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by Controller-Computer Failures 
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Abstract-Electromagnetic interferences or other environmen- 
tal disturbances may cause transient failures to the controller 
computer of a real-time control system. Such a faulty controller 
either fails to update the control input for one or more sampling 
periods, or generates erroneous control inputs until the failure is 
handled properly or disappears. 

The goal of this paper is to derive the maximum duration of 
controller's faulty behavior, called the hard deadlime, a real-time 
control system can tolerate without losing stability or leaving its 
allowed state space. For linear time-invariant control systems, one 
can derive hard deadlines by testing the stability of their state 
difference equations which account for the effects of stationary 
occurrences of disturbances to, as well as the random delays 
in, the control input. Similarly, one can derive deadlines for 
nonlinear time-invariant control systems by linearizing their 
nonlinear state equations and using the Lyapunov's first method. 
In addition to this stationary model, a one-shot event model is 
considered for linearhonlinear time-invariant control systems 
by using their state trajectories and allowed state spaces. The 
hard deadline information that represents the knowledge of the 
controlled process's inertia and timing constraints is applied to 
the design and evaluation of controller computers. 

I. INTRODUCTION 
OST REAL-TIME control systems consist of two syn- M ergistic parts: the controlled process or environment, 

and the controller computer. The control programs, which are 
executed by a controller computer residing in the feedback 
loop, realize a set of functions using sensory data from the 
controlled process and/or from the environment at regular time 
intervals. 

Since the controller computer is susceptible to transient elec- 
tromagnetic interferences inducing mainly functional errors, 
often without damaging any of its components, it is usually 
equipped with some fault-tolerance mechanisms, especially for 
life-, or safety-critical systems like aircraft or nuclear reactors. 
When an abnormality (component failure or environmental 
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interference) of the controller computer occurs, there are two 
possible outcomes: 

The controller generates an erroneous control input or an 
input disturbance due to erroneous computations, and 
The controller fails to update the control input until the 
abnormality is detected and handled properly. That is, 
there will be a delay in the feedback control loop. 

The stationary occurrences of these two types of abnor- 
mality-which depend upon the stochastic nature of the en- 
vironment-may lead to the loss of system stability if their 
active duration exceeds a certain limit called the hard deadline 
[17]. Even one occurrence of this abnormality for a long 
period may drive the controlled process out of its allowed 
state space, i.e., a dynamic failure occurs, which is called the 
one-shot event model. Some failures in actuators or sensors 
or mechanical parts and failures of A/D and D/A converters 
may also induce a system failure. In [ l l ] ,  a mathematical 
framework was presented to describe the interactions between 
the detection and isolation device for component (actuator, 
sensor, or computers) failures and the reconfiguration of the 
control algorithms. The authors of [21] focused on the design 
of fault-tolerant control systems to enhance system reliability. 
By contrast, our main intent is to analyze the coupling between 
a controlled process and its (fault-tolerant) controller computer 
(rather than such interfaces as an actuator and a sensor) and 
to formally specify the deadline information of the controlled 
process useful for the design and evaluation of the controller 
computer. 

Several researchers qualitatively analyzed the effect of feed- 
back delay resulting from the unexpected delay of data flow 
or the temporary unavailability of a controller computer by 
obtaining the stability conditions or proposing means to reduce 
the delay effects [2], [5], [4], [13], [12], [23]. The quantitative 
analysis of the effects of computation-time delay was made 
by deriving hard deadlines for prototypical real-time control 
systems such as the robot trajectory tracking problem [ 151 and 
the aircraft landing problem [ 171. In [ 161, we numerically de- 
rived hard deadlines for linear time-invariant control systems 
based on the fact that computation-time delays are stochastic 
in both their occurrence times (frequency) and magnitudes 
(duration) reflecting the nature of computer failures, without 
using the common assumption that the feedback delay is fixed 
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or periodic. However, we assumed that all computer failures 
are detected upon their occurrence and appropriate recovery 
mechanisms are invoked immediately. Thus, the results in 
[ 161 considered neither the effects of erroneous control inputs 
nor nonlinear control systems. The problem associated with 
disturbances to the control input was treated by analyzing 
the observability of a linear system with a dynamic feedback 
controller under unknown disturbances in the control input 
[6] and experimentally testing the functional error modes 
of computer-based control systems in a "harsh" operating 
environment [ 11. 

In this paper, we analyze the effects of stationary 
occurrences of disturbances to, as well as the delays in, 
the control input for linear time-invariant control systems. 
For this purpose, hard deadlines are derived by examining 
the stability of state difference equations modified with 
random sequences representing: (i) stationary occurrences 
of computer failures, (ii) imperfect error coverage [18] 
(with binomial distributions), (iii) the duration of fail- 
uredinterferences (with multinomial distributions), and (iv) 
the magnitude of disturbances to the control input (with 
a normal distribution). The system dynamics are modified 
with these random sequences and the augmented transition 
matrices for a group of N sampling intervals where N 
is the assumed maximum delay [16]. System stability is 
then examined for the samples and the ensemble average 
of the modified equations in order to derive hard deadlines 
stochastically as well as deterministically. In addition, the 
hard deadline of a one-shot event model, where a single event 
(disturbance/delay)-a long-lasting failurehnterference-may 
cause a dynamic failure, is derived by using the state trajectory 
and the allowed state space. For nonlinear time-invariant 
control systems, we first linearize the nonlinear dynamics 
around an operating point and then use well-developed 
linear systems methods to derive an optimally stabilizing 
control input and examine system stability (Lyapunov's 
indirect method) in the presence of additional feedback 
delays. 

