PROBABILISTIC CLOCK SYNCHRONIZATION IN LARGE
DISTRIBUTED SYSTEMS

Alan Olson

Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2122.

ABSTRACT

Probabilistic clock synchronization algorithms can
provide tight synchronization without the use of spe-
cial hardware. However, all probabilistic algorithms
proposed to date require a master/slave organization
of clocks, and can require a large number of synchro-
nization messages. These two characteristics can make
them unsuitable for use in large distributed systems.
In this paper we propose a synchronization algorithm
which uses one of two probabilistic techniques to esti-
mate remote clock values, and uses an interactive con-
vergence algorithm on the resulting estimates to adjust
the local clock. The algorithm does not require mas-
ter/slave clocks and reduces the number of messages
needed. As a result it is suitable for use in large dis-
tributed systems.

1 Introduction

Clock synchronization in a distributed system is a
basic requirement of many applications. In [8] it is
shown how a common time base can be used to de-
crease the number of messages which must be ex-
changed to insure proper rollback recovery. In real-
time systems the concept of time is central to system
operation, and a deadline is meaningless if different
parts of the system have greatly differing ideas of the
current time.

Clock synchronization in a distributed system is a
problem which has been studied extensively in recent
years. A number of different synchronization schemes
have been proposed [1, 2, 3,4, 5, 6,7, 9, 10, 11]. These

The work reported in this paper was supported in part by
the NASA under Grant NAG-1-296, the ONR under Contract
N00014-85-K-0122, and Martin Marietta, Aerospace Division
under Contract No. GH9-118088. Any opinions, findings, and
conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views
of the funding agencies.

CH2996-7/91/0000/0290$01.00 © 1991 IEEE

290

algorithms can generally be classified as either hard-
ware, software, or probabilistic. Hardware schemes [3,
4,9, 11] provide tight synchronization through the use
of special hardware. Software schemes [5, 6, 10] use
special synchronization messages to synchronize clocks
and thus require no special hardware, but do not pro-
vide tight synchronization. Probabilistic schemes [1, 2}
provide tight synchronization and use no special hard-
ware, but require greater numbers of synchronization
messages.

To date, all probabilistic clock synchronization algo-
rithms have used a master/slave clock organization.
This is largely because probabilistic algorithms are
simply estimation techniques, which provide highly ac-
curate estimates of a single remote clock at the expense
of a large number of synchronization messages. This
can cause problems when synchronizing a large sys-
tem. A single master clock could be swamped by large
numbers of synchronization messages, or the increased
traffic load around the master could invalidate some
of the assumptions made about communication delay
times. Multiple masters could be used, but such a
setup would require some method of synchronizing the
masters. One could avoid the need for master clocks if
each node obtained estimates of all other clocks in the
system, but the number of messages needed would be
prohibitive.

In this paper we propose a probabilistic synchro-
nization algorithm which does not use a master/slave
clock organization, but limits the number of synchro-
nization messages. It is therefore suitable for large
distributed systems. Our algorithm uses either and
interval-oriented approach or an averaging approach to
estimate the values of remote clocks, then feeds these
values to an interactive convergence algorithm to ad-
just the local clock. We reduce the number of messages
by using one message to provide estimates for all the
nodes on the path which it travels, and by not requir-
ing each node to estimate the clock of every other node
in the system.

Figure 1: Path of synchronization message.

The rest of the paper is organized as follows. In Sec-
tion 2 we present our estimation methods. In Section 3
we show how they can be used to synchronize a large
system. The paper concludes with Section 4.

2 Two Estimation Methods

The first part of our synchronization algorithm is
for each node to obtain estimates of the skew between
its local clock and other clocks in the system. In this
section we present two methods of obtaining these es-
timates. Both are probabilistic, they assume message
delays can be modeled as independent random vari-
ables, and there is a non-zero probability that esti-
mates will not have the desired accuracy. However,
this probability can be made as small as is desired,
given some information about the message delay dis-
tribution.

Both estimation methods use the same means of
gathering the information needed to make estimates.
Synchronization messages are sent along a cyclic path,
and each node on the path adds its local time to the
message. Consider Figure 1, a message is sent from ng
at local time Tp, passes through k& — 1 nodes each of
which adds its local time T;, and returns to ng at local
time T;. Each message is sent around the path twice,
so each node on the path will both send the message
and later receive it with all timestamps attached.

