
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. 5 , NO. 11, NOVEMBER 1994 1225

Fault-Tolerant Routing in Mesh Architectures

Alan Olson and Kang G. Shin

Absfmct-It is important for a distributed computing system to be
able to route messages around whatever faulty links or nodes may be
present. We present a fault-tolerant routing algorithm that assures the
delivery of every message as long as there is a path between its source and
destination. The algorithm works on many common mesh architectures
such as the torus and hexagonal mesh. The proposed scheme can also
detect the nonexistence of path between a pair of nodes in a finite amount
of time. Moreover, the scheme requires each node in the system to know
only the state (faulty or not) of each of its own links. The performance of
the routing scheme is simulated for both square and hexagonal meshes
while varying the physical distribution of faulty components. It is shown
that a shortest path between the source and destination of each message
is taken with a high probability, and, if a path exists, it is usually found
very quickly.

Zndex Term- Hexagonal mesh, distributed systems, routing, faulty
links, cycles, incisions

I. INTRODUCTION
The processors of a distributed computing system communicate by

sending messages over a network. Faults in the network can prevent
the delivery of messages, unless the network provides fault-tolerant
routing. However, most distributed systems pay little attention to this
potential problem. Although they provide simple and efficient routing
algorithms, the algorithms usually will not work properly if faults are
present in the network. In this short note, we propose a simple and
efficient fault-tolerant routing algorithm that can be used for many
mesh-type distributed system architectures.

An obvious way to handle fault-tolerant routing is for each node
to keep track of all faults in the system. A node can be expected to
know the state (failed or not) of its own links, and some algorithms
are proposed in [6] to broadcast information about faulty components
to all other nodes in the system. With this information, messages can
always be routed by shortest paths. There are two main problems with
this approach. First is the amount of memory that may be needed to
store all this information, especially if the system is large. Second
is the overhead it induces. The standard routing algorithms of most
systems allow routing decisions to be made by simple circuitry using
only information on the message header. This allows optimizations
like virtual cut-through [4], which speed up message delivery by
avoiding buffering at intermediate nodes. If other information must
be consulted, the message must be buffered, and message delivery is
delayed. We therefore restrict ourselves to the situation where each
node knows only the state of its own links.

Some work has already been done on fault-tolerant routing in the
hypercube 111, [3] , [SI, 171. These algorithms either take advantage of
the specific mathematical properties of the hypercube and are there-
fore inapplicable to meshes, or use some form of global information,
which we want to avoid. The authors of [I] present an algorithm that

Manuscript received November 18, 1993; revised April 6, 1994. This work
was supported in part by the National Science Foundation (NSF) under Grant
MIP-9203895 and by the Office of Naval Research under Grant NOOO14-91-
J-1 115.

The authors are with the Real-Time Computing Laboratory, Department
of Electrical Engineering and Computer Science, Computer Science and
Engineering Division, University of Michigan, Ann Arbor, MI 48 109-2 122
USA.

IEEE Log Number 9405017.

does not use global information, but relies on properties specific to
hypercubes and cannot tolerate more than 7t faults, where n is the
dimension of the hypercube.

To date, we know of no other fault-tolerant routing strategy for
mesh-type distributed systems. We require each node to know only the
condition (faulty or nonfaulty) of its own links. Our routing scheme
will deliver each message successfully, as long as there is a path
between its source and destination. It does not require any assumption
on the number of faults or fault patterns. If there does not exist any
path between the source and destination nodes, our routing scheme
will detect this in a finite amount of time.

This short note is organized as follows. In Section 11, we briefly
describe two representative mesh architectures. Section 111 outlines a
fault-tolerant routing algorithm that works in most cases. In Section
IV, the cases where the algorithm will not work are examined, and
a fix is presented. I n Section V, the performance of the algorithm
is simulated for several mesh types. The short note concludes with
Section VI.

11. HOMOGENEOUS MESH ARCHITECTURES

Mesh architectures provide a number of advantages over other
distributed architectures, such as the hypercube. In a mesh, the
number of links per node is constant and does not increase as the mesh
size increases. The number of links per node in a hypercube increases
with the number of nodes, and the high number of communication
links and corresponding high through-traffic can overload the nodes
of large systems. Also, the number of nodes in a mesh is a quadratic
function of the mesh dimension, whereas that in a hypercube is an
exponential function of the hypercube dimension.

