
IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 10, OCTOBER 1994 1151

A Time Redundancy Approach to TMR
Failures Using Fault-State Likelihoods

Kang G. Shin, Fellow, IEEE, and Hagbae Kim, Member, IEEE

Abstract-Failure to establish a majority among the processing
modules in a triple modular redundant (TMR) system, called a
TMR failure, is detected by using two voters and a disagreement
detector. Assuming that no more than one module becomes
permanently faulty during the execution of a task, Re-execution
of the task on the Same Hardware (RSHW) upon detection of a
TMR failure becomes a cost-effective recovery method, because
1) the TMR s p e m can mask the effects of one faulty module
while RSHW can recover from nonpermanent faults, and 2)
system reconfiguration-Replace the faulty Hardware, reload,
and Restart (RHWR)-is expensive both in time and hardware.

We propose an adaptive Wovery method for TMR failures
by “optimally” choosing eithp RSHW or RHWR based on the
estimation of the costs involved. We apply the Bayes theorem to
update the likelihoods of all possible states in the TMR system
with each voting result. Upon detection of a TMR failure, the
expected cost of RSHW is derived with these likelihoods and
then compared with that of RHWR. RSHW will continue either
until it recovers from the TMR failure or until the expected cost
of RSHW becomes larger than that of RHWR. As the number
of unsuccessful RSHW’s increases, the probability of permanent
fault@) having caused the TMR failure will increase, whicli will,
in turn, increase the cost of RSHW. Our simulation results show
that the proposed method outperforms the conventional reconfig-
uration method using only RHWR under various conditions.

Index Terms- Spatial and time redundancy, TMR failure,
permanent and nonpermanent faults, reconfiguration, nominal
task-execution time, likelihoods, Bayes theorem.

1. INTRODUCTION
AULT tolerance is generally accomplished by using re- F dundancy in hardware, software, time, or combination

thereof. There are three basic types of redundancy in hardware
and software: static, dynamic, and hybrid. Static redundancy
masks faults by taking a majority of the results from replicated
tasks [131. Dynamic redundancy takes a two-step procedure for
detection of, and recovery from, faults [2]. The effectiveness
of this method relies on selecting a suitable number of spares,
a fault-detection scheme, and a switching operation. Hybrid
redundancy is a combination of static and dynamic redundancy
[4]. A core based on static hardware redundancy, and several
spares are provided to tolerate faults. Such redundant systems

Manuscript received Ocober 15, 1992; revised May 10, 1993. This work
reported was supported in part by the Office of Naval Research under Contract
No. N00014-91-J-1115 and by the NASA under Grant No. NAG-1-1120.
Any opinions, findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily reflect the view of
the funding agencies.

The authors are with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, MI 48109-2122 USA; e-mail: kgshin@eecs.umich.edu.

IEEE Log Number 9403024.

could provide very high reliability depending on the number
of spares used under the assumption of perfect coverage and
switching operation. However, new faults may occur during
the detection of existing faults, and the switching operation
becomes very complex as the number of spares increases. In
order to reduce the complexity of switching operation and
enhance reliability at low cost, self-purging [I21 and shift-
out [5] schemes were developed, where faulty modules were
removed but not replaced by standby spares. In these schemes,
the additional operation required to select nonfaulty spare(s)
is not needed, thus making the switching operation simpler.
But it is difficult to implement either a threshold voter or a
shift-out checking unit which requires comparators, detectors,
and collectors.

Triple Modular Redundancy (TMR) has been one of the
most popular fault-tolerance schemes using spatial redun-
dancy. In the Fault-Tolerant MultiProcessor (FTMP) [6], com-
putations are done on triplicated processors/memories con-
nected by redundant common serial buses, and its quad-
redundant clocks use bit-by-bit voting in hardware on all
transactions over these buses. C.vmp [18] is also a TMR
system which traded performance for reliability by switching
between TMR mode with voting and independent modes under
program control. In [22], an optimal TMR structure to recover
from a transient fault was shown to extend significantly the
lifetime of a small system in spite of its requirement of
reliable voter circuits. The authors of [3] propdsed a modular
TMR multiprocessor to increase reliability and availability
by using a retry mechanism to recover transient faults, and
switching between TMR and dual-processor modes to isolate
a permanent fault. A simple multiple-retry policy (retry a
pre-specified number of times)-also’ used to discriminate a
permanent fault-was employed there. This policy can tolerate
multiple faults only by treating them as a sequence of single
faults with repair between fault occurrences, thus requiring
freqbent voting for effective fault detection. A TMR failure
caused by near-coincident faults in different modules must
also be detected and recovered. The effect of dependent
faults inducing a TMR failure wa? eliminated by periodic
resynchronization at an optimal time interval [7]. However,
the fault model of [7] and [22] did not include the possibility
of permanent faults for which resynchronization is no longer
effective.

In addition to the use of spatial redundancy with fault
masking or reconfiguration, time redundancy can be applied
effectively to recover from transient faults. Such recovery
techniques are classified into instruction retry [lo], program

0018-9340/94$04.00 0 1994 IEEE

- ~~ ______ - _

mailto:kgshin@eecs.umich.edu

1152 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 10, OCTOBER 1994

rollback [161, program reload and restart with module replace-
ment. Several researchers attempted to develop an optimal
recovery policy using time redundancy, mainly for simplex
systems. Koren [9] analyzed instruction retries and program
rollbacks with such design parameters as the number of retries
and intercheckpoint intervals. Berg and Koren [2] proposed an
optimal module switching policy by maximizing application-
oriented availability with a pre-specified retry period. Lin and
Shin [lo] derived the maximum allowable retry period by
simultaneously classifying faults and minimizing the mean
task-completion time.

The main intent of this paper is to develop an approach
of combining time and spatial redundancy by applying time
redundancy to TMR systems. (Note that spatial redundancy
is already encapsulated in the TMR system.) When a TMR
failure-failure to establish a majority due to multiple-module
faults-is detected at the time of voting, or wherl a faulty
module, even if its effects are masked, is identified, the
TMR system is conventionally reconfigured to replace all
three or just the faulty module with fault-free modules. If
the TMR failure had been caused by transient faults, sys-
tem reconfiguration or Replacement of Hardware and Restart
(RHWR), upon detection of a TMR failure, may not be
desirable due to its high cost in both time and hardware.
To counter this problem, we propose to, upon detection of a
TMR failure, Re-execute the corresponding task on the Same
Hardware (RSHW) without module replacement. Instruction
retry intrinsically assumes almost-perfect fault detection, for
which TMR systems require frequent voting, thereby induc-
ing high time overhead. However, the probability of system
crash due to multiple-channel faults is shown in [17] to be
insignificant for general TMR systems, even when $e outputs
of computing modules are infrequently voted on as long as
the system is free of latent faults. Unlike simplex systems,
program rollback is not adequate for TMR systems due to
the associated difficulty ctf checkpointing and synchronization.
So, we consider re-execution of tasks on a TMR system
with infrequent voting. For example, since more than 90%
of faults are knawn p~ be nonpermanent-as few as 2% of
field failures are caused by permanent faults [14]-simple
re-execution may be an effective means to recover from
most TMR failures. This may reduce 1) the hardware cost
resulting from the hasty elimination of modules with transient
faults and 2) the recovery time that would otherwise increase,
Le., as a result of system reconfiguration. Note that system
reconfiguration is time-consuming because it requires the
location and replacement of faulty modules, program and data
reloading, and resuming execution.