2.1 An Interval-Oriented Approach

This algorithm is much like the one described in [2],
each node uses the information in the message to com-
pute an interval containing the current value of each
remote clock. However, whereas in [2] the results of
earlier trials are thrown away while the algorithm waits
for a small enough interval, we keep the results of each
trial and intersect them with the results of later trials.
As aresult, the synchronization process is speeded con-

291

To T T Ts Ta Ts
L |

-0 —]
— - —e%— -]
b—-oe —-—

p—%—a —-

Figure 2: Intervals calculated from timestamps

siderably.
2.1.1 Calculation of Intervals

Let p be the maximum clock drift rate, and dpin be
the minimum time required to make one hop in the
path. Let D be the total time taken by the message as
measured on ng’s clock, i.e., D = Ty — Ty. Let Dy be
the actual time taken for the message to make the trip
around the cycle, and d; be the difference between the
actual time taken and the minimum time required for
the message to be sent from n; to ni4+1. Then

k=1
-DA = kdmin + Zd]
j=0
Since the d;’s all have non-negative values, for 0 < ¢ <
k—1 we get

k-1
0< > dj < Da — kdmin.

j=i

(2.1)

For any 0 < i < k — 1, if C;(T}) is the time on n;’s
clock at time T on ng’s clock, then we get

k-1
Ci(Tk) € |Ts + ((k = i)dmin +) dj)(1 = p),
j=i
k-1
Ti+((k_i)dmin+zdj)(l+l7) .
j=i

Substituting from Eq. (2.1) gives:
Ci(Tk) € [Ts + (k’ - i)dmin(l - P),
Ti + (Da — idmin)(1 + p)]-
Noting that D4 < D(1+p), and dropping the p? term,
we finally get:
Ci(Te) € [Ti + (k ~ i)dmin(1 - p),

Ti + D(1 4 2p) — idmin(1+p)). (2.2)

Figure 2 shows the results of a synchronization mes-
sage sent along a 5-node path. Time increases to the

right, the uppermost line shows the relative values of
each of the timestamps on the message, and the four
lower lines show the intervals which would be calcu-
lated for each of the C;(T5)’s. The corresponding skew
intervals can be obtained by subtracting Ts from each
endpoint. If a number of messages are sent, a number
of skew intervals will be obtained for each clock, and
the actual skew will be in the intersection. Under the
assumption of independent, random distribution of de-
lay times, the intersection will tend to shrink as more
messages are sent. This can be sped up by sending mes-
sages in both directions along the path since as can be
seen from Figure 2, clocks early in the path have their
intervals shifted left while later clocks have their inter-
vals shifted right. In this way, the intervals of nearby
nodes will shrink quickly while those of more distant
nodes will take longer. We will refer to this process of
shrinking intervals as convergence.

2.1.2 Analysis

Ideally, we want Fi.n,(k, n), the probability that all
intervals have converged after n messages have been
sent given k nodes are on the path. In general, this
function is difficult to determine. A more realistic goal
is to calculate F™id (k, n), the probability that the in-
terval for the “middle” node in the path has converged
after n messages have been sent given k nodes are on
the path. As was noted above, more distant nodes on
the path will take greater amounts of time for their
intervals to converge, thus a high probability that the
interval of the middle node has converged means a high
probability that all intersections are small.

From Eq. (2.2) the bounds on a given interval are
functions of two independent random variables: Theqq
the time the message took to get to the node, and T,y
the time the message took to return. If we assume clock
drift to be negligible then Theqq + Tiait = D. Also, if
Ttk2) is measured relative to Ty then Trr/21 is just
Thead + @ Where a is the skew between clocks 0 and
[k/2]. Eq. (2.2) now gives us:

Cre/21(Tk) € [Thead + a + |k/2]dmin(1 — p),
2Thead(l + P) +a+ Ttm‘](l + 2p)
~[k/21dmin(1 + p)).

