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Abstract-Failure to establish a majority among the processing 
modules in a triple modular redundant (TMR) system, called a 
TMR failure, is detected by using two voters and a disagreement 
detector. Assuming that no more than one module becomes 
permanently faulty during the execution of a task, Re-execution 
of the task on the Same Hardware (RSHW) upon detection of a 
TMR failure becomes a cost-effective recovery method, because 
1) the TMR s p e m  can mask the effects of one faulty module 
while RSHW can recover from nonpermanent faults, and 2) 
system reconfiguration-Replace the faulty Hardware, reload, 
and Restart (RHWR)-is expensive both in time and hardware. 

We propose an adaptive Wovery method for TMR failures 
by “optimally” choosing eithp RSHW or RHWR based on the 
estimation of the costs involved. We apply the Bayes theorem to 
update the likelihoods of all possible states in the TMR system 
with each voting result. Upon detection of a TMR failure, the 
expected cost of RSHW is derived with these likelihoods and 
then compared with that of RHWR. RSHW will continue either 
until it recovers from the TMR failure or until the expected cost 
of RSHW becomes larger than that of RHWR. As the number 
of unsuccessful RSHW’s increases, the probability of permanent 
fault@) having caused the TMR failure will increase, whicli will, 
in turn, increase the cost of RSHW. Our simulation results show 
that the proposed method outperforms the conventional reconfig- 
uration method using only RHWR under various conditions. 

Index Terms- Spatial and time redundancy, TMR failure, 
permanent and nonpermanent faults, reconfiguration, nominal 
task-execution time, likelihoods, Bayes theorem. 

1. INTRODUCTION 
AULT tolerance is generally accomplished by using re- F dundancy in hardware, software, time, or combination 

thereof. There are three basic types of redundancy in hardware 
and software: static, dynamic, and hybrid. Static redundancy 
masks faults by taking a majority of the results from replicated 
tasks [ 131. Dynamic redundancy takes a two-step procedure for 
detection of, and recovery from, faults [2]. The effectiveness 
of this method relies on selecting a suitable number of spares, 
a fault-detection scheme, and a switching operation. Hybrid 
redundancy is a combination of static and dynamic redundancy 
[4]. A core based on static hardware redundancy, and several 
spares are provided to tolerate faults. Such redundant systems 
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could provide very high reliability depending on the number 
of spares used under the assumption of perfect coverage and 
switching operation. However, new faults may occur during 
the detection of existing faults, and the switching operation 
becomes very complex as the number of spares increases. In 
order to reduce the complexity of switching operation and 
enhance reliability at low cost, self-purging [I21 and shift- 
out [5] schemes were developed, where faulty modules were 
removed but not replaced by standby spares. In these schemes, 
the additional operation required to select nonfaulty spare( s) 
is not needed, thus making the switching operation simpler. 
But it is difficult to implement either a threshold voter or a 
shift-out checking unit which requires comparators, detectors, 
and collectors. 

Triple Modular Redundancy (TMR) has been one of the 
most popular fault-tolerance schemes using spatial redun- 
dancy. In the Fault-Tolerant MultiProcessor (FTMP) [6], com- 
putations are done on triplicated processors/memories con- 
nected by redundant common serial buses, and its quad- 
redundant clocks use bit-by-bit voting in hardware on all 
transactions over these buses. C.vmp [18] is also a TMR 
system which traded performance for reliability by switching 
between TMR mode with voting and independent modes under 
program control. In [22], an optimal TMR structure to recover 
from a transient fault was shown to extend significantly the 
lifetime of a small system in spite of its requirement of 
reliable voter circuits. The authors of [3] propdsed a modular 
TMR multiprocessor to increase reliability and availability 
by using a retry mechanism to recover transient faults, and 
switching between TMR and dual-processor modes to isolate 
a permanent fault. A simple multiple-retry policy (retry a 
pre-specified number of times)-also’ used to discriminate a 
permanent fault-was employed there. This policy can tolerate 
multiple faults only by treating them as a sequence of single 
faults with repair between fault occurrences, thus requiring 
freqbent voting for effective fault detection. A TMR failure 
caused by near-coincident faults in different modules must 
also be detected and recovered. The effect of dependent 
faults inducing a TMR failure wa? eliminated by periodic 
resynchronization at an optimal time interval [7]. However, 
the fault model of [7] and [22] did not include the possibility 
of permanent faults for which resynchronization is no longer 
effective. 

In addition to the use of spatial redundancy with fault 
masking or reconfiguration, time redundancy can be applied 
effectively to recover from transient faults. Such recovery 
techniques are classified into instruction retry [lo], program 
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rollback [ 161, program reload and restart with module replace- 
ment. Several researchers attempted to develop an optimal 
recovery policy using time redundancy, mainly for simplex 
systems. Koren [9] analyzed instruction retries and program 
rollbacks with such design parameters as the number of retries 
and intercheckpoint intervals. Berg and Koren [2] proposed an 
optimal module switching policy by maximizing application- 
oriented availability with a pre-specified retry period. Lin and 
Shin [lo] derived the maximum allowable retry period by 
simultaneously classifying faults and minimizing the mean 
task-completion time. 

