, they are actually 
no longer hypercubes, but they are subgraphs of hypercubes. For 
systems with other interconnection topologies, as long as they adopt 
message switching or circuit switching and the length of the path 
chosen by the routing scheme between each pair of nodes is known 
before a task assignment, or assignment criterion can be applied to 
these architectures. 
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A Multiaccess Frame Buffer Architecture 
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Abstract-Many current graphical display systems are based around 
a memory array commonly known as a frame buffer. In these systems, 
the frame buffer contains the array of pixels currently being displayed. 
Updates to the display are accomplished by modifying the values in the 
frame buffer. This brief contribution demonstrates how the performance 
of frame buffer based systems can be improved by decreasing the number 
of accesses to the frame buffer memory array. The proposed architecture, 
referred to as a multiaccess frame buffer, allows parallel access to 
constant area rectangles of the array of pixels stored in the frame buffer 
rather than the row oriented accesses required by most current frame 
buffer architectures. By allowing more general types of access, a given 
update can be performed with fewer frame buffer accesses. 
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I. INTRODUCTION 

As the demand for larger and faster graphical display systems in- 
creases, the limiting factor in raster display performance is becoming 
the rate at which the frame buffer can be updated. Because large 
amounts of memory are required to implement display systems, it is 
usually impractical, due to cost and memory density considerations, 
to use high-performance static RAM technology. Therefore, it is 
necessary to use parallelism in the display system architecture to 
achieve high memory bandwidths. 

Recent work by Gharachorloo et al. has evaluated several 
techniques that have been proposed to increase display system 
performance [5]. Within the category of frame buffer rasterization 
techniques, the authors distinguish between techniques based 
on the number of pixels processes in parallel and whether or 
not processors are embedded in the memory array as bas been 
proposed in the Pixel Planes [4] and scan-line access memory 
(SLAM) architectures [2]. Although these systems are capable 
of very high performance, they also require significant custom 
hardware. 

Rasterization techniques that use standard memory chips achieve 
parallelism on a lower scale by reading and writing multiple pixels 
in parallel. Most raster displays limit parallel access to consecutive 
pixels on a single row of the display. This is the architecture of choice 
because pixels must be read from the frame buffer in row order 
to drive the video circuitry. A disadvantage of these architectures 
is understood by considering the display of a vertical line. In this 
case, one write to the frame buffer must be made for each pixel 
on the line. To improve the performance of the system on vertical 
lines, Ostapko [I  11 has proposed on architecture that permits reading 
and writing of rows and columns. For similar reasons, Sproull ef 
a1 . [13] and Gupta et al. [6] have proposed an architecture that 
permits writing to 8 x 8 rectangles; their intent is to provide an 
efficient mechanism ti fill areas while also providing some degree 
of parallelism during row (vertical line) and column (horizontal line) 
access to the memory. Whelan [14] has proposed a display system 
architecture that permits a rectangular area to be filled in parallel-the 
system effectively broadcasts a common value to an array of pixels; 
it does not allow different values to be written to different locations 
in the rectangle. 

In this brief contribution, a frame buffer architecture is proposed 
which consists of A; = 2” independent memory banks or modules. 
The array of pixel values that is to be displayed is stored in the 
modules. The size of the pixel array is assumed to be R x C where 
C is a power of two ( C  = 2“). For example, for a typical 1280 x 1024 
pixel display device, R = 1280 ,C  = 1024. and c = 10. The exact 
value of R does not affect the frame buffer architecture and is not 
considered further. 

The proposed system permits parallel access to any N/2  pixel 
rectangle within the R x C array which has dimensions that are 
powers of 2 (that is, the rectangle that 2‘ rows and 2q columns and 
p + q = n - 1). Thus, the architecture supports full parallel access to 
rows (rectangles with q = 0),  columns (rectangles with q = n - l ) ,  
and any other constant area rectangle that has a column dimension 
equal to a power of 2 and less than N (Fig. 1). The rectangles, also 
referred to as blocks in this brief contribution, may begin at any 
position within the pixel array with the only constraint on orientation 
being that all pixels which lie in a single row of the block, also 
lie within a single row of the pixel array. The architecture will be 
referred to as a multiaccess frame buffer. 

0018-9340/94$04.00 0 1994 IEEE 