We shall propose two RSHW methods for determining when
to reconfigure the system instead of re-executing a task without
module replacement. The first (nonadaptive) method is to
determine the maximum number of RSHW’s allowable (MNR)
before reconfiguring the system for a given task according
to its nominal execution time without estimating the system
(fault) state-somewhat similar to the multiple-retry policy
applied to a general rollback recovery scheme in [20]. By
contrast, the second (adaptive) method 1) estimates the system
state with the likelihoods of all possible states and 2) chooses

the better of RSHW or RHWR based on their expected costs
when the system is in one of the estimated states. RHWR is
invoked if either the number of unsuccessful RSHW’s exceeds
the MNR in the first method or the expected cost of RSHW
gets larger than that of RHWR in the second method. For the
second method, we shall develop an algorithm for choosing
between RSHW and RHWR upon detection of a TMR failure.
We shall also show how to calculate the likelihoods of all
possible states, and how to update them using the RSHW
results and the Bayes theorem.

The paper is organized as follows. In the following section,
we present a generic methodology of handling TMR failures,
and introduce the assumptions used. Section I11 derives the op-
timal voting interval (X,) for a given nominal task-execution
time X. The MNR of the first method and the optimal recovery
strategy of the second method are computed for given X.
We derive the probability density function (pdf) of time to
the first occurrence of a TMR failure, the probabilities of all
possible types of faults at that time, transition probabilities
up to the voting time, the costs of RSHW and RHWR, and
the problem of updating likelihoods of the system state and
the recovery policy after an unsuccessful RSHW. Section IV
presents numerical results and compares two recovery methods
of RSHW and RHWR. The paper concludes with Section 5.

11. DETECTION AND RECOVERY OF A TMR FAILURE

Detection and location of, and the subsequent recovery
from, faults are crucial to the correct operation of a TMR
system, because the TMR system fails if either a voter fails
at the time of voting or faults manifest themselves in multiple
modules during the execution of a task. The fault occurrence
rate is usually small enough to ignore coincident faults which
are not caused by a common cause, but noncoincident fault
arrivals at different modules are not negligible and may lead
to a TMR failure.

Disagreement detectors which compare the values from the
different voters of a TMR system can detect single faults,
but may themselves become faulty. FTMP 161, JPL-STAR [l],
and C.vmp [18] are example systems that use disagreement
detectors. In FTMP, any detected disagreement is stored in
error latches which compress fault-state information into error
words for later identification of the faulty module(s). System
reconfiguration to resolve the ambiguity in locating the source
of a detected error is repeated depending on the source of
the error and the number of units connected to a faulty bus.
Two fault detection strategies-hard failure analysis (HFA)
and transient failure analysis (TFA)-are provided according
to the number and persistency of probable faulty units. These
strategies may remove the unit(s) with hard failures or update
the fault index (demerit) of a suspected unit. Frequent voting
is required to make this scheme effective, because any faulty
module must be detected and recovered before the occurrence
of a next fault on another module within the same TMR
system.

Voting in a TMR system masks the output of one faulty
module, but does not locate the faulty module. One can,
however, use a simple scheme to detect faulty modules and/or

1153 SHIN AND KIM: A TIME REDUNDANCY APPROACH TO TMR FAILURES USING FAULT-STATE LIKELIHOODS

processor 3

Fig. 1. The structure of a TMR system with two voters and a comparator.

voter. Assuming that the probability of two faulty modules
producing an identical erroneous output is negligibly small,
the output of a module-level voter becomes immaterial when
multiple modules are faulty [8]. A TMR failure can then be
detected by using two identical voters and a self-checking
comparator as shown in Fig. 1. These voters can be imple-
mented with conventional combinational logic design [2 3] .
The comparator can be easily made self-checking. for its
usually simple function: for example, a simple structure made
of two-rail comparators in [l 13 for each bit can be utilized
for its high reliability and functionality. q i s TMR structure
can also detect a voter fault. When a TMR failure or a voter
fault occurs, the comparator can detect the mismatch between
the two voters that results from either the failure to form a
majority among three processing modules, or a voter fault.
(Note that using three voters, instead of two, would not make
much difference in our discussion, so we will focus on a
two-voter TMR structure.)

If the comparator indicates a mismatch between two voters
at the time of voting, an appropriate recovery action must
follow. Though RHWR has been widely used, RSHW may
prove more cost-effective than RHWR in recovering from most
TMR failures. To explore this in-depth, we will characterize
RSHW with the way the MNR is determined. The simplest
is to use a constant number of RSHW's irrespective of the
nominal task-execution time and the system state which is
defined by the number of faulty modules and the fault type(s).
Taking into account the fact that the time overhead of an
unsuccessful RSHW increases with the nominal task-execution
time X, one can determine the MNR simply based on X,
without estimating the system state. A more complex, but more
effective, method is to decide between RSHW and RHWR
based on the estimated system state. Since the system state
changes dynamically, this decision is made by optimizing a
certain criterion that is dynamically modified with the addi-
tional information obtained from each unsuccessful RSHW.
In this adaptive method, the probabilities of all possible states
will be used instead of one accurately-estimated state. Upon
detection of a TMR failure, the expected cost of RSHW is
updated and compared with that of RHWR. The failed task
will then be re-executed, without replacing any module, either
until RSHW recovers from the corresponding TMR failure or
until the expected cost of RSHW becomes larger than that
of task execution.' As the number of unsuccessful RSHW's

increases, the possibility of permanent faults having caused
the TMR failure increases, which, in turn, increases the cost
of RSHW significantly.

Throughout this paper, we assume that the arrival of perma-
nent faults and the arrival and disappearance of nonpermanent
faults are Poisson processes with rates A,, A,, and p, respec-
tively.

