
Hardware Support for Controlled Interaction
of Guaranteed and Best-Effort Communication *

Jennifer Rexford, James Dolter, and Kang Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor,

Abstract

Real-time communication typically consists of guar-
anteed packets that must satisfy their delivery dead-
lines and best-effort packets that can tolerate occa-
sional deadline misses for improved average latency.
This paper presents hardware techniques for support-
ing the coexistence of these two t raf ic classes in real-
t ime point-to-point networks. A careful selection of
routing and switching techniques, coupled with fine-
grain arbitration between t raf ic classes, can allow net-
work adapters to support the diverse performance re-
quirements of best-effort and guaranteed communica-
tion. Cycle-level simulations of SPIDER (Scalable
Point-to-point Interface DrivER), a network adapter
for point-to-point distributed systems, demonstrate the
utility of supporting multiple low-level communication
policies for diflereni classes of t raf ic .

1 Introduction

Point-tepoint networks, with their multiplicity of
processors and internode routes, provide a natural
platform for real-time applications that require both
high performance and dependability. While many
parallel machines connect processing elements with a
point-to-point network [3,6,13], these processors often
reside on a single board or chassis, making them espe-
cially vulnerable to single-point failures. A network of
physically-distributed computers offers the advantage
of independent processor and link failures. However,

*The work reported in this paper was supported in part by
the National Science Foundationunder Grant MIP-9203895 and
an Office of Naval Research graduate fellowship. Any opinions,
findings, and conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily reflect the
view of the NSF or ONR.

MI 48109-2122

in many distributed systems, a node interfaces to the
communication fabric through only one or two ports,
as in a CSMA/CD, token ring, or token bus network.
In this configuration, one or two media failures can
partition the network.

Combining the high connectivity of point-to-point
parallel machines with the communication media and
protocols of distributed systems results in a hybrid en-
vironment well-suited to real-time applications. Real-
time communication is typically categorized into two
basic classes of traffic, guaranteed messages requiring
delivery before their deadlines and best-effort mes-
sages without delivery-deadline guarantees [2,10,18,
191. Distributed real-time systems aim to satisfy the
constraints of guaranteed messages, while providing
good performance for the best-effort traffic.

This paper addresses techniques for the effective
mixing of guaranteed and best-effort traffic by utiliz-
ing flexible hardware support for routing and switch-
ing. Unlike protocol software, network hardware can
exercise efficient, fine-grain control over the interac-
tion of packets. By closely regulating access to the
physical links, real-time systems can control the inter-
action of guaranteed and best-effort traffic at the byte
or word level, providing tight bounds on the intrusion
of best-effort traffic on guaranteed packets. In opti-
mizing for the performance needs of each class, this
hardware can employ different routing and switching
strategies to manage the two classes of traffic.

Section 2 evaluates the suitability of various routing
and switching schemes for supporting different higher-
level performance requirements. The section com-
pares the schemes running on a cycle-level simulation
model of SPIDER (Scalable Point-to-point Interface
DrivER), a hardware adapter for real-time multi-hop
networks [7,8]. Designed as the front-end interface for
HARTS [17], SPIDER supports a variety of routing

188
0-8186-6420-7/94 $03.00 0 1994 IEEE

and switching schemes through flexible, low-level con-
trol over the network links. Section 3 presents mech-
anisms for utilizing such low-level hardware support
to regulate the mixing of guaranteed and best-effort
traffic. The paper concludes with Section 4.

2 Routing and Switching

Modern routing and switching techniques signifi-
cantly reduce packet latency by avoiding unnecessary
packet buffering, but they also impinge on predictabil-
ity and control over packet scheduling. With proper
hardware support, real-time systems can capitalize on
the various routing and switching schemes to improve
the quality of service for both guaranteed and best-
effort communication.

