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Fault-Tolerant Routing in Mesh Architectures 

Alan Olson and Kang G. Shin 

Absfmct-It is important for a distributed computing system to be 
able to route messages around whatever faulty links or nodes may be 
present. We present a fault-tolerant routing algorithm that assures the 
delivery of every message as long as there is a path between its source and 
destination. The algorithm works on many common mesh architectures 
such as the torus and hexagonal mesh. The proposed scheme can also 
detect the nonexistence of path between a pair of nodes in a finite amount 
of time. Moreover, the scheme requires each node in the system to know 
only the state (faulty or not) of each of its own links. The performance of 
the routing scheme is simulated for both square and hexagonal meshes 
while varying the physical distribution of faulty components. It is shown 
that a shortest path between the source and destination of each message 
is taken with a high probability, and, if a path exists, it is usually found 
very quickly. 

Zndex Term-  Hexagonal mesh, distributed systems, routing, faulty 
links, cycles, incisions 

I. INTRODUCTION 
The processors of a distributed computing system communicate by 

sending messages over a network. Faults in the network can prevent 
the delivery of messages, unless the network provides fault-tolerant 
routing. However, most distributed systems pay little attention to this 
potential problem. Although they provide simple and efficient routing 
algorithms, the algorithms usually will not work properly if faults are 
present in the network. In this short note, we propose a simple and 
efficient fault-tolerant routing algorithm that can be used for many 
mesh-type distributed system architectures. 

An obvious way to handle fault-tolerant routing is for each node 
to keep track of all faults in the system. A node can be expected to 
know the state (failed or not) of its own links, and some algorithms 
are proposed in [6] to broadcast information about faulty components 
to all other nodes in the system. With this information, messages can 
always be routed by shortest paths. There are two main problems with 
this approach. First is the amount of memory that may be needed to 
store all this information, especially if the system is large. Second 
is the overhead it induces. The standard routing algorithms of most 
systems allow routing decisions to be made by simple circuitry using 
only information on the message header. This allows optimizations 
like virtual cut-through [4], which speed up message delivery by 
avoiding buffering at intermediate nodes. If other information must 
be consulted, the message must be buffered, and message delivery is 
delayed. We therefore restrict ourselves to the situation where each 
node knows only the state of its own links. 

Some work has already been done on fault-tolerant routing in the 
hypercube 111, [ 3 ] ,  [SI, 171. These algorithms either take advantage of 
the specific mathematical properties of the hypercube and are there- 
fore inapplicable to meshes, or use some form of global information, 
which we want to avoid. The authors of [ I ]  present an algorithm that 
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does not use global information, but relies on properties specific to 
hypercubes and cannot tolerate more than 7t faults, where n is the 
dimension of the hypercube. 

To date, we know of no other fault-tolerant routing strategy for 
mesh-type distributed systems. We require each node to know only the 
condition (faulty or nonfaulty) of its own links. Our routing scheme 
will deliver each message successfully, as long as there is a path 
between its source and destination. It does not require any assumption 
on the number of faults or fault patterns. If there does not exist any 
path between the source and destination nodes, our routing scheme 
will detect this in a finite amount of time. 

This short note is organized as follows. In Section 11, we briefly 
describe two representative mesh architectures. Section 111 outlines a 
fault-tolerant routing algorithm that works in most cases. In Section 
IV, the cases where the algorithm will not work are examined, and 
a fix is presented. I n  Section V, the performance of the algorithm 
is simulated for several mesh types. The short note concludes with 
Section VI. 

11. HOMOGENEOUS MESH ARCHITECTURES 

Mesh architectures provide a number of advantages over other 
distributed architectures, such as the hypercube. In a mesh, the 
number of links per node is constant and does not increase as the mesh 
size increases. The number of links per node in a hypercube increases 
with the number of nodes, and the high number of communication 
links and corresponding high through-traffic can overload the nodes 
of large systems. Also, the number of nodes in a mesh is a quadratic 
function of the mesh dimension, whereas that in a hypercube is an 
exponential function of the hypercube dimension. 