111. O m A L RECOVERY FROM
A TMR FAILURE USING RSHW

The Optimal Voting Interval

Let X, (2 5 z 5 n) be the nominal task-execution time
measured in CPU cycles between the (i - 1)th and ith voting,
and let XI be that between the beginning of the task and the
first voting, in the absence of any TMWvoter failure. As shown
in Fig. 2, for 1 5 i 5 n let w, represent the task-execution time
from the beginning of the task to the first completion of the
zth voting possibly in the presence of some module failures,
and let W, = E(w,). Then E(w,) = W, is the expected
execution time of the task. Upon detection of a TMR failure,
let p and q be tQp probabilities of recoverying a task with
RSHW and RHW#, respectively, where p + q = 1. Assuming
that the time overhead of reconfiguration is constant T,, W, is
expressed as a recursive equation in terms of W,, 1 5 i 5 n.
Let F,(t) (2 5 i 5 n) be the probability of a TMR failure
in t units of time from the system state at the time of the
(j - 1)th voting, and let F l (t) be that from the beginning of
the task. The probability of a recovery attempt (i.e., RSHW or
RHWR) being successful depends upon F,(t). When a TMR
failure is detected at the time of first voting (i.e., it occurred
during the execution of the task portion corresponding to XI) ,
the system will try RSHW (or RHWR) with probability p
(or q) to recover from the failure. This process is renewed
probabilistically for the variable w1 which is the actual task-
execution time corresponding to the nominal task-execution
time X1. Thus,

with probability 1 - Fl(X1)
w 1 = X l + W l with probability F1 (X1)p

{X1 X1 + T, + w1 with probability Fl(X1)q

where T, is the setup time for system reconfiguration.
Let Tu be the time overhead of voting that is in practice

negligible. The above equation is also renewed for all w,'s
(2 5 i 5 n) after each successful recovery. Hence,

w, = w,-1 + V, + T,, for 2 5 a 5 n,

where V, is defined as the actual task-execution time between
the (z - 1)th and zth votings, Le., VI = w1 and

with probability 1 - F,(X,)
V , = X , + w , with probability F,(X,)p

{ X a X, + T, + w, with probability F,(X,)q.

From the above equations, the following recursive expressions
are derived for 2 5 i 5 n:

' This procedure is described in the algorithm of Fig. 4.

1154

ep=* TMR failure

.-Tc-.- v, v, Y c-1: + E=27 0 : voting

W , Dl

Fig. 2. Graphical explanation for V, and w, for 1 5 z 5 n.

n 2 3 9 24 42 61

Applying thi? recursively n - 1 times, we can get:

The optimal voting frequency is derived by minimizing Wn
with respect to n and Xi , 1 5 i 5 n, subject to

n

y x i = x .
Y

i=l

If all inter-voting intervals are assumed to be identical then
the constant voting interval is X i = X , = < for 1 5
i 5 n, where an optimal value of n must be determined by
minimizing (3.1). Examples of n for a given X with typical
values of p,q ,T , , and T, are shown in Table I. The voting
points can be inserted by a programmer or a compiler.

Predetermination of Nonadaptive RSHW's

In the first method, we determine a priori the maximum
number of RSHW's (MNR), k,, based on X without estimat-
ing the system spte. The associated task will be re-executed
up to IC, times. As X increases, the effect of an unsuccessful
RSHW becomes more pronounced; that is, the possibility
of successful recovefy with RSHV (instead of RHWR) will
decrease with X due to the increased rate of TMR failures,
and the time overhead of an unsuccessful RSHW also increases
with X while the time overhead of RHWR remains constant.
So, IC, decreases as X increases.

Let C l (k , X) be the actual timekost of task execution in
the presence of up to IC RSHW's for a task with the nominal
execution time X, which can be expressed as:

k - 1

c1 (k , X) = xp; + 2 x p ; p : + . . . + kX J-J PZP!
n=l

(3.2)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 10, OCTOBER 1994

TABLE I1
k , vs. X FOR (P, F,R) = (0.8,0.1,0.8)

X / T , (hr.) 111 2ll 311 411 511

where p r (p 2) and F l (X) denote the probability of the nth
RSHW becoming successful (unsuccessful) and the probability
of a TMR failure during X after system reconfiguration,
respectively, where p: + p: = 1 , 1 5 n 5 k . In fact,
p: and p: cannot be determined without knowledge of the
system state after the (n - 1)th unsuccessful RSHW, which
is too complicated to derive Q priori. We will approximate
these probabilities using the following useful properties of
a TMR system. Since the probability of permanent faults
having caused the TMR failure increases with the number of
unsuccessful RSHW's, p; is monotonically decreasing in n:

Though p i and R (n) p:+'/p: depend upon X and fault
parameters, it is assumed for simplicity that p i is given a priori
as a constant P and R(n) is a constant R for all n. Cl (k , X)
of (3.2) is then modified in terms of P and R:

k-1 m-1

C l (k , X) = m X n (1 - P R n - l) P R m - l
m=l n=l

k-1

+ kX (1 - PRn-')
n=l

+ (Tc +) f i (1 - PRn-1). (3.3)
1 - F 1 (X) n=l

The cost of RHWR, denoted by C z (X) , is derived by using
recursive equations:

(3.4)

Now, k, can be determined as the iqteger that minimizes
C l (k , X) subject to C l (k , X > < C 2 (X) . Example values of
IC, for typical values of P and R are shown in Table 11.

Adaptive RSHW

In this method, the system chooses, upon detection of a
TMR failure, between RSHW and RHWR based on their
expected costs. RSHW will continue either until it becomes
successful or until the expected cost of the next RSHW
becomes larger than that of RHWR. The system state is
characterized by the likelihoods of all possible states because
one can observe only the time of each TMR failure detection,
which is insufficient to accurately estimate the system state.
The outcome,of one RSHW, regardless whether it is successful
or not, is used to update the likelihoods of states in one of
which (called a prior state) the RSHW started. The possible
states upon detection of a TMR failure can be inferred from
the posterior states which are the updated prior states using
the RSHW result and the Bayes theorem.

SHIN AND KIM: A TIME REDUNDANCY APPROACH TO TMR FAILURES USING FAULT-STATE LIKELIHOODS 1155

Fig. 3. A simplified Markov-chain model for a TMR system.