Section 11 reviews the basic definitions related to real-time 
control, and states the importance of the deadline infor- 
mation in a real-time control system. In Section 111, we 
introduce the basic assumptions and the random sequences 
that characterize system failures and input disturbances. Then, 
hard deadlines are derived deterministically and stochasti- 
cally with the modified state difference equations for linear 
time-invariant control systems. Tbvo different approaches for 
stationary and one-shot event models are presented there. 
Section IV treats the hard deadlines of nonlinear time-invariant 
control systems, without considering control input distur- 
bances. The linearization method is applied for this analysis. 
Section V presents four examples of deriving hard deadlines 
from both the stationary and one-shot event models for lin- 
ear and nonlinear time-invariant control systems. Moreover, 
we present not only a design example that optimizes time 
redundancy such as retry or rollback, but also an evaluation 
example that assesses the system reliability by using the de- 
rived deadline informations. The paper concludes with Section 
VI. 

11. GENERIC PROBLEMS RELATED TO 
CONTROLLER-COMPUTER FAILURES 

Controlled processes are generally represented by a state- 
space model as shown in (2.1) and are equipped with well- 
designed controllers that stabilize the overall control system 
and optimize the given control objectives: 

z ( k  + 1) = f(k, dk), 4 k ) )  
(2.1) = g(k, zc(k)) 

where k is the time index, one unit of time represents one 
sampling interval T,, f : Rn+'+' --+ R" and g : Rn+' + Re 
are smooth and continuously differentiable functions, and z E 
Rn and U E Re are the state and input vectors, respectively. 
The controllers are implemented with digital computers in the 
feedback loop, and A/D and D/A converters [16], since (i) 
fast, accurate, and consistent controls are required of most 
real-time control systems with increasing sophistication of the 
controlled processes, and (ii) the capability and reliability of 
digital computers have been steadily improving at a low cost. 
The control input is computed by the controller computer at 
regular time intervals without allowing job pipelining, i.e., 
a control job should be completed or abandoned before its 
successor in the next sampling interval is invoked. 

As mentioned earlier, digital computers are highly suscep- 
tible to transient electromagnetic interferences (EMI) such as 
lightening, high intensity radio frequency fields (HIRF), and 
nuclear electromagnetic pulses (NEMP). The main problem 
caused by EM1 is functional error modes-or computer fail- 
ures-often without component damages. When a computer 
failure occurs and it is detected upon its occurrence (i.e., 
with a zero error latency [18]), a certain recovery process 
is invoked.' Suppose a computer failure is detected on its 
occurrence at time ko, and its recovery takes n sampling 
intervals. The control inputs during these intervals, u(k0 + 
l ) ,  . . . , u(ko + n), will be held constant at u(k0) by the D/A 
converter and latch circuits. When a computer failure occurs 
and it is not detected immediately, the recovery process will 
not be called in immediately: instead, the control input may 
be updated erroneously until the fault inducing the computer 
failure disappears or the computer failure is detected and 
handled properly. This may degrade the system's performance 
and reliability more significantly than the case of missing 
control updates. Suppose a computer failure occurs at time 
ko, it is detected nl sampling intervals after its occurrence, 
and the subsequent recovery takes n2 sampling intervals. The 
control inputs during this period are 

U(k0 + l ) l A ,  u(k0 + 2 ) 1 A , .  . ., u(k0 + nl)IA, * * - 7 

* 
"1 

.u(ko + n1+ l ) ,  u(k0 + n1+ l ) ,  . . . , U ( k 0  + n1 + l ) ,  
* 

"2 

u(k0 + n1+ 722 + l ) ,  . . . , 
A fault-tolerance mechanism consists of error detection, fault location, 

system reconfiguration, and recovery. General recovery processes are retry, 
rollback, and reconfiguration which take a finite time. See [20] for a more 
detailed account of fault-tolerance mechanisms. 
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where I A  is a diagonal matrix with Diag[I& = 1 + Aui 
and Au; is a random sequence which is modeled by the 
output of a dynamic system with a white-noise input. Since 
faultshterferences occur randomly during the mission life- 
time, their occurrences are considered stochastic perturbations 
to the controlled process, which can be modeled depending 
on the fault characteristics. When the environment is assumed 
to be stochastically stationary, the occurrence and duration of 
computer failure(s), and the magnitude of disturbances in the 
control input can be represented by several probability density 
functions. The relative frequency of disturbance and delay due 
to such computer failure(s) depends upon the coverage (the 
probability of detecting an error induced by an arbitrary fault), 
which is determined by failure-detection mechanisms [ 181. 

Stationary occurrences of controller-computer failureshn- 
terferences not only degrade the performance of the controlled 
process but may also lead to loss of system stability if their 
active durations exceed the hard deadline. Even one occurrence 
of this abnormality with a long active duration in a one-shot 
event model may make the system leave its allowed state space 
P61. 

The hard deadline of the stationary model is defined as 
the maximum duration of the controller computer's failure 
without losing system stability [16]. More formally, we have 
the following definition. 

Definition 1: Let xe denote an equilibrium state of the system 
represented by (2.1). Then, x, is said to be stable at time ko i f  
for each 6 > 0 there exists a 6(c, k o )  > 0 such that 

I I X ( ~ O )  5 6 * IIx(k) -xell I 6,Vk 2 ko. (2.2) 
The equilibrium state x, is said to be asymptotically stableat time 
ko, if it is stable at time ICo,  and there exists a 61(ko) 2 0 

llX(k0) - X e l l  I &(ko)  * llz(k) - Xel1 = 0 as k - 00 

(2.3) 
In linear time-invariant systems, stability can be checked 

simply by using the pole positions of the controlled process 
in the presence of random computer failures. Using this 
information one can derive hard deadlines stochastically or 
deterministically with the sample( s) and the ensemble average 
of the controlled process: 

Cell" 
D ( N )  = inf sup{N : IlX(N)II < 1) (2.4) 

where X(N) is the eigenvalue of the controlled process in the 
presence of computer failures of the maximum duration NT, 
and C,,, represents all the environmental characteristics that 
cause controller-computer failures. 