The two mesh architectures that we consider in this short note
are the torus and the hexagonal mesh. These meshes have several
characteristics common to most mesh architectures, which we must
have in order for our routing algorithm to work. The mesh must be
regular; if unwrapped, it must be planar; and if wrapped, it must be
homogeneous. Each link has an associated vector, and one must be
able to change the order of links (vectors) in a path without changing
the destination. That is, one will arrive at the same node regardless
of whether one takes two hops in the s direction followed by one
hop in the y direction, or one hop in the s direction followed by one
hop in the y direction followed by one hop in the: .I' direction.

In addition, we assume that routing is done on a hop-by-hop basis,
with routing decisions made by intermediate nodes. instead of having
a path chosen by the node where the message originated. We assume
that the message system is based on a store-and-forward approach,
which may employ techniques such as virtual cut-through [4] when
possible in order to avoid the overhead of buffering the message
at each individual node. Messages will be buffered at intermediate
nodes if the outgoing links that they wish to use are busy, and we
assume that each node has enough buffer space so that deadlock
is not a problem. Our algorithm could be used for a circuit-switched
environment, but we do not consider this possibility in this short note.

A. The Torus
An unwrapped square mesh of dimension 2 x J will contain ' 3

nodes laid out in a rectangular grid, i nodes along the horizontal
edge. and j nodes along the vertical edge. When wrapped, the square
mesh becomes a torus: The right link of a node on the right edge
of the mesh is connected to the node on the left edge that is in the
same row, and the downward link of a node on the bottom edge of

1045-92 19/94$04.00 0 I994 IEEE

1226 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. 5, NO. i I , NOVEMBER 1994

16

2 3 4 5

9 14

3

14 15 16 17

Fig. 1. Hexagonal mesh of dimension 3.

the mesh is connected to the node on the top edge of the mesh that
is in the same column.

Any node in the mesh will have four oriented directions. One can
think of the right link as being the 2 direction, and the downward as
being the y direction. The left and top links then become the --z and
-y directions. The set of shortest paths between any two nodes can
then be expressed as offsets in these two directions. For example, the
shortest paths between nodes 10 and 7 would be defined by offsets
of 2 in the 2-direction and - 1 in the y-direction. Given these offsets,
a message can be routed simply by sending it along a link that will
reduce one of the offsets.

B. Hexagonal Mesh

An unwrapped hexagonal mesh (H-mesh) is a set of nodes laid
out on a hexagonal grid such that there is a central node inside a
series of nested hexagons. Each hexagon has one more node on each
edge than the one immediately inside of it. The edge dimension, e, of
the mesh is defined to be the number of nodes in an e-dimensional
H-mesh is 3e2 - 3e + 1.

Any node in an unwrapped H-mesh will have six oriented direc-
tions, one corresponding to each of the six links. Without loss of
generality, the link pointing horizontally to the right can be thought
of as the 2-direction, the link 60" counterclockwise as the y-direction,
and the link 120" counterclockwise as the 3 direction. The remaining
three links point in the --s, --y, and ---I' directions, respectively.
An H-mesh of edge dimension e can be. wrapped using C-type
wrapping [2], which produces a homogeneous mesh. An example
of a C-wrapped H-mesh of edge dimension 3 is given in Fig. 1 .

A O(1) algorithm is presented in [2] to give all shortest paths
between any two nodes in C-wrapped H-mesh. It returns three
integers, m,, my, and m2, each of which represents the distance
to be traveled in the corresponding direction. At least one of the
offsets is guaranteed to be zero, and Im,l + ImYl + Im,l 5 e - 1,
where e is the dimension of the mesh. As for the torus, routing can
be done by simply sending the message along a link that will reduce
one of the offsets.

111. DETOURING
The structure of the system is an important factor in any routing

algorithm. Fault-tolerant routing algorithms for the hypercube take

advantage of that system's unique mathematical properties, it is only
logical that we should take advantage of the simple, regular structure
of mesh systems. We consider only link failures, because a node
failure can be modeled as the failure of all of its links.