Unlike a simplex model, there are too many possible states
and events to analyze a TMR system accurately. We will
thus use the simplified Markov-chain model in Fig. 3 to
derive the state probabilities and transition probabilities in
a TMR system. The model consists of six states which are
distinguished by the number of permanent faults and that
of nonpermanent faults, where two- and three- fault states
are merged into one state due to their identical effects in
our analysis. In Fig. 3, the transitions over the bidirectional
horizontal lines result from the behavior of nonpermanent
faults and the transitions over' the unidirectional vertical lines
are caused by the occurrence of permanent faults. Note that
even occurrences of near-coincident faults can be represented
by sequential occurrences with slightly different interarrival
times. The model, thus, includes only transitions between
neighboring states-any transition from a state due to multiple
faults occurs in two steps through one of its neighboring states.

Some faults may disappear without affecting the execution
of a task. This happens when the latency of a fault is greater
than its active duration, i.e., it will not manifest itself. Note
that the occurrence of an error in a module during the task
execution may produce an erroneous output for the task, even
if the fault which had induced the error disappeared before
producing the final output of the task. In other words, a
transient fault may have permanent effects on task execution.*

The optimal recovery algorithm based on the adaptive
method in Fig. 4 can be illustrated as follows. Upon detection
of a TMR failure, the first step is to derive the probabilities of
all possible states at time X f evolved from each prior state.
Let Tj be the time when the TMR system moved to the failure
state from prior state i during [O , X f] , where X f is the time
of detecting a TMR failure @e., a voting time). Occurrence of
a TMR failure is then represented by an event (Ti < X f)
for prior state i. We want to calculate the probabilities of
all possible states T ; (X ~) at voting time X f evolved from
prior state i, which are actually conditional probabilities given
the observed event (Tj 5 X f) . They can be calculated from
the probabilities of all types of TMR failures 7ri(Tj) at time
Tj and the transition probabilities Pm,(Xf - Tj) during the

*In fact, this problem can be eliminated by resynchronizing the processors
after a transient fault is detected [21]. This, however, requires frequent
voting and additional mechanisms for detecting errors in each processor and
resynchronizing the processors.

f. ..

remaining task-execution time, X f - Tj. The probabilities of
all possible states are thus

where subscripts i, m and n indicate the prior state, the state
at time Tj, and the state at the time, X f , of detecting a TMR
failure, respectively. As mentioned earlier, a voting failure may
result from a voter fault or multiple-module faults. Multiple-
module faults can be classified based on the number of
modules with permanent faults: Type-I, Type-11, and Type-I11
failures represent zero, one, and more than one permanent-fault
module, respectively, where all possible states of each type
are listed in Fig. 3. Let S(z, y) be the state with z permanent-
fault modules, y nonpermanent-fault modules, and 3 - z - y
nonfaulty modules.

Although there are ten different states, we only need to
consider six of them by merging 1) S(O,3) into S(O,2), 2)
S(1,2) into S(1, l), and 3) both S(2,l) and S(3,O) into
S(2,O). This merger of states simplifies the model of a TMR
system without losing model accuracy, because:

by modifying the transition rates, one can make the
simplified Markov-chain model in Fig. 3 represent a TMR
system very accurately, and
the merger is based on a realistic assumption that simulta-
neous occurrence of faults in different processor modules
is highly unlikely.

Moreover, the merger does not change the analysis of
a TMR failure because merged states have similar effects
on the TMR failure as compared to the original states. For
example, the merged states induce the same type of TMR
failure, where the "type" is determined by the number of
permanent-fault modules. There are four possible states,
{S(O,O), S (0 , I), S(0 ,2) , S (0 ,3)) at time X f , which led
to Type-I failures (i.e., it was S(0 , l), S(0,2), or S(0 ,3)
at time Tj, because a nonpermanent fault might disappear
after inducing error(s).). Type-I1 and Type-I11 failures
have three possible states, {S(l,O),S(l, l),S(l,2)} and
{S (2 ,0) , S(2, l), S(3 ,0)) , respectively, at time Tj and X f .

S(z,y) where
i = 42+y. Then, the set of all possible states after the merging

For notational simplicity, let state S;

1156 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 10, OCTOBER 1994

is {Si : i = 0,1 ,2 ,4 ,5 ,8}; out of these, {S1,Sp,S5,Sg} are
the set of possible fault states transited from SO, SI, and S2 at
time Tf", T j , and Tj , respectively. S4 and S5 may change to
S5 (or s8) at T; (or T:), and S8 remains unchanged due to
the persistence of a permanent fault.

Let a path denote the transition trajectory between a pair of
states. Since there are usually more than one path between
a given pair of nodes, each of these paths is assigned an
ID number. From the simplified model in Fig. 3, Tj is the
minimum-time path from Si to any type of TMR failure. Let
t3 be the time taken from Si to a TMR failure via path j . Then,

the pdf s of all subpaths that make up path j . The pdf of a
subpath between two states Sj, and Sjk+l is obtained by using
the distribution of sojourn time t j , of Sj, with several exits
in the Markov chain model (Fig. 3):

Ti - - minj [tj], where the pdf of ti is calculated by convolving

(3.6)
where { E j , } represents the set of all outgoing arcs of Sj, .
Then, the pdf of ti is

ft, (t) = fijl (t) * fjlj* (t) * . . . * f3,"
where path j is composed of subpaths {ijl,jlj2, . . . , j fm}
and S, must be one of possible fault states: S,,, E
{SI , SZ , S4 , SS , &}. (When the inter-arrival time of events
such as fault occurrence, fault disappearance, and fault latency,
is not exponentially distributed, we need a semi-Markov
chain model in place of a Markov chain model.) Let J;
represent the set of all paths to a fault state S, from Si. The
likelihood of a fault state S, at time Tj is, then, equal to cjEJA F'rob(ti = Tj) , which is obtained by:

YEIE'I

where Ei is the set of all paths to all possible fault states

evolved from Si, i.e., Ei = u J k and m E {1,2,4,5,8} .
The probabilities of S1 and S2 leading to Type-I failure
are computed based on the behavior of nonpermanent faults,
Le., depending on whether or not a nonpermanent fault,
after having induced some error(s), is still active when a
second nonpermanent fault occurs. Likewise, the probabilities
of 5'4 and S5 leading to Type-I1 failure are computed by the
behavior of a nonpermanent fault, if it had occurred earlier than
permanent fault(s). When an intermittent fault is considered,
the fault state must be divided by fault active and fault benign
states as in [15], which makes the problem too complicated
to be tractable. The numerical examples of FT;(X) and the
mean of Tj (i = 0,4) for several X are given in Figs. 5 and
6, in which analytic results are compared against the results
obtained from Monte-Carlo simulations.

m

In addition to fTE and T;, the transition probabilities
P,, from S, to S: during X f - Tj must be derived in
order to obtain the likelihood of every possible state at the
time of voting (failure detection), X f . Although the matrix
algebra using the transition matrix or Chapman-Kolmogrov
theorem can be applied to give accurate expressions, we
will use a simplified method for computational efficiency
at an acceptably small loss of accuracy. For the transition
probabilities from Tj, we need not consider subsequent errors
but can focus on only those states useful in choosing between
RSHW and RHWR.