Consider a state trajectory evolved from time ICo till kf. 
Let X A ( ~ )  and UA be the allowed state space at time k and 
the admissible input space, respectively. If a computer failure, 
which occurred at k1 (ko I kl 5 kf) and was detected NIT, 
later, is recovered within NzT,, where N = NI + N2,  0 5 
N I ,  N2 5 N ,  then the control input during this period (NT,) 
is: 

N (k) = u(k)lAnkl(NI) + u(kl -k Nl)nk,+N1(N2)7 
k i L k L k i + N  

where II,(n) is a rectangular function from m to m + n, i.e., 
DI,(n) = E(k - m) - ((k - m - n) where is the unit step 
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system. 

The source and application of hard deadline in a real-time control 

function. Then, the hard deadline of a task during the time 
interval (ICoT,, kfT,] is also defined as: 

where the state trajectory is assumed to evolve as: 

The hard-deadline information allows us to deduce the 
timing constraints of the controlled process. It can be used to 
evaluate the fault-tolerance requirements of a real-time control 
system in terms of its timing constraints. Fig. 1 shows the 
source and application of hard deadline. As we shall see, 
this deadline information about the controlled process is quite 
useful for the design and evaluation of the controller computer. 

Using the requirements (e.g., deadlines) of the specific 
control application in hand, one can make decisions on (i) 
hardware design issues such as the number of processors, 
the type of interconnection network, the number of power 
supplies, and the means of synchronizing processors, and 
(ii) software design issues such as implementation of control 
algorithms, assignment and scheduling of tasks, handling of 
interrupts, management of redundancy, and detection and re- 
covery of component failure(s). In a real-time control system, 
a system failure may result either because of not responding 
fast enough to meet the timing constraints or because of 
massive component failures. Since the timing constraints of 
the controlled processes are manifested as hard deadlines, the 
deadline information is also essential to evaluate the system 
reliability, an important yardstick to measure the goodness of 
the controller computer. 

nI. HARD DEADLINES FOR TIME-INVARIANT LINEAR 
SYSTEMS WITH CONTROL I"UT DISTURBANCES 

For a linear time-invariant controlled process, the general 
state difference equation corresponding to (2.1) is described 
by: 

~ ( k  + 1) = Ax(k)  + Bu(k) (3.1) 
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where A E Rnx" and B E Rnxe are the state and input 
transition matrices with constant elements. The hard deadlines 
of this model, which are defined by (2.4) and (2.5) for the 
stationary and one-shot event models, respectively, are derived 
as the maximum delay/disturbance durations which can satisfy 
the conditions of asymptotic system stability and keep the state 
trajectory in the allowed state space. The iterative method used 
in [I61 is applied to numerically derive hard deadlines, i.e., 
the system stability and the state residence of the modified 
dynamic equation are tested iteratively while changing the 
assumed maximum duration (NT,)  from T, to DT,, where 
DT, is the actual maximum duration or the hard deadline. 

A. Hard Deadline of the Stationary Model 
In our model, the controlled processes represented by (3.1) 

are usually unstable in the absence of any feedback control, 
i.e., the real part of at least one eigenvalue of A is greater 
than one.* Some state feedback control inputs stabilizing such 
unstable systems can be calculated by using the observed (or 
estimated) states according to their own control objectives 
such as time-optimal control with an energy constraint, optimal 
state-tracking, and optimal linear regulator [IO]. Suppose the 
feedback control input is computed by .(IC) = Fz(IC), where 
the feedback matrix F depends upon the control objective 
used. When computer failures occur according to the random 
environmental characteristics, the control input calculated in 
the absence of failures is no longer optimal because of 
additional stochastic input delays and disturbances. The per- 
formance of the resulting system may thus be degraded. 
Furthermore, the asymptotic stability of the sample or en- 
semble average of the system with respect to the stochastic 
nature of the environment may be lost if the duration of such 
a failure exceeds a certain value. To derive this value, the given 
state equation is modified to include all stochastic behaviors 
of computer failures based on the following random sequences 
and the assumptions for tractability. 

Definition of random sequences (2.i.d. for the time index 

p is the probability of a computer failure at each 
sampling instance. 
d is the conditional probability of successful de- 
tection if computer failure(s) has occurred. 
q t  is the conditional probability of delay (recovery 
duration) for i sampling intervals ELl qf = 1 )  
if a computer failure occurs and is detected with- 
out generating any erroneous input, or input dis- 
turbance. 
qy is the conditional probability of an input dis- 
turbance for i sampling intervals xzl qy = 1 
if a computer failure occurs and is not detected 
till its disappearance. 
qAu is the probability density function (pd' of 
Au which is the magnitude of a control in- 

( 

( ) 

2For example, the aircraft designer must push his design to the edge of 
instability to improve the fuel-efficiency of a future aircraft, where the fast, 
accurate, and consistent control is required [17]. 

put disturbance at time ICT,, i.e., Uactual(k) = 
U d e s i r e d ( k ) l A .  The mean and variance of QAu are 
given as pau and respectively. 

assumptions 

The control inputs calculated after recovering 
from computer failure(s) are always correct. 
That is, the probability of successful recovery 
is assumed to be 1.  
The probability that two transient failures occur 
sequentially within a small number of sampling 
intervals, (N - i)Ts,  where the delay (recovery 
duration) or duration of erroneous inputs (active 
duration of a transient failure) is i sampling inter- 
vals and NT, is the assumed maximum value of 
such intervals-is so small as to be ignored. So, 
we consider only one computer failure possible 
during a group of N intervals. 
Any random sequence will be identically indepen- 
dent distributed (2.i.d) for the time index IC. 