2.1 Hardware Support

SPIDER, shown in Figure 1, implements pro-
grammable routing and switching schemes for best-
effort traffic, while facilitating host control over
scheduling and resource allocation for guaranteed
communication. Designed to reside on the host pro-
cessor’s private memory bus, SPIDER has direct ac-
cess to the host memory and provides the host with
a memory-mapped control interface. The adapter co-
ordinates bidirectional communication with up to six
neighboring nodes, with two virtual channels [5] on
each unidirectional link.

The programmable routing controller (PRC), a cus-
tom integrated circuit, exploits concurrency amongst
the virtual channels and provides fair, fine-grain arbi-
tration at the memory and network interfaces [7]. The
twelve PRC TXs provide low-level control of packet
transmission, while the twelve microprogrammable
PRC RXs coordinate packet reception and implement
routing and switching policies for in-transit traffic.
The PRC TXs and PRC RXs implement the low-level
drivers controlling the actual transmitter and receiver
devices on the network interface (NI).

The NI performs the media access and flow con-
trol for six pairs of AMD TAXI chips [l], providing a
low-cost communication fabric of either fiber-optic or
twisted-pair interconnect. Each TAXI TX-RX pair
forms a bidirectional link to an adjacent node. The
NI TX and NI RX control units perform the neces-
sary interleaving of virtual channels to and from the
physical links, on a byte-by-byte basis. The NI serves
as a hardware wrapper that generates the abstraction
of multiple, bidirectional channels between neighbor-
ing nodes.

SPIDER treats the outbound virtual channels (NI
TXs) as individually reservable resources, allowing the
device to support a variety of routing and switching
schemes through flexible control over channel alloca-
tion policies. Upon receiving the header bytes of an
incoming packet, the PRC RX decides whether to
buffer, stall, forward, or drop the packet. The PRC
RX bases its routing and switching decision on its mi-
crocode, the arriving header, and prevailing network
conditions. By downloading different microcode to
each PRC RX, SPIDER can tailor the low-level com-
munication policies of each virtual channel.

2.2 Communication Policies

The various routing and switching schemes differ in
terms of delivery latency, bandwidth utilization, and
predictability. Flexible adapter hardware enables the
system to tailor communication policies to application
requirements and network conditions. The routing al-
gorithm determines which link and node resources are
consumed by an in-transit packet. Static routing pro-
vides a single, deterministic path between each source
and destination node, whereas adaptive schemes can
incorporate network conditions into the routing deci-
si on.

For a given source-destination pair, a packet us-
ing static routing consumes fixed bandwidth along a
predetermined path, making these schemes appropri-
ate for guaranteed communication. While most static
routing algorithms generate only shortest-path routes
between the source and destination nodes, some adap-
tive schemes consider nonminimal routes in the hope
of circumventing network congestion. Adaptive and
nonminimal approaches can improve average latency,
but at the expense of predictability, making these
schemes better-suited to best-effort traffic.

In defining how packets flow through the network,
the various switching schemes exercise different re-
sources a t nodes along a packet’s route. Traditional
packet switching requires an arriving packet to buffer
completely before transmission to the subsequent node
can begin. Buffering the packet after each hop al-
lows the software protocols to directly schedule traffic
to provide guarantees [l l] . In contrast, cut-through
switching schemes, such as virtual cut-through [12]
and wormhole [3], allow an incoming packet to be-
gin transmission to the subsequent node prior to com-
plete reception at the current node if the output link is
idle. If the packet encounters a busy outgoing link, vir-
tual cut-through switching buffers the blocked packet
at the node, whereas wormhole switching stalls the
packet in the network until the link becomes available.

189

f Programmable Routing Controller 1 (Network Interface 1 - I ,

Cache

- - - I I

Memory
B

Control
Interfacc

Figure 1: SPIDER architecture

Packet switching consumes predictable network
and processing bandwidth, while virtual cut-through
oftentimes avoids buffering packets at intermediate
nodes. Virtual cut-through imparts fewer packets on
the protocol software, but limits this software’s ability
to influence bandwidth scheduling. For example, sup-
pose a guaranteed packet enters an intermediate node
well in advance of its deadline. The protocol may wish
to detain this packet, even if its outgoing link is free, to
avoid overloading the subsequent node unexpectedly.

