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Fault-Tolerant Clock Synchronization 
in Large Multicomputer Systems 

Alan Olson and Kang 

Abstract-The cost of synchronizing a multicomputer increases 
with system size. For large multicomputers, the time and re- 
sources spent to enable each node to estimate the clock value 
of every other node in the system can be prohibitive. We show 
how to reduce the cost of synchronization by assigning each 
node to one or more groups, then having each node estimate 
the clock values of only those nodes with which it shares a group. 
Since each node estimates the clock value of only a subset of the 
nodes, the cost of synchronization can be significantly reduced. 
We also provide a method for computing the maximum skew 
between any two nodes in the multicomputer, and a method for 
computing the maximum time between synchronizations. We also 
show how the fault tolerance of the synchronization algorithm 
may be determined. 

Index Terms- Clock synchronization, clock skew, clock drift, 
fault tolerance, multicomputer systems 

I. INTRODUCTION 

N a multicomputer system, the cooperation between the I nodes is high, often to the point where the system can be 
thought of as a single computer. In some cases, such as real- 
time control systems, a systemwide time is used to facilitate 
cooperation. It determines when each node is supposed to 
finish certain tasks and when other nodes expect them to finish. 
Each node measures time with its own clock, and each clock 
runs at a slightly different rate, and as a result, the difference 
between each node’s idea of the current time increases over 
time. Such a disparity can cause deadlines to be missed, and 
eventually lead to system failure. 

One possible solution is to reduce the difference between 
clock rates. Atomic clocks and oven-controlled quartz oscilla- 
tors are far more accurate than the simple quartz oscillators 
found in most computers. However, adding such a device 
to each node can greatly increase the cost, size, weight, 
and power consumption of the multicomputer. Alternatively, 
one could use someone else’s atomic clock. Universal time 
coordinated (UTC) can be read via telephone, radio, or satellite 
from several sources at varying levels of accuracy [2], [16]. 
Giving each node the hardware necessary to read UTC will 
make sure the nodes agree on the current time. Once again, the 
extra hardware will increase the system cost, size, weight, and 
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power consumption. Also, a mobile system may have trouble 
reading UTC while moving. 

A more common solution is to use a synchronization 
algorithm. All synchronization algorithms have two phases. 
First, nodes distribute information about their current clock 
values. Second, each node uses this information to decide 
how much to adjust its own clock in order to synchronize 
it with the clocks of the rest of the nodes. Distributing 
clock information is the costliest part of the synchronization 
algorithm, with cost generally increasing with accuracy. Since 
accuracy of synchronization depends directly upon accuracy of 
clock information, much effort has gone into devising efficient 
ways to distribute clock information accurately. These methods 
can be divided into two groups. 

Hardware methods [6], [7], [13], [I51 use a dedicated 
network to broadcast each clock signal, and give very accurate 
results. However, the clock network requires on the order 
of n2 communications links for an 71 node multicomputer, 
and is thus very expensive for all but the smallest systems. 
Network methods [ 1 J, 131, [SI, [SI-[ 121, [ 141 use the existing 
communication network to exchange information about clock 
values. Network methods usually give less accurate results, 
because of uncertainties in  the delays imposed by the commu- 
nication network, but are much cheaper to implement, because 
no special hardware is required. A special class of network 
methods is probabilistic methods. They exploit the stochastic 
nature of communications delays to get very accurate results, 
at the cost of greater network traffic. Also, accuracy is not 
guaranteed; instead it has an associated probability. which can 
be made as close to I as is desired. 

Many synchronization algorithms require each node distrib- 
ute information about its clock to every other node. In a large 
multicomputer, or if tight synchronization is needed, this can 
be very expensive. Other synchronization algorithms use a 
master-slave clock organization, so only master clocks need to 
distribute clock information. This reduces the cost, but creates 
other problems. The master clock nodes are forced to carry 
an extra load, and another synchronization algorithm must be 
provided to synchronize the master clocks. 

In this paper, we propose a synchronization algorithm that 
does not require each node to distribute information about its 
clock to every other node, and does not require a master-slave 
clock organization. Instead, each node belongs to one or 
more groups, and sends information about its clock only 
to other members of its group. This reduces the cost of 
synchronization, but does not place the entire load on a few 
nodes. Also, any of the above methods can be used to distribute 
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the accuracy of information provided. Our algorithm also 
provides a range of synchronization: Nodes in the same group 
will be tightly synchronized, whereas looser synchronization 
prevails globally. This reflects the needs of many real-world 
applications, where cooperating or replicated tasks may need 
tight synchronization, whereas a looser synchronization may 
be suirable otherwise. 

The paper is organized as follows. Section I1 presents 
our assumptions and an overview of our synchronization 
algorithm. Sections I11 and IV show how to guarantee a given 
maximum skew. Section V discusses the fault tolerance of the 
synchronization algorithm, and how to determine the number 
of faults it  can tolerate. The paper concludes with Section VI. 

11. SYNCHRONIZATION 

A clock is a discontinuous function C ( t )  mapping from 
some external real-time (i.e., Newtonian time) reference into 
the set of integers. Computer clocks are usually nondecreasing 
functions, because many computers do not like to have their 
clocks set back; but we do not require this. Each clock has a 
drift rute p, such that if C ( t )  is the clock function and t l ,  tz are 
times in the external reference with t 2  > t l ,  and if the clock is 
not interrupted or halted in any way during the interval [ t l ~  t z] ,  
then we have the following equation: 

(1 - p ) ( t z  - t l )  5 q t , )  - G(t1) 5 (1 + p ) ( t *  - t l ) .  (2.1) 

For a good crystal oscillator, p will be on the order of 
In real clocks, the value of p is not constant, but changes over 
time. Because the change almost always happens very slowly, 
we can neglect its effects. 

Two clocks, C,(t)  and C,(t), are said to be &synchronized 
at time t if and only if: 

The purpose of a synchronization algorithm is to ensure that 
any pair of clocks in the multicomputer will be &synchronized 
whenever the multicomputer is in operation. Synchronization 
algorithms that use hardware methods to distribute clock 
information usually run continuously, constantly adjusting 
clock rates to keep clocks synchronized. Other algorithms, 
including the one we describe here, run periodically, and 
clocks can drift apart between runs of the synchronization 
algorithm. Such algorithms generally synchronize clocks to 
within some target 7 < 5 .  The value of 7 is chosen to be 
small enough so that clock drift cannot increase skew to more 
than 5 before the next run of the synchronization algorithm, 
i.e., if T is the real time that elapses between successive 
synchronization : 

We make the following assumptions about the multicom- 
puter, the clocks, and the way clock information is interpreted. 