The main intent of this paper is to develop an approach 
of combining time and spatial redundancy by applying time 
redundancy to TMR systems. (Note that spatial redundancy 
is already encapsulated in the TMR system.) When a TMR 
failure-failure to establish a majority due to multiple-module 
faults-is detected at the time of voting, or wherl a faulty 
module, even if its effects are masked, is identified, the 
TMR system is conventionally reconfigured to replace all 
three or just the faulty module with fault-free modules. If 
the TMR failure had been caused by transient faults, sys- 
tem reconfiguration or Replacement of Hardware and Restart 
(RHWR), upon detection of a TMR failure, may not be 
desirable due to its high cost in both time and hardware. 
To counter this problem, we propose to, upon detection of a 
TMR failure, Re-execute the corresponding task on the Same 
Hardware (RSHW) without module replacement. Instruction 
retry intrinsically assumes almost-perfect fault detection, for 
which TMR systems require frequent voting, thereby induc- 
ing high time overhead. However, the probability of system 
crash due to multiple-channel faults is shown in [17] to be 
insignificant for general TMR systems, even when $e outputs 
of computing modules are infrequently voted on as long as 
the system is free of latent faults. Unlike simplex systems, 
program rollback is not adequate for TMR systems due to 
the associated difficulty ctf checkpointing and synchronization. 
So, we consider re-execution of tasks on a TMR system 
with infrequent voting. For example, since more than 90% 
of faults are knawn p~ be nonpermanent-as few as 2% of 
field failures are caused by permanent faults [14]-simple 
re-execution may be an effective means to recover from 
most TMR failures. This may reduce 1) the hardware cost 
resulting from the hasty elimination of modules with transient 
faults and 2) the recovery time that would otherwise increase, 
Le., as a result of system reconfiguration. Note that system 
reconfiguration is time-consuming because it requires the 
location and replacement of faulty modules, program and data 
reloading, and resuming execution. 

We shall propose two RSHW methods for determining when 
to reconfigure the system instead of re-executing a task without 
module replacement. The first (nonadaptive) method is to 
determine the maximum number of RSHW’s allowable (MNR) 
before reconfiguring the system for a given task according 
to its nominal execution time without estimating the system 
(fault) state-somewhat similar to the multiple-retry policy 
applied to a general rollback recovery scheme in [20]. By 
contrast, the second (adaptive) method 1) estimates the system 
state with the likelihoods of all possible states and 2) chooses 

the better of RSHW or RHWR based on their expected costs 
when the system is in one of the estimated states. RHWR is 
invoked if either the number of unsuccessful RSHW’s exceeds 
the MNR in the first method or the expected cost of RSHW 
gets larger than that of RHWR in the second method. For the 
second method, we shall develop an algorithm for choosing 
between RSHW and RHWR upon detection of a TMR failure. 
We shall also show how to calculate the likelihoods of all 
possible states, and how to update them using the RSHW 
results and the Bayes theorem. 

The paper is organized as follows. In the following section, 
we present a generic methodology of handling TMR failures, 
and introduce the assumptions used. Section I11 derives the op- 
timal voting interval (X,) for a given nominal task-execution 
time X. The MNR of the first method and the optimal recovery 
strategy of the second method are computed for given X. 
We derive the probability density function (pdf) of time to 
the first occurrence of a TMR failure, the probabilities of all 
possible types of faults at that time, transition probabilities 
up to the voting time, the costs of RSHW and RHWR, and 
the problem of updating likelihoods of the system state and 
the recovery policy after an unsuccessful RSHW. Section IV 
presents numerical results and compares two recovery methods 
of RSHW and RHWR. The paper concludes with Section 5. 

11. DETECTION AND RECOVERY OF A TMR FAILURE 

Detection and location of, and the subsequent recovery 
from, faults are crucial to the correct operation of a TMR 
system, because the TMR system fails if either a voter fails 
at the time of voting or faults manifest themselves in multiple 
modules during the execution of a task. The fault occurrence 
rate is usually small enough to ignore coincident faults which 
are not caused by a common cause, but noncoincident fault 
arrivals at different modules are not negligible and may lead 
to a TMR failure. 

Disagreement detectors which compare the values from the 
different voters of a TMR system can detect single faults, 
but may themselves become faulty. FTMP 161, JPL-STAR [l], 
and C.vmp [18] are example systems that use disagreement 
detectors. In FTMP, any detected disagreement is stored in 
error latches which compress fault-state information into error 
words for later identification of the faulty module(s). System 
reconfiguration to resolve the ambiguity in locating the source 
of a detected error is repeated depending on the source of 
the error and the number of units connected to a faulty bus. 
Two fault detection strategies-hard failure analysis (HFA) 
and transient failure analysis (TFA)-are provided according 
to the number and persistency of probable faulty units. These 
strategies may remove the unit(s) with hard failures or update 
the fault index (demerit) of a suspected unit. Frequent voting 
is required to make this scheme effective, because any faulty 
module must be detected and recovered before the occurrence 
of a next fault on another module within the same TMR 
system. 

Voting in a TMR system masks the output of one faulty 
module, but does not locate the faulty module. One can, 
however, use a simple scheme to detect faulty modules and/or 
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processor 3 

Fig. 1. The structure of a TMR system with two voters and a comparator. 

voter. Assuming that the probability of two faulty modules 
producing an identical erroneous output is negligibly small, 
the output of a module-level voter becomes immaterial when 
multiple modules are faulty [8]. A TMR failure can then be 
detected by using two identical voters and a self-checking 
comparator as shown in Fig. 1. These voters can be imple- 
mented with conventional combinational logic design [ 2 3 ] .  
The comparator can be easily made self-checking. for its 
usually simple function: for example, a simple structure made 
of two-rail comparators in [l 13 for each bit can be utilized 
for its high reliability and functionality. q i s  TMR structure 
can also detect a voter fault. When a TMR failure or a voter 
fault occurs, the comparator can detect the mismatch between 
the two voters that results from either the failure to form a 
majority among three processing modules, or a voter fault. 
(Note that using three voters, instead of two, would not make 
much difference in our discussion, so we will focus on a 
two-voter TMR structure.) 