Observe that the Occurrence rate, A,, of permanent faults
is much smaller than both the appearance and disappearance
rates of nonpermanent faults. Using this observation, one
can analyze the behavior of permanent faults separately from
that of nonpermanent faults. The transition probabilities due
to the occurrence of permanent faults are represented by
Pm,(Xj - Tj) for sm E { S (~ i , ~)) , s , E {S(Z~,V) : xz >
q}, that is, Pmn(Xf - Tj) = 0 for S, E {S(zl,y)},S, E
{S(Q, y) : $2 < XI}, because of the persistence of permanent
faults. Although these probabilities depend upon 7rL(t) Vt,
Tj 5 t 5 X f , they are approximated by using only the prior
probabilities of source states, 7r& (Tj). This approximation
causes only a very small deviation from the exact values
because the Occurrence rate of permanent faults is usually very
small as compared to the other rates. For example, consider
Pl, for n 2 4, i.e., transitions from S1 due to the occurrence of
permanent fault(s). The corresponding transition probabilities
are derived from the model in Fig. 3 in terms of the pdf's of
subpaths between two states. Let T = X f - Tj, then

T

pl8(T) = 1 F58(T - t)flS(t)dt

. l T (1 - F58(T - t))flS(t)dt.

The probability a:(Tj) for S1 is thus reduced to (1 -
F15(T))~i (T")). Likewise, transitions from other source states
due to the occurrence of permanent faults can be derived.
Consequently, the prior probabilities are transformed into (1 -

respectively. Using these transformed prior probabilities, we
will derive the transition probabilities based only on the
behavior of nonpermanent faults.

Considering only the behavior of nonpermanent faults di-
vides the above model into a two-state model (5'4, S5} and
a three-state model {So, SI, S2}, as shown in Fig. 3. The
transition matrix of the three-state model {SO, SI, Sa} is
derived by 1) using the Laplace transform which reduces

F's (T)).; (Tj) i (1 - F48 (T))r i (Tj) i and (1-F58 (T))rd (Tj) 1

SHIN AND KIM: A TIME REDUNDANCY APPROACH TO TMR FAILURES USING FAULT-STATE LIKELIHOODS 1157

the linear differential equations of three states to algebraic
equations in s, 2) solving the algebraic equations, and 3)
transforming the solution back into the time domain.

The linear differential equation of {SO SI S2} with only the
effects of nontransient faults is lI(Xf) = T (X f - Tj)lI(Tj),
where

2 q .
-3Xn CL

T = b X n -2Xnp
2Xn -2p

The Laplace transform of T is:

s + 3Xn -/I 0

-2Xn s + 2 p
A = [;3Xn s + 2Xnp - 2 p] .

The solution requires the inverse of A (found at the bottom
of the page).

Let the roots of s2 + (5Xn + 3p)s + 6Xg + 6 x 4 + 2p2 be
a and p, then aij, the ijth element of A, can be obtained by
partial fraction expansion:

C (i j) 2 C (i j) 3 +-
s + a s + P '

C (i j) l I Q , . . - -
23 -

Since c(+ and c(ij)3 are conjugates, c(ij12 = k i j (a l p) if
c(ij)3 = kij(Pl a). The effect of permanent faults changes the
initial probabilities of {Sol SI SZ): to:

n'(Tj) = [A o ~ o (T j) , A i ~ i (T j) , A Z X Z (~ ' ~)] ~ ~

where A0 = (1 - F O ~ (T)) ~ A ~ = (1 - F I ~ (T)) ~ A ~ =
(1 - F25(T)). Thus, the ith column of the 3 x 3 transition
matrix P(T) reduces to:

(3 + k3i(a1 p 1 e - a ~ + k3i(pl a)e-PT)Ai_l 1 1

($ + kli (a, p)e-aT + kli (pl a)e-PT)A;-l

(9 + k2i(al P)e-aT + k2i(pl a)e-PT)A;- l

x2 + (2Xn + 3p)x + 2p2
431 - x)

4 Y - x)

1
where

kll(X1Y) =

k22(x1 Y) =

1

x2 + (3Xn + 2 p) ~ + 6Xnp
1

x2 + (5Xn + P)X + 6 X i
k33(xi Y) =

X (Y - x)
1

The above equations indicate that the coefficients of exponen-
tials in Ao, A I , and A2 include the effects of the occurrence
of permanent fault(s) on the prior probabilities. Likewise, the
transition matrix of a two-state model for (S4, Ss} can be
derived from the matrix found at the bottom of the page where
A4 = 1 - F48(T) and A5 = 1 - F58(T) also represent the
effects of permanent-fault occurrences on the transitions to
$3. These transition matrices and probabilities (resulting from
the occurrence of permanent faults) can describe all possible
transitions in the simplified model of Fig. 3.

When the TMR system is in S2, S5 or s8 at time Xf,
RSHW will be unsuccessful again due to multiple active faults
(in more than one module). If it is not in those states at
time X f due to disappearance of active fault(s) after inducing
some error(s), the system moves to a recoverable state by
RSHW. Let FT;(X) be the probability of a TMR failure
evolved from Si during the execution time X, where FTz is the
probability distribution function of 7';. Since exact knowledge
of the system state is not available, we estimate the state
probabilities, which are then used to calculate the expected
cost of a single RSHW as follows:

m . -7

where x ; (O) is the probability that the state before starting
one RSHW (upon detecting a TMR failure) is Si, Le., the
probabilities of the present states become those of the prior
states for the next RSHW. The expected cost of RHWR is
obtained similarly to (3.4):

m , ..jJ

(3.9)

When RSHW is unsuccessful or a voting failure occurs
again, the (prior) state probabilities are updated with the

1158 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 10, OCTOBER 1994

additional information obtained from the RSHW using the
Bayes theorem. The observed information tells us that a
TMR failure has occurred again during the current execution.
(Note that the TMR failure detection time during the current
execution is X f .) As a result, the prior probabilities of all
possible fault states for the (k + 1)th RSHW (T"') are
renewed from those of the kth RSHW (T!):

= T: Prob (a TMR failure during X f from Si)
z Prob (a TMR failure during X,) '

(3.10)
where Prob (a TMR failure during X,) = xi.! Prob
(a TMR failure during X f from Si) = xiEST afFT; (X f) .
From (3.10), one can see that the probability of the TMR
system being in a permanent-fault state increases with each
unsuccessful RSHW, which, in turn, increases the chance of
adopting RHWR over RSHW upon detection of next TMR
failure. Using the above updated state probabilities, we can
get the conditional probabilities of all states upon detection of
a TMWvoting failure.