The torus and H-mesh provide an obvious method for detouring
around a single faulty link. Each link forms one side of a square or
triangle whose other sides form a convenient detour should the link
fail. As an example, consider the hexagonal mesh fragment in Fig.
2. If the link from 18 to 0 has failed, a message could detour around
the failed link using either the path 18 to 7 to 0 or the path 18 to 1 1
to 0. This can be recursive; for example, if the link from 18 to 7 has
also failed, the detour could be 18 to 6 to 7 to 0.

A message is in one of two modes: free mode for when no faults
are obstructing the path, and detour mode for when the message's
path is blocked by faults. The routing done at each node is as follows.

Algorithm FTRnute:

1) If the message is in detour mode, and if the current node is
closer to the destination than the node where it entered detour
mode, put the message in free mode.

2) If the message is in free mode, select the set of links along
shortest paths to the destination. If the message is in detour
mode, select the link immediately counterclockwise of the link
by which the message entered the node.

3) If any of the selected links is nonfaulty, send the message
along that link.

4) If all links out of this node have already been selected and
tested, halt. Otherwise, select the link counterclockwise of the
set of previously select links, and go to step 3.

Accounting for this algorithm is simple. The message need keep
track of only the destination node, the current state (free or detour),
and the distance to the destination when the message entered detour
mode. One problem with the algorithm is that it will halt only if
the message reaches its destination or if the current node has no
nonfaulty links. There is no way to detect an unreachable destination.
Intuitively, it seems that a message with an unreachable destination
will get into a cycle.

The following theorems show that if a message is attempting to
reach an unreachable destination, it will form a cycle. They also show
that the cycle will take place entirely in detour mode, and the cycle
will include the node where the message last entered detour mode and
the link by which it left that node. So, detecting a cycle is as simple
as remembering at what node the message entered detour mode and
by which link it exited that node. If the message does not leave detour
mode, returns to the node where it entered detour mode, and is about
to leave that node by the same link it did before, it is in a cycle and
will not reach its destination.

Lemma 1: Given message m, for any nonfaulty link o of node T I ,

there will be nonfaulty link i of node TL such that if 77) enters 7) while
in detour mode and remains in detour mode while at I ! , r n will leave
n by link o if and only if it entered by link i .

Prnn$ Let i be the first nonfaulty link clockwise of o. If there
is only one nonfaulty link at this node, then i = 0. The rest of the
proof then follows trivially from the description of the algorithm. 0

Lemma 2: On any finite mesh, if a message never reaches its
destination, it will eventually reach a point after which it will never
return to free mode.

Pro08 Any hop that a message makes while in free mode or that
results in a transition from detour mode to free mode will reduce by 1
the minimum distance that the message has been from its destination.
Call such a hop a reducing hop. Any hop that is not a reducing hop
must be made in detour mode. Because the message starts a finite
distance from the destination, there will be only a finite number of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYTEMS, VOL. 5, NO. I I , NOVEMBER 1994 1227

reducing hops made by any message. A message that does not reach
its destination will, in theory, undergo an infinite number of hops.
Thus, there must be a last reducing hop in the path. None of the hops
made by the message after the last reducing hop are reducing hops;

0
Given this, we can now show that such a message must cycle.
Theorern I : On any finite homogeneous mesh, if a message does

not reach its destination, it will eventually be in a cycle.
Proof: By Lemma 2, a message that does not reach its

destination will eventually reach a point after which it will never
return to free mode. Consider a message that will not reach its
destination and has entered detour mode permanently. From Lemma
1, it is clear that knowing the current node and the outbound link is
enough to determine the future routing behavior of the message. The
outbound link determines not only the next node but also the inbound
link for the next node, and therefore the outbound link for the next
node. This in turn determines the outbound link for the next node, and
so on. Call the current node and the selected outbound link the state
of the message. From Lemma I , it is clear that given the current state
s, the sequence of future states not only can be determined, but i t will
always be the same whenever the message is in state s. Because there
are only a finite number of nodes and a finite number of available
outbound links per node, there are only a finite number of states.
A message that does not reach its destination will pass through an
infinite number of states. It must therefore pass through some state s
twice within a finite amount of time. This clearly constitutes a cycle
as the message has returned to s, and by the above observation it
will not only return to .s, but will go through the same sequence of
states in doing so. Further, i t will continue to return to s indefinitely,
because the sequence of states following s will always be the same.U

Now we show that the cycle must include the node where the
message entered detour mode.