The two mesh architectures that we consider in this short note 
are the torus and the hexagonal mesh. These meshes have several 
characteristics common to most mesh architectures, which we must 
have in order for our routing algorithm to work. The mesh must be 
regular; if unwrapped, it must be planar; and if wrapped, it must be 
homogeneous. Each link has an associated vector, and one must be 
able to change the order of links (vectors) in a path without changing 
the destination. That is, one will arrive at the same node regardless 
of whether one takes two hops in the s direction followed by one 
hop in the y direction, or one hop in the s direction followed by one 
hop in the y direction followed by one hop in the: .I' direction. 

In addition, we assume that routing is done on a hop-by-hop basis, 
with routing decisions made by intermediate nodes. instead of having 
a path chosen by the node where the message originated. We assume 
that the message system is based on a store-and-forward approach, 
which may employ techniques such as virtual cut-through [4] when 
possible in order to avoid the overhead of buffering the message 
at each individual node. Messages will be buffered at intermediate 
nodes if the outgoing links that they wish to use are busy, and we 
assume that each node has enough buffer space so that deadlock 
is not a problem. Our algorithm could be used for a circuit-switched 
environment, but we do not consider this possibility in this short note. 

A. The Torus 
An unwrapped square mesh of dimension 2 x J will contain ' 3  

nodes laid out in a rectangular grid, i nodes along the horizontal 
edge. and j nodes along the vertical edge. When wrapped, the square 
mesh becomes a torus: The right link of a node on the right edge 
of the mesh is connected to the node on the left edge that is in the 
same row, and the downward link of a node on the bottom edge of 
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Fig. 1. Hexagonal mesh of dimension 3. 

the mesh is connected to the node on the top edge of the mesh that 
is in the same column. 

Any node in the mesh will have four oriented directions. One can 
think of the right link as being the 2 direction, and the downward as 
being the y direction. The left and top links then become the --z and 
-y directions. The set of shortest paths between any two nodes can 
then be expressed as offsets in these two directions. For example, the 
shortest paths between nodes 10 and 7 would be defined by offsets 
of 2 in the 2-direction and - 1 in the y-direction. Given these offsets, 
a message can be routed simply by sending it along a link that will 
reduce one of the offsets. 

B. Hexagonal Mesh 

An unwrapped hexagonal mesh (H-mesh) is a set of nodes laid 
out on a hexagonal grid such that there is a central node inside a 
series of nested hexagons. Each hexagon has one more node on each 
edge than the one immediately inside of it. The edge dimension, e, of 
the mesh is defined to be the number of nodes in an e-dimensional 
H-mesh is 3e2 - 3e + 1. 

Any node in an unwrapped H-mesh will have six oriented direc- 
tions, one corresponding to each of the six links. Without loss of 
generality, the link pointing horizontally to the right can be thought 
of as the 2-direction, the link 60" counterclockwise as the y-direction, 
and the link 120" counterclockwise as the 3 direction. The remaining 
three links point in the --s, --y, and ---I' directions, respectively. 
An H-mesh of edge dimension e can be. wrapped using C-type 
wrapping [2], which produces a homogeneous mesh. An example 
of a C-wrapped H-mesh of edge dimension 3 is given in Fig. 1 .  

A O(1) algorithm is presented in [2]  to give all shortest paths 
between any two nodes in C-wrapped H-mesh. It returns three 
integers, m,, my, and m2, each of which represents the distance 
to be traveled in the corresponding direction. At least one of the 
offsets is guaranteed to be zero, and Im,l + ImYl  + Im,l 5 e - 1, 
where e is the dimension of the mesh. As for the torus, routing can 
be done by simply sending the message along a link that will reduce 
one of the offsets. 

111. DETOURING 
The structure of the system is an important factor in any routing 

algorithm. Fault-tolerant routing algorithms for the hypercube take 

advantage of that system's unique mathematical properties, it is only 
logical that we should take advantage of the simple, regular structure 
of mesh systems. We consider only link failures, because a node 
failure can be modeled as the failure of all of its links. 