1) Each node of the multicomputer has its own hardware 
clock. The clock consists of a counter whose value can 
be read at any time. 

2) A method exists to allow each node to gather information 
about the clocks of other nodes in the multicomputer. We 
do not require each node be able to gather information 
about all other nodes, only a subset sufficient to ensure 
synchronization, as detailed in Section 111. 

3) The value of the clock increases at an almost constant 
rate over the period where clock information is being 
distributed through the multicomputer. The frequency of 
all real clocks varies somewhat, and also the synchro- 
nization algorithm may insert or suppress clock cycles 
periodically in order to synchronize the clock. This is 
tolerable as long as the variation in rate is small in 
comparison to the rate itself. 

4) Each node uses the information it gathers to estimate the 
difference, or skew, between its clock and the clocks of 
other nodes. The error of any given estimate is no more 
than F .  This accuracy may be guaranteed, or may have an 
associated probability if probabilistic methods are used. 

These assumptions allow any of the distribution methods 
mentioned above to be used with little or no modification. 
Hardware distribution methods usually connect lines from 
other node’s clocks to a phase-locked loop, but for our 
purposes, each would be connected to a counter. and the dif- 
ference in counter values would give the skew between clocks. 
Network methods require clocks to be counters anyway, and 
all synchronization algorithms that use them produce skew 
estimates either explicitly or implicitly. 

B. Overview of the Proposed Algorithm 

The amount of clock information to be distributed can 
be reduced if each node is selective about the other nodes 
from which it gathers information. It is possible to provide 
synchronization while requiring each node only gather clock 
information from a few carefully selected nodes. This is the 
basis of our algorithm. 

We begin by defining sets of nodes, called synchronization 
groups. We guarantee the clocks of any two nodes that belong 
to the same synchronization group will be &synchronized. 
Overlap between synchronization groups guarantees that if two 
nodes do not belong to the same synchronization group, there 
exists some integer IC such that the skew between the clocks 
of the two nodes is less than kb .  

Each node belongs to at least one synchronization group, 
and gathers clock information from, and sends clock informa- 
tion to, only those nodes with which it shares a synchronization 
group. A node uses the clock information that it receives from 
another node to estimate the skew between its clock and the 
clock of the other node. An interactive convergence algorithm 
[8] is then applied. Any skew estimates that are too large are 
discarded; the rest are averaged, and the result is the amount 
by which the clock is to be adjusted. Large skews are discarded 

(2.3) 
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Fig. 1. Synchronization graph for a 16-node hypercube multicomputer. 

to present a single faulty node from throwing off the average, 
a skew a is considered too large if la1 > S + E (the maximum 
skew plus any estimation error). A single application of this 
algorithm will synchronize the clocks of a synchronization 
group to within T ,  and the algorithm must be run again before 
the clocks can drift to more than 6 apart. 

The guarantees of maximum skew depend on the assignment 
of nodes to synchronization groups. If there is not enough 
overlap between groups, the guarantees will not hold. In 
Section I11 and IV, we show how to determine if a given set of 
synchronization groups will provide the necessary guarantees. 
Section I11 presents a graph-oriented method for describing 
synchronization groups, and Section IV shows how to use the 
graph to compute 7 .  

C. Initial Synchronization 

Any guarantees of maximum skew also depend on the 
method of achieving initial synchronization. This would nor- 
mally be done during system initialization. Any algorithm 
for achieving initial synchronization [ 5 ] ,  [9] can be used. 
Additionally, a temporarily appointed master could repeatedly 
broadcast its clock value, much as in [l], until the rest of the 
nodes can get an accurate-enough estimate. If none of these 
approaches can synchronize the multicomputer tightly enough, 
repeated applications of our algorithm can be used to finish the 
job. If the nodes of synchronization group are synchronized to 
within A, a single application or our algorithm will reduce the 
skew to some 71 < A. Immediately applying our algorithm 
again will result in a maximum skew of 7 2  < 71. Continuing 
in this fashion will eventually result in a maximum skew of 
~f 5 7, the target value during normal operation. 

111. SYNCHRONIZATION GROUPS 

Each node will belong to at least one synchronization group. 
Two nodes are said to be tied if they are both members of the 
same synchronization group. The transitive closure of tied is 
strung, e.g., nodes A and B are strung, because A is tied to C, 
which is tied to D, which is tied to B. Because there is a limit 
on the skew between tied nodes, there will exist a limit on 
the skew between strung nodes. If two nodes are not strung, 
there will be no limit on the skew between them. To ensure 

gl 0" g**lo gll" g"l 1 

synchronization, a node need not be tied to every other node, 
but it must be strung to every other node. 

As a simple example, consider a 16-node hypercube. Each 
node will have a binary address between 0000 and 11 11. We 
define eight synchronization groups of four members each. The 
first four groups will be the subcubes of the form ab * *, and 
the second four groups will be subcubes of the form * * ab, 
where * indicates a "don't care" address bit and a,  b E (0, l}. 
Every node will belong to two synchronization groups, each 
with three other nodes. Thus, each node will be tied to six 
other nodes. Any pair of nodes will be strung. 

A. The Synchronization Graph 

A bipartite synchronization graph can be derived from 
the definitions of the synchronization groups. One vertex 
set, called the group vertices, has one vertex for each syn- 
chronization group; the other vertex set, called the system 
vertices, has one vertex for each node. The system vertex 
that corresponds to node a is denoted as sa,  and the group 
vertex that corresponds to synchronization group A is g A .  An 
edge exists between sa and g A  if and only if node a is in 
synchronization group A. Nodes a and b are tied if and only 
if the distance between sa and sb is 2. Nodes a and b are 
strung if and only if there is a path between sa and sb. If 
the synchronization graph is connected, then all pairs of nodes 
will be strung. Throughout this paper, we use nodes to refer to 
the physical nodes of the multicomputer, and vertices to refer 
to vertices of the synchronization graph. 

Fig. 1 shows the synchronization graph for the 16-node 
hypercube example discussed in the previous section, where 
the small circles represent system vertices and large circles 
are group vertices. 

The stretch between a pair of nodes is half the length 
o f  the shortest path between their respective vertices in the 
synchronization graph; e.g., the stretch between a pair of tied 
nodes is 1. In Fig. 1, the distance between any two system 
vertices is no greater than 4, so the stretch between any 
two nodes in this multicomputer is no greater than 2. The 
stretch between a pair of nodes multiplied by 6 yields the 
maximum skew between the nodes. One should take care to 
distinguish between the stretch between two nodes, and the 
distance between them in the multicomputer's network. The 
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stretch indicates the maximum skew between two nodes, and is 
not necessarily related to the. physical distance between nodes. 
This can be seen from Fig. 1, where the maximum stretch is 
2, but the diameter of a 16-node hypercube is 4. 