Wormhole switching, though conceptually similar
to virtual cut-through, has quite different character-
istics. Stalled wormhole packets form logical queues
spanning multiple nodes, complicating packet schedul-
ing. Since a blocked wormhole packet never buffers, it
imparts no memory demands on intermediate nodes,
but instead consumes unpredictable amounts of chan-
nel bandwidth. Figure 2 compares the performance
of wormhole and packet switching in simulations of a
6 x 6 wrapped square mesh (torus).

The simulator [7] includes a cycle-level model of
SPIDER that captures the details of flow control, re-
source arbitration, and microcode execution. Packets
use static dimension-ordered routing, with the worm-
hole packets employing deadlock-free routing on a pair
of virtual channels [4,16]. Each node independently
injects 64byte packets with uniform random selection
of destination nodes. As shown in Figure 2(a), worm-
hole switching results in lower end-to-end latency than
packet switching at low loads, but wormhole packets
suffer larger latency and delay variance at high loads.
Figure 2(b) shows the standard deviation of latency
for packets traveling exactly five hops.

Traditionally, real-time systems have used packet

switching and static routing for guaranteed messages,
since it is difficult to control the packet delivery
time under adaptive routing and cut-through switch-
ing schemes. However, best-effort packets could po-
tentially improve their average latency by employ-
ing these aggressive schemes. Cut-through switching
avoids the delay of buffering the packet, while adap-
tive routing can increase the possibility of establishing
these cut-throughs. Additionally, using cut-through
switching for best-effort packets reduces the load these
packets impart on the protocol software.

3 Controlled Traffic Mixing

While guaranteed packets can employ static rout-
ing and packet switching for predictable performance,
best-effort packets can use schemes with less pre-
dictability, but better average latency. The effective
mixing of guaranteed and best-effort communication
hinges on regulating the interaction between these two
traffic classes. In particular, the best-effort packets
cannot consume arbitrary link, memory, or processing
resources while guaranteed packets await service.

3.1 Virtual Networks

Partitioning the best-effort and guaranteed packets
onto separate virtual networks can regulate this in-
trusion. This divides each physical link into multiple
virtual channels, where some virtual channels carry
best-effort packets and the rest accept only guaran-
teed packets. Assigning guaranteed and best-effort
traffic to different virtual networks, provided by the
hardware router, allows best-effort packets to safely

190

I
0.0002 O.ooo8 0.0010 0.0014 0.0018

Applied load per node (packetdcycle)

1500

m

2

ii

x
.- 6 1000

a E
$ 5 0 0

3

H
U

0 0.0014 0.1
o.Oo02 o.Oo06 0.0010

appfed load per node (packetdcycle)

employ adaptive routing and cut-through switching
schemes without endangering guaranteed packets.

Packets on separate virtual networks interact only
to compete for access to the physical link. Fair,
demand-slotted arbitration schemes provide the tight
bounds necessary for guaranteed traffic, while allow-
ing best-effort packets to utilize any remaining band-
width. For instance, SPIDER employs a binary pri-
ority tree arbiter [7,14] to order requests for byte ac-
cess to the physical links. This provides a tight re-
sponse time for guaranteed packets, independent of
the amount or length of best-effort packets.

The router can further minimize intrusion on guar-
anteed packets by imposing priority arbitration be-
tween the virtual networks. Priority arbitration en-
ables a guaranteed packet to travel at the same rate
through each link in its journey, independent of the
number of active best-effort virtual channels. The
router can then employ effective scheduling tech-
niques [l l , 151 to establish tight delay bounds or band-
width guarantees. Since priority arbitration varies
the service rate for the lower-priority traffic, the best-
effort virtual networks could employ adaptive routing
to allow these packets to circumvent links and nodes
serving a heavy load of guaranteed packets.