Theorem 2: If a message is in a cycle, it will return to the node
at which the message entered detour mode, and will exit that node
via the same link as it did before.

froof Assume message t i 1 has entered detour mode perma-
nently and is in a cycle. Any node could appear more than once in a
tour of the cycle. but if a node appears more than once, then each time
the message reaches the node it must exit the node via a different link
than it used before. Therefore, each step in the cycle may be specified
by the node and the outgoing link. Pick any such node-link pair in
the cycle. Find the first occurrence of this pair after the last free node,
and call it (7 t ,. I ,). Since the message is in detour mode, Lemma I
shows that the node-link pair (t z 2 , 1 2) preceding (I t 1, I I) will precede
all subsequent occurrences of (? t 1 , 1 1). Therefore, (t i 2 . 1 2) is in the
cycle. The same argument applies to (t i ~ . l ~) , (~ t ~ , l ~) : ~ ~ . (n ~ . l k) ,

where i t k is the node where the message entered detour mode and I n
0

With Theorem 2, we can now redefine step 3 of FTRoute to detect

3) If all the selected links are faulty, go to step 4. If the message is
in detour mode, entered detour mode at this node, and later left
this node by the selected link, the message is in a cycle, halt.
Otherwise, send the message on any selected, nonfaulty link.

We should point out that though our fault-tolerant routing algorithm
may cause message cycles, the presence of these cycles does not
increase the likelihood of deadlock. There are several reasons for
this. First, a message that "runs into its tail" will fit the conditions
of Theorem 2, and will therefore be considered undeliverable and be
discarded. Later we consider modifications of our routing algorithm
that try to deliver some of the messages that fit the conditions of
Theorem 2. Even with these modifications, deadlock still will not
be a problem, because the message system is based on a store-and-

therefore, the message must be in detour mode.

is the link by which i t exited it. The theorem follows.

cycles and halt.

Fig. 2. Detouring in a hexagonal mesh

forward system (but may employ virtual cut-through), so any message
that runs into its tail may be buffered to allow its tail to catch up.

IV. CYCLES

Theorems 1 and 2 show that the routing algorithm will always
terminate. It remains for us to show that it will not fail to deliver
messages to reachable destinations. In this section, we consider the
types of cycles that exist and what they imply with regard to the
reachability of the destination.

A. Types of Cycles

Cycles are detected by checking the current node and outgoing
link against the node where the message entered detour mode and the
corresponding outgoing link. However, this tells us little about the
cycle. More information can be gained by exploiting the directional
properties of the links.

As mentioned in Section 11, each link has a corresponding vector.
Each vector will correspond to a distance (usually 1) in one of the
mesh's available directions. For example, in a torus, the right link
will have a vector of length one in the ;1' direction, and in an H -
mesh, the link 30" counterclockwise of vertical will have a vector of
length I in the 2 direction.

We define the mesh vecror sum of a path as the sum, in each of
the available directions, of the vectors of the individual links in the
path, reducing where appropriate. For example, in the torus, a path
that goes right twice, up twice, and then left will have a mesh vector
sum of (1.r. -2y) . Reducing the sum is important in the H-mesh,
where, for example, (1.r. Oy. 1 2) is equivalent to (O r , l y , 02). If a
mesh vector sum of the traversed links is kept with the message,
cycles can be divided into two types.

The first kind of cycle is characterized by a zero mesh vector sum
when the message returns to the node at which the cycle started. This
kind of cycle is called a circle. If, in the case of Fig. 3, a message
should be sent from node 0 to node 11, it would travel along the
perimeter of the isolated mesh component and return to node 0. A
circle indicates that the mesh has become disconnected. We show
later that in the case of a circle, the destination is not reachable.