If the comparator indicates a mismatch between two voters 
at the time of voting, an appropriate recovery action must 
follow. Though RHWR has been widely used, RSHW may 
prove more cost-effective than RHWR in recovering from most 
TMR failures. To explore this in-depth, we will characterize 
RSHW with the way the MNR is determined. The simplest 
is to use a constant number of RSHW's irrespective of the 
nominal task-execution time and the system state which is 
defined by the number of faulty modules and the fault type(s). 
Taking into account the fact that the time overhead of an 
unsuccessful RSHW increases with the nominal task-execution 
time X,  one can determine the MNR simply based on X,  
without estimating the system state. A more complex, but more 
effective, method is to decide between RSHW and RHWR 
based on the estimated system state. Since the system state 
changes dynamically, this decision is made by optimizing a 
certain criterion that is dynamically modified with the addi- 
tional information obtained from each unsuccessful RSHW. 
In this adaptive method, the probabilities of all possible states 
will be used instead of one accurately-estimated state. Upon 
detection of a TMR failure, the expected cost of RSHW is 
updated and compared with that of RHWR. The failed task 
will then be re-executed, without replacing any module, either 
until RSHW recovers from the corresponding TMR failure or 
until the expected cost of RSHW becomes larger than that 
of task execution.' As the number of unsuccessful RSHW's 

increases, the possibility of permanent faults having caused 
the TMR failure increases, which, in turn, increases the cost 
of RSHW significantly. 

Throughout this paper, we assume that the arrival of perma- 
nent faults and the arrival and disappearance of nonpermanent 
faults are Poisson processes with rates A,, A,, and p, respec- 
tively. 

111. O m A L  RECOVERY FROM 
A TMR FAILURE USING RSHW 

The Optimal Voting Interval 

Let X, (2 5 z 5 n) be the nominal task-execution time 
measured in CPU cycles between the ( i  - 1)th and ith voting, 
and let XI be that between the beginning of the task and the 
first voting, in the absence of any TMWvoter failure. As shown 
in Fig. 2, for 1 5 i 5 n let w, represent the task-execution time 
from the beginning of the task to the first completion of the 
zth voting possibly in the presence of some module failures, 
and let W, = E(w,).  Then E(w,) = W, is the expected 
execution time of the task. Upon detection of a TMR failure, 
let p and q be tQp probabilities of recoverying a task with 
RSHW and RHW#, respectively, where p + q = 1. Assuming 
that the time overhead of reconfiguration is constant T,, W, is 
expressed as a recursive equation in terms of W,, 1 5 i 5 n. 
Let F,(t) (2 5 i 5 n) be the probability of a TMR failure 
in t units of time from the system state at the time of the 
( j  - 1)th voting, and let F l ( t )  be that from the beginning of 
the task. The probability of a recovery attempt (i.e., RSHW or 
RHWR) being successful depends upon F,(t). When a TMR 
failure is detected at the time of first voting (i.e., it occurred 
during the execution of the task portion corresponding to XI) ,  
the system will try RSHW (or RHWR) with probability p 
(or q )  to recover from the failure. This process is renewed 
probabilistically for the variable w1 which is the actual task- 
execution time corresponding to the nominal task-execution 
time X1. Thus, 

with probability 1 - Fl(X1) 
w 1 =  X l + W l  with probability F1 (X1)p 

{X1 X1 + T, + w1 with probability Fl(X1)q 

where T, is the setup time for system reconfiguration. 
Let Tu be the time overhead of voting that is in practice 

negligible. The above equation is also renewed for all w,'s 
(2 5 i 5 n) after each successful recovery. Hence, 

w, = w,-1 + V,  + T,, for 2 5 a 5 n, 

where V,  is defined as the actual task-execution time between 
the (z - 1)th and zth votings, Le., VI = w1 and 

with probability 1 - F,(X,)  
V , =  X , + w ,  with probability F,(X,)p 

{ X a  X, + T, + w, with probability F,(X,)q. 

From the above equations, the following recursive expressions 
are derived for 2 5 i 5 n: 

' This procedure is described in the algorithm of Fig. 4. 
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Fig. 2. Graphical explanation for V, and w, for 1 5 z 5 n.  

n 2 3 9 24 42 61 

Applying thi? recursively n - 1 times, we can get: 

The optimal voting frequency is derived by minimizing Wn 
with respect to n and Xi ,  1 5 i 5 n, subject to 

n 

y x i  = x .  
Y 

i=l  

If all inter-voting intervals are assumed to be identical then 
the constant voting interval is X i  = X ,  = < for 1 5 
i 5 n, where an optimal value of n must be determined by 
minimizing (3.1). Examples of n for a given X with typical 
values of p,q ,T , ,  and T, are shown in Table I. The voting 
points can be inserted by a programmer or a compiler. 

Predetermination of Nonadaptive RSHW's 

In the first method, we determine a priori the maximum 
number of RSHW's (MNR), k,, based on X without estimat- 
ing the system spte. The associated task will be re-executed 
up to IC, times. As X increases, the effect of an unsuccessful 
RSHW becomes more pronounced; that is, the possibility 
of successful recovefy with RSHV (instead of RHWR) will 
decrease with X due to the increased rate of TMR failures, 
and the time overhead of an unsuccessful RSHW also increases 
with X while the time overhead of RHWR remains constant. 
So, IC, decreases as X increases. 