Let the control input have been updated correctly at IC = 
mNT,. If an abnormality (delay/disturbance) is active for 
i(1 5 i 5 N) sampling periods from that time due to 
a computer failure, let the control input at (mN + i)Ts 
be U,(" + i) which is actually equal to u(mN + i)la 
for the disturbance case or U(") for the delay case. The 
corresponding state equations for the group of intervals during 
which the system failed to update control inputs become: 

z(mN + 1 )  = Ax(") + Bua(mN) 
z(mN + 2) = Az(mN + 1 )  + Bu,(mN + 1 )  

= A2z(mN)  + ABu,(mN) 
+ Bu,(mN + 1 )  

i - 1  

z(mN + i) = A i z ( m N )  + Ai-'-'Bu,(mN + j )  

i 
j=O 

z(mN + i + 1 )  = A i + l z ( m N )  + Ai-'Bu,(mN + j )  
j=1 

+ Bu(mN + i) 

z((m + 1 ) N )  = A N z ( m N )  
N - 1  

+ A j B u , ( m N + N - l - j )  
j=N-i 
N - i - 1  

+ A j B u ( m N + N  - 1 - j ) ,  
j=O 

where m is the time index for groups of N sampling intervals 
each. Let X ( m )  = [z1,x2,. . . , z N ] ~  [ z ( m N + l ) , z ( m N +  

[U(" + I ) ,  U(" + 2), . . . , U( (m + 1)N)IT. That is, X ( m )  
and U ( m )  are respectively the augmented state and control 

2), . . . , z ( (m + 1)N)IT and u(m) = [ U l , U z , .  . . , U N ] ~  E 
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Bi: = 

vectors for a group of N sampling intervals. Then, we get the 
following augmented state equations: 

X ( m  + 1)  = A D X ( ~ )  + B&,U(m) + B&U(m + I ) ,  

(3.2) 
V(m) = - F D X ( ~ ) ,  (3.3) 

where [B&*, B h ]  becomes [BE:, BE:] for the normal be- 
havior, [B$I, Bi:] for delay, and [BE:, BET] for disturbance, 
respectively. From (3.2) and (3.3), the augmented transition 

0 0- -0 ... 
. .  . .  . .  ... . .  . .  . .  

0 ... 0 0  0 ... 
0 ... B ... 0 0  
0 ... AB 0 0  

... 
0 ... AN-i-lB ... AB B 0 

matrices are: 

0 0  O O l  

ro . .. BZA 

0 0 

The state difference equation is modified by using these 
augmented transition matrices and the random sequences rep- 
resenting the behavior of computer failures: 

X ( m  + 1)  = A D X ( ~ )  + ( ( 1  - $)BE: + $ ( I -  (p)Bgl 
N 

+ $9 CiBi:) V(m)  
i=l 

N 

+ ( 1  - $)BE: + $ ( I  - 9) C i G ;  
i=l 

N 

(3.4) 

where $,p E ( 0 , l )  are binomially-distributed random 
sequences with probabilities p ,  d ,  and & ,  Ci E (0 , l )  are 
multinomially-distributed random sequences with probabilities 
qt,q;W, i.e., = 11 = q r .  

The asymptotic stability of (3.4) can be examined deter- 
ministically or stochastically. 

( 
+ $ v X & B $ ) n ( m +  i=l 1 )  

A. Deterministic Approach 

Similar to the method used in [16], the deterministic value of 
the hard deadline is obtained by examining the pole positions 
of the first moment (ensemble average) of (3.4). Although the 
resulting hard deadline has little practical meaning, it can show 
the trend of the ensemble system behavior with an uncertainty 
(in the state and output) which can be characterized by the 
second moment of (3.4). The first moment of (3.4) is: 

%(m + 1)  = A D X ( ~ )  + ( ( 1  - p)BEt + p ( 1 -  d ) Z 1  
N 

+ vdCCI!Bi:)V(m) i=l 

( 
+ P d C  q!BgJ V ( m  + 1). 

N 

+ (1 - p)BE: + p (  1 - d )  
i=l 

N 

(3.5) 
i= l  

Using (3.3) and (3.5), one can get the characteristic equation 
of (3.5): 

)I N 
) 

N 

+ p d c  qyBi:]F~ Z N  - (AD - [ ( I  - p)B;: 

+ p ( 1  - d ) z l  + p d  q fB$ t ]F~  = 0. (3.6) 

The characteristic equation of the zero-delay case (i.e., no 
computer failure, or p = 0) is: 

(3.7) 

where the magnitudes of eigenvalues are equal to those ob- 
tained from: 

(3.8) 

i=l 

i=l 

det [zNI - ( A  - BF)N]  = 0,  

det [zI - ( A  - BF)] = 0 
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which is the characteristic equation of the original state equa- 
tion (3.1) in the absence of computer failures. 

Almost-Sure Stability: For every pair of positive numbers 
a and b, there exists a positive number d(a, b, to)  such that 

B. Stochastic Approach 

The effectiveness of the deterministic approach decreases 
as the variance of gets large. In such a case, we can 
derive the probability mass function (pmf) of the hard deadline 
with respect to qaU rather than the deterministic value of the 
hard deadline based on the mean of QAu. Now, the mapping 
between the hard deadlines and the magnitudes of disturbances 
(Au’s) is not one-to-one, and the hard deadlines can be derived 
numerically for each sample value of Au’s. In all but simplest 
cases it is impossible to derive a closed-form expression for 
the pmf of the hard deadline or the exact relation between 
the hard deadline and Au. The method we use is therefore to 
quantize uniformly the QAu continuum in the interval [a,b], 
where sa q&Au = y. Let this quantization result in M 
equal-length subintervals (cells). There is a tradeoff between 
the accuracy and the amount of computation in determining y 
and M ,  and a and b are determined appropriately according 
to y. Then, points are allocated to the quantized cells, and 
let the point of the i-th cell ([a + (i - 1 ) E , a  + iE]) 
be Au; which corresponds to the midpoint of the cell, i.e., 
Au; = a + w, then the probability of the point is 

calculated as qku = say:%$& qAu(s)ds. A hard deadline 
is derived for each Aui, and let it be Di whose probability is 
equal to that of qh,. Findly, the pmf of the hard deadline is 
derived numerically by multiplyieg D; and qhU, 1 5 i 5 M. 
The accuracy of the resulting pmf depends on a, b, and M ,  
which must be determined by considering the controlled- 
process state equations, the environment, and the amount of 
computation. 