The torus and H-mesh provide an obvious method for detouring 
around a single faulty link. Each link forms one side of a square or 
triangle whose other sides form a convenient detour should the link 
fail. As an example, consider the hexagonal mesh fragment in Fig. 
2. If the link from 18 to 0 has failed, a message could detour around 
the failed link using either the path 18 to 7 to 0 or the path 18 to 1 1 
to 0. This can be recursive; for example, if the link from 18 to 7 has 
also failed, the detour could be 18 to 6 to 7 to 0. 

A message is in one of two modes: free mode for when no faults 
are obstructing the path, and detour mode for when the message's 
path is blocked by faults. The routing done at each node is as follows. 

Algorithm FTRnute: 

1) If the message is in detour mode, and if the current node is 
closer to the destination than the node where it entered detour 
mode, put the message in free mode. 

2) If the message is in free mode, select the set of links along 
shortest paths to the destination. If the message is in detour 
mode, select the link immediately counterclockwise of the link 
by which the message entered the node. 

3) If any of the selected links is nonfaulty, send the message 
along that link. 

4) If all links out of this node have already been selected and 
tested, halt. Otherwise, select the link counterclockwise of the 
set of previously select links, and go to step 3. 

Accounting for this algorithm is simple. The message need keep 
track of only the destination node, the current state (free or detour), 
and the distance to the destination when the message entered detour 
mode. One problem with the algorithm is that it will halt only if 
the message reaches its destination or if the current node has no 
nonfaulty links. There is no way to detect an unreachable destination. 
Intuitively, it seems that a message with an unreachable destination 
will get into a cycle. 

The following theorems show that if a message is attempting to 
reach an unreachable destination, it will form a cycle. They also show 
that the cycle will take place entirely in detour mode, and the cycle 
will include the node where the message last entered detour mode and 
the link by which it left that node. So, detecting a cycle is as simple 
as remembering at what node the message entered detour mode and 
by which link it exited that node. If the message does not leave detour 
mode, returns to the node where it entered detour mode, and is about 
to leave that node by the same link it did before, it is in a cycle and 
will not reach its destination. 

Lemma 1: Given message m, for any nonfaulty link o of node T I ,  

there will be nonfaulty link i of node TL such that if 77) enters 7) while 
in detour mode and remains in detour mode while at I ! ,  r n  will leave 
n by link o if and only if it entered by link i .  

Prnn$ Let i be the first nonfaulty link clockwise of o. If there 
is only one nonfaulty link at this node, then i = 0. The rest of the 
proof then follows trivially from the description of the algorithm. 0 

Lemma 2: On any finite mesh, if a message never reaches its 
destination, it will eventually reach a point after which it will never 
return to free mode. 

Pro08 Any hop that a message makes while in free mode or that 
results in a transition from detour mode to free mode will reduce by 1 
the minimum distance that the message has been from its destination. 
Call such a hop a reducing hop. Any hop that is not a reducing hop 
must be made in detour mode. Because the message starts a finite 
distance from the destination, there will be only a finite number of 
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reducing hops made by any message. A message that does not reach 
its destination will, in theory, undergo an infinite number of hops. 
Thus, there must be a last reducing hop in the path. None of the hops 
made by the message after the last reducing hop are reducing hops; 

0 
Given this, we can now show that such a message must cycle. 
Theorern I :  On any finite homogeneous mesh, if a message does 

not reach its destination, it will eventually be in a cycle. 
Proof: By Lemma 2, a message that does not reach its 

destination will eventually reach a point after which it will never 
return to free mode. Consider a message that will not reach its 
destination and has entered detour mode permanently. From Lemma 
1, it is clear that knowing the current node and the outbound link is 
enough to determine the future routing behavior of the message. The 
outbound link determines not only the next node but also the inbound 
link for the next node, and therefore the outbound link for the next 
node. This in turn determines the outbound link for the next node, and 
so on. Call the current node and the selected outbound link the state 
of the message. From Lemma I ,  it is clear that given the current state 
s, the sequence of future states not only can be determined, but i t  will 
always be the same whenever the message is in state s. Because there 
are only a finite number of nodes and a finite number of available 
outbound links per node, there are only a finite number of states. 
A message that does not reach its destination will pass through an 
infinite number of states. It must therefore pass through some state s 
twice within a finite amount of time. This clearly constitutes a cycle 
as the message has returned to s, and by the above observation it 
will not only return to .s, but will go through the same sequence of 
states in doing so. Further, i t  will continue to return to s indefinitely, 
because the sequence of states following s will always be the same.U 

Now we show that the cycle must include the node where the 
message entered detour mode. 