Careful selection of routing and switching schemes,
coupled with fine-grain arbitration between the vir-
tual networks, allows the traffic classes to share com-
munication bandwidth without sacrificing the perfor-
mance requirements of either class. Since channel con-

11 8

(a) Mean latency (all packets) (b) Standard deviation (&hop packets)

Figure 2: Packet switching and wormhole switching

tention in one virtual network does not directly in-
fluence the other virtual networks, best-effort traffic
can utilize routing and switching schemes with unpre-
dictable consumption of virtual channel resources.

3.2 Wormhole and Packet Switching

The system can limit the resources consumed by
best-effort communication to ensure sufficient memory
and processing resources for any guaranteed packets.
Since wormhole switching does not consume buffer
resources at intermediate nodes, the combination of
wormhole switching for best-effort traffic and packet
switching for guaranteed packets enables effective par-
titioning of both host and network resources. In this
 scheme, blocked best-effort packets temporarily stall
in their own virtual network instead of consuming re-
sources at intermediate nodes.

Figure 3 shows simulation results for a 6 x 6 torus
carrying a mixture of best-effort and guaranteed traf-
fic on separate virtual networks. The simulations ex-
periment with a SPIDER model that supports three
virtual channels on each link, with two allocated to
best-effort packets for deadlock-free wormhole rout-
ing and one dedicated to guaranteed traffic using
packet switching. The experiment varies the injec-
tion rate for the wormhole packets, while keeping the
packet-switching injection constant at one packet ev-
ery 1500 cycles. Figure 3(a) shows the average end-
to-end packet latency for each class of traffic, while
Figure 3(b) shows the standard deviation of latency

191

I I
WoMole swilchmg
Packet switching

-v B

0 '
0 . m 0.0010 0.0002 o.oO04 o.ooo8 o.Oo08 o.ool0

0 1
o.ooo2 o.Oo04 0 . m

Applied wormhole load per node (packetdcyde) Ppplii wormhole bad per node (packetakyde)

(a) Mean latency (all packets) (b) Standard deviation (&hop packets)

Figure 3: Mixing packet switching and wormhole switching

for all packets traveling exactly five hops.
As the amount of wormhole traffic increases, the

best-effort packets incur increased latency and de-
lay variance because of channel contention within the
best-effort virtual network. This contention does not
influence the guaranteed packets, since blocked worm-
hole packets do not consume any physical link or buffer
resources. Both the average latency and predictability
of the guaranteed packets are largely unaffected by the
presence of traffic on the other virtual network, due to
fine-grain arbitration amongst the virtual channels.

4 Conclusion

Emerging distributed applications impose a broad
range of performance requirements on the communi-
ca.tion subsystem, including control over end-to-end
latency, delay variance, and bandwidth allocation [9].
For point-to-point networks, these communication re-
quirements affect the suitability of particular routing
and switching schemes. While the network hardware
alone cannot satisfy application performance require-
ments, design decisions should not preclude the com-
munication subsystem from establishing guarantees.

The combination of packet switching and static
routing simplifies packet scheduling and bandwidth
allocation, but impinges on end-to-end packet la-
tency. With flexible control close to the communi-
cation links, network hardware can apply routing and
switching schemes tailored to the unique performance

requirements of guaranteed and best-effort traffic. By
employing aggressive routing and switching schemes,
best-effort traffic incurs lower latency while reducing
intrusion on the software protocols at intermediate
nodes.

Adapter hardware can manage these disparate traf-
fic classes by partitioning the physical network into
multiple virtual networks, each with its own com-
munication policies. Low-level control over routing
and switching, coupled with fine-grain arbitration, en-
ables network hardware to effectively mix guaranteed
and best-effort communication. The best-effort traf-
fic can then capitalize on flexible routing and switch-
ing schemes that improve average performance, with-
out interfering with the predictable, timely delivery of
guaranteed packets.

