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PREDICTIVE SUFFICIENCY AND THE USE OF STORED INTERNALSTATEDavid J. MuslinerInstitute for Advanced Computer StudiesThe University of MarylandCollege Park, MD 20742musliner@umiacs.umd.edu Edmund H. Durfee and Kang G. ShinDept. of EE & Computer ScienceThe University of MichiganAnn Arbor, Michigan 48109-2122fdurfee,kgshing@eecs.umich.eduAbstractIn all embedded computing systems, some delayexists between sensing and acting. By choosing anaction based on sensed data, a system is essentiallypredicting that there will be no signi�cant changesin the world during this delay. However, the dynamicand uncertain nature of the real world can make thesepredictions incorrect, and thus a system may executeinappropriate actions. Making systems more reac-tive by decreasing the gap between sensing and actionleaves less time for predictions to err, but still providesno principled assurance that they will be correct.Using the concept of predictive su�ciency de-scribed in this paper, a system can prove that itspredictions are valid, and that it will never executeinappropriate actions. In the context of our CIRCAsystem, we also show how predictive su�ciency al-lows a system to guarantee worst-case response timesto changes in its environment. Using predictive suf-�ciency, CIRCA is able to build real-time reactivecontrol plans which provide a sound basis for per-formance guarantees that are unavailable with otherreactive systems. IntroductionTraditional AI planning systems3,10,15 have beencriticized because they may spend large amounts oftime building a plan that is out-of-date before it canbe used, and thus the actions that the plan choosesmay be inappropriate. For example, consider an in-telligent autonomous vehicle that is waiting at a redThe work reported in this paper was supported in partby the National Science Foundation under Grants IRI-9209031 and IRI-9158473, and by a NSF Graduate Fel-lowship. The opinions, �ndings, and recommendationsexpressed in this publication are those of the authors, anddo not necessarily reect the views of the NSF.Copyright c 1993 by David J. Musliner. Published bythe American Institute of Aeronautics and Astronautics,Inc. with permission.

light. When the light changes to green, the vehicle'ssensors detect the change and, after some further pro-cessing, the system decides to move through the inter-section and on to its destination. But, if the systemspent too much time planning its entire route, thelight may have changed back to red, and the plan's�rst action would be \inappropriate."In response to this critique, researchers have de-veloped reactive systems1,2,4,6,13 that perform littleor no lookahead planning, instead choosing actionsbased on current sensor inputs. One goal of this be-havior is to keep the selected actions appropriate tothe current situation: because no planning is done,an action can be chosen quickly once sensor readingsdetermine the current situation.However, because computations can only occur atsome �nite speed, there will always be some delaybetween sensing and action. During this \sense/actgap," sensed information is stored in the system, ei-ther explicitly in memory modules or implicitly in thecommunicationand processing mechanisms of the sys-tem. By choosing an action based on that stored in-formation, the system makes an implicit predictionthat the stored information will continue to provide asu�ciently accurate representation of the world.5Because real-world systems are dynamic and some-what uncertain, such predictions are inherently risky.Gat5 suggested that these predictions and the asso-ciated stored internal state are useful only at higherlevels of abstraction. We argue that, because the gapbetween sensing and action is inevitable, it is not theabstraction level but the magnitude of this delay (andthe requisite prediction) that is critical. Systems indynamic worlds must be \real-time," in the sense thatthe utility of the system's computations depends notonly on their result, but on when that result is pro-duced.14 To guarantee correct performance, an intel-ligent real-time system must ensure that the actionsit chooses are appropriate for the actual current stateof the world, not just the state of the world that waslast sensed.1