Theorem 2: If a message is in a cycle, it will return to the node 
at which the message entered detour mode, and will exit that node 
via the same link as it did before. 

froof Assume message t i 1  has entered detour mode perma- 
nently and is in  a cycle. Any node could appear more than once in a 
tour of the cycle. but if a node appears more than once, then each time 
the message reaches the node it must exit the node via a different link 
than it used before. Therefore, each step in the cycle may be specified 
by the node and the outgoing link. Pick any such node-link pair in 
the cycle. Find the first occurrence of this pair after the last free node, 
and call it ( 7 t  ,. I ,  ). Since the message is in detour mode, Lemma I 
shows that the node-link pair ( t z 2 ,  1 2 )  preceding ( I t  1, I I  ) will precede 
all subsequent occurrences of ( ? t 1 , 1 1  ). Therefore, ( t i 2 . 1 2 )  is in the 
cycle. The same argument applies to ( t i ~ . l ~ ) , ( ~ t ~ , l ~ ) : ~ ~ .  ( n ~ . l k ) ,  

where i t  k is the node where the message entered detour mode and I n  
0 

With Theorem 2, we can now redefine step 3 of FTRoute to detect 

3) If all the selected links are faulty, go to step 4. If the message is 
in detour mode, entered detour mode at this node, and later left 
this node by the selected link, the message is in a cycle, halt. 
Otherwise, send the message on any selected, nonfaulty link. 

We should point out that though our fault-tolerant routing algorithm 
may cause message cycles, the presence of these cycles does not 
increase the likelihood of deadlock. There are several reasons for 
this. First, a message that "runs into its tail" will fit the conditions 
of Theorem 2, and will therefore be considered undeliverable and be 
discarded. Later we consider modifications of our routing algorithm 
that try to deliver some of the messages that fit the conditions of 
Theorem 2. Even with these modifications, deadlock still will not 
be a problem, because the message system is based on a store-and- 

therefore, the message must be in detour mode. 

is the link by which i t  exited it. The theorem follows. 

cycles and halt. 

Fig. 2. Detouring in a hexagonal mesh 

forward system (but may employ virtual cut-through), so any message 
that runs into its tail may be buffered to allow its tail to catch up. 

IV. CYCLES 

Theorems 1 and 2 show that the routing algorithm will always 
terminate. It remains for us to show that it will not fail to deliver 
messages to reachable destinations. In this section, we consider the 
types of cycles that exist and what they imply with regard to the 
reachability of the destination. 

A. Types of Cycles 

Cycles are detected by checking the current node and outgoing 
link against the node where the message entered detour mode and the 
corresponding outgoing link. However, this tells us little about the 
cycle. More information can be gained by exploiting the directional 
properties of the links. 

As mentioned in Section 11, each link has a corresponding vector. 
Each vector will correspond to a distance (usually 1 ) in one of the 
mesh's available directions. For example, in a torus, the right link 
will have a vector of length one in the ;1' direction, and in an H -  
mesh, the link 30" counterclockwise of vertical will have a vector of 
length I in the 2 direction. 

We define the mesh vecror sum of a path as the sum, in each of 
the available directions, of the vectors of the individual links in the 
path, reducing where appropriate. For example, in the torus, a path 
that goes right twice, up twice, and then left will have a mesh vector 
sum of (1.r. -2y) .  Reducing the sum is important in the H-mesh, 
where, for example, (1.r. Oy. 1 2 )  is equivalent to ( O r ,  l y ,  02). If a 
mesh vector sum of the traversed links is kept with the message, 
cycles can be divided into two types. 