B. Synchronization Paths 

We call the set of nodes tied to a given node that node's 
synchronization set. For example, in our 16-node hypercube 
example, the synchronization set of node 0000 will be 
{0001,0010.0011,0100,1000.1100}. When a node computes 
the adjustment to its clock, it will use the estimated skews 
for all nodes corresponding to vertices in its synchronization 
set. Some of these nodes may not belong to a common 
synchronization group; e.g., in the earlier example, 0000 will 
use skew estimates from 001 1 and 1100 that do not belong 
to a common synchronization group. It would therefore be 
impossible for 0000 to remain synchronized with both 001 1 
and 1100 if there were no bounds on the skew between the 
latter two. The stretch provides the needed bound, and it 
can be computed from the synchronization graph. However, 
when fault tolerance is considered, we need to know more 
than the stretch. We need to know upon which nodes and 
synchronization groups the stretch depends. Specifically, for 
any pair of nodes, we need to know what paths exist between 
their respective nodes in the synchronization graph. 

In a multicomputer with synchronization graph S, node a 
and corresponding system vertex sa ,  let S" be the set of all 
vertices a distance of 2 from sfL (i.e., vertices corresponding to 
node a 's  synchronization set). We then define synchronization 
paths (SP's) for u and b as follows. 

Dejinition I :  Given a multicomputer with synchronization 
graph S ,  and tied nodes U and b, let S,E,b = Sa  n Sb ,  and let 
Gab be the set of group vertices a distance of 1 from exactly 
one of sa and s'. A synchronization path (SP) is a simple 
path in S from a member of Sa to a member of Sb,  which 
contains at most one member of S:', no members of Gab, and 
has length no greater than 4. 

The existence of an SP between ,sd E Sa  and sp E Sb 
indicates a relationship between node d in a's synchronization 
set and node e in b's synchronization set. Either d and e are 
tied to each other, or are both tied to some common third node. 

As an example, consider Fig. I again. Nodes 0000 and 0001 
are both in synchronization group 00 * *. We have: 

s0000 - ( ~ 0 0 0 1 ,  so010 s O o l l  
- , 9 1 ' }  

so001 - - ( ~ 0 0 0 0 ~  s"010 < s O O 1 l ,  p o l  c y l O O l  c s l l O l }  

0100 s l O O O  Q l l O O  

I 

GOOOO00(!1 - - {G**OO. y+*(!l}, 

Each of the members of Sooo0 not in S:OOOOOO1 has an SP of 
, and 

slloO + gl'** -+ 

Each SP has a corresponding stretch of half the length of 
the SP. Each SP is classified according to its corresponding 
stretch. An SP of length 2 has a corresponding stretch of 1, 
and is therefore called a I-SP. Similarly, an SP of length 4 
is called a 2-SP. 

We can find all SP's for a given pair of nodes using a 
simple modification of a depth-first search algorithm. Pro- 

length 2:  soloo ~ ,qO1** -+ sol( ! l  s l O O O  ~ g l O * *  ~ R l O O l  

There are also 12 SP's of length 4. 

Procedure Fnd.synch_path(fragment! 
begin 

if fmgment i s  a synchronization path then 

else 
makeSP(fmgment! 

if IengthVragment) i 4 then 
tail = last vertex of fmgment; 
foreach neighbor of tail 

find~synch.path(frugment+neighbor), 
endif 

endif 
end 

Fig. 2. Procedure f indsynchpath 

cedure jindsynchpath, shown in Fig. 2, will find all SP's 
that have endpoints at a given vertex. The complexity of this 
algorithm depends on the synchronization graph. If each node 
belongs to no more than g synchronization groups, and each 
synchronization group has no more than k members, then the 
maximum size of S" is .9(k - 1). The algorithm will search 
all paths of length 4 from these nodes, for a maximum of 
g ( k  - l)g2k2 = g"* ( k  - 1) paths. 

C. Synchronization Areas 

To show that the multicomputer will remain synchronized, 
we must show that immediately after the synchronization 
algorithm has finished, the skew between any pair of tied nodes 
will be less than 7. This could require checking a large number 
of cases. Fortunately, it is not necessary to check most of the 
cases. 

Dejinifion 2: Given synchronization graph S and tied nodes 
a and b, the synchronization area of a and b is a subgraph 
of S containing sa. sb.  all group vertices a distance of I 
from sa and d' and the edges connecting them, all system 
vertices a distance of 1 from these group vertices and the 
edges connecting them, and all vertices and edges contained 
in SP's for U and b. 

The synchronization area of sa and d' is all vertices and 
edges contained in paths of length less than or equal to 8 
between sa and sb. This will contain all SP's for vertices in 
Sa and Sb. Because the SP's determine the maximum skew 
between nodes a and b, the synchronization area is the only 
part of the synchronization graph that has any part in comput- 
ing the maximum skew. One should take care to distinguish 
between a synchronization set and a synchronization area. A 
synchronization set is the set of nodes whose skews a node 
estimates in order to synchronize. A synchronization area is the 
subgraph of the synchronization graph that is used to determine 
the maximum skew for a pair of tied nodes. 

Any pair of tied nodes will have a corresponding syn- 
chronization area. If two synchronization areas differ only in 
the labeling of their vertices, i.e., if one can be transformed 
to the other by simply relabeling its vertices, then they are 
said to be equivalent. To show that the multicomputer is 
synchronized, one has to show synchronization for all possible 
nonequivalent synchronization areas; i.e., any synchronization 
areas equivalent to synchronization areas already checked do 
not have to be checked. This greatly reduces the number of 
cases. Often, as in Fig. 1 ,  the synchronization graph will be 
identical from the point of view of any system vertex. More 
specifically, if a is a node, a labeling of the vertices of the 
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synchronization graph can be found that gives the label sa to 
any desired system vertex. In Fig. 1, the label sooo" has been 
given to the system vertex at the far left; it could just as easily 
been given to the system vertex at the far right, or to any 
system vertex in between. In such cases, all synchronization 
areas are equivalent. 

IV. MAXIMUM SKEW 

When nodes a and 6 synchronize, each will estimate the 
clock skew between itself and every node in its synchroniza- 
tion set. Each will then average the resulting skew estimates 
to get the amount by which to adjust its own clock. If a and 
b are in the same synchronization set, we want the clock 
skew between them after they have adjusted their clocks 
(assume that clocks are adjusted instantaneously) to be less 
than the target skew, 7.  It is trivial to show that this is true 
in standard synchronization algorithms, where there is a single 
synchronization group containing all nodes. In our case, things 
are more complicated, and in this section, we show how to 
prove that the multicomputer will remain synchronized. It 
should be understood that we are showing only how to prove 
the algorithm works, not describing the algorithm's operation. 
None of the computations done in this section have to be made 
by the synchronization algorithm while it is operating. 