Rather than solving the real-time problem, reac-tive systems simply operate in a \coincidently real-time" manner7| they function as quickly as possi-ble, in the hopes that the sense/act gap will be re-duced so much that signi�cant world changes cannotoccur during the gap. In this paper, we present amore rigorous approach to dealing with the sense/actgap. Our approach consists of proving that signi�-cant world changes cannot cause a particular selectedaction to be inappropriate, by verifying that the pre-dictions spanning the sense/act gap are valid.In the next section, we lay the foundations forthis proof by de�ning the \interval of predictive suf-�ciency," or the time during which an observationprovides su�cient evidence to accurately predict thevalue of some proposition. In the following section,we illustrate how explicit reasoning about predictivesu�ciency can be implemented, with examples fromCIRCA, the Cooperative Intelligent Real-time Con-trol Architecture.8,9 We describe how CIRCA usespredictive su�ciency while building real-time reactivecontrol plans, to guarantee that the system will neverchoose inappropriate actions or miss real-time reac-tion deadlines. This paper concludes with sectionsdiscussing the type of knowledge that is required forreasoning about predictive su�ciency, and pointingout future directions for this research.De�ning Predictive Su�ciencyTo accurately describe the concept of predictive suf-�ciency, we must begin with some notation. We willuse a simple temporally-quali�ed modal logic to de-scribe the state of a control system's knowledge. Thelogical statement K(p[ti]; tj) indicates that the sys-tem knows, at time tj, that the proposition p holdsat time ti. For convenience, we will also use state-ments of the form K(p[t�; t�]; tj), indicating that thesystem knows, at time tj, that p holds continuouslyover the time interval from t� to t�.A control system's operations can be generally ex-pressed as the acquisition of a sensory observation,the logical deduction of what that observation meansabout the state of the world at the time the observa-tion was made, the deduction of the predictions thatthe observation allows the system to make about theworld following the observation, and the selection ofan action based on that knowledge. In our notation,we have: O[ti]# interpret8p 2 P : K(p[ti]; tj)# predict8q 2 Q : K(q[tq�; tq�]; tk)# selecta[ta�; ta�]

where O[ti] is a sensory observation made at timeti, P is the set of propositions which can be inferredabout the world at time ti from the observation, andQ is the set of propositions that can be predicted overthe respective intervals [tq�; tq� ]. These intervals arethe \intervals of predictive su�ciency," during whichthe observation O is su�cient to predict the value ofthe propositions Q. The time tj is the time by whichthe system has derived its knowledge of P , and tk isthe time by which the system knows Q. Followingthose deductions, the action a is chosen and executedduring the time interval [ta�; ta�].We �rst use the concept of predictive su�ciencyto show how an action can be guaranteed to be ap-propriate when it is executed. The key to avoidingan inappropriate action is to ensure that the value ofthe propositions used to choose an action will remainunchanged long enough to keep the action appropri-ate. This can be achieved by making action choicesbased on propositions whose intervals of predictivesu�ciency cover the time during which the action'spreconditions are necessary. More formally, supposethe action a requires a set of propositions R to holdduring the respective intervals [tra; trb]. If R � Q and8r 2 R : (tr� � tra) ^ (tr� � trb), then the intervalsof predictive su�ciency that are supported by the ob-servation O ensure that the required propositions willhold as necessary.For example, in the stoplight scenario describedearlier, the vehicle agent will at some point make anobservation con�rming the proposition \the light isgreen" (P ). This proposition alone is not su�cientto justify crossing the intersection, because there isno guarantee that, at the time tj when P is known,the light is still green. The knowledge resulting di-rectly from interpreting sensor readings can only de-scribe past states of the world. However, if the systemknows some information about the domain's dynamicbehavior, it can derive additional propositions thatdescribe the current and future worlds. In this ex-ample, the system might know that the tra�c signalwill switch to yellow for at least �ve seconds beforeit turns red. So, although the system does not knowif the light is still green, it can conclude that, for atleast �ve seconds after the light was seen to be green,the light must be either green or yellow, and the in-tersection will be \safe" to cross (Q). If the agent issure that the time it takes to infer these propositionsfrom its observations and cross the intersection is lessthan �ve seconds, it can guarantee that it will neverbe in the intersection during a red light.Thus the addition of domain modeling informa-tion has allowed the system to make explicit pre-dictions about the future state of the world, based2