We can obtain the skew interval by subtracting D =
Thead + Tiair from the endpoints of the above interval:

["‘Ttail +a+ I_k/zjdmm(l - p):
Thead + 2pD + a — |'k/2'|d,,.,-,,(1 + p)]

As p is typically small (usually on the order of 10~3 or
less), we drop the 2pD term to get:

[_Ttail +a+ l_k'/2_|dmin(l - P)a

Thead + @ — [k/2]dmin(1 + p)]. (2.3)

292

A similar small p argument can be used to remove the
remaining p’s in Eq. (2.3), or in Eq. (2.2). Here our
goal is to remove the D term from the upper bound of
the interval so we can model the interval endpoints as
independent random variables.

Let L; and U; be the lower and upper bounds of the
skew interval generated by the i-th message. Given the
distribution and density functions Fheqd, fhead, Frail,
and fiait, of Thead and Tiqi, we can obtain the distri-
bution and density functions of L; and U;:

Fr(z) = Faa(-2), fr,(2) = frai(—2)
FU.'(x) = Fhead(x), fU.‘(I) = .fhead(z)'

The constants have been ignored for the moment as
they will be taken care of later. As these distribution
functions are independent of ¢ we will drop the sub-
script ¢. We want the maximum of the L;’s and the
minimum of the U;’s:

MAX,
MIN,

mazimum{L; : 1 <i < n}

minimum{U; : 1 < i < n}.

The distribution functions for M AX and MIN can
be expressed in terms of the distribution functions of
L and U:

(F(=))”
1-(1- Fy(z))".

Fyrax(z;n)
Fyin(z;n)

The density functions are found by differentiating:

n(Fi(2))" "' fo(z)

n(l ~ Fy(2))" ™" fu ().
Fmid(k n) is the probability that the width of the in-
tersection is below a given constant w. This probability
is expressed in Eq. (2.5), where we have now added in
the constants we ignored earlier. In the case of odd k
an extra —dpminp term is dropped from the left side of
the inequality in Eq. (2.5). As MIN and MAX are
independent, this probability can be computed by the
convolution integral in Eq. (2.5).

2.1.3 Examples

fmax(z;n)
furn(z;n)

We will assume k is even so that Theqq and Tiqq will
have identical distributions. A normal distribution is a
good choice for Theqq and Ti,i1, especially as the num-
ber of nodes increases. This is because Theqq and Tiasr
are the sums of k/2 (assumed) independent delays, the
central limit theorem predicts the distribution of such a
sum will tend towards normal as k increases. It further
predicts that if the mean and variance of the delay for
one hop on the path are ; and ¢?, then the mean and
variance for Thead and Tyqir will be ky/2 and ka?/2.

Fio(k,m)

k w/2 n Fmid where
16 1 32 0.5234 17.45
16 1 48 0.7218 23.76
16 1 96 0.9531 34.33
16 2 8 0.9160 3.64
16 2 16 0.9966 4.22
16 2 32 0.9999 4.26
32 1 1024 0.0472 638.80
32 1 8192 0.6554 4102.49
32 2 512 0.7393 244.44
32 2 2048 0.9992 385.42

Table 1: Normal distribution where ¢ = 0.3

k w/2 n Fm? where
16 1 8 0.9785 2.98
16 1 16 0.9998 3.13
16 1 24 0.9999 3.14
32 1 8 0.7611 4.32
32 1 16 0.9674 5.82
32 1 24 0.9960 6.19
32 1 32 0999 6.25
64 1 64 0.9830 19.49
64 1 96 0.9985 20.22

Table 2: Normal distribution where o = 1.0

In [1, 2] the values of dm;n and g were given as 2.11
milliseconds and 2.45 milliseconds. [1] also gave o as
1 millisecond, though we will also use 0.3 millisecond.
We also consider several values of w/2, half the desired
width of the interval and the maximum error if the
middle of the interval is taken as the estimate.

Tables 1 and 2 show the value of F7i4 for various
values of k, w/2, and n, each table is for a different
value of o. The where column shows, on average, how
many messages had to be sent to achieve convergence.
This information was produced by a simulator which
was used to check the results of the analysis.