The second kind of cycle is characterized by a nonzero mesh vector
sum when the message returns to the node at which the cycle started.
This kind of cycle is called an incision. Fig. 4 shows an example
of an incision. If a message is sent from node 0 to node I , it would
head upward through nodes 8, 9, 17, 5 , 12, and back to 0. An incision
does not necessarily indicate that the mesh has become disconnected.
As this example shows, the destination may in fact be reachable; the
path 0 -+ 7 + 11 4 2 + 1 contains no faults. Incisions are not
possible in unwrapped meshes, because the mesh vector sum of any
cycle in a plane must be zero.

For the rest of this section, we assume that the cycle encounters
all faulty links; i.e., all faulty links are checked at least once during
the course of the cycle. The presence of other faults does not affect
the course of the cycle, nor will fixing them make any reachable
destination unreachable.

1228 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. 5. NO. I I . NOVEMBER 1994

Fig. 3. A circle.

B. Circles

A circle indicates that the mesh has become disconnected and
that the message is tracing the perimeter of one of the connected
components. It is easier to work with planar graphs, but if the graph is
wrapped, it may no longer be planar. However, we can take advantage
of the fact that the unwrapped graph is planar, and the wrapped
graph is homogeneous, to unroll the graph to form an infinite planar
graph. The result is much like Fig. 4, but extended infinitely in all
directions.

Theorem 3: If a message is in a circle, the destination is not
reachable.

Proofi A Jordan CUNC is a continuous non-self-intersecting
curve whose origin and terminus coincide. The union of the edges of
a cycle in a planar graph will form a Jordan curve. The path of a circle
will thus form a Jordan curve, except in cases where the same link
is traversed twice. We can derive a true Jordan curve by connecting
the midpoints of the faulty links in the order in which they are tested
by the routing algorithm. This curve will run alongside the path of
the cycle, and because it does not intersect itself, it will be a true
Jordan curve. It also has the property that all the links it intersects
are faulty, and it does not pass through any nodes.

A Jordan curve will partition the nodes of a planar graph into two
disjoint sets, internal nodes and external nodes, and any path between
an internal node and an external node must cross the Jordan curve.

For the unwrapped mesh, we have a single Jordan curve and two
disjoint sets of nodes. For the wrapped mesh, we have an infinite
number of Jordan curves. For each curve, define the internal nodes
to be the finite set of nodes, whereas the external nodes are those in
the rest of the plane. Because all the links that cross a Jordan curve
are faulty, no fault-free path can cross a Jordan curve. Thus, there
are no fault-free paths between an internal node and a node in the
corresponding set of external nodes.

It remains only to show that the nodes on the cycle path and the
destination node are in different sets. Assume the nodes on the cycle
are internal nodes. The case when they are external nodes is similar.
Consider the node on the cycle closest to the destination. Any link
connected to this node on a shortest path to the destination must be
faulty. This is what started the cycle. The nodes on the other ends of
these links will be external nodes, because they will be on the other
side of the Jordan curve. They will also be closer to the destination
than any node on the cycle. Consider a shortest path from one of
these nodes to the destination. There can be no faulty links in the
path; if there were, one of the nodes connected to the edge must be
in the cycle, because all faulty links are checked during the course
of the cycle, and would therefore be closer to the destination than
the node on the cycle that is closest to the destination. Because there
exists a fault-free path from an external node to the destination, the
destination must be an external node, and there can be no fault-free

0 path from any node on the cycle to the destination.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYTEMS, VOL. 5, NO. 1 1 , NOVEMBER 1994 1229

Fig. 4. An incision.

C. Incisions

Theorem 3 assures us that if the message is in a circle, there is no
path to the destination. As we noted before, incisions are not possible
in an unwrapped mesh, and in such systems, FTRoute will always
deliver a message to a reachable destination. As the example of Fig. 4
shows, this is not true for wrapped meshes. For such systems, we must
modify the algorithm to try alternate routes to the destination. The
main difficulty is deciding which alternate routes should be tried. In
this subsection, we consider a method for selecting these alternatives.

Dejinitinn I : The endpoint vector of a path is the mesh vector
sum of the path. The endpoint distance of a path is the length of the
endpoint vector.

Definition 2: The characteristic vector of an incision is the end-
point vector of a single trip through the cycle.

It may be easier to think of the characteristic vector as an actual
vector (direction and length) in the infinite plane representation that
we used when discussing circles.