Although the above method uses a stochastic approach in 
deriving the pmf of the hard deadline, it is still based on the 
mean values of binomially- and multinomially-distributed ran- 
dom sequences since the hard deadlines of all possible samples 
cannot be derived due to the excessive number of possible 
samples. However, the stability of each individual system (i.e., 
samples) has more practical meaning than the stability of the 
average system or the ensemble of all possible systems which 
might be built. Thus, in addition to the deterministic analysis 
(or combined with the stochastic analysis) of the averaged 
system stability, we will attempt to stochastically analyze 
system stability by using the almost-sure sample stability 
concept (which is actually almost deterministic). 

b 

Dejnition 2: 
Probabilistic Stability: For every pair of positive numbers 
a and b, there exists a positive number d(a, b, to) such that 

P[sup llxtll > a] < b for %to such that IlxtoII < d, (3.9) 
t > t o  

where xt = {z(s) : t o  5 s 5 t} is a segment of the 
past history. 

In fact, the almost-sure sample stability means that almost 
every possible difference equation for a given ensemble of 
such systems has a state which is stable in the Lyapunov sense. 

B. Hard Deadline of the One-Shot Event Model 

Although one long-lasting computer failure cannot move 
the pole position of the stationary model, it may lead to a 
dynamic failure by driving the system out of the allowed state 
space when there are critical immediate or terminal constraints 
on system states [16]. When the effects of erroneous control 
inputs are included, this phenomenon may be more pronounced 
than the case of perfect failure detection. Assuming that some 
computer failure may not be detected upon its occurrence but 
every detected failure can always be recovered successfully, 
we can consider three cases for the analysis of the effects 
of computer failures: (i) delay: when a computer failure 
is detected upon its occurrence, (ii) disturbance: when a 
computer failure is not detected till its disappearance, and (iii) 
disturbance and delay: when a computer failure is detected at 
some time after its occurrence but before its disappearance. 

Let ko, kf, NI, and N2 denote the indices for the failure 
occurrence time, the mission completion time, and the period 
of disturbance, the period of delay measured in sampling 
periods, respectively, where N = NI + N2, 0 I N I ,  N2 5 N .  
The dynamic equation for a one-shot event model is: 

where I l k o  (N) is the rectangular function as defined in Section 
11, and NI and N2 are random variables and determined by 
the conditional probability of successful detection (4 if N is 
given: 

Pr[Nl = i] = d(1- d)i o 5 i 5 N - 1 
1 5 i 5 N Pr[N2 = i] = d(1- d ) N - i  

Pr[Nl = N] = Pr[N1 = 01 = 1 - d(1 - d)N-l. (3.12) 

Thus, the first moment of (3.11) is: 

(3.13) 

Using (3.13), one can derive the states at time ko + N and 
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k f ,  and examine whether or not the state trajectory satisfies the 
immediate and terminal constraints, iteratively for each N ,  as 
was done in [ 161. 

Z(ko + N )  = A N Z ( k o )  
kO+N-l  

+ c A k o + N - a - l  B[q,d@o) 
a=ko 

+ qyu(i)IA], (3.14) 
- ~ ( k f )  = Akf-"Z(ko)  

ko+N-1  

-k Akf-"'B[q:u(ko) qyU(i)I~] 
a=ko 
k f - 1  

+ ~ ~ f - ~ - l ~ ~ ( i )  
a=ko+N 

- ~ k f - k o - N -  
- X ( k 0  + N )  

k f  -1 

+ Akfra- lBu( i ) .  (3.15) 
a=Ho+N 

In addition to this deterministic approach, the pmf of the 
hard deadline that depends on QAU is also derived by using the 
same stochastic approach employed in the stationary model. 
Without using the first moment of the state equation (3.13) the 
probability of the hard deadline being N (i.e., Pr[N = D ] )  is 
thus obtained as the sum of the probabilities3 of the sample 
(3.11) in which a dynamic failure occurs at time N .  One must 
continue this process until a dynamic failure occurs for all 
samples (i.e., Pr[N = D] = 1). 

Iv .  HARD DEADLINES FOR 
mE-INVARIANT NONLINEAR SYSTEMS 

Nonlinear control systems generally differ from linear sys- 

1) It is not always possible to obtain closed-form solutions 
for nonlinear systems, where the sequences of approx- 
imating functions converging to (or estimates for) the 
true solution are mostly satisfying forms of the solution. 

2)  The analysis requires more complex and difficult math- 
ematics. 

In spite of these difficulties, hard deadlines are derived 
for nonlinear control systems since the dynamic equations 
of most control systems consist of nonlinear properties such 
as nonlinear gain, saturation, deadband, backlash, hysteresis, 
and nonlinear characteristic curves. The nonlinear differential 
equation of the continuous-time domain is generally given by: 

tems in two important aspects: 

i ( t )  = h[t,z(t) ,u(t)],  z(0) = 5 0 .  (4.1) 

Assuming that the function h(t, e) is globally Lipschitz- 
continuous, the state at the sampling time ( k  + l)Ts is 
represented by using a Taylor series: 

where the first-order derivative term can be calculated using 
(4-1), i.e., i (kT,)  = h[kT,, z (kT, ) ,  u(kT,)]. Since higher- 
order methods require the calculation of many partial deriva- 
tives, the first-order method is applied as a useful starting 
point in understanding more sophisticated methods. Then, the 
nonlinear discrete-time state equation is approximated by: 

z ( k  + 1 )  = z ( k )  + f [ k , z ( k > , u ( k ) ] , V k  2 ko, (4.3) 

where f(.) = T,h(- )  and z ( k )  corresponds to rc(kT,). 