Assume that nodes a and 6 are tied. Let na and rib be the 
number of skew estimates made by U and 6 ;  i.e., na is the 
number of nodes in 0,'s synchronization set, plus one (the 
extra one is the skew for node a itself, which is always 0).  Let 
Ta  and Tb  be the sum of the skew estimates computed by a 
and 6. Without loss of generality, we can assume that 6 has a 
greater clock value than a. At worst, the skew between a and 
6 is already the maximum allowable, S. The maximum skew 
between a and 6 after synchronization can then be found by 
maximizing the following quantity: 

T* T" 
nb n a  

S f - - - .  (4.1) 

In order to show synchronization, it must be less than 7, i.e., 
as follows: 

(4.2) 

Consider the synchronization area of a and b. Assume 
that the skew of 6 with respect to a is 6. We wish to give 
skews, with respect to the appropriate node, to each vertex in 
Sa  and Sb,  so that if these were the skews computed for their 
respective nodes, the value in (4.1) would be maximized. At 
worst, members of S* are given skews of S with respect to 6 ,  
and members of Sa are given skews of -6 with respect to a. 
This implies a skew of 36 between members of Sb and S a .  
But some vertices will be in both Sa and Sb, and a vertex 
must have a skew of 0 with respect to itself. Also, an SP 
imposes a limit on the skew between its endpoints. A 1-SP 
indicates a maximum skew of 5 between its endpoints, and a 
2-SP indicates a maximum skew of 26 between its endpoints. 

By giving a skew to one vertex, we limit the skews that can 
be given to a number of other vertices, and by giving skews to 
these vertices, we limit the skews we can give to even more 
vertices, and so on. Finding the maximum skew between a 
and 6 after synchronization is therefore a process of searching 
a large number of cases. 

We need to be able to compute the maximum quickly. To do 
this, we break the problem into a number of similar but smaller 
ones. The division is done carefully, so that the maximum for 
each of the small problems can be found by checking only a 
few cases. The sum of these maxima is an upper bound for 
the true maximum, and in many cases, will be equal to it. 

A.  Clusters 

The problem is one of maximizing a quantity subject to 
certain restrictions. We err on the safe side if we ignore some 
restrictions, because removing restrictions will not reduce the 
maximum. The SP's correspond to the restrictions, and we 
simplify the problem by eliminating many of the SP's. We 
partition the members of Sa and Sb into clusters. A cluster 
is a group of vertices where each vertex has an SP to at 
least one other vertex in the cluster. We ignore any SP's 
between clusters (and many SP's within a cluster), allowing 
us to consider each cluster separately. Finding the maximum 
skew for each cluster is a simple matter of checking a few 
cases. The sum of the maximums for each cluster is then an 
upper bound for the actual maximum skew. 

A vertex in either Sa and Sb  can be typed by the length of 
the shortest SP for which it is an endpoint. A vertex in SEb is 
an intersection vertex, a vertex that is the endpoint of a I-SP 
is a 1-vertex, a vertex that is the endpoint of a 2-SP (but no 1- 
SP's) is a 2-vertex, and a vertex that is not the endpoint of any 
SP is an unbound vertex. To form clusters, each 1-vertex and 
2-vertex will be assigned to some other vertex. An assignment 
indicates the existence of an SP, and thus a bound on the skew, 
between two vertices. If vertex sd is to be assigned to vertex 
sc, the following two requirements must be met. 

1) There must be an SP with endpoints at sd and sc. 
2) If sd is a 1-vertex, there must be a 1-SP with endpoints 

at sd and sc. Note that sc then must be either a 1-vertex 
or an intersection vertex. 

Because each assignment corresponds to some SP, either 
sd E Sa and sc E Sb, or the reverse. Also, notice that a 1- 
vertex must be assigned to either a 1-vertex or an intersection 
vertex, whereas a 2-vertex can be assigned to either a 2-vertex, 
a 1-vertex, or an intersection vertex. 

A cluster is a minimal nonempty set of vertices such that for 
every vertex sd in the cluster, the cluster contains all vertices 
assigned to sd ,  and the vertex to which sd is assigned, if any. 
An intersection vertex may belong to a cluster if some vertex 
is assigned to it, but it will not be assigned to any vertex. As 
an example, if sd is assigned to sc, and if some vertex se is 
assigned to sd,  all three vertices will be in the same cluster. 
Because a cluster is a minimal set, no subset can be removed 
and still leave a cluster. 

No special effort needs to be made to find clusters; they 
can be found as a direct result of making assignments. To find 
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the clusters, make assignments one at a time according to the 
following procedure. 

Assign 1 -vertices first, then 2-vertices. 
If sd is assigned to sc and sc already belongs to a cluster, 
then sd belongs to se's cluster. 
If sd is assigned to se and se does not belong to any 
cluster, a new cluster is created with se and sd as 
members. Furthermore, if sc and s" are the same type 
vertices (i.e., both 1-vertices or both 2-vertices) assign 
sc to sd.  Notice that if .sc is a I-vertex, then sd must 
be a I-vertex, because all 1-vertices are assigned before 
2-vertices. 
cluster where all vertices are assigned to vertices of 

the same type is called a straight cluster. If one or more 
vertices is assigned to a vertex of a different type (e.g., a 
1-vertex is assigned to an intersection vertex), the cluster is 
called jumbled. Calculation of maximum skew is easiest when 
clusters are small and straight. To get small, straight clusters, 
we must be careful when selecting assignments. If vertex sd is 
to be assigned, then for each se to which sd could be assigned, 
place sc in whichever of the following sets in appropriate: 

1) Vertices of the same type as sd that do not belong to 

2) Vertices of the same type as sd that belong to a straight 

3 )  Intersection vertices that do not belong to a cluster. 
4) Vertices that belong to a jumbled cluster. 
5) Vertices of a different type than sd that belong to a 

These sets are listed in order of decreasing desirability. The 
vertex to which sd is assigned is selected from the most 
desirable nonempty set. Within sets 1 and 3,  select one at 
random. Within sets 2,  4, and 5, select at random from the 
vertices that belong to the smallest clusters. 

a cluster. 

cluster. 

straight cluster. 