Lemma 3: If two incisions have different characteristic vectors,
they will cross.

froofi The proof of this lemma is obvious. 0
For the next theorem, we need to introduce the concept of a

subdivision of a graph. Graph C: contains a subdivision of graph
H if each node of H has a corresponding node in G and there exists
a set of node-disjoint paths I' in G such that for every link between
two nodes of H , there is p E P , where y is a path between the

corresponding nodes in G. Essentially, the nodes of H are replaced
by nodes in G, and the links of H are replaced by nonintersecting
paths in G.

Theorem 4: If the faulty links that caused the message to go into
an incision are removed from the graph, the resulting graph will be
planar.

A graph is planar if and only if it does not contain a
subdivision of either l i s (the complete graph with five vertices), or
Ii3.3 (the complete bipartite graph with two sets of three vertices
each). We show that any subdivision of l i s or IC3 :I that exists in the
original mesh will cross the incision.

Consider lis first. At least two of the paths corresponding to
edges of must use the wrap links of the mesh. In fact, there
must be two incisions with nonparallel characteristic vectors in any
subdivision of l i s . To see why, take any subdivision of lis in the
complete mesh, and cut selected links until the resulting graph is
an unwrapped mesh. Choose which links to cut so that the fewest
possible links from the subdivision of l i s are cut. The resulting graph
will be an irregular mesh fragment much like that the Fig. 5, only
without the wrap links. Because the resulting graph is unwrapped,
no incisions are possible. However, because we cut as few links of
the ICs subdivision as possible, and circles are inherently planar,
any circles in the subdivision of Iis will be untouched. Our cutting
has therefore disrupted only the incisions. A single incision, or a
number of parallel ones, can be restored by wrap links similar to

froofi

1230 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 . NO. I I , NOVEMBER 1994

Fig. 5. Planar

those in Fig. 5, while the graph remains planar. Since Iis is nonplanar,
there must be two nonparallel incisions in the subdivision. A similar
argument holds for h-3.3, there must be two nonparallel incisions in
any subdivision of Ii3,~.

Because there are two nonparallel incisions in any subdivision of
at least one of these incisions must be nonparallel to the message

incision. By Lemma 3, the message incision and the incision from
the subdivision of ICs must cross. Similarly, for any subdivision of
1<3,3, one of its incisions must cross the message incision.

Since any subdivision of K S or K s , ~ crosses the message incision,
they must all contain faulty links. When the faulty links are removed,
these subdivisions will no longer be possible. Because no subdivisions
of lis or IC3.3 will be present in the mesh once the faulty links are

0
A planar embedding of the graph with the incision shown in Fig.

4 is shown in Fig. 5. Theorem 4 assures us that if the message is
in incision, then the system graph is planar. It does not tell us the
diameter of the graph. The resulting graphs will be very much like
that in Fig. 5, an irregular mesh fragment surrounded by wrap links.
One edge of the mesh fragment is formed by the incision, and the
distance between the two edges may vary, but must be bounded by
properties of the original wrapped mesh.

Definition 3: The width of a mesh with respect to incision i is the
length of the shortest incision not parallel to i .

The width with respect to an incision is easy to calculate. In an
,r x y mesh, it will be either .r + 1 or y + 1, depending on which is
smaller, and whether the incision is parallel to the x-axis, y-axis, or
neither. In an H-mesh, the width is always 2e - I, where c is the
edge dimension of the mesh.

It is easily verified that the distance between the two edges of the
mesh fragment will always be less than the width of the mesh with
respect to the incision. So, if the width with respect to the incision
is U) , and there is a path to the destination, then there is a path to

removed, the resulting mesh must be planar.

the destination from one of the nodes on the cycle that has endpoint
distance less than w. We can now modify step 3 of FTRoute to
properly handle incisions.

3) If all the selected links are faulty, go to step 4. If the message
is not in detour mode, or did not enter detour mode at this
node, or did not later leave this node by the selected link, then
send the message on any selected, nonfaulty link. Otherwise,
the message is in a cycle. If the cycle is an incision, and
the message has not been in an incision before, then do the
following.

a)

b)

Compute U', the width of the mesh with respect to the
incision
For each node on the cycle, find all endpoint vectors
of length less than U: corresponding to paths to the
destination.
Determine how many unique alternatives are contained
within these vectors, that is, eliminate vectors which
point to the same destination.
Replicate the message, sending one copy to each alter-
native.

c)

d)

Since these copies will not be taking the shortest path to the
destination, they should not recompute the shortest path, but rather
stick to the one they have.