on stored sensor readings. Given further informationabout the agent's own performance, these predictionsare then shown to be su�cient to justify certain ac-tions. This example illustrates how predictive su�-ciency can cover the sense/act gap, avoiding inappro-priate actions.Implementing Predictive Su�ciencyIn this section, we provide a high-level descriptionof CIRCA and show how the prototype implementa-tion of the architecture explicitly reasons about pre-dictive su�ciency and makes guarantees about itsbehavior. Note that we do not claim this imple-mentation is ideal; it serves only as a useful testbedto demonstrate the concepts of predictive su�ciency.More details on CIRCA are available in related pub-lications.8,9Figure 1 illustrates the architecture, in which an AIsubsystem (AIS) and Scheduler cooperate to strategi-cally plan and schedule a set of reactive behaviors thatwill cope with a particular expected domain situation.The parallel real-time subsystem (RTS) is guaranteedto accurately execute the behavior schedules, com-prised of simple situation-response rules. In this pa-per, we are focusing on how the prototype AIS explic-itly reasons about the sense/act gap and predictivesu�ciency while planning reactions. Note that thislookahead planning is performed while previously-planned reactions are already executing on the RTS,so the planning process can be viewed as \o�-line."To show how CIRCA uses predictive su�ciency, wemust �rst briey describe the system's world model-ing techniques, which it uses to reason about the be-havior of the world and the actions that the systemshould take to achieve its goals.In the prototype implementation, the world modeltakes the form of a directed graph in which nodesrepresent possible states of the world and arcs rep-resent instantaneous transitions between states. Thestatus of ongoing processes in the world is explicitlyencoded into the representation of a state. Importantchanges in process status thus correspond to transi-tions between states. The model distinguishes threetypes of state changes: action transitions, performeddeliberately by the system's reactions; event transi-tions, due to external world occurrences; and tempo-ral transitions, due to the passage of time and ongoingprocesses. Timing information is associated with eachtransition, representing constraints on how long theworld must remain in a state until the transition mayoccur. We now illustrate how this model is used bythe AIS to explicitly reason about the sense/act gapsthat will occur when planned behaviors are execut-ing on the RTS, and how the system guarantees that

those gaps will not lead to inappropriate actions.Avoiding Inappropriate ActionsFigure 2 shows an example portion of the graph-based world model for the stoplight scenario describedabove. Within the state descriptions, the modelshows that the stoplight can take on its three sig-nal colors, Red, Yellow, and Green. In the Yellowand Green states, it is safe for the agent to cross(\Safe2X"), but not in the Red state. In this sim-ple example, we have abstracted out all of the agent'sown state except for the indication of whether it hascrossed the intersection or not. The di�erent statesof the tra�c signal are connected by temporal transi-tions (double arrows) indicating that, as time passes,the signal will transition to subsequent states. Eachtemporal transition is labeled with the minimumpos-sible delay before the transition occurs, perhaps de-rived from the agent's previous experience with thistra�c signal. For example, the transition betweenthe Red and Green states indicates that the signalwill stay red for at least 60 seconds before turninggreen.When planning reactions to operate in this domain,CIRCA does not build an enumeration of possibleworld states and then plan actions; instead, it dy-namically constructs the graph model and the planof actions together in a single depth-�rst search pro-cess, essentially similar to a forward-chaining STRIPSplanner.10 This process operates on a stack of worldmodel states, examining each state in turn and plan-ning actions that achieve goals and preempt temporaltransitions that lead to failure.To begin the planning process, the initial states arepushed onto the state stack. Then, as long as thestack is not empty, the system pops a state o� thestack and considers it the current state. The systemsimulates all of the event transitions and temporaltransitions that apply to the current state, yieldingeither new states that have not been examined yet orstates that have already been processed (i.e., statesfor which actions have already been planned). Newstates are pushed onto the state stack, while old statesare simply updated with the information that theyhave a new source state. The system then chooses anaction to take in the current state, as determined bya heuristic scoring function.For example, if the system is told that the \red"state A is its initial condition, it will �rst considerthe applicable event and temporal transitions, push-ing the new \green" state B onto the stack. Thesystem will then try to plan an action for state A;since the state is not safe for crossing, the only ap-plicable action is no-op (shown as a dashed line in3
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DFigure 2: An abstracted portion of the world model for the stoplight scenario.Figure 2). The system will then mark state A as pro-cessed, pop state B o� the stack, and derive the newsuccessor state C via the temporal transition indicat-ing that the light will change to yellow. Again anaction is chosen for the current state, but this timethe cross-intersection action is chosen because itis applicable (Green is safe to cross) and because itleads to the desired result. So at this point CIRCAhas planned a simple reaction indicating that, whenthe light is green, the agent should cross. But thesystem has not yet shown why this action is guaran-teed to be appropriate when executed; it has not yetaddressed the sense/act gap, and the possibility thatthe light will change before the cross-intersectionaction is completed.CIRCA addresses these issues by ensuring that thepropositions used to satisfy the action's preconditionsare covered by intervals of predictive su�ciency. Thesystem knows the worst-case execution time of all ofits sensing and action primitives, as well as their com-binations. Thus the system knows exactly how longit will take, in the worst case, to detect the greenlight and cross the intersection (here, three seconds).To check for predictive su�ciency, the system mustlook for other domain processes that may be occurringduring the action (i.e., transitions to other states). Inthis case, the system has recognized, based on domain