The first kind of cycle is characterized by a zero mesh vector sum 
when the message returns to the node at which the cycle started. This 
kind of cycle is called a circle. If, in the case of Fig. 3, a message 
should be sent from node 0 to node 11, it would travel along the 
perimeter of the isolated mesh component and return to node 0. A 
circle indicates that the mesh has become disconnected. We show 
later that in the case of a circle, the destination is not reachable. 

The second kind of cycle is characterized by a nonzero mesh vector 
sum when the message returns to the node at which the cycle started. 
This kind of cycle is called an incision. Fig. 4 shows an example 
of an incision. If a message is sent from node 0 to node I ,  it would 
head upward through nodes 8, 9, 17, 5 ,  12, and back to 0. An incision 
does not necessarily indicate that the mesh has become disconnected. 
As this example shows, the destination may in fact be reachable; the 
path 0 -+ 7 + 11 4 2 + 1 contains no faults. Incisions are not 
possible in unwrapped meshes, because the mesh vector sum of any 
cycle in a plane must be zero. 

For the rest of this section, we assume that the cycle encounters 
all faulty links; i.e., all faulty links are checked at least once during 
the course of the cycle. The presence of other faults does not affect 
the course of the cycle, nor will fixing them make any reachable 
destination unreachable. 
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Fig. 3. A circle. 

B. Circles 

A circle indicates that the mesh has become disconnected and 
that the message is tracing the perimeter of one of the connected 
components. It is easier to work with planar graphs, but if the graph is 
wrapped, it may no longer be planar. However, we can take advantage 
of the fact that the unwrapped graph is planar, and the wrapped 
graph is homogeneous, to unroll the graph to form an infinite planar 
graph. The result is much like Fig. 4, but extended infinitely in all 
directions. 

Theorem 3: If a message is in a circle, the destination is not 
reachable. 

Proofi A Jordan CUNC is a continuous non-self-intersecting 
curve whose origin and terminus coincide. The union of the edges of 
a cycle in a planar graph will form a Jordan curve. The path of a circle 
will thus form a Jordan curve, except in cases where the same link 
is traversed twice. We can derive a true Jordan curve by connecting 
the midpoints of the faulty links in the order in which they are tested 
by the routing algorithm. This curve will run alongside the path of 
the cycle, and because it does not intersect itself, it will be a true 
Jordan curve. It also has the property that all the links it intersects 
are faulty, and it does not pass through any nodes. 

A Jordan curve will partition the nodes of a planar graph into two 
disjoint sets, internal nodes and external nodes, and any path between 
an internal node and an external node must cross the Jordan curve. 

For the unwrapped mesh, we have a single Jordan curve and two 
disjoint sets of nodes. For the wrapped mesh, we have an infinite 
number of Jordan curves. For each curve, define the internal nodes 
to be the finite set of nodes, whereas the external nodes are those in 
the rest of the plane. Because all the links that cross a Jordan curve 
are faulty, no fault-free path can cross a Jordan curve. Thus, there 
are no fault-free paths between an internal node and a node in the 
corresponding set of external nodes. 

It remains only to show that the nodes on the cycle path and the 
destination node are in different sets. Assume the nodes on the cycle 
are internal nodes. The case when they are external nodes is similar. 
Consider the node on the cycle closest to the destination. Any link 
connected to this node on a shortest path to the destination must be 
faulty. This is what started the cycle. The nodes on the other ends of 
these links will be external nodes, because they will be on the other 
side of the Jordan curve. They will also be closer to the destination 
than any node on the cycle. Consider a shortest path from one of 
these nodes to the destination. There can be no faulty links in the 
path; if there were, one of the nodes connected to the edge must be 
in the cycle, because all faulty links are checked during the course 
of the cycle, and would therefore be closer to the destination than 
the node on the cycle that is closest to the destination. Because there 
exists a fault-free path from an external node to the destination, the 
destination must be an external node, and there can be no fault-free 

0 path from any node on the cycle to the destination. 
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Fig. 4. An incision. 