References

[l] Am79168/Am79169 TAXI-275 Technical Man-
ual, Advanced Micro Devices, ban-O.lm-1/93/0
17490a edition.

[2] K. Arvind, K . Ramamritham, and J . A.
Stankovic, "A local area network architecture for
communication in distributed real-time systems,"
Journal of Real-Tame Systems, vol. 3, no. 2, pp.
115-147, May 1991.

192

[3] W. J . Dally and C. L. Seitz, “The torus routing
chip,” Journal of Distributed Computing, vol. 1,
no. 3, pp. 187-196,1986.

[4] W. J . Dally and C. L. Seitz, “Deadlock-free mes-
sage routing in multiprocessor interconnection
networks,” IEEE Trans. Computers, vol. C-36,
no. 5, pp. 547-553, May 1987.

[5] W. Dally, “Virtual-channel flow control,” IEEE
Trans. Parallel and Distributed Systems, vol. 3,
no. 2, pp. 194-205, March 1992.

[6] W. J . Dally, J . A. S. Fiske, J . S. Keen, R. A.
Lethin, M. D. Noakes, P. R. Nuth, R. E. Davison,
and G. A. Fyler, “The Message-Driven Proces-
sor: A multicomputer processing node with effi-
cient mechanisms,” IEEE Micro, pp. 23-39, April
1992.

[7] J . Dolter, A Programmable Routing Controller
Supporting Multi-mode Routing and Switching in
Distributed Real-Time Systems, PhD thesis, Uni-
versity of Michigan, September 1993.

[8] J . Dolter, S. Daniel, A. Mehra, J . Rexford,
W. Feng, and K. G. Shin, “SPIDER: Flexible
and efficient communication support for point-
to-point distributed systems,” Technical Report
CSETR-180-93, University of Michigan, October
1993. To appear in Proc. Int. Conf. on Distributed
Computing Systems, June 1994.

[9] D. Ferrari, “Client requirements for real-time
communication services,” IEEE Communication
Magzine, pp. 65-72, November 1990.

[lo] D. Ferrari and A. Gupta, “Resource partitioning
for real-time communication,” in International
Symposium on Global Data Networking, Decem-
ber 1993.

[l l] D. D. Kandlur, K. G. Shin, and D. Ferrari, “Real-
time communication in multi-hop networks,” in
Proc. Int. Conf. on Distributed Computer Sys-
tems, pp. 300-307, May 1991.

[12] P. Kermani and L. Kleinrock, “Virtual cut-
through: A new computer communication
switching technique,” Computer Networks, vol. 3,
no. 4, pp. 267-286, September 1979.

[13] S. Konstantinidou and L. Snyder, “Chaos router:
Architecture and performance,” in Proc. Int ’I
Symposium on Computer Architecture, pp. 212-
221, May 1991.

[I41 A. Kovaleski, S. Ratheal, and F. Lombardi, “An
architecture and interconnection scheme for time-
sliced buses in real-time processing,” Proc. Real-
Time Systems Symposium, pp. 20-27, 1986.

[I51 C. L. Liu and J . W. Layland, “Scheduling algo-
rithms for multiprogramming in a hard real-time
environment,” Journal of the A C M , vol. 20, no.
1, pp. 46-61, January 1973.

[16] L. Ni and P. McKinley, “A survey of worm-
hole routing techniques in direct networks,” IEEE
Computer, pp. 62-76, February 1993.

[1.7] K. G. Shin, “HARTS: A distributed real-time ar-
chitecture,” IEEE Computer, vol. 24, no. 5, pp.
25-35, May 1991.

[l8] K. G. Shin and Q . Zheng, “Mixed time-
constrained and non-time-constrained communi-
cations in local area networks,” IEEE Trans.
Communications, pp. 1668-1676, November
1993.

[19] J. A. Stankovic, “Distributed real-time com-
puting: The next generation,” Technical Re-
port COINS 92-01, University of Massachusetts,
Amherst, January 1992.

193