knowledge, that there can be a temporal transitionleading from the green state B to the yellow state Cafter a minimum of 25 seconds.As noted above, CIRCA does not know how longthe light has been green when it is observed; therefore,in the worst case, it is assumed that the temporaltransition to the yellow state C occurs at the sametime the system initiates the transition to cross theintersection. This corresponds to the \ghost" actiontransition in the �gure (the dotted line), showing thatthe action planned for state B may actually be appliedto state C, leading to a new state E where the signalis yellow, but there is now a minimum of only twoseconds before a temporal transition leads to a redlight state.In this process of looking at transitions out of thestate for which the action is planned, CIRCA hasshown that, although alternate results are possible,the precondition of the action (\safe2X") is known tohold for �ve seconds. This is the interval of predictivesu�ciency: seeing a green light allows the system toguarantee at least �ve more seconds of safe crossingtime. Because the process of sensing the green lightand then crossing the street takes no more than threeseconds, the interval of predictive su�ciency is longenough to cover the sense/act gap. Therefore, CIRCAcan plan this action and guarantee that it will only4



be executed in appropriate situations�.When CIRCA continues the planning process andtries to choose an action for the yellow state C, it�nds that the cross-intersection action is appli-cable and leads to the desired state. However, whenthe system tries to ensure that the \safe2X" precon-dition can be predicted to hold while the action isexecuted, it �nds that a temporal transition leavingstate C leads to the red state A, which is \unsafe2X."Therefore, since the system does not know how muchtime may have passed in the yellow state C beforethe state was detected, and the subsequent state doesnot satisfy the action's preconditions, the action is re-jected. In summary, CIRCA has used its explicit un-derstanding of predictive su�ciency to derive a com-mon rule of thumb used by drivers who glance at atra�c signal: if the light is green, go ahead and cross;if the light is yellow, do not start crossing, becausethe light may turn red too soon.An interesting feature of this approach to avoidinginappropriate actions is that it requires no informa-tion about how frequently a particular sensory ob-servation is being acquired| the example said noth-ing about how often the system checks to see if thelight is green. If the system never even checks tosee if the light is green, and thus never takes thecross-intersection action, it will never performan inappropriate action. Clearly, this type of proofis only useful for goals that have no deadline. Forreal-time goals, that require response-time guaran-tees, this method is not su�cient.To describe CIRCA's approach to meeting suchreal-time deadlines, we �rst introduce a more com-plex application domain.The Puma DomainThe stoplight domain was used above for its intu-itive simplicity; CIRCA has also been applied to amuch larger robot control problem, illustrated by thesimulation image in Figure 3. The Puma is assignedthe task of packing parts arriving on the conveyorbelt into the nearby box. Once at the end of the belt,each part remains motionless until the next part ar-rives, at which time it will be pushed o� the end ofthe belt (unless the robot picks it up �rst). If a partfalls o� the belt because the robot does not pick itup in time, the system is considered to have failed.Thus, the arriving parts impose hard deadlines onthe robot's responses; it must always pick up arrivingparts before they fall o� the conveyor.The Puma is also responsible for reacting to an�CIRCA currently only supports this test for precon-ditions that are required over the entire duration of anaction.

Figure 3: The Puma domain, with two hard real-time deadline constraints.emergency alert light. If the light goes on, the systemhas only a limited time to push the button next to thelight, or the system fails. This portion of the domainrepresents a completely asynchronous interrupt witha hard deadline on its service time.Real-Time Response GuaranteesTo deal with the hard deadlines in the Puma do-main, the planning methods described above are notsu�cient| they do not ensure that reactions will betimely, but rather that they will never be inappropri-ate. As we shall see, CIRCA must merge even moreknowledge with its sensing information to guaranteetimely responses that meet hard deadlines.Figure 4 illustrates a small portion of the worldmodel for the Puma domainy, showing the represen-tation of the hard deadline on picking up arrivingparts. Parts are known to be spaced apart on theconveyor by at least some minimum distance. Aftera part arrives, the conveyor belt is considered to be\busy" for some amount of time (corresponding tothe minimum part spacing) before the next part mayarrive. Thus, from state A (where CONVEYOR-STATUS is BUSY) there is a temporal transitionto state B (where CONVEYOR-STATUS is FREE),tagged with the value min� = 10 (seconds) to indi-cate that state A must persist at least that long be-fore the transition to state B. From state B, an eventtransition represents the fact that a part may arriveat any time, leading to state C. The potential fail-ure resulting from the part falling o� the conveyor isrepresented by the temporal transition out of state C,also tagged with min� = 10: if the next part arrivesyThe full domain model includes more state featuresand hundreds of states and transitions.5