B. Computing Skew Terms 

Clusters allow us to reduce the maximizing problem of (4.2) 
to one of maximizing a sum of terms. The terms are formed by 
breaking up the T" and Tb sums and reorganizing and mixing 
pieces to form terms of the form 5 - 5.  The form of z 
and :y is a sum of related skews. For example, the term for 
a cluster will have IC as the sum of skews for vertices in the 
cluster that are in Sb, and y as the sum of skews for vertices 
in the cluster that are in Sa. There will be one term for each 
cluster, one term for estimation error, one term for the skew 
between U and b, one term for the unbound vertices, and one 
term for the intersection vertices that do not belong to a cluster. 
The maximum of the sum is found by maximizing each term, 
which means maximizing the values of the skews. Because 
of dependencies between terms (due to SP's between clusters 
we are ignoring), the maximum of the sum will be an upper 
bound on the actual maximum skew between a and b after 
synchronization. 

The maximum of each term is the maximum contribution 
that each term may make to the skew between a and b after 
synchronization. In most cases, finding the maximum means 
checking several possible worst-case configurations of vertices 

to see which is the maximum. Section IV-B lists these worst- 
case configurations and shows how to compute the skew for 
each. The details are tedious, and the casual reader may wish 
to proceed directly to Section IV-C. 

Noncluster Terms: The error term represents the maximum 
contribution to the skew because of the inaccuracy of the 
estimation process. If the maximum error is 6 ,  estimation error 
can subtract t(n" - 1) from T" and add t(nb - 1) to Tb. (There 
is no error in estimating one's own clock.) The value of this 
term is then + e*. 

The next term is generated by each node estimating the 
other's clock. If the skew between them is 6, and b has the 
greater clock value, the value of this term is - S / i i b  - S / n n .  
This term will always reduce the maximum skew. 

Because the unbound vertices have no SP's, their skew val- 
ues are bound only because they belong to either Sa and Sb. 
Therefore, as a worst case, the unbound vertices in Sa  are 
given skews -6, and the unbound vertices in Sb are given 
skews 6. If there are na>" unbound vertices in S'l and nb." 
unbound vertices in Sb, this term has value 6 + s). 

Intersection vertices will be given skews relative to both 
a and b. These skews must be consistent; i.e., for a given 
vertex, the skew with respect to a must be 6 greater than the 
skew with respect to b. If there are 71"'" intersection vertices 
that do not belong to any cluster, and if the total skew with 
respect to a of these vertices is Tn37L, then the value of this 

is a function of T".". Because the intersection vertices must 
remain within S of both a and b, their skews with respect to 
a must be in [0, SI. This gives T":" a range of [O, h n n 3 " ] .  The 
function is linear, and so will have its maximum at one of 
the endpoints. The maximum value of this term is then the 
maximum of -6% and - 6%. This term also will reduce 
only the maximum skew. 

Cluster Terms: Each cluster will generate a term in the sum, 
and the form of the term depends on the type of cluster. 
The general idea is to place vertices from Sa as far from 
the vertices of Sb as the SP's will allow, while keeping their 
skews less than S. This is similar to the original problem of 
giving skews to the vertices we discussed at the beginning 
of Section IV, only now we have greatly simplified matters 
by considering only one cluster at a time and by ignoring 
SP's between clusters. We further simplify by considering 
only those SP's within a cluster that correspond to the actual 
assignments. A configuration of a cluster is made by giving a 
skew to each of its members, and each cluster will have only 
a few possible configurations of its members that could yield 
a maximum value for its term. 

Number the clusters from 1 to C,  where C is the total 
number of clusters. We define to be the number of 1- 
vertices from Sa that are members of cluster i ,  nq.' to be the 
number of 2-vertices from Sa in cluster i, and similarly for 
vertices in Sb. In a similar fashion, we define Sz?.'. S;.'! Spil 
and S:'2 to be the sets of vertices in cluster i .  

The preference for assigning vertices to unassigned vertices 
has an interesting consequence for straight clusters of 1- 
vertices. Every vertex in S7?,l will be assigned to the same 

( 

term is T".U-6n".U T".U - -  ,n . This value is not constant, but 
nb 
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Fig. 3. Configuration for a straight cluster of 1-nodes. 

vertex in St,' (the point of St?'), and every vertex in SPl1 
will be assigned to the same vertex in S;>' (the point of S,>'). 
This results in two possible configurations for the maximum 
skew. A whole configuration is one where all the vertices 
are given the same skew k.  In a fractured configuration, all 
but the point of S:,' and the point of SZb1' are given skews 
-6, whereas all but the point of St,' and the point of S;,' 
are given skews 6. Fig. 3 shows the two configurations: the 
fractured configuration on top, and the whole configuration 
on the bottom. The line at left shows skews with respect to 
a. Subtracting 6 from this value gives skew with respect to 
b. The vertices of St7' are cross-hatched, and assignments 
are indicated by the arrows. The whole configuration always 
yields the maximum value when either St!,' or St" has only 
one member. This configuration generates a term similar to 
the one for intersection vertices; i.e., it is a linear function 
of the skew given to the vertices. The function will have its 
maximum when the skews are either -6 or 6. The maximum 
skew for the whole configuration is then the maximum of 
6 ( - n::l - $) and 6( $ - $ ) . The fractured configura- 

tion usually yields the maximum when both Szfl' and S,Ps1 
have more than one member. This configuration gives a skew 
of 6( + *) . The larger of the skews for the two 
configurations is the value of the term. 

A straight cluster of 2-vertices is handled much like the 
straight cluster of 1 -vertices. The same general configurations 
apply, and only the values of the skews change slightly, 
because nodes may now be 26 apart. The whole configuration 
yields values 6% and 6%. The fractured configuration 

a . 2  b , 2  

Fig. 4. Configuration for a jumbled cluster without an intersection vertex. 

Jumbled clusters can be one of two kinds: Either they 
contain an intersection vertex or they do not. We consider 
each separately. 

If a jumbled cluster does not contain an intersection vertex, 
then it is simply a straight cluster of 1-vertices where some 
2-vertices have been assigned to some of the 1-vertices. 
Whole and fractured configurations exist just as they do in 
straight clusters. The main difference is the extra consideration 
that must be given to the skew given to the 2-vertices and 
the 1-vertices to which they have been assigned. In both 
configurations shown in Fig. 4, a pair of 2-vertices (gray-filled) 
are assigned to a single 1-vertex. It may be the case that the 
term will have a greater value if the three vertices had the 
positions shown in light gray. It is helpful to consider each of 
these groupings as a subcluster separate from the rest of the 
cluster. As an example, Fig. 4 contains only one subcluster, the 
one discussed above. It contains three vertices, and its value is 
the maximum of -6 and 25 (the two possible terms generated 
by the subcluster). With some modification for subclusters, 
computation of maximum term value proceeds much like it 
does for straight clusters. 