When RSHW is successful, one can likewise update the
probabilities of possible states, which will then be used to
guess the prior state of the next voting interval.

When the hardware cost is high and the time constraint
is not stringent, one may do the following. Since the fault
occurrence rate is much smaller than the disappearance rate
of (existing) nonpermanent faults, we may wait for a certain
period of time (called a back-ofStime) in order for the current
nonpermanent fault(s) to disappear before task re-execution.
An optimal back-off time is determined by minimizing the
expected time overhead. When a task is re-executed without
any back-off, the cost of one RSHW is equal to (3.8). When
re-execution starts after backing off for T units of time, the
cost changes (due to the change of prior states):

T, + X
C l (T) = x + T +

- FTfo(x)

where .i(r) = Fji(r)ri(O).
j E S T

The optimal back-off time is obtained by minimizing C ~ (T)
with respect to T .

Iv . NUMERICAL RESULTS AND DISCUSSION

A system with three replicated processing modules, two
voters, and a comparator is simulated to compare the proposed
method (called Method 1) with an alternative which is based
on RHWR (called Method 2). Upon detection of a TMR
failure, Method 1 will decide between RSHW and RHWR
according to their respective costs. Method 2, however, will
reconfigure the TMR entirely with a new healthy TMR or
partially with healthy spare modules following an appropriate
diagnosis. If a nonpermanent fault does not disappear during
the diagnosis, it will be treated as a permanent fault and
replaced by a new, nonfaulty spare. We assume that (Al)

derive r , (X)

re-execute

ly-?,
FiSHW

-0.1 continue execution

Fig. 4.
state and comparing the costs of RSHW and RHWR.

Algorithm to recover from a TMR failure by estimating the system

TABLE 111
PARAMETER VALUES USED IN SIMULATIONS, ALL MEASURED IN HOURS

200 3000 O.OOO1 0.002 50

an unlimited number of tasks with the same nominal task-
execution time are available to keep the running module
busy, which simplifies the description of system workload,
and (A2) there are an unlimited number, of spares available.
The performances of these two methods are characterized by
the overhead ratio:

E - X
OVR(X) - X '

where E is the real execution time (including the RSHW
and/or RHWR overheads) of a task whose nominal execution
time is X .

We ran simulations under the fault generation process with
the parameters as given in Table 111, where the asterisk (*)
indicates a parameter varied while the others are fixed, in order
to observe the effects of the parameter on OVR in both meth-
ods. Since fault occurrence/disappearance rates are difficult to
estimate on-line, some experimental data or numerical data
based on a model reflecting the maturity of desigdfabrication
process, the environmental effects, operating conditions, and
the number and ages of components, can be used [19].

In Figs. 5 and 6, the probabilities of a TMR failure and
the failure times from So and Sq are computed from the
Markov-chain model and simulations, and are then compared.
The simulation and modeling results are very close to each
other. The modeling analyses proved to be very effective in
determining when and how to choose between RSHW and
RHWR under various conditions, as shown in Figs. 7-11.

The results obtained while varying X from 10 to 100 hours
with T, = 0.15X, are plotted in Figs. 7-9. The OVR's of
Methods 1 and 2 with the optimal number of votings are
compared in Fig. 7. The difference between the OVR's of
Method 1 and Method 2 increases significantly with X . When

SHIN AND KIM A TIME REDWANCY APPROACH TO TMR FAILURES USING FAULT-STATE LIKELIHOODS 1 I59

0.7

0.6

0.5
Prob.

(/Freq.) 0.4
of

TMR 0.3
failure

0.2

0.1

n

. ..e '

. "'1 P:SO -
F:SO +- .' ' . '.O . . P:S4 - ~ 0'' '

F:S4 . o . - *'. . (
. . . e" '

10 2p 30 40 50 60 70 80 90 100

X: nominal computation [hour]

Fig. 5. ProbabilityFrequency of a TMR failure obtained from the
Markov-chain model (PSO=from SO and P:S4=from S4)/from simulations
(F:SO=from SO and F:S4=from S4).

60 -

50 -
TMR 40 -

failure
occurrence

t i m e 30 -
20 -

P:SO -
F:SO -
P:S4 ' 1 ' -
F:S4 -

10 20 30 40 50 60 70 80 90 100

X: nominal computation [hour]

Fig. 6. Mean TMR failure time (E[Tfo]) obtained from analysis (P:SO=from
So and PS4=from S4), and from simulations (F:SO=from SO and F:S4=from
s4).

50 I I I I I I I I

45 - Method 1 +-
Method 2

-

40 -

Overhead
ratio

10 20 30 40 50 60 70 80 90 100

X: nominal comput,ation [hour]

Fig. 7. Overhead ratios [%] vs. X for RSHW and RHWR,
with the optimal number of votings for Tu = 0.0005 hour:
(13,34,61,87,110,133,164,181,198,216).

X is small, the OVR's of the two methods are too small
to distinguish, which is due mainly to the small probability

60

50

40

Overhead 3o

20

10

0

ratio

multi +-

one e-

10 20 30 40 50 60 70 80 90 100

X : nominal computation [hour]

Fig. 8.
optimal number of votings.

Overhead ratios [%] vs. X for one voting and multivotings with the

44 54 l Method Method 2 l -e- - A
14

Rat io 4

2 .5 3.i lT----7
1.5 t/

10 20 30 40 50 60 70 80 90 100

X: nominal computation [hour]

Ratio [%] of the number of reconfigurations to the total number of Fig. 9.
simulation runs.

of a TMR failure. Fig. 8 compares the multivoting policy
(with the optimal number of votings) and one voting policy.
Generally, the overhead of a TMR system with infrequent
voting increases significantly as X increases, because the
probability of a TMR failure increases with X ; e.g., if there is
no voting during the task execution, a TMR failure means the
waste of the entire nominal execution time, X . As X increases,
the OVR of a one-voting policy increases more rapidly than
that of multivoting policy. The number of RHWR's-which is
represented by the percentage of RHWR from the total number
of simulations in Fig. 9-will determine the hardware cost of
spares used. The increase in this percentage is much larger in
Method 2 than Method 1, since the number of TMR failures
increases with X , and Method 1 can recover from most TMR
failures with RSHW.

