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Abstract 

In this paper, we describe an object-oriented 
memory-based real-time database system called 
MDARTS (Multiprocessor Database Architecture 
for Real-Time Systems). MDARTS is specifically 
designed to support high-speed hard real-time ap- 
plications such as next-generation manufacturing 
system controllers. MDARTS allows applications 
to specify their real-time requirements in appli- 
cation code, and during object initialization it 
attempts to guarantee that these requirements 
will be met. We have implemented MDARTS on 
Sun workstations and VME-based multiproces- 
sors and have used our prototype to control an ac- 
tual manufacturing machine. Our MDARTS pro- 
totype can guarantee transaction response times 
of about 100 microseconds for typical memory- 
based transactions on VME multiprocessors using 
68030 processors. 

1. Introduction 

As real-time manufacturing systems become more 
complex, it is desirable to use a database system 
to manage data shared between different software 
entities (tasks, processes, modules). This shared 
database can store a wide range of information: 
e.g., part specifications, part programs, machine 
characteristics, control equation gains for ma- 
chine axes, histories of performance data, and the 

lThe work reported in this paper was supported in part 
by the National Science Foundation under Grants DDM- 
9313222 and IRI-9209031. 

current state of the machine(s). If all of this in- 
formation is in a globally-accessible database, it 
can be used for both low-level servo control and 
for high-level supervisory control of manufactur- 
ing workcells. Furthermore, it becomes much eas- 
ier to integrate new sensors and software mod- 
ules into the controller because their interactions 
with other parts of the controller can be defined 
in terms of operations on the central database. 

The primary difficulty in using database technol- 
ogy to implement high-speed manufacturing sys- 
tem controllers is that these controllers are hard 
real-time systems, and conventional database sys- 
tems do not provide the performance levels or 
response-time guarantees needed for this type of 
application. It is possible to use a conventional 
database system to maintain information such as 
production histories and part inventories, but it is 
not possible to use these databases directly within 
the low-level feedback loops of a machine con- 
troller, because their response times are simply 
too slow and unpredictable. Tasks in real-time 
controllers may need to execute several read and 
write transactions in less than a millisecond. Not 
even experimental main memory database sys- 
tems reported in the literature can achieve these 
performance levels [l, 21. 

Therefore, manufacturing system controllers have 
traditionally used ad hoc methods for data man- 
agement. Control systems often keep data struc- 
tures representing control parameters and the 
state of the system in memory as ordinary vari- 
ables. When this information is local to the con- 
trol tasks, it is inaccessible to other software mod- 
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Figure 1: Access to shared memory data. 

ules that might need it to perform execution mon- 
itoring or higher-level control. To permit more 
flexible data sharing, some systems make the 
memory addresses of certain data objects known 
to multiple tasks by using pointers or declaring 
global data structures at predefined shared mem- 
ory addresses. Sharing data in this way is anal- 
ogous to the "common block" feature of FOR- 
TRAN. As with common blocks, and for simi- 
lar reasons, there is danger that a software com- 
ponent will inadvertently misuse or misinterpret 
the data and possibly corrupt the common data 
areas. Such errors are difficult to find and can 
have catastrophic consequences. In general, it is 
a bad idea to give independently-developed soft- 
ware modules raw pointers to common data areas. 

In this paper, we describe a memory-based 
database system suitable for high-speed real-time 
manufacturing applications. Our database sys- 
tem is called MDARTS (Multiprocessor Database 
Architecture for Real-Time Systems). A more de- 
tailed description of MDARTS may be found in 
[3]. Our MDARTS prototype is implemented in 
standard C++. It runs on Sun workstations or 
VME-based multiprocessors, and we have used 
it to control a multi-axis robotic mechanism in 
real-time. To our knowledge, MDARTS is the 
first real-time database system for multiproces- 
sors that is capable of supporting hard real- 
time applications with transaction response times 
of less than a millisecond. MDARTS encapsu- 
lates access to shared memory using database ob- 
jects, which are ordinary C++ objects that have 
been carefully implemented to support concurrent 
transactions. Since all manipulation of the data 

~~ 

CPU-2 

is performed by the object methods, application 
code never uses the raw memory addresses. The 
object methods ensure that the shared data is ac- 
cessed consistently by all tasks. 

The remainder of this paper is organized as fol- 
lows. Section 2 presents an overview of the 
MDARTS architecture and application program- 
ming interface. Section 3 reports response times 
and throughput of shared-memory MDARTS 
transactions on a multiprocessor. Section 4 de- 
scribes how MDARTS was used to implement 
a prototype manufacturing machine controller. 
Section 5 concludes the paper. 

2. MDARTS Overview 

MDARTS consists of one or more servers called 
Shared Data Managers (SDMs) and an object- 
oriented library of database classes. Real-time 
tasks needing to share data with other tasks de- 
clare objects belonging to the MDARTS database 
classes. These objects are automatically regis- 
tered with an MDARTS SDM server that per- 
forms object lookup, allocates shared memory, 
and supports remote data access via remote pro- 
cedure calls (RPC). Each MDARTS database 
class implements its own concurrency control pro- 
tocol according to the semantics of its transac- 
tions (for a discussion of semantic and object- 
based concurrency control, see [4, 51). 