293

P[(MIN, + & — [k/2)dmin(1 + p)) — (MAXp + a + |k/2}dmin(1 = p)) < w]
P[MIN, — MAX, — kdmin < w]

o] W+y+kdmin
/ dy/ Tmax(y;n)fmin(z;n)de.
—-00 -0

(2.4)

(2.5)

2.2 An Averaging Approach

If the average delay p is known, then from the times-
tamp T; of the remote node one should be able to esti-
mate the current time on that node to be T; + (k —i)p.
This estimate is vulnerable to variation in the delivery
times, but if the process is repeated often enough and
the results averaged, the variation will likely average
out so that the estimate obtained will be close to the
true value. Such an algorithm cannot produce an in-
terval which is certain to contain the correct value of
the remote clock, but it does provide a probability that
the true value of the clock is within a given distance
from the estimate. This probability can be made to be
as close to one as is desired.

We assume that messages are sent in both directions
along the path and that n messages are sent in each
direction, for a total of 2n messages. Each message
will still go around twice, but nodes will only attach
their times on the first trip, the second trip is so that
nodes can see the times of nodes later on the path.
To simplify notation we will assume that the messages
alternate directions each time. If T3 and T} are the
send and receipt times for message j, then we estimate
the difference between n;’s clock and ng’s clock as

Qest =Tt — Ti — kp/2, (2.6)

where

2n
Te=1/2n) T}
i=1

Ti=1/amy ($9+18,).
j=1

The X’s in Figure 2 show the estimates which would
be made for each clock on the path.

The skew value produced is only an estimate and
may be arbitrarily far from the actual value. However,
the laws of large numbers predict that the estimate
will be close. Let the difference between the estimate
and the actual value be . The maximum distance the
estimate is allowed to vary from the true value is €maz.
For any given € there is a finite probability that
€ is greater than €mqz. This probability is called the
probability of invalidity, and much of the next section

will focus on how this probability can be made as small
as possible.

2.2.1 Analysis

This averaging algorithm is similar to the one pro-
posed in [1] and a detailed analysis of its operation can
be found there. Our algorithm is different from that
in [1], however, in that a group of processors is being
synchronized and that there are two different variances
in delivery times.

Eq. (2.6) can be re-written as

o= g 20 (18 =177 - - 04)

+(18 -1, - in)).

We would like to know the distribution of a,,;. Since
it is expressed as the sum of a number of independent
random variables, we can use the central limit theorem
to approximate it by a normal distribution. To find the
appropriate normal distribution we need to know the
mean and variance of each of the terms of the sum. The
mean of each term should be a, the skew. The variance
of each term will be the variance in time taken for the
message to travel either k — i hops or 7 hops. If we
assume the time taken for each hop on the path to be
independent, then we can assume the variances to be
(k — i)o? and io? where 02 is the variance of a single
hop on the path. The distribution of a,; can thus be
approximated by N (a, %2”3 .

What is needed is a method of determining n given
the maximum error €4, and the desired probability
that € < €mas. From the approximate distribution
above we can determine the following:

Peceno. = Erf ""“‘/2_"]

Vko
where Erf is the error function. Solving for n yields:

ka?
n= _""‘E"'f—l[PKemu]z-

2
2€maz

2.7)

2.2.2 Examples

With Eq. (2.7) it is easy to compute the number of
messages which need to be sent. It is also easy to see
the relationships between n and the various parameters
0,k, €maz, and Pece,.,.. We have computed the values
of n for several combinations of these parameters, and
tabulated the results in Table 3 and 4.

3 Large Systems

If the system has a Hamiltonian cycle, one could use
a single message path to synchronize the entire system.

294

k €mazr P¢<5m" 2n
16 1 0.9 2
16 1 0.999 8
16 1 0.99999 14
32 1 0.9 4
32 1 0.999 16
32 1 0.99999 28
64 1 0.9 8
64 1 0.999 32
64 1 0.999999 56

Table 3: Analysis for ¢ = 0.3

k €maz Pe< Emaz 2n
16 1 0.9 22
16 1 0.999 88
16 1 0.99999 156
32 1 0.9 44
32 1 0.999 174
32 1 0.99999 312
32 2 0.9 12
32 2 0.999 44
32 2 0.999999 80

Table 4: Analysis for 0 = 1.0

However, as path length increases, the accuracy of es-
timates declines. Also, a single faulty node could foul
up the entire process. In this section we show how to
avoid these problems.