while this part is still on the conveyor, failure willoccur.To understand CIRCA's approach to makingresponse-time guarantees, let us examine the plan-ner's operation when it is considering state C. The�rst phase of the planning process �nds applica-ble event and temporal transitions, and recognizesthat there is a potential temporal transition to fail-ure. Since the failure is de�ned to be catastrophic,CIRCA realizes that it must preempt the tempo-ral transition. That is, CIRCA decides it must ex-ecute some action that will de�nitely occur beforethe earliest time the temporal transition to failurecan occur. A simple lookahead shows that the actionpickup-part-from-conveyor will successfully avoidthe failure. Now the only challenge is to ensure thatthe action will happen quickly enough. To ensure thatthe transition to failure is preempted, CIRCA com-mits to repeatedly executing a reaction that checksfor the conditions of state C and implements the cho-sen action, at least frequently enough to ensure thatthe action will be completed before failure can occur.That is, CIRCA decides how quickly it must poll thesensors to detect the imminent failure and prevent it.It is fairly obvious that, to guarantee that the sys-tem will simply detect the potential failure repre-sented by state C, which has a minimumpossible du-ration (mindur(P )) of 10 seconds, CIRCA must testfor the state at least once every 10 seconds. How-ever, detecting the state C is not su�cient: the systemmust be able to �nish the action of picking up the partbefore it can fall o� the conveyor. In the terms intro-duced previously, the interval of predictive su�ciencyduring which the part is known to remain on the con-veyor must cover the chosen action, in addition to itspreconditions. To provide this predictive su�ciency,CIRCA relies on its additional knowledge about thefrequency with which CIRCA itself will be obtainingsensory information. For example, if the period of therepeated observations is �(O) seconds, then an obser-vation in which the condition does hold, following anobservation in which the condition does not hold, in-dicates that the change of state must have occurredin the last �(O) seconds. Therefore, the conditionmust continue to hold for at least mindur(P )� �(O)seconds.Thus we have a modi�ed interval of predictive suf-�ciency, based on both knowledge of the domain andknowledge about the ongoing performance of the re-active system itself. The AIS actually reasons aboutthe performance of the reactive system it is design-ing to derive the predictive su�ciency of the observa-tions it plans to make. To guarantee that every real-time reaction will be checked and executed before its