A. Hard Deadline of the Stationary Model 

The effect of the stationary occurrences of computation-time 
delay due to the failure(s) of the controller computer can also 
be analyzed by examining the stability of nonlinear systems 
like linear systems. In this analysis, every failure is assumed 
to be detected upon its occurrence and call for a recovery 
mechanism, i.e., d = 1. This assumption ignores the effects of 
erroneous control inputs. However, one cannot simply modify 
the dynamic equations, nor can he calculate pole positions 
efficiently. The stability of nonlinear systems is generally 
analyzed by the Lyapunov's second method. The drawback of 
this method, which seriously limits its use in practice, is that it 
i s  not easy to find the required Lyapunov function and it gives 
only sufficient conditions for stability or instability. Thus, the 
Lyapunov' s first method, which linearizes the nonlinear system 
around an equilibrium point and examines the stability of 
the resulting linearized system, is used for general nonlinear 
systems. 

The state difference equation of a nonlinear control system is 
assumed to be given as in (4.2) and a suitable feedback control 
input is calculated to stabilize the system. Let the control input 
have been updated at t = mNT,. If the control inputs were 
not updated for i sampling periods from that time due to a long 
computation-time delay, where 0 5 i 5 N ,  the' corresponding 
state equations for the group of intervals during which the 
system failed to update the control inputs become: 

z(" + 1 )  = z(") + f[", z (mN) ,  U(")] 

z(" + 2 )  = z(" + 1 )  
+ f[" + 1,a(" + l),U(")] 

= z(") + f[", z ( m N ) ,  U(")] 

+ f[" + 1 ,  z(" + l ) ,  U(")] 
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x( (m + 1)N) = z (mN)  
i-1 

+ f[" + j ,  4" + j > ,  4")1 

f [ m N  + j ,  x (mN + j ) ,  U(" + j ) ]  

3 =O 
N.- 1 

+ 
, .  3 =z 

where m is the time index for the groups of N sampling 
intervals each. Then, we get the following augmented state 
difference equation: 

X ( m  + 1) = X ( m )  + F;[mN,.  . . , mN + N - 1, X ( m ) ,  

x ( m  + I ) ,  U(m>, U(m + I ) ] ,  (4.4) 

where (see the equation at the bottom of the page.) 
N 

where Ei = @ ~ ~ ~ : ( i l .  

Using the probabilities of delays (yo, y1 . . . , q ~ ) ,  we get a final 
form of the state difference equation: 

X ( m + l )  = X ( m ) + c & F i [ m N ,  . . . , m N + N - l , X ( m ) ,  

(4.5) 

i 

N 

i=O 

X ( m  + I ) ,  U ( m > ,  U ( m  + 1)1 

where & E (0 , l )  is a binomially-distributed random variable 
with parameter yi, i.e., Pr[& = 11 = 4;. Then, the first moment 
of the above equation is: 

X ( m  + 1) = X ( m )  + 
N 

yiF;[mN,. . . , mN + N - 1, 
i = O  

X (m) ,  X ( m  + l ) ,  U ( m ) ,  U(m + l ) ] .  (4.6) 

To derive the maximum value of N which maintains local 
stability, the stability of (4.6) is examined by linearizing (4.6) 
around an equilibrium point. Let $e equilibrium point be 0 
without loss of generality. Then, the linearized form of (4.6) 
is: 

A: X (m + 1) = A b  X (m) + Bh U (m) + B; U (  m + 1 ) , (4.7) 

where 

F;[O, ..., 01 = O , A b  

and 

When a state feedback controller-which is also obtained from 
the linearization method-is used (i.e., U ( m )  = - P D X ( ~ )  
where PO = & and U(m) = G [ X ( m ) ] ) ,  (4.7) becomes: 

(A: + B ; P D ) X ( ~  + 1) = ( A b  - B ~ P D ) X ( ~ ) .  (4.8) 

Using (4.8), we examine local stability by calculating the 
pole positions of the following characteristic equation: 

det [ (A& + B ~ P D ) ~ ~  - ( A b  - B ~ P D ) ]  = 0. (4.9) 

This method has two limitations: (i) the conclusions based 
on linearization are purely local, i.e., it is effective only in the 
vincinity of the equilibrium point, and (ii) if some poles are 
located on the unit circle and the others are located within the 
unit circle, the result is inconclusive, which is called a critical 
problem. 

B. Hard Deadline of the One-Shot Delay Model 

The trajectory of (4.3) is determined by the following 
equations if the conditions for the existence and uniqueness 
of solutions for the nonlinear difference equation are met: 

k - 1  

5 ( k )  = 5 0  + f(Z,x(Z), u(2)). (4.10) 
i = O  

For the existence of a unique trajectory there must exist finite 
constants T ,  r, h, k such that 
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Then, (4.2) has exactly one solution over [0, SI whenever 

hSek6 5 r and S 5 min 

for some constant p < 1. 

Let ko, IC,, and N denote the indices of delay/failure oc- 
currence time, the mission completion time, and the period 
of delay measured in sampling periods, respectively. Then, 
the dynamic equation of a one-shot delay model for nonlinear 
control systems described by (4.1) is: 

4 k  + 1) = 4 k )  + f[k, 4k), {(.@I + ( 4 k o )  - .(k))nk,(N)ll. 

To test if the constraints at time ko + N and k ,  are met, 
one must derive z(k0 + N) and z ( k f )  as: 

kn4-N-1 

V. EXAMPLES AND NUMERICAL RESULTS 

Example 5.1-1 To show the hard deadline of a linear 
time-invariant control system in the presence of stationary 
occurrences of input delays/disturbances due to computer 
failures, we consider a simple controlled process: 

z l (k  + 1) = 11.02zl(k) + 1.08zz(k) + 3.5ul(k) 
~ 2 ( k  + 1) = 0.95%2(k) + 0.5ul(k) + 1.07u2(k), (5.1) 

where the coefficient matrices of a quadratic performance 
index are given as: 

One can derive the optimal feedback control gain matrix F that 
stabilizes the controlled process by solving a discrete Riccati 
equation as: 

= [ 3.1251 0.30901 
-1.0791 0.5512 ' 

This feedback control changes the system eigenvalues from 
{0.95,11.02} to {0.0777,0.2101}. We then derived deter- 
ministically the change of poles as a result of iteratively 
incrementing N for the occurrence of the largest delay possible 
(p = qN = 0.045). The results are given in Table 1, where 
the first case represents the perfect coverage (d = 1) and the 
second case represents the presence of an input disturbance 
(d = 0.9 and pnu = -5). 