Our solution is to use a divide-and-conquer ap-
proach. A number of synchronization groups are
formed, so that each node belongs to at least one group.
The groups are chosen so that there is a cycle which
goes through each member, and one of the estimation
algorithms is used to give each member an estimate
of every other member’s clock. When all groups have
finished, each node takes the estimates it has collected
and uses an interactive convergence algorithm to ad-
just its local clock. If the groups are set up properly
all the clocks within a synchronization group will re-
main within a given skew, 6, of each other. The nodes
which belong to more than one group can be used as
“bridges” to provide a maximum skew between two
nodes not in the same group, i.e., if A is within é of B,
and B is within é of C, then A is within 26 of C.

3.1 Tightness of Synchronization

To maintain synchronization within a group all the
clocks in a group must remain within é of one another.

To maintain synchronization between groups it is nec-
essary for there to be some overlap between them. A
node which belongs to a group of fast clocks and a
group of slow clocks may find itself caught in the mid-
dle and unable to remain within § of clocks from both
groups. In this section we will describe the interactions
between groups and the effect this has upon 6.

Definition 1: Two nodes A and B are said to be
grouped if they belong to the same synchronization
group. They are said to be é-synchronized if their
clocks always remain within 6 of one another. The
system is 6-synchronized if all pairs of grouped nodes
are é-synchronized.

To show é-synchronization we must take a close look
at how nodes are grouped. Assume A and B are
grouped and the size of the synchronization group is k.
Let G* be the set of nodes with which A is grouped,
GP® be the set of nodes with which B is grouped, and
n4 and np be the number of nodes in each set. We
then partition G4 U GE into the following seven sets.

The first set is GAB £ GA 0 GB, the nodes with
which both A and B are grouped. Each of these nodes
must be within § of both A and B. Let the number of
nodes in this set be nn, since A and B are in the same
synchronization group, na > k — 2.

The next two sets are Gff C GA — GP and G C
GB — GA. These are nodes which, while not grouped
with both A and B, are grouped with one of them
and with a node which is grouped with the other. For
example, if a € G{‘ then there exists some b € GP such
that a and b are grouped. We require that there be a
bijection g; : Gff — GP such that g1(a) =b=>a and b
are grouped. This pairing of nodes insures that |G{| =
|G®| = n; and will have other important consequences
later.

The next two sets are Gf C G — GB — Gf!, and
GB C GB—GA—G?P. These sets are much like Gf! and
G?, only one more node has been added in the cycle.
As an example, if a € G4 then there exists b € GF
and node c such that both a and b are grouped with ¢
but not with each other. Again we require a bijection
g2 : G4 — GP such that gy(a) = b = Jc such that
both a and b are grouped with ¢ but not each other.
We then have |G4| = |GZ| = n,.

The last two sets GA 2 GA — GB — G4 — G4, and

GB 2 GP — GA - GB — GB, contain whatever is left
over. These nodes are those which are grouped with
either A or B but have no useful relationship to the
other which can be used to constrain the value of its
clock. Denote the sizes of these sets by ns, and np,.

Figure 3 attempts to provide some feel for the rela-
tionships between these sets, especially the maximum

295

(e

O O O O O O O
O O O O O O O

F O o}

® «HO)
HO)

= L{0)

Figure 3: Partitioning of groupings

skew between two nodes of different sets. Nodes A and
B are & apart, while the nodes of GAB, which must be
within & of both A and B, are shown in between them.
Each node of G# must be within 6 of some node in G?,
so these sets are shown § apart. The situation is similar
for sets G4 and G¥, which must be 26 apart. Finally,
sets G4 and GB, which are only constrained by their
relationships with A and B, may be up to 36 apart.
The figure is oversimplified in the sense that nodes do
not have to be exactly where they are pictured. For
example, the nodes of G{f may be anywhere within §
of where they are pictured. But if a node in G{ is
moved it drags with it its partner node in G¥. When
the interactive convergence calculations are made by
A and B what is added to one node is subtracted from
the other. So the skew between the two nodes is no
different from what it would be if the node was where
it is pictured.

We can now calculate the difference in the clocks of
A and B after synchronization. As shown in Figure 3,
we assume the clock values of the nodes of GAZ to

be 0. We also assume that a node will get the least
accurate reading possible of a remote clock, and the
one which will do the most to make sure that A and
B are not within § after synchronization. Thus A will
read the values of GA® to be € while B sees them as —e.
The maximum value of A’s clock after synchronization
C;"ynch is:

C:;nch
= (=86/2+e+nae+6/2+n1(6/2+¢)
+na(6+€)+na,(36/2+¢€))/na

= (g(nl +2n2+3n4.) +€(na — 1)) /na.