The fractured configuration in the upper half of Fig. 4 
is handled just like the analogous arrangement for straight 
clusters, except that the subclusters are handled separately. 
The term is computed as if the subcluster vertices did not 
belong to the cluster; then the subcluster terms are added in. 
The whole configuration is somewhat more complex, because 
it will now have three possible maxima. The first two are 
the same as for the straight cluster; the nonsubcluster vertices 
will be given skews -6 or 5 .  When they are given skews - 5  
(as shown in the lower part of Fig. 4), subclusters containing 
vertices in Sza,' must be considered separately, whereas when 
they are given skews 6, subclusters containing vertices in S: ' 
must be considered separately. The third possible maximum 
is brought about by the presence of 2-vertices. Members of 
S:,' and S:'2 will have skews 0 and -6, whereas members 
of S,b" and S:.' will have skews 0 and 6, and subclusters are 
not considered. This generates a value of b (5 + &) . The 
largest of the values becomes the value of the cluster term. 

If a jumbled cluster contains an intersection vertex, it must 
contain only one intersection vertex, and every vertex in the 
cluster must be assigned to a vertex of a different type. It 
follows that all 1-vertices, and perhaps some of the 2-vertices, 
will be assigned to the sole intersection vertex. The 2-vertices 

h 2  a 2  
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variables, we can determine the minimum ratio for the other 
two; e.g., if S = 106, we can substitute into (4.3) to get a 
minimum ratio between r and S. 

As an example, consider the 16-node hypercube whose 
synchronization graph is shown in Fig. 1. The synchronization 
set of each node has size members, for a total of seven 
estimates (including the 0 estimate for its own clock). For any 
pair of tied nodes, there will be two intersection vertices, and 
six 1-vertices (three for each node). The estimation error will 
contribute no more than to the maximum skew. Each node 
estimating the other's clock will contribute no more than - $6 
to the maximum skew. The two intersection vertices will also 
contribute no more than - $ b  to the maximum skew. Cluster 
assignment will yield three straight clusters of 1-vertices, each 
with two members, and each contributing 0 to the maximum t t  

Fig. 5 .  Configuration for a jumbled cluster containing an intersection vertex. 

assigned to I-vertices will form subclusters, as in the case 
of jumbled clusters without intersection vertices. Once again, 
we get a linear function for the value of the term, this time 
depending on the skew given to the intersection vertex. Thus, 
there are two possible maxima, when the intersection vertex 
has a skew of either 0 or b with respect to U .  The configuration 
where it is given 0 is shown in Fig. 5, and the intersection 
vertex is shown with a bold border. In this configuration, any 
subclusters containing vertices of S:,' must be considered 
separately. If there are n;'lf vertices not in any subcluster 
in Sza'l, and np'2f vertices not in any subcluster in S:,2, then 
this configuration yields value S ( y - 1  + na I f  ~~ +nr ' ) ,plus  

any subcluster values. If the intersection vertex is given skew 
b with respect to U ,  then any subcluster containing vertices 
of S:" must be considered separately. If there are n;'lf 
vertices not in any subclusters in S:,', and vertices 
not in any subcluster in S:72, then this arrangement produces 

value S( 1 n b  1 + +), plus any subcluster values. 
The largest value yielded by these configurations becomes the 
value for this cluster term. 

nb I f + n b  2 nQ r f -  

C. Relating t, 6, and r 

the value in (4.1) is less than or equal to r ,  i.e., we have: 
If synchronization is to be maintained, we must show that 

T b  T" 
n b  na 

T 2 s +  - - -. (4.3) 

From the results of Section IV-B, we know that T" and T6 
are functions of t and 6. So, (4.3) relates three variables, 
r , t ,  and S. If we know the value of one of them, we can 
solve to get a minimum ratio for the remaining two; e.g., if t 
is 1 ms, we can substitute into (4.3) to get a minimum ratio 
between r and S. Even if we know only the ratio of two of the 

skew. We get the following inequality: 
12 4 
7 7  

' r ~ S + - - - - - - S  

12 3 
7 7  

If S = 106, then T 2 $6. or r 2 6t. A good estimation 
algorithm might have an E of 1 ms; then 6 is 10 ms, and T 

is at least 6 ms. If we assume a clock drift p of lop6, (2.3) 
gives a time between synchronization of no more than 4000 s. 

2 - € +  -6. 

D. Complexity . .  
Assigning vertices to clusters requires looking at each SP 

at most twice, and thus has a complexity of no more than 
twice the number of SP's. Computing the value of each cluster 
requires looking at each vertex once, so the complexity is 
related to the number of vertices. Thus, it is cluster assignment 
that dominates the complexity of computing maximum skew. 

In practice, cluster assignment is very fast. All SP's need 
not be considered, only the shortest ones. Usually, only a few 
of these need to be checked in order to make an assignment. 
Also, in practice, one need not check all the vertices of a 
cluster in order to compute its maximum value. Most of the 
information (the cluster type, regardless of whether it contains 
an intersection vertex, the numbers of nodes of each type) can 
be derived as the cluster is formed; only subclusters require 
special handling. 

E. Dejning Synchronization Groups 

Although we have defined what a synchronization group is, 
and have shown how to compute the maximum skew for them, 
we have said nothing about how to define them for a particular 
multicomputer. For some multicomputers, there is an obvious 
choice for the synchronization groups. For instance, in the 
hypercube, it is reasonable to base the synchronization groups 
on subcubes. However, there is no general algorithm that 
works well for all possible multicomputers. What constitutes a 
good set of synchronization groups will depend, in part, on the 
network and the distance between nodes. Clock information 
is usually more accurate and easier to get for nodes that 
are close by, so defining synchronization groups that contain 
many nodes from distant parts of the system can make 
synchronization more difficult and less accurate. 
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There is, however, a simple approach that can be used to 
generate good synchronization groups for most systems. For 
an n-node multicomputer, lay out the nodes in a fi x fi 
grid, filling any empty spaces with dummy nodes. Defining 
each row and each column of the mesh to be a synchronization 
group. This results in a fairly good set of 2 f i  synchronization 
groups of fi nodes each. If more synchronization groups are 
needed (for fault tolerance), one can define the diagonals as 
synchronization groups as well, yielding 4 f i  synchronization 
groups of fi nodes each. 

This approach may not be ideal under all circumstances, but 
it may serve as a good starting point. One particular advantage 
is that the synchronization graph will be fairly homogeneous, 
so few synchronization areas will have to be checked when 
computing the maximum skew. Furthermore, if fi is an 
integer, the synchronization graph will be homogeneous, so 
there will only be one synchronization area to check. 

V. FAULT TOLERANCE 

Any multicomputer, especially a large one, or one that will 
be operating for a long period of time, will have to deal 
with faults. Such multicomputers are designed to tolerate a 
given number of faults, and the synchronization algorithm 
must tolerate these faults, too. 