MDARTS fully exploits the hardware capabilities 
of shared-memory multiprocessors by supporting 
both remote network-based transactions and lo- 
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Figure 2: The advantage of avoiding a client-server architecture. 

cal bus-based transactions. The locations and im- 
plementations of MDARTS objects are transpar- 
ent to applications. Since the networking pro- 
tocols we use (Sun RPC and TCP/IP) do not 
support response-time guarantees, only the bus- 
based transactions in our MDARTS prototype 
have guaranteed response times. A major dif- 
ference between MDARTS and other real-time 
database systems (RTDBSs) is that local bus- 
based transactions on multiprocessors are exe- 
cuted by application tasks without communicat- 
ing with a separate database server. This permits 
MDARTS to achieve much better performance 
and predictability than prior real-time database 
systems. 

Figure 1 shows an MDARTS Shared Data Man- 
ager and three application tasks sharing a com- 
mon object on a shared-memory multiprocessor. 
The shaded boxes in each task on the multiproces- 
sor represent local MDARTS objects that contain 
internal pointers to a common data structure in 
shared memory. The arrows in the figure repre- 
sent data flow to and from the shared memory 
or across the network. In this example, an exclu- 
sive update constraint has been declared by the 
sensor task, so only it is allowed to write updates 
into the shared memory (hence the direction of its 
arrow vs. those of the other tasks in Figure 1). 
One of the application tasks (the factory monitor 
task) is running on a remote computer, so it uses 
a proxy MDARTS object that uses remote proce- 
dure calls to  forward transactions to the Shared 

Data Manager. 

The Shared Data Manager uses its instance of 
the MDARTS object to perform transactions on 
behalf of the remote task. The object instances 
used by the SDM and the control and sensor tasks 
on the multiprocessor point to the same shared- 
memory region, so data consistency is guaran- 
teed across the tasks. Mutual exclusion is pro- 
vided through spinlock queues that use test-and- 
set instructions 161. Spinlock queues cause tasks 
to busy wait, which is more efficient than block- 
ing if critical sections are short. They can be ei- 
ther FIFO or priority queues. Note that once the 
shared MDARTS object is constructed, transac- 
tions performed by tasks with direct memory ac- 
cess require no inter-process communication. In 
this case, the MDARTS transactions are ordinary 
C-t+ function calls performed by the application 
tasks. Avoiding inter-process communication is 
extremely important. It is the primary reason 
MDARTS can achieve such high performance on 
multiprocessors. 

2.1. Avoiding the Client-Server Architec- 
ture 
Figure 2 contrasts the MDARTS approach with 
the usual client-server architecture for multipro- 
cessor databases. The database transactions 
themselves are highlighted with the bold dashed 
lines. Each transaction is decomposed into a 
start-up region S, a critical section CS (in which 
mutual exclusion is required), and an end region 
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11 
/I Declaration of MDARTS object in sensor task that will be updating it: 
/I 
MdartsArraycinb position-sensors("position-sensors", 

"exclusive-update; size = 6; write(e1ement) <= 50usec", CREATE); 

// Sensor task updates the data. The update will take no more than 5Ousec. 
/I 
position-sensors[5] = GetEndEffectorPosition(); 
._. ~ ~ _ _ _ _  

I/ 
11 Corresponding declaration of MDARTS object in control task: 
11 
ReadOnlyMdartsArray<inb position-sensors("position-sensors", 

/I Control task reads the data: 
/I 
int end = position-sensors("size") - 1 ; 

int end-effector-position = position-sensors[end]; 

"read(e1ement) <= SOusec; read(size) <= 40usec"); 

~~ ~ 

Figure 3: MDARTS C++ application programming interface. 

E. The relative lengths of these regions depend on 
the particular transaction. The client-server over- 
heads are labeled as follows: C-IPC represents 
client-side inter-process communication, Switch 
represents context-switching (we assume that the 
server task on CPU-2 requires only one context 
switch to service both client requests), S-IPC 
represents server-side inter-process communica- 
tion, and Q represents time required to enqueue 
client requests in the server. 

The relative sizes of these overheads are not 
drawn to scale. The overheads depend on the 
characteristics of the target hardware and operat- 
ing system. In most cases, the context-switching 
and inter-process communication overheads will 
be much larger compared to the transaction ex- 
ecution than Figure 2 implies. Although some 
operations are executed in parallel, the server 
remains a serial bottleneck in the system. In 
MDARTS, transactions proceed in parallel, exe- 
cuted directly by application tasks. Only the crit- 
ical sections force serial execution and thus limit 
parallelism. Note that queueing of waiting tasks 
runs in parallel with the critical section of the 
lock holder. By avoiding client-server overheads, 
MDARTS can achieve extremely high perfor- 
mance on multiprocessors. Bus-based MDARTS 
transactions in our prototype implementation are 
two to three orders of magnitude faster than 
RPC-based MDARTS transactions. 