The second comparison is made while varying !!',-the
resetting time for system reconfiguration-from 2.5 to 12.5

1160 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 10, OCTOBER 1994

Method 1 +-
Method 2 -e-

11.5 -

Overhead
rat io

lo t 1
9 . 5 +

2.5 5 7.5 10 12.5

Overhead
rat io

Method 1 +-
Method 2 -e- -

-

-

8 ‘ 1 I I I
5 10 15 20 25

T,: resetting time [hour] Ratio of occurrence rates (npflpf)
Fig. 10. Overhead ratios [%I vs. T, for RSHW and RHWR. Fig. 11,

and permanent faults.
Overhead ratios [%I for different Occurrence rates of nonpermanent

hours for X = 50 hours, and the results are plotted in Fig.
10. A larger resetting time generally results in a larger OVR. V. CONCLUSION
Increasing T, greatly affects the performance of Method 2.
But, it has little influence on the OVR of Method 1, since the
system recovers from most TMR failures with RSHW, which
has nothing to do with T,.

The third comparison in Fig. 11 is made while varying 5
from 5 to 25, where A, is fixed at 0.005 /hr, and X = 50 hours
and T, = 7.5 hours. The OVR’s of both methods decrease with

but the magnitude of decrease in Method 1 is larger than
A, ’
that in Method 2. This is because the probability of a TMR
failure decreases as A, decreases with A, fixed, and because
the probability of successful RSHW increases with 5.

We simulated the proposed and other schemes for lo5
units of time with the fault parameters of Table I11 for each
comparison (of the mean overhead ratios of different schemes).
The fault parameters are assumed not to change during the
simulation. Since the estimation of system states depends upon
the fault parameters, they must be estimated first. This problem
can be sqlyed by assuming the parameters to be time-varying
and estimating them on-line with certain adaptive methods
which, in turn, require more samples.

In this paper, we have proposed a strategy for recovering
TMR failures using two different methods that determine
when and how to apply RHWR. Both methods are shown
to outperform the conventional method based solely on recon-
figuration. This finding is consistent with the fact that most
faults are nonpermanent, so simple re-execution can recover
from nonpermanent faults and the TMR structure can mask
the effects of one faulty module.

The distinct characteristic of the proposed strategy is that
it uses the estimated state of a TMR system even with
incomplete observation of system states. Detection of a TMR
failure and/or an unsuccessful RSHW does not always call
for reconfiguration (RHWR) but requires us to derive and
compare the expected costs of reconfiguration and one ad-
ditional RSHW. Most TMR failures are represented by using
a simplified Markov-chain model, and the TMR failure time
and the probability of another unsuccessful RSHW are also
analyzed with the model. One can therefore conclude that
combining time and spatial redundancy appropriately can be
effective in handling component failures.

APPENDIX
LIST OF SYMBOLS

X : Nominal task-execution time in the absence of failures, Le., the amount of pure
computation for a task measured in CPU cycles without including repetition of
part of the task due to failures.

X i : Nominal execution time for the task between the ith and (i - 1)th voting.
W,(X) : Expected execution time of a task whose nominal execution time is X .

wi : Actual execution time from the beginning of the task to the first completion

V, : Actual execution time during the interval [Xi - l , X i] .
of the ith voting, where Wi = E(wi) .

p (q) : Probability of recovering a task with RSHW (RHWR), p + q = 1.
T, : Resetting time in case of system reconfiguration.
T, : Time for voting on those variables changed during the previous voting interval.

SHIN AND KIM: A TIME REDUNDANCY APPROACH TO TMR FAILURES USING FAULT-STATE LIKELIHOODS 1161

$($) : Probability of the nth RSHW being successful (unsuccessful).
P : Probability of the first RSHW being successful.

R : Ratio of the probability of success at the (n + 1)th RSHW to that at the nth RSHW.
IC, : Allowable maximum number of RSHW’s.
X f : Time of detecting a TMWvoting failure.
TJ : Time to a TMR system failure occurred first after starting the system in state S,.

FTt (X) : Probability of a TMR failure from S, during the execution time X (fT; pdf of TJ).

t: : Time of TMR failure occurrence via path J from Sa (f,. pdf of t;).

S(z, y) : State with z permanent faulty processor(s), y nonpermanent faulty processor(s),
and (3 - z - y) nonfaulty processor(s) (S, = S(z, y) such that i = 42 + y).

m

Jh : Set of all paths to a fault state S, from an initial state Sa (E z = u Jh).
~ ~ (0) : Probability of a prior state before the first RSHW.

T ~ (T ;) : Probability of a fault state S, at time T; from an initial state S,.

P,,(T) : Transition probability from S, to S, during T .
Cl(lc, X) : Expected cost of RSHW with a nominal task-execution time X and MNRA k

C l (X) (C , (X)) : Expected cost of RSHW (RHWR) for X .
F3kJ(k+l) : Distribution of time to move to S3(k+l) from S J k .

{ E J k } : Set of all subpaths emanating from S J k .
A,(A,) : Occurrence rate of nonpermanent (permanent) faults.

1
- : Active duration of a nonpermanent fault.
P

ACKNOWLEDGMENT

The authors would like to thank A. White, C. Meissner,
and F. Pitts of the NASA Langley Research Center, and J.
Smith of the Office of Naval Research for their technical and
financial assistance.

REFERENCES

[I] A. Avizienis and G. C. Gilley, “The STAR (self-testing and repairing)
computer: An investigation of theory and practice of fault-tolerant com-
puter design,” IEEE Trans. Compur., vol. C-20, no. 11, pp. 1312-1321,
Nov. 1971.

[2] M. Berg and I. Koren, “On switching policies for modular redundancy
fault-tolerant computing systems,” IEEE Trans. Comput., vol. C-36, no.
9, pp. 1052-1062, Sept. 1987.

[3] P. K. Chande, A. K. Ramani, and P. C. Sharma, “Modular TMR
multiprocessor system,” IEEE Trans. Indust. Electron., vol. 36, no. 1,
pp. 3 U 1 , Feb. 1989.

[4] B. Cuchi, “Reliability and analysis of hybrid redundancy,” in Dig. Pap.,
FTCS-5, 1975, pp. 75-79.

[5] P. T. de Sousa and F. P. Mathur, “Shift-out modular redundancy,” IEEE
Trans. Comput., vol. C-27, no. 7, pp. 624-627, July 1978.

[6] A. L. Hopkins, Jr., T. B. Smith, 111, and J. H. Lala, “FTMP-A
highly reliable fault-tolerant multiprocessor for aircraft,” Proc. IEEE,
vol. PROC-66, no. 10, pp. 1221-1239, Oct. 1978.