Let C l ( k , X )  be the actual timekost of task execution in 
the presence of up to IC RSHW's for a task with the nominal 
execution time X, which can be expressed as: 

k - 1  

c1 ( k ,  X )  = xp; + 2 x p ; p :  + . . . + kX J-J PZP! 
n=l 

(3.2) 
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TABLE I1 
k ,  vs. X FOR (P, F,R) = (0.8,0.1,0.8) 

X / T ,  (hr.) 111 2ll 311 411 511 

where p r ( p 2 )  and F l ( X )  denote the probability of the nth 
RSHW becoming successful (unsuccessful) and the probability 
of a TMR failure during X after system reconfiguration, 
respectively, where p: + p: = 1 , 1  5 n 5 k .  In fact, 
p: and p: cannot be determined without knowledge of the 
system state after the (n - 1)th unsuccessful RSHW, which 
is too complicated to derive Q priori. We will approximate 
these probabilities using the following useful properties of 
a TMR system. Since the probability of permanent faults 
having caused the TMR failure increases with the number of 
unsuccessful RSHW's, p;  is monotonically decreasing in n: 

Though p i  and R ( n )  p:+'/p: depend upon X and fault 
parameters, it is assumed for simplicity that p i  is given a priori 
as a constant P and R(n) is a constant R for all n. Cl ( k ,  X )  
of (3.2) is then modified in terms of P and R: 

k-1 m-1 

C l ( k , X )  = m X  n ( 1  - P R n - l ) P R m - l  
m=l n=l 

k-1  

+ kX ( 1  - PRn-') 
n=l 

+ ( Tc + ) f i (1  - PRn-1). (3.3) 
1 - F 1 ( X )  n=l 

The cost of RHWR, denoted by C z ( X ) ,  is derived by using 
recursive equations: 

(3.4) 

Now, k, can be determined as the iqteger that minimizes 
C l ( k , X )  subject to C l ( k , X >  < C 2 ( X ) .  Example values of 
IC, for typical values of P and R are shown in Table 11. 

Adaptive RSHW 

In this method, the system chooses, upon detection of a 
TMR failure, between RSHW and RHWR based on their 
expected costs. RSHW will continue either until it becomes 
successful or until the expected cost of the next RSHW 
becomes larger than that of RHWR. The system state is 
characterized by the likelihoods of all possible states because 
one can observe only the time of each TMR failure detection, 
which is insufficient to accurately estimate the system state. 
The outcome,of one RSHW, regardless whether it is successful 
or not, is used to update the likelihoods of states in one of 
which (called a prior state) the RSHW started. The possible 
states upon detection of a TMR failure can be inferred from 
the posterior states which are the updated prior states using 
the RSHW result and the Bayes theorem. 
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Fig. 3. A simplified Markov-chain model for a TMR system. 

Unlike a simplex model, there are too many possible states 
and events to analyze a TMR system accurately. We will 
thus use the simplified Markov-chain model in Fig. 3 to 
derive the state probabilities and transition probabilities in 
a TMR system. The model consists of six states which are 
distinguished by the number of permanent faults and that 
of nonpermanent faults, where two- and three- fault states 
are merged into one state due to their identical effects in 
our analysis. In Fig. 3, the transitions over the bidirectional 
horizontal lines result from the behavior of nonpermanent 
faults and the transitions over' the unidirectional vertical lines 
are caused by the occurrence of permanent faults. Note that 
even occurrences of near-coincident faults can be represented 
by sequential occurrences with slightly different interarrival 
times. The model, thus, includes only transitions between 
neighboring states-any transition from a state due to multiple 
faults occurs in two steps through one of its neighboring states. 

Some faults may disappear without affecting the execution 
of a task. This happens when the latency of a fault is greater 
than its active duration, i.e., it will not manifest itself. Note 
that the occurrence of an error in a module during the task 
execution may produce an erroneous output for the task, even 
if the fault which had induced the error disappeared before 
producing the final output of the task. In other words, a 
transient fault may have permanent effects on task execution.* 

The optimal recovery algorithm based on the adaptive 
method in Fig. 4 can be illustrated as follows. Upon detection 
of a TMR failure, the first step is to derive the probabilities of 
all possible states at time X f  evolved from each prior state. 
Let Tj be the time when the TMR system moved to the failure 
state from prior state i during [ O , X f ] ,  where X f  is the time 
of detecting a TMR failure @e., a voting time). Occurrence of 
a TMR failure is then represented by an event (Ti < X f )  
for prior state i. We want to calculate the probabilities of 
all possible states T ; ( X ~ )  at voting time X f  evolved from 
prior state i, which are actually conditional probabilities given 
the observed event (Tj 5 X f ) .  They can be calculated from 
the probabilities of all types of TMR failures 7ri(Tj) at time 
Tj and the transition probabilities Pm,(Xf - Tj )  during the 

*In fact, this problem can be eliminated by resynchronizing the processors 
after a transient fault is detected [21]. This, however, requires frequent 
voting and additional mechanisms for detecting errors in each processor and 
resynchronizing the processors. 

f. .. 

remaining task-execution time, X f  - Tj. The probabilities of 
all possible states are thus 

where subscripts i, m and n indicate the prior state, the state 
at time Tj,  and the state at the time, X f ,  of detecting a TMR 
failure, respectively. As mentioned earlier, a voting failure may 
result from a voter fault or multiple-module faults. Multiple- 
module faults can be classified based on the number of 
modules with permanent faults: Type-I, Type-11, and Type-I11 
failures represent zero, one, and more than one permanent-fault 
module, respectively, where all possible states of each type 
are listed in Fig. 3. Let S(z, y) be the state with z permanent- 
fault modules, y nonpermanent-fault modules, and 3 - z - y 
nonfaulty modules. 

Although there are ten different states, we only need to 
consider six of them by merging 1) S(O,3) into S(O,2), 2) 
S(1,2) into S(1, l), and 3) both S(2,l) and S(3,O) into 
S(2,O). This merger of states simplifies the model of a TMR 
system without losing model accuracy, because: 

by modifying the transition rates, one can make the 
simplified Markov-chain model in Fig. 3 represent a TMR 
system very accurately, and 
the merger is based on a realistic assumption that simulta- 
neous occurrence of faults in different processor modules 
is highly unlikely. 