A. Fault Model 

Any analysis of fault tolerance depends upon the fault model 
used. Since we make few assumptions about the way in which 
clock information is distributed, we assume that estimates are 
trustworthy. That is, whenever any nonfaulty node estimates 
its clock skew with respect to another nonfaulty node, that 
estimate will be accurate to within F .  Put another way, no 
faulty node can alter or destroy clock information sent out by 
nonfaulty nodes in a way that cannot be detected and corrected. 
This may be accomplished by the network through digital 
signatures or multiple copies of messages, or by other means; 
or it may be provided by the distribution method. We can then 
model faults by removing components of the synchronization 
graph. We have the following fault types. 

Node Faults: This corresponds to the removal of a sys- 
tem vertex from the synchronization graph. Examples 
of this type of fault are dead nodes, nodes isolated by 
communication failures, and nodes with faulty clocks. 
Edge Faults: This corresponds to the removal of an edge 
from the synchronization graph. Communication failures 
often fall into this type. Because these faults have effects 
less than the node faults of their endpoints, we do not 
consider them. 
Group Faults: This corresponds to the removal of a group 
vertex from the synchronization graph. Faults that prevent 
the clock information from getting distributed fall under 
this type. If the distribution method is fault tolerant, these 
faults are generally the consequence of multiple node 
faults. A number of node faults within a small part of the 
synchronization graph may mean that we can no longer 
guarantee maximum skew between a pair of tied nodes. 

A group fault that is caused by the presence of node 
faults is called an induced fault, There is nothing wrong 
with the synchronization group itself; its nonfaulty members 
may continue to estimate each other’s clock values, but the 
guarantee of a maximum skew of S between members no 
longer holds. 

R. Determining Fault Tolerance 

We consider the multicomputer to be synchronized as long 
as the synchronization graph is connected. The synchronization 
graph can become disconnected solely because of faults, 
or through a combination of faults and induced faults. We 
consider each of these problems separately. 

each fault corresponds to the removal of a component of 
the synchronization graph, multiple faults may disconnect 
the graph. The number of faults that the multicomputer can 
withstand is therefore limited by the minimum number of 
faults that can disconnect the synchronization graph. 

The minimum cut, or connecfedness, of a graph is a well- 
known problem from graph theory. It can be solved through 
use of a max-flow algorithm in conjunction with the max-flow 
min-cut theorem. A straightforward linear-time transformation 
can change the graph to an instance of max-flow min-cut. 
Let E and V be the number of edges and vertices in the 
transformed graph; then the max-flow problem can be solved 
in O(EV log(V2/E)) [4]. 

Collapse of Synchronization Groups: A synchronization 
group is said to have collapsed if it can be shown that 
the maximum skew after synchronization between two of 
its nonfaulty members, as calculated in Section IV, is greater 
than r. The collapse of a synchronization group is an induced 
group fault. 

The problem with induced faults is that they may cascade. 
An induced group fault can induce further group faults, which 
can induce more group faults, until all groups have collapsed. 
Exact computation of the minimum number of faults required 
to cause such a cascade is a difficult problem, but we can 
compute the minimum number of node faults needed to induce 
a group fault, and the minimum number of group faults needed 
to induce more group faults. A combination of these two 
numbers gives a good estimate for a lower bound on the 
number of faults needed to produce a cascade. 

To determine the number of faults needed to collapse a 
synchronization set, one must list all the different synchro- 
nization areas, and then check each to find the minimum 
number of faults to cause a synchronization group to collapse. 
These are the same areas that are checked when computing 
maximum skew. If there is more than one synchronization 
area to consider, the search should start with the ones whose 
synchronization groups have maximum skews already close to 
T, or have small values of either nna or rib. 

Finding the minimum fault set to collapse a synchronization 
group requires searching all fault sets of the synchronization 
area. Although the number of fault sets within a synchro- 
nization area is much less than the number in the entire 
multicomputer, it may still be rather large. The approach that 

Connectedness of the Synchronization Graph: Because 
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we took was a simple tree search. Each node of the tree 
represents a fault set. The root of the tree corresponds to the 
empty fault set, and the children of a node correspond to the 
fault sets created by adding a single fault to the parent fault 
set. Thus, nodes with a depth of 1 in the tree correspond to 
fault sets of size 1, nodes a depth of 2 correspond to fault sets 
of size 2, and so on. Each node will also have a corresponding 
maximum skew, which is found by inserting that node’s fault 
set and computing the maximum skew. The search tries to find 
the node closest to the root that has a maximum skew greater 
than 5 .  Our implementation used a depth-first search, though 
other types of search could be used. A breadth-first search 
in particular would parallelize well, making it a good choice 
for implementation on a multiprocessor. Any of the following 
discussion applies equally well to a breadth-first approach. 

Once a fault set has been found that collapses a synchro- 
nization group, only the nodes above it in the tree have 
to be searched. The number of nodes in the tree increases 
exponentially with depth. It is therefore important to find 
small fault sets quickly, because it will greatly reduce the 
search time. When searching the children of a node, one 
should start with those whose fault sets are thought most 
likely to be subsets of the minimum fault set. We had two 
strategies for doing this. The first strategy was to rate each 
fault set according to the types of faults that it contained. Fault 
sets that contained group faults, andor node faults involving 
intersection vertices or 1 -vertices, were searched first. The 
second strategy was to compute the maximum skew for each 
fault set, and search those with the highest skews first. We 
quickly abandoned the first strategy, because it would take 
days to find sets that the second would find in minutes. 
In fact, the second strategy usually found the smallest fault 
set almost immediately. The first strategy seemed to fail, 
because though the favored fault types caused great increases 
in maximum skew at first, they tended to mask one another’s 
effects (especially in the case of group faults), and faults added 
later would have little or no effect on maximum skew. 

Even though our search found the minimum fault set 
quickly, a large number of nodes may still have to be searched. 
In one of our examples below, the synchronization area will 
contain in excess of 40 system vertices, whereas the minimum 
set is 13 node faults. To verify that this set is the minimum, 
one has to search all nodes a depth of 12 in the tree. But 
there are over 5 billion of these nodes. To allow our search to 
finish within a reasonable amount of time, we employed two 
strategies that caused the search to skip those nodes thought 
to be unlikely to yield a minimum fault set. First, if several 
children of the current node have identical skews, search only 
one of them; the rest are assumed to be equivalent. Second, do 
not search any children who do not have a greater maximum 
skew than their parent. These strategies greatly reduced the 
search time, from 22 days to less than 24 hr in one case. 