C. Incisions 

Theorem 3 assures us that if the message is in a circle, there is no 
path to the destination. As we noted before, incisions are not possible 
in an unwrapped mesh, and in such systems, FTRoute will always 
deliver a message to a reachable destination. As the example of Fig. 4 
shows, this is not true for wrapped meshes. For such systems, we must 
modify the algorithm to try alternate routes to the destination. The 
main difficulty is deciding which alternate routes should be tried. In 
this subsection, we consider a method for selecting these alternatives. 

Dejinitinn I :  The endpoint vector of a path is the mesh vector 
sum of the path. The endpoint distance of a path is the length of the 
endpoint vector. 

Definition 2: The characteristic vector of an incision is the end- 
point vector of a single trip through the cycle. 

It may be easier to think of the characteristic vector as an actual 
vector (direction and length) in the infinite plane representation that 
we used when discussing circles. 

Lemma 3: If two incisions have different characteristic vectors, 
they will cross. 

froofi The proof of this lemma is obvious. 0 
For the next theorem, we need to introduce the concept of a 

subdivision of a graph. Graph C: contains a subdivision of  graph 
H if each node of H has a corresponding node in G and there exists 
a set of node-disjoint paths I' in G such that for every link between 
two nodes of H ,  there is p E P ,  where y is a path between the 

corresponding nodes in G. Essentially, the nodes of  H are replaced 
by nodes in G, and the links of H are replaced by nonintersecting 
paths in G. 

Theorem 4: If the faulty links that caused the message to go into 
an incision are removed from the graph, the resulting graph will be 
planar. 

A graph is planar if and only if it does not contain a 
subdivision of either l i s  (the complete graph with five vertices), or 
Ii3.3 (the complete bipartite graph with two sets of three vertices 
each). We show that any subdivision of l i s  or IC3 :I that exists in the 
original mesh will cross the incision. 

Consider lis first. At least two of the paths corresponding to 
edges of must use the wrap links of the mesh. In fact, there 
must be two incisions with nonparallel characteristic vectors in any 
subdivision of l i s .  To see why, take any subdivision of lis in the 
complete mesh, and cut selected links until the resulting graph is 
an unwrapped mesh. Choose which links to cut so that the fewest 
possible links from the subdivision of l i s  are cut. The resulting graph 
will be an irregular mesh fragment much like that the Fig. 5, only 
without the wrap links. Because the resulting graph is unwrapped, 
no incisions are possible. However, because we cut as few links of 
the ICs subdivision as possible, and circles are inherently planar, 
any circles in the subdivision of Iis will be untouched. Our cutting 
has therefore disrupted only the incisions. A single incision, or a 
number of parallel ones, can be restored by wrap links similar to 

froofi  



1230 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 .  NO. I I ,  NOVEMBER 1994 

Fig. 5. Planar 

those in Fig. 5, while the graph remains planar. Since Iis is nonplanar, 
there must be two nonparallel incisions in the subdivision. A similar 
argument holds for h-3.3, there must be two nonparallel incisions in 
any subdivision of Ii3,~. 

Because there are two nonparallel incisions in any subdivision of 
at least one of these incisions must be nonparallel to the message 

incision. By Lemma 3, the message incision and the incision from 
the subdivision of ICs must cross. Similarly, for any subdivision of 
1<3,3, one of its incisions must cross the message incision. 

Since any subdivision of K S  or K s , ~  crosses the message incision, 
they must all contain faulty links. When the faulty links are removed, 
these subdivisions will no longer be possible. Because no subdivisions 
of lis or IC3.3 will be present in the mesh once the faulty links are 

0 
A planar embedding of the graph with the incision shown in Fig. 

4 is shown in Fig. 5. Theorem 4 assures us that if the message is 
in incision, then the system graph is planar. It does not tell us the 
diameter of the graph. The resulting graphs will be very much like 
that in Fig. 5,  an irregular mesh fragment surrounded by wrap links. 
One edge of the mesh fragment is formed by the incision, and the 
distance between the two edges may vary, but must be bounded by 
properties of the original wrapped mesh. 