Moreover, the merger does not change the analysis of 
a TMR failure because merged states have similar effects 
on the TMR failure as compared to the original states. For 
example, the merged states induce the same type of TMR 
failure, where the "type" is determined by the number of 
permanent-fault modules. There are four possible states, 
{S(O,O), S (0 ,  I), S(0 ,2) ,  S (0 ,3 ) )  at time X f ,  which led 
to Type-I failures (i.e., it was S(0 ,  l), S(0,2), or S(0 ,3)  
at time Tj,  because a nonpermanent fault might disappear 
after inducing error(s).). Type-I1 and Type-I11 failures 
have three possible states, {S(l,O),S(l, l),S(l,2)} and 
{S (2 ,0 ) ,  S(2, l), S(3 ,0 ) ) ,  respectively, at time Tj and X f .  

S(z,y) where 
i = 42+y. Then, the set of all possible states after the merging 

For notational simplicity, let state S; 
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is {Si : i = 0,1 ,2 ,4 ,5 ,8};  out of these, {S1,Sp,S5,Sg} are 
the set of possible fault states transited from SO, SI, and S2 at 
time Tf", T j ,  and Tj ,  respectively. S4 and S5 may change to 
S5 (or s8) at T; (or T:), and S8 remains unchanged due to 
the persistence of a permanent fault. 

Let a path denote the transition trajectory between a pair of 
states. Since there are usually more than one path between 
a given pair of nodes, each of these paths is assigned an 
ID number. From the simplified model in Fig. 3, Tj is the 
minimum-time path from Si to any type of TMR failure. Let 
t3 be the time taken from Si to a TMR failure via path j .  Then, 

the pdf s of all subpaths that make up path j .  The pdf of a 
subpath between two states Sj, and Sjk+l is obtained by using 
the distribution of sojourn time t j ,  of Sj, with several exits 
in the Markov chain model (Fig. 3): 

Ti - - minj [tj], where the pdf of ti is calculated by convolving 

(3.6) 
where { E j ,  } represents the set of all outgoing arcs of Sj, . 
Then, the pdf of ti is 

ft, ( t )  = fijl ( t )  * fjlj* ( t )  * . . . * f3," 
where path j is composed of subpaths {ijl,jlj2, . . . , j fm}  
and S, must be one of possible fault states: S,,, E 
{SI , SZ , S4 , SS , &}. (When the inter-arrival time of events 
such as fault occurrence, fault disappearance, and fault latency, 
is not exponentially distributed, we need a semi-Markov 
chain model in place of a Markov chain model.) Let J; 
represent the set of all paths to a fault state S, from Si. The 
likelihood of a fault state S,  at time Tj is, then, equal to cjEJA F'rob(ti = Tj) ,  which is obtained by: 

YEIE'I 

where Ei is the set of all paths to all possible fault states 

evolved from Si, i.e., Ei = u J k  and m E {1,2,4,5,8} .  
The probabilities of S1 and S2 leading to Type-I failure 
are computed based on the behavior of nonpermanent faults, 
Le., depending on whether or not a nonpermanent fault, 
after having induced some error(s), is still active when a 
second nonpermanent fault occurs. Likewise, the probabilities 
of 5'4 and S5 leading to Type-I1 failure are computed by the 
behavior of a nonpermanent fault, if it had occurred earlier than 
permanent fault(s). When an intermittent fault is considered, 
the fault state must be divided by fault active and fault benign 
states as in [15], which makes the problem too complicated 
to be tractable. The numerical examples of FT;(X)  and the 
mean of Tj (i = 0,4)  for several X are given in Figs. 5 and 
6, in which analytic results are compared against the results 
obtained from Monte-Carlo simulations. 

m 

In addition to fTE and T;, the transition probabilities 
P,, from S, to S: during X f  - Tj must be derived in 
order to obtain the likelihood of every possible state at the 
time of voting (failure detection), X f .  Although the matrix 
algebra using the transition matrix or Chapman-Kolmogrov 
theorem can be applied to give accurate expressions, we 
will use a simplified method for computational efficiency 
at an acceptably small loss of accuracy. For the transition 
probabilities from Tj,  we need not consider subsequent errors 
but can focus on only those states useful in choosing between 
RSHW and RHWR. 

Observe that the Occurrence rate, A,, of permanent faults 
is much smaller than both the appearance and disappearance 
rates of nonpermanent faults. Using this observation, one 
can analyze the behavior of permanent faults separately from 
that of nonpermanent faults. The transition probabilities due 
to the occurrence of permanent faults are represented by 
Pm,(Xj - Tj) for sm E { S ( ~ i , ~ ) ) , s ,  E {S(Z~,V) : xz > 
q}, that is, Pmn(Xf  - Tj )  = 0 for S, E {S(zl,y)},S, E 
{S(Q, y) : $2 < XI}, because of the persistence of permanent 
faults. Although these probabilities depend upon 7rL(t) Vt, 
Tj 5 t 5 X f ,  they are approximated by using only the prior 
probabilities of source states, 7r& (Tj). This approximation 
causes only a very small deviation from the exact values 
because the Occurrence rate of permanent faults is usually very 
small as compared to the other rates. For example, consider 
Pl, for n 2 4, i.e., transitions from S1 due to the occurrence of 
permanent fault(s). The corresponding transition probabilities 
are derived from the model in Fig. 3 in terms of the pdf's of 
subpaths between two states. Let T = X f  - Tj, then 

T 

pl8(T) = 1 F58(T - t)flS(t)dt 

. l T ( 1  - F58(T - t))flS(t)dt. 