The deterministic value of the hard deadline is D = 6Ts 
in the absence of input disturbances under instant failure 
detection, whereas it decreases to D = 5Ts with some 
(infrequent) input disturbances. The pmf of hard deadline is 

2 Input disturbance 
-9 -8 -7 -6 -5 -4 -3 -2 -1 

- 
- 
- 
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021 
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0.21 

0.18 2 

0-15 l! 
N 

0.12 

0.09 

0.08 

0.03 

0.00 
1 2 3 4 5 6 7 8 8  

1 Hard deadline b] 

Fig. 2. 
which is derived. 

Probability mass functions of nu, which is given a priori, and D, 

0 5 10 15 20 25 30 35 40 45 50 
rime. k M 

Hard deadlines of one-shot event model in the absencdpresence of Fig. 3. 
input disturbances. 

plotted in Fig. 2 along with the pmf of the magnitude of input 
disturbances. 

Example 5.1-2 The hard deadline of a one-shot event 
model is derived for a double-integrator system which was 
also used for a one-shot delay model in [16]. The state 
difference equation of the discretized process with sampling 
rate, T, = 0.018, is: 

z ( k +  1) = [t : ] z ( k )  + [ O f ] u ( k ) .  (5.2) 

With the same (statekenninal) constraints and the same feed- 
back control input as those in [16], hard deadlines are deter- 
ministically derived in the absence (curve l)/presence (curve 
2: pau = 10, curve 3: pau = -10) of input disturbances, 
which are shown in Fig. 3. 
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Fig. 4. Pmf of hard deadline of one-shot event model when p a u  = 10 and 
UAu = 10. 

The pmf of hard deadlines at time T = 15Ts is derived for 
a Gaussian probability density function of 

and is given in Fig. 4. Since the disturbance to the control 
input is significant, the hard deadline is likely to be small as 
shown in the calculation except for D = 21Ts, which is the 
hard deadline in the absence of input disturbances. 

Example 5.1-3 The hard deadline of a nonlinear control 
system in the presence of stationary occurrence of delays is 
derived for a second-order system described by: 

zl(k + 1) = 3 5 1 ( k )  + ~ 2 ( k ) ~  - sat(2z2 + u(k)) 
x2(k + 1) = sinzl(k) - 52(k) + u(k), (5.3) 

where the sat function is defined as 

Then, f[k,x(k),u(k)] in (4.3) is equal to [251(k)  + ~ ( k ) ~  - 
s a t ( 2 ~  + u(k) ) , s inq(k)  - 2 4 k )  + u(k)lT. Hard dead- 
lines around some operating points are given in Table 2, for 
which the optimal feedback control inputs are calculated by a 
linearization method, and local asymptotical stability around 
such operating points is examined by using the eigenvalues of 
linearized equations in the presence of random occurrence of 
feedback delays (Lyapunov's first method). 

Example 5.1-4 As an example of the one-shot delay mod- 
els for nonlinear control systems, we consider the brachis- 
tochrone problem with an inequality constraint on the ad- 
missible state space. Specifically, a particle is falling in a 
constant gravitational field g for a fixed time t f  with a given 
initial speed 23(t0) = 230. Then, we wish to find a path 
maximizing the final value of the horizontal coordinate q ( t f  ) 
with unspecified final values of vertical coordinate z 2 ( t f )  
and the velocity 53(tf). The continuous-time system dynamic 
equations, which were treated in [3], are modified by using a 

certain sampling period T, to obtain the following difference 
equations: 

Zl(k + 1) = 21(k) + 53(k)cOSu(k) ,  Xl(0) = 0 
52(k + 1) = ~ ( k )  + 23(k)sinu(k), 2 4 0 )  = 0 
53(k + 1) = 23(k) + g C O S u ( k ) ,  23(0) = 0.05, 

(5.4) 

where u(k) is the control input to drive the particle to an 
optimal path at kT,(O 5 k 5 loo), and g is given by 0.02. The 
state constraint is described by the state variable inequality, 
z2(k) - 0.4zl(k) - 20 5 0, Vk,  which is converted to a 
difference equation by introducing a dummy variable 54:  

24(k + 1) = 24(k)  + [ 2 2 ( k )  - 0.421(k) - 201' 
x W(52(k) - 0.4~1(k) - 20), z ~ ( O )  = 0 

where W(g) = 0 if g 5 0 and 1 if g > 0. The performance 
index is represented by a modified cost function by including 
the effect of 2 4 ( k f )  as: 

J = - ~ l ( k f )  + ? S z ; ( k f )  kf = 100. 
2 

The optimal control input minimizing J is derived by using 
the gradient method for multistage decision processes, where 
the Hamiltonian H and the adjoint equation are defined by the 
system dynamic equation f and a new vector A: 

H = AT@ + l ) f [ 4 W ( k ) , k l ,  

where the terminal condition on the adjoint equation is 
A T ( k f )  = [-l,O, 0, Sx4(kf)]. The control input is updated by 
an iterative equation (for more detailed derivation of uopt(k), 
see [14]): 

(5.5) uN+l(k) = uN(k)  + AuN(k),  

where 
d H  

du( k) * AuN(k) = -K(k ) -  

The state trajectories during [0, lOOT,] are plotted in Fig. 5, 
where curve 1 is based on an initial control input (u(k) = $) 
and curve 2 being close to the optimal path is derived by an 
optimal control input obtained with 11 iterations of (5-5) and 
curve 3 indicates a path of the particle when a long controller- 
computer failure occurring at k = 50 (marked by X). The 
hard deadlines along curve 2 in the presence of a long one- 
shot delay are derived as a function of time index k, which is 
shown in Fig. 6. As the state gets closer to the boundary of the 
constraint space, the hard deadline gets reduced significantly 
(61 5 k 5 75). When it leaves the boundary by changing 
the direction, the system (i.e., a falling particle) instantly 
enters the non-critical region (76 _< k)-which is free of hard 
deadlines-since the control inputs from that time do not drive 
the particle close to the constraint space. 