Any strategies to reduce the number of nodes searched 
may cause the search to overlook the minimum fault set. 
We encountered no such cases (in fact, the first set found 
was almost always the minimum set), but it would be wise 
to consider the smallest set found to be only an estimate of 
the actual fault tolerance. As we show in the examples, it is 

possible to intentionally underestimate the fault tolerance by 
changing F and 7. This can be used to reassure oneself that the 
multicomputer will have the desired fault tolerance. It should 
also be possible to intentionally underestimate fault tolerance 
by ignoring 2-SP’s. This should speed up the search (though 
we did not try it), and could be used for multicomputers where 
the minimum fault set is too large for the search to find within 
a reasonable time. 

C. Examples 

Faults have the effect of increasing the value in (4.1). A r 
that works when there are no faults may be too small when 
faults are present. T must be chosen somewhat larger than the 
value of (4.1) in order to satisfy (4.3) when faults are present. 
In each example, we must consider only a single synchroniza- 
tion area, because the synchronization graphs are such that any 
two pairs of tied nodes will have isomorphic synchronization 
areas. This is partly because of the homogeneous nature of 
the multicomputers that we consider, and partly because such 
graphs are easier to deal with. 

We start with the 16-node hypercube of Fig. 1. For a best- 
case estimate of fault tolerance, we assume no estimation error 
and continuous synchronization; i.e., 6 = 0 and r = 6. In 
order to collapse a synchronization group, a minimum of five 
node faults or three group faults is needed. fault tolerance 
decreases as 6 increases, and it increases as r increases. If 
we increase t to .16 and decrease r to .9S, either three node 
faults or one group fault will collapse a synchronization group. 
Thus, three node faults may induce a cascade of group faults 
that will engulf the multicomputer. 

For our second example, we consider a 16 x 16 square 
mesh, wrapped on the edges to provide a homogeneous 
multicomputer. We use the method suggested in Section IV- 
E to define 32 synchronization groups of 16 members each, 
one group for each row of the mesh, and one group for each 
column. If we let t = 0 and r = 6, either 14 node faults 
or nine group faults are needed to collapse a synchronization 
group. We can increase t and decrease r to the more realistic 
values of t = .15 and r = .OS, but at the cost of some fault 
tolerance. In this case, either six node faults or one group fault 
are needed to collapse a synchronization group. So, at least six 
node faults are needed to induce a cascade of group faults. 

The fault tolerance of the previous example can be improved 
if more groups are used. We consider a 256-node hypercube 
with 64 synchronization groups of 16 members each. The hy- 
percube has an 8-bit address, abcde fgh.  Each synchronization 
group will be a 4-bit addressable subcube, where a subcube is 
defined by fixing four bits of the address and allowing the other 
four bits to vary. If we let z indicate a “don’t care” position in 
the address, we can define the 64 subcubes as follows: 16 of 
the form abcdzzzz, 16 of the form :r::r:rxe f gh., 16 of the form 
abzzzz f g ,  and 16 of the form xzcde fzz .  The extra groups 
greatly improve fault tolerance. When t = 0 and r = 6, the 
search algorithm did not terminate in over two weeks. The 
smallest set found was 27 node faults. We can get the search to 
terminate by increasing F and decreasing r. When c = .16 and 
r = .86, either 13 node faults or two group faults are needed 
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to collapse a synchronization group. We can reduce r further 
and still tolerate a fair number of faults. If r = .86 then eight 
node faults are required to collapse a synchronization group. 

Last, we consider two 1024-node multicomputers, a 10- 
cube, and a 32 x 32 wrapped square mesh. For the 10-cube, 
we define 64 synchronization groups, thirty-two 5-cubes of 
the form abcdez.rxxz, and thirty-two 5-cubes of the form 
zzzzzfghij. For the square mesh, we again define each row 
and each column to be a synchronization group. Each of these 
two multicomputers will have 64 groups of 32 members each. 
In fact, the synchronization graphs for the two multicomputers 
are isomorphic, so their fault tolerances are identical. These 
multicomputers are too large to solve easily for E = 0 and r = 
IS. If we increase t to .1S and decrease r to .9h, we find 
each multicomputer requires 10 node faults or one group fault 
before a synchronization group can collapse. We can further 
reduce r to .8h and still require five node faults. Although 
a set of 10 faults may not seem like much in a 1024-node 
multicomputer, note that each node gathers information on 
only 62 other clocks, and that the 10 faults must be confined 
to a relatively small portion of the multicomputer. Also, fault 
tolerance can be improved by increasing the number of groups, 
as we showed in the previous example. 

The above examples clearly show the ability of our al- 
gorithm to synchronize large multicomputers while reducing 
synchronization overhead. The reduction in overhead can be 
determined by comparing the number of nodes in a node’s 
synchronization set to the number of nodes in the system. In 
the 16-node hypercube example, each node has a synchro- 
nization set of six nodes, so each node needs to communicate 
with only six other nodes in order to synchronize. This is 
compared with the 15 nodes of standard algorithms, a twofold 
reduction. For the 16 x 16 square mesh, we get a reduction 
of 255/30, or more than eightfold; doubling the number of 
synchronization groups to improve fault tolerance gives us 
a savings of only fourfold. In our last example, each node 
needs to communicate with only 62 out of 1023 other nodes 
in order to synchronize, which is more than a 16-fold decrease 
in synchronization overhead. 

Our examples also show how well fault tolerance is main- 
tained, and how il can be adjusted. The examples also demon- 
strate a method for dealing with the difficulty in determining 
absolute fault tolerance. By increasing t, decreasing T ,  or 
reducing the number of synchronization groups, the fault 
tolerance of the multicomputer is reduced, and so is the time 
required to find a minimum fault set. By adjusting these 
parameters, no: only will one find a lower bound for fault 
tolerance, but by analyzing how each parameter affects fault 
tolerance, one may be able to estimate fault tolerance that the 
search would take too long to find. 

VI. CONCLUSION 

In this paper, we have presented an algorithm that greatly 
reduces synchronization overhead for large multicomputers 
by reducing the amount of clock information that has to be 
distributed. The nodes of the system are assigned to groups, 
and each node distributes information about its clock only 
to the nodes with which it shares a group. Our algorithm 

works with many different clock estimation algorithms, so one 
may consider the trade-offs of overhead versus accuracy that 
come with different algorithms. The algorithm also provides 
a natural way to map real-time tasks into the system, in that 
parts of the system have the tight synchronization needed by 
cooperating or replicated tasks while the system as a whole 
still remains synchronized. 

We presented a method for analyzing the algorithm, and 
determining the maximum skew. The method can also be 
used to determine the fault tolerance. We used this method 
to analyze the fault tolerance of several systems, including a 
1024-node hypercube. We also showed how the fault tolerance 
of a system can be adjusted by changing the number of groups, 
and presented a simple method for defining synchronization 
groups that works well in many cases. 
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