The probability a:(Tj) for S1 is thus reduced to ( 1  - 
F15(T))~i (T")). Likewise, transitions from other source states 
due to the occurrence of permanent faults can be derived. 
Consequently, the prior probabilities are transformed into (1 - 

respectively. Using these transformed prior probabilities, we 
will derive the transition probabilities based only on the 
behavior of nonpermanent faults. 

Considering only the behavior of nonpermanent faults di- 
vides the above model into a two-state model (5'4, S5} and 
a three-state model {So, SI, S2}, as shown in Fig. 3. The 
transition matrix of the three-state model {SO, SI, Sa} is 
derived by 1) using the Laplace transform which reduces 

F's (T)).; (Tj) i ( 1 - F48 (T))r i  (Tj ) i and (1-F58 (T))rd (Tj ) 1 



SHIN AND KIM: A TIME REDUNDANCY APPROACH TO TMR FAILURES USING FAULT-STATE LIKELIHOODS 1157 

the linear differential equations of three states to algebraic 
equations in s, 2) solving the algebraic equations, and 3) 
transforming the solution back into the time domain. 

The linear differential equation of {SO SI S2} with only the 
effects of nontransient faults is lI(Xf) = T ( X f  - Tj)lI(Tj), 
where 

2 q .  
-3Xn CL 

T =  b X n  -2Xnp 
2Xn -2p 

The Laplace transform of T is: 

s + 3Xn -/I 0 

-2Xn s + 2 p  
A = [;3Xn s + 2Xnp - 2 p ] .  

The solution requires the inverse of A (found at the bottom 
of the page). 

Let the roots of s2 + (5Xn + 3p)s + 6Xg + 6 x 4  + 2p2 be 
a and p, then aij, the ijth element of A, can be obtained by 
partial fraction expansion: 

C ( i j ) 2  C ( i j ) 3  +- 
s + a  s + P '  

C ( i j ) l  I Q , . .  - - 
23 - 

Since c(+ and c(ij)3 are conjugates, c(ij12 = k i j ( a l  p) if 
c(ij)3 = kij(Pl a). The effect of permanent faults changes the 
initial probabilities of {Sol SI  SZ): to: 

n'(Tj) = [ A o ~ o ( T j ) ,  A i ~ i ( T j ) ,  A Z X Z ( ~ ' ~ ) ] ~ ~  

where A0 = (1 - F O ~ ( T ) ) ~ A ~  = (1  - F I ~ ( T ) ) ~ A ~  = 
(1 - F25(T)). Thus, the ith column of the 3 x 3 transition 
matrix P(T) reduces to: 

(3 + k3i(a1 p 1 e - a ~  + k3i(pl a)e-PT)Ai_l 1 1 

($ + kli (a,  p)e-aT + kli (pl  a)e-PT)A;-l  

(9 + k2i(al P)e-aT + k2i(pl a)e-PT)A;- l  

x2 + (2Xn + 3p)x + 2p2 
431 - x )  

4 Y  - x )  

1 
where 

kll(X1Y) = 

k22(x1 Y )  = 

1 

x2 + (3Xn + 2 p ) ~  + 6Xnp 
1 

x2 + (5Xn + P)X + 6 X i  
k33(xi Y )  = 

X ( Y  - x )  
1 

The above equations indicate that the coefficients of exponen- 
tials in Ao, A I ,  and A2 include the effects of the occurrence 
of permanent fault(s) on the prior probabilities. Likewise, the 
transition matrix of a two-state model for (S4, Ss} can be 
derived from the matrix found at the bottom of the page where 
A4 = 1 - F48(T) and A5 = 1 - F58(T) also represent the 
effects of permanent-fault occurrences on the transitions to 
$3. These transition matrices and probabilities (resulting from 
the occurrence of permanent faults) can describe all possible 
transitions in the simplified model of Fig. 3. 

When the TMR system is in S2, S5 or s8 at time Xf, 
RSHW will be unsuccessful again due to multiple active faults 
(in more than one module). If it is not in those states at 
time X f  due to disappearance of active fault(s) after inducing 
some error(s), the system moves to a recoverable state by 
RSHW. Let FT;(X) be the probability of a TMR failure 
evolved from Si during the execution time X, where FTz is the 
probability distribution function of 7';. Since exact knowledge 
of the system state is not available, we estimate the state 
probabilities, which are then used to calculate the expected 
cost of a single RSHW as follows: 

m . -7 

where x ; ( O )  is the probability that the state before starting 
one RSHW (upon detecting a TMR failure) is Si, Le., the 
probabilities of the present states become those of the prior 
states for the next RSHW. The expected cost of RHWR is 
obtained similarly to (3.4): 

m , ..jJ 

(3.9) 

When RSHW is unsuccessful or a voting failure occurs 
again, the (prior) state probabilities are updated with the 
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additional information obtained from the RSHW using the 
Bayes theorem. The observed information tells us that a 
TMR failure has occurred again during the current execution. 
(Note that the TMR failure detection time during the current 
execution is X f . )  As a result, the prior probabilities of all 
possible fault states for the (k + 1)th RSHW (T"') are 
renewed from those of the kth RSHW (T!): 

= T: Prob (a TMR failure during X f  from Si) 
z Prob (a TMR failure during X,) ' 

(3.10) 
where Prob (a TMR failure during X,) = xi.! Prob 
(a TMR failure during X f  from Si) = xiEST afFT; ( X f ) .  
From (3.10), one can see that the probability of the TMR 
system being in a permanent-fault state increases with each 
unsuccessful RSHW, which, in turn, increases the chance of 
adopting RHWR over RSHW upon detection of next TMR 
failure. Using the above updated state probabilities, we can 
get the conditional probabilities of all states upon detection of 
a TMWvoting failure. 

When RSHW is successful, one can likewise update the 
probabilities of possible states, which will then be used to 
guess the prior state of the next voting interval. 