Definition 3: The width of a mesh with respect to incision i is the 
length of the shortest incision not parallel to i .  

The width with respect to an incision is easy to calculate. In an 
,r x y mesh, it will be either .r + 1 or y + 1, depending on which is 
smaller, and whether the incision is parallel to the x-axis, y-axis, or 
neither. In an H-mesh, the width is always 2e - I, where c is the 
edge dimension of the mesh. 

It is easily verified that the distance between the two edges of the 
mesh fragment will always be less than the width of the mesh with 
respect to the incision. So, if the width with respect to the incision 
is U ) ,  and there is a path to the destination, then there is a path to 

removed, the resulting mesh must be planar. 

the destination from one of the nodes on the cycle that has endpoint 
distance less than w. We can now modify step 3 of FTRoute to 
properly handle incisions. 

3) If all the selected links are faulty, go to step 4. If the message 
is not in detour mode, or did not enter detour mode at this 
node, or did not later leave this node by the selected link, then 
send the message on any selected, nonfaulty link. Otherwise, 
the message is in a cycle. If the cycle is an incision, and 
the message has not been in an incision before, then do the 
following. 

a) 

b) 

Compute U', the width of the mesh with respect to the 
incision 
For each node on the cycle, find all endpoint vectors 
of length less than U: corresponding to paths to the 
destination. 
Determine how many unique alternatives are contained 
within these vectors, that is, eliminate vectors which 
point to the same destination. 
Replicate the message, sending one copy to each alter- 
native. 

c) 

d) 

Since these copies will not be taking the shortest path to the 
destination, they should not recompute the shortest path, but rather 
stick to the one they have. 

This modification guarantees that all messages will reach their 
destination if the destination is reachable. However, this comes at 
a price. Though the previous version of the algorithm can usually 
be implemented by dedicated hardware at the network interface, the 
work involved in the above modification will usually require the 
attention of the node's main processor. This causes considerable 
overhead and delay. Also, another flag must be maintained to tell 
whether the message is the original or a copy. This flag will affect 
both how the message is routed and whether the message is discarded 
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Algorithm performance on small systems. (a) Messages vs. percentage faulty: 8-torus. (b) Messages vs. percentage faulty: 5-H-mesh. (c) Mean 

if it runs into an incision. In practice, it is unlikely that properly 
handling incisions will be worth the extra cost. As we show in the 
next section, incisions are rare, and occur only when a large number 
of failures are present. 

V. SIMULATION 
Simulation was used to determine the performance of FTRoute. 

Simulations were done for both the torus and the C-wrapped hexag- 
onal mesh. The routing algorithm used was the simpler version. No 
effort was made to find alternate routes in the case of an incision. This 
was done partly because proper handling of incisions adds a great deal 
of complexity to the algorithm (and therefore to the simulator), and 
partly because of an intuitive notion that incision failures would be 
extremely rare. This intuition was borne out by our simulation results. 

Our simulations were of link failures, and we assumed a uniform 
random distribution. Though a node failure is equivalent to the 
failure of all of its links, the resulting distribution of link failures 
is nonuniform. We did some test simulations with node failures, and 
the results improved. This is not unexpected: With node failures, the 
resulting mesh is more regular, with fewer of the dead ends and 
blind alleys found with link failures. 

Simulation results for the 8-torus and 5-D H-mesh are plotted in 
Fig. 6. The 8-torus is a 64-node system with 128 links. The 5-H-  
mesh is a 61-node system with 183 links. Fig. 6(a) and 6(b) plot 

the percentage of messages deliverable and the percentage actually 
delivered against the percentage of links that were faulty. The upper 
line is the percentage of messages that were deliverable; i.e., the 
destination was reachable. The curve just below it is the messages 
that were actually delivered by the simple routing algorithm. Most of 
the time it is indistinguishable from the deliverable curve. Fig. 6(c) 
and 6(d) show the average difference in length between the path the 
routing algorithm took and the shortest path against the percentage 
of links that were faulty. It remains small for reasonable numbers 
of failures. 