corresponding deadline, CIRCA must show that thepredictive su�ciency of the observations covers thesense/act gap and the duration of the chosen action.That is, mindur(P )� �(O) > ta� � ti. In our Pumadomain example, if the pickup-part-from-conveyoraction takes 3 seconds, we have 10��(O) > 3, so that�(O) < 7. If CIRCA can guarantee to execute the re-action that tests for state C and picks up the part atleast once every 7 seconds, it can guarantee that itwill not drop any parts o� the conveyorz.Making this reaction frequency guarantee is thejob of CIRCA's Scheduler module (see Figure 1).The AIS uses the methods described above to de-rive frequency requirements for mission-critical reac-tions, and sends those reactions to the Scheduler. TheScheduler examines the capacity of the RTS to see ifthe available resources are su�cient to meet those re-quirements: if so, a schedule of reaction executionsis returned to the AIS. If the RTS resources are notsu�cient to guarantee the reaction rates speci�ed bythe AIS, the Scheduler will return an error messageto the AIS, indicating that some performance tradeo�will be required in this overconstrained domain.Knowledge RequirementsAs we have noted, predictive su�ciency can onlybe established by combining immediate sensor infor-mation with additional knowledge about the domain.The basic form of the required knowledge is the \min-imum duration" of some condition. That is, the sys-tem must know that some sensed state of the envi-ronment always persists for some minimum amountof time. In the stoplight domain, for example, thesystem must know the minimumduration of each sig-nal color. In general, this type of knowledge might beacquired in one of two ways.First, the system might have previous experiencewith the domain (or similar domains), and be able toextrapolate from that experience the requisite min-imum durations. Experienced drivers know that nogreen light lasts for less than 5 seconds. Learning andpast experience can thus play a key role in reasoningabout predictive su�ciency.Second, knowledge of minimumdurations may alsobe derived from simple �rst principles, given precur-sor knowledge of the maximumrate of related (under-lying) processes. For example, in the Puma domain,the minimumduration of the (CONVEYOR-STATUSBUSY) condition is determined by the maximumpartarrival rate, which in turn is based on the conveyorbelt speed and the spacing between parts. So if thesystem knows that parts must be at least ten incheszAt least, not from this particular part of the statespace.6
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A Figure 4: A small, abstracted portion of the Puma domain model.apart and that the belt is moving at one inch persecond, then the maximum part arrival rate is sixparts per minute, and the minimum duration of the(CONVEYOR-STATUS BUSY) condition is ten sec-onds.Currently, CIRCA makes no e�ort to learnminimum-duration knowledge itself, and it has onlyrudimentary, domain-speci�c methods to derive thatknowledge from process rates. Instead, our focus hasbeen on having CIRCA use that knowledge to reasonabout predictive su�ciency, and investigating the ef-fects of explicitly dealing with the sense/act gap.ConclusionWe have argued that all computing systems mustmake predictions about how the state of the worldwill evolve during the delay between sensing and ac-tion. The intuition behind the trend toward reac-tive systems has been that reducing this delay sim-pli�es (but does not eliminate) prediction. In thispaper, we have described how this intuition is reallyattempting to capture implicitly the concept of pre-dictive su�ciency. By explicitly representing and rea-soning about predictive su�ciency, we can determineexactly how long a gap between sensing and acting isallowable within a system, given its environment andits capabilities.Predictive su�ciency is a critical concept for em-bedded agents, because it permits a system to makeguarantees about its behaviors. We have shown howCIRCA implements predictive su�ciency to guaran-tee that it will not execute inappropriate actions andthat it will react to its environment frequently enoughto meet real-time deadlines.Explicitly reasoning about predictive su�ciencyalso allows us to break away from the mind-set thatdecreasing the delay between sensing and acting is al-ways desirable. Speci�cally, knowing the predictivesu�ciency of an observation may allow a system toavoid some sensor polling by caching sensory data. Nosensor readings need to be taken as long as a previousobservation's interval of predictive su�ciency remainsin force. We are investigating ways in which CIRCA

can use its explicit knowledge of predictive su�ciencyto design sensor caching schemes that maximize theuse it gets out of each observation, reducing the fre-quency of costly observations without compromisingthe system's performance guarantees.Our investigation of predictive su�ciency is a �rststep towards a more complete understanding of ex-actly when stored internal state is useful, and whenit can lead to invalid predictions and failures. Wehope to unify this approach with the epistemic proofsof Rosenschein and Kaelbling11,12 to establish a fulltheory of the correspondence between a system's in-ternal state, its predictions, and the world. This the-ory would allow strong prescriptive statements aboutwhen and how to use stored internal state.References[1] P. E. Agre and D. Chapman, \Pengi: An Imple-mentation of a Theory of Activity," in Proc. Na-tional Conf. on Arti�cial Intelligence, pp. 268{272. Morgan Kaufmann, 1987.[2] R. A. Brooks, \A Robust Layered Control Sys-tem for a Mobile Robot," IEEE Journal ofRobotics and Automation, vol. RA-2, no. 1, pp.14{22, March 1986.[3] R. E. Fikes and N. J. Nilsson, \STRIPS: A NewApproach to the Application of Theorem Provingto Problem Solving," Arti�cial Intelligence, vol.2, pp. 189{208, 1971.[4] R. J. Firby, \An Investigation into ReactivePlanning in Complex Domains," in Proc. Na-tional Conf. on Arti�cial Intelligence, pp. 202{206, 1987.[5] E. Gat, \On the Role of Stored Internal State inthe Control of Autonomous Mobile Robots," AIMagazine, vol. 14, no. 1, pp. 64{73, Spring 1993.[6] L. P. Kaelbling and S. J. Rosenschein, \Actionand Planning in Embedded Agents," in Roboticsand Autonomous Systems 6, pp. 35{48, 1990.[7] T. J. La�ey, P. A. Cox, J. L. Schmidt, S. M.Kao, and J. Y. Read, \Real-Time Knowledge-Based Systems," AI Magazine, vol. 9, no. 1, pp.7
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