When the hardware cost is high and the time constraint 
is not stringent, one may do the following. Since the fault 
occurrence rate is much smaller than the disappearance rate 
of (existing) nonpermanent faults, we may wait for a certain 
period of time (called a back-ofStime) in order for the current 
nonpermanent fault( s) to disappear before task re-execution. 
An optimal back-off time is determined by minimizing the 
expected time overhead. When a task is re-executed without 
any back-off, the cost of one RSHW is equal to (3.8). When 
re-execution starts after backing off for T units of time, the 
cost changes (due to the change of prior states): 

T, + X 
C l ( T )  = x + T + 

- FTfo(x) 

where .i(r) = Fji(r)ri(O). 
j E S T  

The optimal back-off time is obtained by minimizing C ~ ( T )  
with respect to T .  

Iv .  NUMERICAL RESULTS AND DISCUSSION 

A system with three replicated processing modules, two 
voters, and a comparator is simulated to compare the proposed 
method (called Method 1) with an alternative which is based 
on RHWR (called Method 2). Upon detection of a TMR 
failure, Method 1 will decide between RSHW and RHWR 
according to their respective costs. Method 2, however, will 
reconfigure the TMR entirely with a new healthy TMR or 
partially with healthy spare modules following an appropriate 
diagnosis. If a nonpermanent fault does not disappear during 
the diagnosis, it will be treated as a permanent fault and 
replaced by a new, nonfaulty spare. We assume that (Al) 

derive r , ( X )  

re-execute 

ly-?, 
FiSHW 

-0.1 continue execution 

Fig. 4. 
state and comparing the costs of RSHW and RHWR. 

Algorithm to recover from a TMR failure by estimating the system 

TABLE 111 
PARAMETER VALUES USED IN SIMULATIONS, ALL MEASURED IN HOURS 

200 3000 O.OOO1 0.002 50 

an unlimited number of tasks with the same nominal task- 
execution time are available to keep the running module 
busy, which simplifies the description of system workload, 
and (A2) there are an unlimited number, of spares available. 
The performances of these two methods are characterized by 
the overhead ratio: 

E - X  
OVR(X) - X '  

where E is the real execution time (including the RSHW 
and/or RHWR overheads) of a task whose nominal execution 
time is X .  

We ran simulations under the fault generation process with 
the parameters as given in Table 111, where the asterisk (*) 
indicates a parameter varied while the others are fixed, in order 
to observe the effects of the parameter on OVR in both meth- 
ods. Since fault occurrence/disappearance rates are difficult to 
estimate on-line, some experimental data or numerical data 
based on a model reflecting the maturity of desigdfabrication 
process, the environmental effects, operating conditions, and 
the number and ages of components, can be used [19]. 

In Figs. 5 and 6, the probabilities of a TMR failure and 
the failure times from So and Sq are computed from the 
Markov-chain model and simulations, and are then compared. 
The simulation and modeling results are very close to each 
other. The modeling analyses proved to be very effective in 
determining when and how to choose between RSHW and 
RHWR under various conditions, as shown in Figs. 7-11. 

The results obtained while varying X from 10 to 100 hours 
with T, = 0.15X, are plotted in Figs. 7-9. The OVR's of 
Methods 1 and 2 with the optimal number of votings are 
compared in Fig. 7. The difference between the OVR's of 
Method 1 and Method 2 increases significantly with X .  When 
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F:SO +- .' ' . '.O . .  P:S4 - ~ 0'' ' 

F:S4 . o .  - *'. . (  
. .  . e" ' 

10 2p 30 40 50 60 70 80 90 100 

X: nominal computation [hour] 

Fig. 5.  ProbabilityFrequency of a TMR failure obtained from the 
Markov-chain model (PSO=from SO and P:S4=from S4)/from simulations 
(F:SO=from SO and F:S4=from S4). 

60 - 

50 - 
TMR 40 - 

failure 
occurrence 

t i m e  30 - 
20 - 

P:SO - 
F:SO - 
P:S4 ' 1 '  - 
F:S4 - 

10 20 30 40 50 60 70 80 90 100 

X: nominal computation [hour] 

Fig. 6. Mean TMR failure time (E[Tfo]) obtained from analysis (P:SO=from 
So and PS4=from S4), and from simulations (F:SO=from SO and F:S4=from 
s4 ). 

50 I I I I I I I I  

45 - Method 1 +- 
Method 2 

- 

40 - 

Overhead 
ratio 

10 20 30 40 50 60 70 80 90 100 

X: nominal comput,ation [hour] 

Fig. 7. Overhead ratios [%] vs. X for RSHW and RHWR, 
with the optimal number of votings for Tu = 0.0005 hour: 
(13,34,61,87,110,133,164,181,198,216).  

X is small, the OVR's of the two methods are too small 
to distinguish, which is due mainly to the small probability 

60 

50 

40 

Overhead 3o 

20 

10 

0 

ratio 

multi +- 

one e- 

10 20 30 40 50 60 70 80 90 100 

X :  nominal computation [hour] 

Fig. 8. 
optimal number of votings. 

Overhead ratios [%] vs. X for one voting and multivotings with the 

44 54 l Method Method 2 l -e- - A 
14 

Rat io  4 

2 .5  3.i lT----7 
1.5 t/ 

10 20 30 40 50 60 70 80 90 100 

X: nominal computation [hour] 

Ratio [%] of the number of reconfigurations to the total number of Fig. 9. 
simulation runs. 

of a TMR failure. Fig. 8 compares the multivoting policy 
(with the optimal number of votings) and one voting policy. 
Generally, the overhead of a TMR system with infrequent 
voting increases significantly as X increases, because the 
probability of a TMR failure increases with X ;  e.g., if there is 
no voting during the task execution, a TMR failure means the 
waste of the entire nominal execution time, X .  As X increases, 
the OVR of a one-voting policy increases more rapidly than 
that of multivoting policy. The number of RHWR's-which is 
represented by the percentage of RHWR from the total number 
of simulations in Fig. 9-will determine the hardware cost of 
spares used. The increase in this percentage is much larger in 
Method 2 than Method 1, since the number of TMR failures 
increases with X ,  and Method 1 can recover from most TMR 
failures with RSHW. 