This modification guarantees that all messages will reach their
destination if the destination is reachable. However, this comes at
a price. Though the previous version of the algorithm can usually
be implemented by dedicated hardware at the network interface, the
work involved in the above modification will usually require the
attention of the node's main processor. This causes considerable
overhead and delay. Also, another flag must be maintained to tell
whether the message is the original or a copy. This flag will affect
both how the message is routed and whether the message is discarded

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYTEMS, VOL. 5, NO. 1 1 . NOVEMBER 1994 1231

100

90

g 80

p 70
E 60
5 50
c z 40

g 30

UI

c

2 20

g 80-

p 70-
E 60-
5 50-
c z 40-

g 30-

U I -

c -

2 20-

%

%

Deliverable

Delivered

' O U 0

100

90 -+ Yo Deliverable

* Yo Delivered
ao

a 70
&
E 60

50

40

30
c

a" 20
10

0
" ? % 8 $ 8 8 m 8 $

Percent links faulty

(b)

t &torus

0 ~ 0 0 0 0 0 0 0 0 0
N O - ~ V) (O I - ~ ~ O

7

Percent links faulty

5-H-mesh

o % 3 a s z % ? 8 s g
Percent links faulty

(c) (4
Fig. 6.
extra hops vs. percentage faulty: 8-torus. (d) Mean extra hops vs. percentage faulty: 5-H-mesh.

Algorithm performance on small systems. (a) Messages vs. percentage faulty: 8-torus. (b) Messages vs. percentage faulty: 5-H-mesh. (c) Mean

if it runs into an incision. In practice, it is unlikely that properly
handling incisions will be worth the extra cost. As we show in the
next section, incisions are rare, and occur only when a large number
of failures are present.

V. SIMULATION
Simulation was used to determine the performance of FTRoute.

Simulations were done for both the torus and the C-wrapped hexag-
onal mesh. The routing algorithm used was the simpler version. No
effort was made to find alternate routes in the case of an incision. This
was done partly because proper handling of incisions adds a great deal
of complexity to the algorithm (and therefore to the simulator), and
partly because of an intuitive notion that incision failures would be
extremely rare. This intuition was borne out by our simulation results.

Our simulations were of link failures, and we assumed a uniform
random distribution. Though a node failure is equivalent to the
failure of all of its links, the resulting distribution of link failures
is nonuniform. We did some test simulations with node failures, and
the results improved. This is not unexpected: With node failures, the
resulting mesh is more regular, with fewer of the dead ends and
blind alleys found with link failures.

Simulation results for the 8-torus and 5-D H-mesh are plotted in
Fig. 6. The 8-torus is a 64-node system with 128 links. The 5-H-
mesh is a 61-node system with 183 links. Fig. 6(a) and 6(b) plot

the percentage of messages deliverable and the percentage actually
delivered against the percentage of links that were faulty. The upper
line is the percentage of messages that were deliverable; i.e., the
destination was reachable. The curve just below it is the messages
that were actually delivered by the simple routing algorithm. Most of
the time it is indistinguishable from the deliverable curve. Fig. 6(c)
and 6(d) show the average difference in length between the path the
routing algorithm took and the shortest path against the percentage
of links that were faulty. It remains small for reasonable numbers
of failures.

Results show that the simple algorithm works surprisingly well.
For most of their length, there is little difference between the
%Deliverable and %)Delivered curves, agreeing with our intuition that
incision failures would be rare. The path lengths are encouraging also.
The curve does not begin to climb steeply until nearly 20%, of the
links have failed. Note the advantage gained by the H-mesh with its
50% more links per node: The deliverable curve stays higher longer,
and the extra hops curve stays lower longer than the corresponding
curves for the torus.

The results in Fig. 6 are good, but are for relatively small systems.
We also ran simulations for a 32-torus (1024 nodes) and a 19-H-mesh
(1027 nodes). The results of these runs are plotted in Fig. 7.