The situation for the minimum value of B is similar,
only the signs are reversed and ng, and np are used.
The difference between the two, mazdiff = CA

synch —
B : .
Ciynen is then:

%(nl + 2ny +3nA') +€(nA — 1)
nA

+%(n1 +2n2+3np,) + ¢(np — 1)

np ’

mazdiff =

(3.1)

If, as is often the case, ngy = np = n, then ny, =
np, = ny and we can simplify Eq. (3.1) to:

mazdiff = 2 (g(nl +2ny 4+ 3ny) + e(n - 1)) /n.

(3.2)
These equations can be used to get the relationship be-
tween € and 6. Once n4, np, nn, n1, and ny are fixed,
set 6 > mazdiff, this can be solved to yield a minimum
ratio of 6 to €. They can also be used to get the max-
imum time between synchronizations, 7.. If p is the
maximum clock drift rate, then (6§ — mazdiff)/2p = 7,.

3.2 Examples

We will investigate two different setups to synchro-
nize a 256-node hypercube system. A hypercube has
a natural structure for synchronization groups: the
subcube. For both examples we will use 4-cubes (16
nodes), and will use asterisks () to designate the
don’t-care positions in the hypercube address.
3.2.1 A 32-group setup

For our first example we will use 32 subcubes as
our synchronization groups, 16 of the form abed * * * *
where the upper four bits of the address are fixed, and
16 of the form # % x x e fgh where the lower four bits of
the address are fixed. Each node will be in 2 synchro-
nization groups with 16 members each, thus we can
use Eq. (3.2) with n = 31. If A and B are grouped
then GAP is just the rest of the nodes in the synchro-
nization group, thus nq = 14. The remaining 15 nodes

in each of G# and G® will be in G{ and GE. This
can be seen as follows: assume A has address 0000abcd
and B has address 0000efgh, for any node wzyzabed
which is grouped with with A but not B, there is node
wzyzefgh which is grouped with with B but not with
A, wzyzabed and wzyzefgh are both in the synchro-
nization group wzyz * * * * and thus are grouped. This
gives us n; = 15 and ny = n, = 0, plugging this into
Eq. (3.2) gives

& > mazdiff = 2(156/2 + 30¢)/31
, 15
7€

The value of § must be at least -14—5 times that of € in
order to ensure é-synchronization.

With this setup, all nodes in the system will be
within 26 of one another. Let p = 2 microseconds per
second, and ¢ = 1 millisecond. If we want all nodes in
the system to be within 10 milliseconds of one another
we must have § = 5 milliseconds, then mazdiff = 4.35
milliseconds and a maximum time to resynchroniza-
tion of (5 — 4.35)/0.004 = 162.5 seconds. If we are
willing to let the maximum skew become 20 millisec-
onds we can have § = 10 milliseconds, mazdiff = 6.77
milliseconds, and a maximum time to resynchroniza-
tion of (10 — 6.77)/0.004 = 807.5 seconds.

The number of synchronization messages sent de-
pends on the standard deviation of delivery time and
the synchronization algorithm used. If ¢ = 1.0, then
we use the interval algorithm which takes at most 24
messages (but averages just over 3) to get an accu-
racy of 1 millisecond. Each message is sent twice by
each node in the group and each node belongs to two
groups, this means a maximum of 96 messages sent per
node (and an average close to 12). If & = 0.3, then we
use the averaging algorithm which will send 14 mes-
sages per synchronization or a total of 56 messages per
node.

3.2.2 A 17-group setup

As a second example, we reduce the number of syn-
chronization groups. We keep the first 16, the sub-
cubes of the form abed * x * x, but take only the sub-
cube ** % %0000 from the second 16. The last subcube
contains one node from each of the first 16 so, the sub-
cubes are all “connected” in that any two nodes will
be within 36 of each other if §-synchronization is main-
tained. With this division there are three possible cases
for any two grouped nodes: they can both be in one
of the first 16 subcubes only, one can be in the first 16
subcubes only while the other is in the last subcube, or
both can be in the last subcube. Each case will place
a different restriction on the ratio between é and e.