The second comparison is made while varying !!',-the 
resetting time for system reconfiguration-from 2.5 to 12.5 
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Method  1 +- 
Method  2 -e- 

11.5 - 

Overhead 
rat io  

lo t 1 
9 . 5  + 

2.5 5 7.5 10 12.5 

Overhead 
rat io  

Method  1 +- 
Method  2 -e- - 

- 

- 

8 ‘  1 I I I 
5 10 15 20 25 

T,: resetting time [hour] Ratio of occurrence rates (npflpf) 
Fig. 10. Overhead ratios [%I vs. T, for RSHW and RHWR. Fig. 11, 

and permanent faults. 
Overhead ratios [%I for different Occurrence rates of nonpermanent 

hours for X = 50 hours, and the results are plotted in Fig. 
10. A larger resetting time generally results in a larger OVR. V. CONCLUSION 
Increasing T, greatly affects the performance of Method 2. 
But, it has little influence on the OVR of Method 1, since the 
system recovers from most TMR failures with RSHW, which 
has nothing to do with T,. 

The third comparison in Fig. 11 is made while varying 5 
from 5 to 25, where A, is fixed at 0.005 /hr, and X = 50 hours 
and T, = 7.5 hours. The OVR’s of both methods decrease with 

but the magnitude of decrease in Method 1 is larger than 
A, ’ 
that in Method 2. This is because the probability of a TMR 
failure decreases as A, decreases with A, fixed, and because 
the probability of successful RSHW increases with 5. 

We simulated the proposed and other schemes for lo5 
units of time with the fault parameters of Table I11 for each 
comparison (of the mean overhead ratios of different schemes). 
The fault parameters are assumed not to change during the 
simulation. Since the estimation of system states depends upon 
the fault parameters, they must be estimated first. This problem 
can be sqlyed by assuming the parameters to be time-varying 
and estimating them on-line with certain adaptive methods 
which, in turn, require more samples. 

In this paper, we have proposed a strategy for recovering 
TMR failures using two different methods that determine 
when and how to apply RHWR. Both methods are shown 
to outperform the conventional method based solely on recon- 
figuration. This finding is consistent with the fact that most 
faults are nonpermanent, so simple re-execution can recover 
from nonpermanent faults and the TMR structure can mask 
the effects of one faulty module. 

The distinct characteristic of the proposed strategy is that 
it uses the estimated state of a TMR system even with 
incomplete observation of system states. Detection of a TMR 
failure and/or an unsuccessful RSHW does not always call 
for reconfiguration (RHWR) but requires us to derive and 
compare the expected costs of reconfiguration and one ad- 
ditional RSHW. Most TMR failures are represented by using 
a simplified Markov-chain model, and the TMR failure time 
and the probability of another unsuccessful RSHW are also 
analyzed with the model. One can therefore conclude that 
combining time and spatial redundancy appropriately can be 
effective in handling component failures. 

APPENDIX 
LIST OF SYMBOLS 

X : Nominal task-execution time in the absence of failures, Le., the amount of pure 
computation for a task measured in CPU cycles without including repetition of 
part of the task due to failures. 

X i  : Nominal execution time for the task between the ith and (i - 1)th voting. 
W,(X) : Expected execution time of a task whose nominal execution time is X .  

wi : Actual execution time from the beginning of the task to the first completion 

V,  : Actual execution time during the interval [Xi - l ,  X i ] .  
of the ith voting, where Wi = E(wi) .  

p ( q )  : Probability of recovering a task with RSHW (RHWR), p + q = 1. 
T, : Resetting time in case of system reconfiguration. 
T, : Time for voting on those variables changed during the previous voting interval. 
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$($) : Probability of the nth RSHW being successful (unsuccessful). 
P : Probability of the first RSHW being successful. 

R : Ratio of the probability of success at the (n  + 1)th RSHW to that at the nth RSHW. 
IC, : Allowable maximum number of RSHW’s. 
X f  : Time of detecting a TMWvoting failure. 
TJ : Time to a TMR system failure occurred first after starting the system in state S,. 

FTt ( X )  : Probability of a TMR failure from S, during the execution time X (fT; pdf of TJ). 

t: : Time of TMR failure occurrence via path J from Sa (f,. pdf of t;). 

S(z, y) : State with z permanent faulty processor(s), y nonpermanent faulty processor(s), 
and (3 - z - y) nonfaulty processor(s) (S, = S(z, y) such that i = 42 + y). 

m 

Jh : Set of all paths to a fault state S, from an initial state Sa ( E z  = u Jh). 
~ ~ ( 0 )  : Probability of a prior state before the first RSHW. 

T ~ ( T ; )  : Probability of a fault state S, at time T; from an initial state S,. 

P,,(T) : Transition probability from S, to S, during T .  
Cl(lc, X )  : Expected cost of RSHW with a nominal task-execution time X and MNRA k 

C l ( X ) ( C , ( X ) )  : Expected cost of RSHW (RHWR) for X .  
F3kJ(k+l) : Distribution of time to move to S3(k+l) from S J k .  

{ E J k }  : Set of all subpaths emanating from S J k .  
A,( A,) : Occurrence rate of nonpermanent (permanent) faults. 

1 
- : Active duration of a nonpermanent fault. 
P 
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