Results show that the simple algorithm works surprisingly well. 
For most of their length, there is little difference between the 
%Deliverable and %)Delivered curves, agreeing with our intuition that 
incision failures would be rare. The path lengths are encouraging also. 
The curve does not begin to climb steeply until nearly 20%, of the 
links have failed. Note the advantage gained by the H-mesh with its 
50% more links per node: The deliverable curve stays higher longer, 
and the extra hops curve stays lower longer than the corresponding 
curves for the torus. 

The results in Fig. 6 are good, but are for relatively small systems. 
We also ran simulations for a 32-torus (1024 nodes) and a 19-H-mesh 
(1027 nodes). The results of these runs are plotted in Fig. 7. 

The graphs are much the same as for the smaller systems, and in 
some ways, there is improvement with the larger systems. In Fig. 
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7(a) and 7(b), the %Deliverable and %Delivered curves are nearly 
indistinguishable. The slight gap between curves seen in Fig. 6(a) 
and 6(b) is not present. Also, it can be seen that the %Deliverable 
and %Delivered curves reach 0 faster than they did for the smaller 
systems. This is largely a result of mesh diameter. In larger systems, 
there are more paths to the destination, but the paths are much longer, 
and therefore are more likely to contain faults. The greater number 
of paths is more than offset by the increased probability that each 
path is faulty. In Fig. 7(c) and 7(d), we see that the peak of the 
extra number of hops curve has increased faster than the mesh size. 
This is not unexpected, because in a larger mesh, there are more 
opportunities to turn down blind alleys. It is offset somewhat by the 
fact that the extra hops curves for the large meshes do not begin their 
rapid climb until much later. 

VI. CONCLUSION 
In this short note, we presented a fault-tolerant routing algorithm 

for use on multicomputers with mesh-type interconnections. It works 
for both wrapped and unwrapped meshes, and simulations show that 
messages are delivered by near-minimal paths, even in the presence 
of large numbers of link failures. In almost all cases, a message 
will reach its destination if the destination is reachable, and in all 
cases, if the message will not reach its destination, the algorithm will 
determine this within a finite amount of time. 

In some rare cases on wrapped meshes, a message will not be 
delivered when its destination is reachable. This will not happen 

unless a fairly large number of faults are present. The algorithm 
can be extended, at some considerable expense in complexity, to 
properly handle these cases. 

Although we considered only square and hexagonal meshes in this 
short note, the algorithm should work in most other mesh types. We 
require only that the unwrapped version of the mesh be a planar 
graph, and that the wrapped mesh be homogeneous. 

REFERENCES 

M. S. Chen and K. G. Shin, “Adaptive fault-tolerant routing in hypercube 
multicomputers,” IEEE Trans. Comput., vol. 39, pp. 1406-1416, Dec. 
1990. 
M. S. Chen, K. G. Shin, and D. D. Kandlur, “Addressing, routing and 
broadcasting in hexagonal mesh multiprocessors,” IEEE Trans. Comput., 
vol. 39, pp. 10-18, Jan. 1990. 
E. Chow, H.S. Madan, J.C. Peterson, D. Grunwald, and D. Reed, 
“Hyperswitch network for the hypercube computer,” in Proc. 15th Ann. 
In!. Symp. Comput. Architecture, 1988, pp. 90-99. 
P. Kermani and L. Kleinrock, “Virtual cut-through: X new computer 
communication switching technique,” Comput. Nehorks, vol. 3, pp. 

C. K. Kim and D. A. Reed, “Adaptive packet routing in a hypercube,” in 
Proc. 3rd Con& on Hypercube Concurrent Comput. Applic., Los Angeles, 
CA, USA, Jan. 1988. 
J.G. Kuhl and S.M. Reddy, “Distributed fault tolerance for large 
multiprocessor systems,” in Proc. 7th Ann. Int. Symp. on Comput. 
Architecture, 1980, pp. 23-30. 
A. Varma and C. S. Raghavendra, “Fault-tolerant routing of permutations 
in extra-stage networks,” in Proc. 6th Inr. Con5 Distrib. Computing Sysr., 
1986, pp. 54-61. 

267-286. 1979. 