The graphs are much the same as for the smaller systems, and in
some ways, there is improvement with the larger systems. In Fig.

1232

450 -

In 400:

p 250-

350 -
g 300-
g 200:
z 150-
0) .

2 100- % .
a 50-

0-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 11 , NOVEMBER 1994

t 19-H

+ % Deliverable
++ % Delivered

450 -

In 400:

p 250-

350 -
g 300-
g 200:
z 150-
0) .

2 100- % .
a 50-

0-

Percent links faulty

t t 19-H

L , , , , ,

t 32-torus 400 7

Percent links faulty

(C)

Percent links faulty

(b)

-e- % Deliverable

X %Delivered

Percent links faulty

(d)

-mesh

Fig. 7.
extra hops vs. percentage faulty: 32-torus. (d) Mean extra hops vs. percentage faulty: 19-H-mesh.

Algorithm performance on large systems. (a) Messages vs. percentage faulty: 32-torus. (b) Messages vs. percentage faulty: 19-H-mesh. (c) Mean

7(a) and 7(b), the %Deliverable and %Delivered curves are nearly
indistinguishable. The slight gap between curves seen in Fig. 6(a)
and 6(b) is not present. Also, it can be seen that the %Deliverable
and %Delivered curves reach 0 faster than they did for the smaller
systems. This is largely a result of mesh diameter. In larger systems,
there are more paths to the destination, but the paths are much longer,
and therefore are more likely to contain faults. The greater number
of paths is more than offset by the increased probability that each
path is faulty. In Fig. 7(c) and 7(d), we see that the peak of the
extra number of hops curve has increased faster than the mesh size.
This is not unexpected, because in a larger mesh, there are more
opportunities to turn down blind alleys. It is offset somewhat by the
fact that the extra hops curves for the large meshes do not begin their
rapid climb until much later.

VI. CONCLUSION
In this short note, we presented a fault-tolerant routing algorithm

for use on multicomputers with mesh-type interconnections. It works
for both wrapped and unwrapped meshes, and simulations show that
messages are delivered by near-minimal paths, even in the presence
of large numbers of link failures. In almost all cases, a message
will reach its destination if the destination is reachable, and in all
cases, if the message will not reach its destination, the algorithm will
determine this within a finite amount of time.

In some rare cases on wrapped meshes, a message will not be
delivered when its destination is reachable. This will not happen

unless a fairly large number of faults are present. The algorithm
can be extended, at some considerable expense in complexity, to
properly handle these cases.

Although we considered only square and hexagonal meshes in this
short note, the algorithm should work in most other mesh types. We
require only that the unwrapped version of the mesh be a planar
graph, and that the wrapped mesh be homogeneous.

REFERENCES

M. S. Chen and K. G. Shin, “Adaptive fault-tolerant routing in hypercube
multicomputers,” IEEE Trans. Comput., vol. 39, pp. 1406-1416, Dec.
1990.
M. S. Chen, K. G. Shin, and D. D. Kandlur, “Addressing, routing and
broadcasting in hexagonal mesh multiprocessors,” IEEE Trans. Comput.,
vol. 39, pp. 10-18, Jan. 1990.
E. Chow, H.S. Madan, J.C. Peterson, D. Grunwald, and D. Reed,
“Hyperswitch network for the hypercube computer,” in Proc. 15th Ann.
In!. Symp. Comput. Architecture, 1988, pp. 90-99.
P. Kermani and L. Kleinrock, “Virtual cut-through: X new computer
communication switching technique,” Comput. Nehorks, vol. 3, pp.

C. K. Kim and D. A. Reed, “Adaptive packet routing in a hypercube,” in
Proc. 3rd Con& on Hypercube Concurrent Comput. Applic., Los Angeles,
CA, USA, Jan. 1988.
J.G. Kuhl and S.M. Reddy, “Distributed fault tolerance for large
multiprocessor systems,” in Proc. 7th Ann. Int. Symp. on Comput.
Architecture, 1980, pp. 23-30.
A. Varma and C. S. Raghavendra, “Fault-tolerant routing of permutations
in extra-stage networks,” in Proc. 6th Inr. Con5 Distrib. Computing Sysr.,
1986, pp. 54-61.

267-286. 1979.