[7] M. Kameyama and T. Higuchi, “Design of dependent-failure-tolerant
microcomputer system using triple-modular redundancy,” IEEE Trans.
Comput., vol. C-29, no. 2, pp. 202-205, Feb. 1980.

[8] D. L. Kiskis and K. G. Shin, “Embedding triple-modular redundancy
into a hypercube architecture,” in Proc. 3rd Conk HCCA, Los Angeles,
CA, Jan. 1988, pp. 337-345.

[9] I. Koren and Z. Koren, “Analysis of a class of recovery procedures,”
IEEE Trans. Comput., vol. C-35, no. 8, pp. 703-712, Aug. 1986.

[lo] T.-H. Lin and K. G. Shin, “An optimal retry policy based on fault
classification,” IEEE Trans. Comput., vol. 43, no. 9, pp. 1014-1025,
Sept. 1994.

[1 11 J.-C. Liu and K. G. Shin, “A RAM architecture for concurrent access and
on-chip testing,” IEEE Trans. Comput., vol. 40, no. 10, pp. 1153-1 158,
Oct. 1991.

[121 J. Losq, “A highly efficient redundancy scheme: Self-purging redun-
dancy,’’ IEEE Trans. Comput., vol. C-25, no. 6, pp. 569-578, June
1976.

[131 R. E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy
to improve computer reliability,” IBM J. Res. Develop., vol. 6, pp.
2 W 2 0 9 , Apr. 1962.

[I41 S. R. McConnel, D. P. Siewiorek, and M. M. Tsao, “The measurement
and analysis of transient errors in digital computer systems,” in Dig.
Papers, FTCS-9, June 1979, pp. 67-70.

[I51 K. G. Shin and Y.-H. Lee, “Error detection process-Model, design,
and its impact on computer performance,’’ IEEE Trans. Comput., vol.
C-33, no. 6, pp. 529-539, June 1984.

[I61 K. G. Shin, T.-H. Lin, and Y.-H. Lee, “Optimal checkpointing of real-
time tasks,” IEEE Trans. Comput., vol. C-36, no. 11, pp. 1328-1341,
Nov. 1987.

[171 K. G. Shin and J.-C. Liu, “Study on fault-tolerant processor for advanced
launch system,” NASA Contractor Rep., June 1990.

[I81 D. P. Siewiorek, V. Kini, and H. Mashbum, “A case study of Cmmp,
Cm*, and C.vmp: Part I-Experiences with fault tolerance in multipro-
cessor systems,” Proc. IEEE, vol. PROC-66, no. 10, pp. 1178-1 199,
Oct. 1978.

[19] D. P. Siewiorek and R. S. Swarz, The Theory and Practice of Reliable
System Design.

[20] J. S. Upadhyaya and K. K. Saluja, “A watchdog processor based general
rollback technique with multiple retries,” IEEE Trans. Soffware Eng.,
vol. SE-12, no. 1, pp. 87-95, Jan.. 1986.

[21] J. F. Wakerly, “Transient failures in triple modular redundancy systems
with sequential modules,” IEEE Trans. Compur., vol. 33, no. 5 , pp.
57C573, May 1975.

[22] - , “Microcomputer reliability improvement using triple-modular
redundancy,” IEEE Trans. Comput., vol. 34, no. 6, pp. 889-895, June
1976.

[23] X.-Y. Zhuo and S.-L. Li, “A new design method of voter in fault-
tolerant redundancy multiple-module multi-microcomputer system,” in
Dig. Pap., FTCS-13, June 1983, pp. 472475.

Bedford, MA: Digital Equipment Corporation, 1982.

1162

Kang G. Shin (S’75-M’78-SM’83-F‘92) received
the B.S. degree in electronics engineering from
Seoul National University, Seoul, Korea in 1970,
and both the M.S. and Ph.D. degrees in electrical
engineering from Comell University, Ithaca, New
York in 1976 and 1978, respectively.

He is a Professor of Electrical Engineering and
Computer Science for the Computer Science and
Engineering Division, The University of Michigan,
Ann Arbor, MI. He also chaired the CSE Divi-
sion for three years beginnine 1991. From 1978 to

1982 he was on the faculty of Rensselaer Polytechnic Institute, Troy, New
York. He has held visiting positions at the U.S. Airforce Flight Dynamics
Laboratory, AT&T Bell Laboratories, Computer Science Division within
the Department of Electrical Engineering and Computer Science at UC
Berkeley, and International Computer Science Institute, Berkeley, CA. He
has also been applying the basic research results of real-time computing to
manufacturing-related applications ranging from the control of robots and
machine tools to the development of open architectures for manufacturing
equipment and processes. Recently, he has initiated research on the open-
architecture Information Base for machine tool controllers.

Dr. Shin has authoredcoauthored over 270 technical papers (about 130
of these in archival joumals) and several book chapters in the area of
distributed real-time computing and control, fault-tolerant computing, com-
puter architecture, robotics and automation, and intelligent manufacturing. In
1987, he received the Outstanding IEEE Transactions on Automatic Control
Paper Award for a paper on robot trajectory planning. In 1989, he also
received the Research Excellence Award from The University of Michigan.
In 1985, he founded the Real-Time Computing Laboratory, where he and his
colleagues are currently building a 19-node hexagonal mesh multicomputer,
called HARTS, to validate various architectures and analytic results in the
area of distributed real-time computing. He was the Program Chairman of the
1986 IEEE Real-Time Systems Symposium (RTSS), the General Chairman of
the 1987 RTSS, the Guest Editor of the 1987 August special issue of IEEE
TRANSACTIONS ON COMPUTERS on Real-Time Systems, a Program Co-Chair
for the 1992 Intemational Conference on Parallel Processing, and served
numerous technical program committees. He also chaired the IEEE Technical
Committee on Real-Time Systems during 1991-93, is a Distinguished Visitor
of the Computer Society of the IEEE, an Editor of IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED COMPUTING, and an Area Editor on Intemational
Joumal of Time-Critical Computing Systems.

IEEE TRANSACTION

8

S ON COMPUTERS, VOL. 43, NO. 10, OCTOBER 1994

Hagbae Kim (S’90-M’94) received the B.S. degree
from in electronics engineering frofn Seoul National
University, Seoul, Korea, in 1988, and the M.S.
and Ph.D. degrees in electrical engineering from the
University of Michigan, Ann Arbor, in 1990 and
1994, respectively

Currently, he is a Research Associate at NASA
Langley Research Center, Hampton, VA. His current
research interests include real-time control systems,
fault-tolerant computing, reliability modeling, and
probability and stochastic processes.