The deadline information derived in the previous examples 
is used for the design and evaluation of controller computers, 
which are discussed in the following two examples. 
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Fig. 6. The hard deadline along the optimal path as a function of time. 

Example 5.2-1: When an error is detected the simplest 
recovery method is to re-execute the previous instruction, 
called simply retry, which is effective in case of immediate 
error detection [8]-[9]. When retrying an instruction, one must 
determine a retry period, which is long enough for the present 
fault(s) to die away. If the retry does not succeed in recovering 
from the error, we have to use an alternative recovery method 
like rollback or restart. So, the retry period must also be short 
enough not to miss the deadline by considering the amount of 
time to be taken by the subsequent recovery method in case 
of an unsuccessful retry. Let Tt, Ta, and t, be the "nominal" 
task execution time in the absence of error, the actual task 
execution time, and the retry period, respectively. Then, one 
can obtain a set of samples of T,: 

1 
Xa 

Ta E {Tt, Tt + - 7  (T + Ts + t r )  + "'9 (T + Ts + t r )  + Tt 

1 + - - ,2(T+ T, + t,) + Tt,. . .}. 
Xa 

where T,, T,  and $ are the resetting time, the mean occur- 
rence time of an error, and the mean active duration of a fault. 
Since T, has discrete values, the probability mass function 
(pmf) of Ta is: 

T, = k(T + T, + t,) + Tt + 
0 I k 5 00,s E {0,1} 

= P!+' ( T t ) ( l -  ps ( t r ~ ) ~  (1 - p e ( T t ) )  '-'ps (tr)' 7 

(5.6) 

where p , (T t )  and p , ( t , )  are the probability of the occurrence 
of an error during Tt (i.e., after restart) and the probability of 
a successful retry with a retry period t,? Then, the probability 
of missing a hard deadline is: 

Pmh(Tt ,D)  = lm f4, (Z)fD(Y)dY, 
k> L(D--T~)I(F+T,)I 

(5.7) 
where f ~ ( y )  is the probability density function of the hard 
deadline. When the hard deadline is deterministic, fo (y )  is 
a delta function and the corresponding p,h (Tt , D) becomes 
simpler. Consequently, the optimal retry period can be deter- 
mined by minimizing p,h(Tt, 0) with respect to t,, using the 
derived hard deadline information fo (9). 

Similarly, the hard-deadline information is also useful to 
rollback recovery, where checkpoints must be placed opti- 
mally. The checkpoints are usually placed so as to minimize 
the mean execution cost [22]. However, the mean cost must 
be minimized while keeping the probability of dynamic fail- 
ure-the probability of missing a deadline [17]-below a 
prespecified level in a real-time control system [19]. The hard 
deadline information is necessary to compute the probability 
of dynamic failure, which can, in turn, be used for the optimal 
placement of checkpoints. 

Example 5.2-2 To have a real sense of using the hard- 
deadline information, let us consider the Markov reliability 
model of a Triple Modular Redundant (TMR) controller com- 
puter. The TMR controller computer updates the control input 
to the controlled process (plant) once every T, seconds. A 
TMR failure is said to occur if more than one processor in 
the TMR controller fail during T,. The output of the TMR 
controller would not be changed in case of a TMR failure, i.e., 
the control input is not updated. The condition for a system 
failure resulting from controller-computer failures is derived 
from the hard deadline, which is the allowable maximum 
computation-time delay. In other words, this condition gives us 
the knowledge about the controlled system's resilience against 
controller-computer failures. 

Suppose the hard deadline derived from the controlled 
system is n sampling periods, where n is a random variable 
with a probability mass function fo(n). That is, no dynamic 
failure occurs if the faults inducing computer failures disappear 
(or are recovered by a fault-tolerance mechanism) within n 
sampling intervals. Then, the reliability model is built by 
extending a Markov chain model with n additional states, 
as shown in Fig. 7. All samples of the reliability model are 

4See [7] for the derivation of p e ( T t )  and p a ( & )  in a TMR system. 
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system 
N: number of faulty modules 0‘ failure 

system 
N: number of faulty modules 0‘ failure 

nth failure 

Fig. 7. An extended Markov reliability model with a random hard deadline. 

obtained by extending the original Markov chain model for 
all n, whose probabilities are given by f~ (n). The additional 
states account for the system resilience, i.e., a dynamic failure 
results only if there are n consecutive incorrect (missing the 
update of) outputs of the controller computer. 

VI. CONCLUDING REMARKS 

Hard deadlines carry important information related to the 
resilience of the controlled process. Especially, the knowledge 
of hard deadlines is very useful for modeling system reliability, 
designing and evaluating fault-tolerant controller computers, 
which are affected by control input disturbances as well as de- 
lays caused by faults/interferences. We derived hard deadlines 
for linear time-invariant control systems in the presence of 
input disturbances due to imperfect detection and for nonlinear 
time-invariant control systems by linearizing them around an 
equilibrium point. Several examples are presented to show 
the effectiveness of the proposed method in deriving the hard 
deadlines from the controlled processes and to demonstrate 
the importance of the deadline information to the design and 
evaluation of fault-tolerant controller computers. 

As an extension of this work, it would be interesting 
to derive the deadlines of nonlinear time-invariant control 
systems in the presence of control input disturbances. The 
derivation of hard deadlines for time-varying systems will also 
be a challenging task. 
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