296

Suppose A and B are both in one of the first 16
subcubes, but neither is in the last subcube. Then
na = np, nn = 14, and we can use Eq. (3.2) to de-
termine the ratio of § and €. In this case it turns out
6> 1—856.

Suppose A is in one of the first 16 subcubes only,
while B is also in the last subcube. In this case the
two nodes are in different numbers of synchronization
groups, A is in one while B is in two. For this case we
must use Eq. (3.1). To start we note that n4 = 16 and
ng = 31. All the nodes in G4 (except A and B) will
be in GAB, s0 nn = 14. The remaining nodes of G2
will be in GB, so ng, = 15. We can now calculate

§ > 15¢/16+ (456/2 + 30¢)/31
945,
136

Finally, assume both A and B are in the last sub-
cube. In this case we can once again use Eq. (3.2) as
both nodes belong to two synchronization groups. We
have n = 31, nn = 14, and n, = 15. From Eq. (3.2)
we get

>

§ > 2(456/2+ 30¢)/31
30

———€.

& <

As both 6 and € are positive values, this equation has
no solutions. There are no values of é and ¢ for which
this setup can guarantee §-synchronization.

4 Conclusion

In this paper we have presented a scheme for syn-
chronizing the nodes of a large distributed system.
Three major advantages of this scheme are : (i) it is
software based and needs no special hardware support,
(ii) high accuracy in estimation of clock values leads to
tighter synchronization than is allowed by most soft-
ware schemes, (iii) tightness of system synchronization
can be controlled by the number of groups.

A further advantage of this approach is the ability
to place co-operating tasks in the same synchroniza-
tion group. This allows them to be closely synchro-
nized without incurring the extra overhead involved in
increasing the system synchronization.

As a matter of further research, we are considering
the fault-tolerance of this scheme. A fault can only af-
fect synchronization within a small area, and the more
groups there are, the less affect a fault will have. We
are currently considering methods of determining the
fault-tolerance of a given synchronization setup.

297

References
[1] K. Arvind, “A new probabilistic algorithm for
clock syncronization,” in Proc. Real-Time Sys-

tems Symposium, pp. 330-339, Santa Monica, CA,
1989.

[2] F. Cristian, “Probalistic clock synchronization,”
Distributed Computing, vol. 3, pp. 146-158, 1989.

[3] J. L. W. Kessels, “Two designs of a fault-tolerant
clocking system,” IEEE Trans. on Comput., vol.
¢-33, no. 10, pp. 912-919, October 1984.

[4] C. M. Krishna, K. G. Shin, and R. W. Butler,
“Ensuring fault tolerance of phase-locked clocks,”
IEEE Trans. on Comput., vol. ¢-34, no. 8, pp.
752-756, August 1985.

[5] L. Lamport and P. M. Melliar-Smith, “Synchro-
nizing clocks in the presence of faults,” J. ACM,
vol. 32, no. 1, pp. 52-78, January 1985.

[6] J. Lundelius-Welch and N. Lynch, “A new fault-
tolerant algorithm for clock synchronization,” In-
formation and Computation, vol. 77, no. 1, pp.
1-36, 1988.

[7] P. Ramanathan, D. D. Kandlur, and K. G. Shin,
“Hardware-assisted software clock synchroniza-
tion for homogeneous distributed systems,” IEEE
Trans. on Comput., vol. 39, no. 4, pp. 514-524,

April 1990.

P. Ramanathan and K. G. Shin, “Checkpointing
and rollback recovery using common time base,”
in Proc. 7th IEEE Symp. on Reliable Distribuied
Systems, pp. 13-21, October 1988.

K. G. Shin and P. Ramanathan, “Clock synchro-
nization of a large multiprocessor system in the
presence of malicious faults,” IEEE Trans. on
Comput., vol. C-36, no. 1, pp. 2-12, January 1987.

8

[9]

[10] T. K. Srikanth and S. Toueg, “Optimal clock syn-
chronization,” J. ACM, vol. 34, no. 3, pp. 626-
645, July 1987.

[11] N. Vasanthavada and P. N. Marinos, “Synchro-
nization of fault-tolerant clocks in the presence of
malicious failures,” IEEE Trans. on Comput., vol.
37, no. 4, pp. 440-448, April 1988.