2.2. The MDARTS Application Program- 
ming Interface 
A unique feature of MDARTS is that it sup- 
ports explicit declarations of real-time require- 
ments and semantic constraints within applica- 
tion code. The MDARTS object constructors ex- 
amine these declarations at runtime and create 
objects that are consistent with the application 
requirements (or signal a problem, if the require- 
ments cannot be met). By registering applica- 
tion needs during object initialization, MDARTS 
is able to track resource allocation at runtime 
and guarantee response times before the trans- 
actions are actually performed. Prior RTDBS re- 
search has not considered the possibility of mak- 
ing response-time guarantees during initializa- 
tion. From the perspective of a real-time task, 
each MDARTS transaction is an atomic opera- 
tion with a bounded, worst-case execution time. 
Given worst-case execution times, it is possible to 
guarantee higher-level task deadlines through a 
straightforward application of real-time schedul- 
ing theory [7]. 

Figure 3 illustrates the MDARTS C++ applica- 
tion programming interface (API). The MDARTS 
classes in Figure 3 are MdartsArray<T> and 
Read0 n I y M dartsArray <T > , where <T > indicates 
a template class that is parameterized by an arbi- 
trary class or structure T. In this case, T is simply 
an integer. Each object declaration specifies the 
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database name and a list of semantic and timing 
constraints. The MDARTS library verifies at run- 
time that the constraints will be met. The same 
MDARTS template classes that manages arrays 
of integers in Figure 3 can also manage arrays 
of other types of data objects. Thus, with tem- 
plate instantiation, new data structures designed 
by application programmers can be added to the 
MDARTS database library very easily. Note that 
the MDARTS API is extremely simple, compared 
to embedded query languages typical of database 
interfaces to C or C++ programs. 

3. Experimental Results 

Table 1 shows the performance of our MDARTS 
prototype on a VME-based multiprocessor with 
three 20 MHz 68030 CPUs. The experiments re- 
ported in Table 1 used an MDARTS object that 
contained a 10-element integer array. Each CPU 
executed 1,000 transactions in each experiment, 
so the two and three CPU cases performed a to- 
tal of 2,000 and 3,000 transactions, respectively. 
The transactions were performed in tight loops, 
and the start times of the experiments on the 
CPUs were synchronized. We used a hardware 
timer with a resolution of 6.25 microseconds to 
measure the execution times of individual trans- 
actions. The “get” and “set” transactions locked 
the object and returned or set the values of in- 
dividual array elements. The “size” transaction 
returned the size of the array without locking the 
object. The “increment” transaction locked the 
object and added an integer to each of the ten 
array elements. The “sum” transaction locked 
the object and returned the sum of the ten ele- 
ments. The relatively long critical section lengths 
of “increment” and “sum” limited the speedup 
(and hence the throughput) as more CPUs were 
added. 

Occasional task preemptions and scheduler inter- 
rupts during transaction execution made it diHi- 
cult to precisely determine the worst-case trans- 
action execution times, so we report the average- 
case times. However, we deliberately created 
worst-case conditions, with the CPUs simultane- 
ously performing a thousand transactions each on 
the same database object. Analysis of the trans- 
action code and the VME bus access latencies 

shows that the worst-case transaction response 
times were very close to the times reported in 
Table 1. 

CPUs I get I set I size I incr. I sum 
average response times in microseconds 

1 1  76 I 75 I 23 I 105 I 97 

Table 1: Measured Performance of MdartsArray 
Transactions. 

4. Demonstration 

One of the key objectives of MDARTS is to sup- 
port the development of real-time manufacturing 
control applications. To evaluate the suitability 
of the MDARTS design in this domain, we used 
MDARTS to implement a motion controller for a 
six degree-of-freedom robotic manipulator. 

Rather than build an entire control system from 
scratch, we used MDARTS to provide a software 
interface to a commercial motion control board 
from Delta Tau Data Systems. The MDARTS 
object corresponding to the motion control board 
allows local or remote tasks to get and set fields 
in the object and thereby invoke the functionality 
of the motion control board. As the manipulator 
moves in real time, a control task on a Motorola 
68030 host processor monitors the performance 
of the manipulator and supplies offset values to 
dynamically alter the path followed by the ma- 
nipulator. 

To access the Delta Tau board, the controller on 
the 68030 uses a local MDARTS database object. 
MDARTS can easily meet the response-time re- 
quirements of this task (each of the transactions 
performed by the controller completes within 25 
microseconds). The path followed by the machine 
can be programmed remotely using an X Window 
System interface on a Sun workstation. The X 
Window interface uses the proxy object capabil- 
ity of MDARTS to query or update the internal 
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Figure 4: MDARTS Controller Demonstration Platform. 

state of the controller across the ethernet. The 
results of motion experiments can also be imme- 
diately displayed graphically on the Sun worksta- 
tion. Figure 4 illustrates the hardware platform 
used in this demonstration. 

5. Conclusion 

We have developed a new approach to real-time 
databases suitable for hard real-time control sys- 
tems. The performance levels achieved by our 
prototype implementation are at least two or- 
ders of magnitude better than prior real-time 
database implementations. The primary reason 
for this performance advantage is that MDARTS 
avoids context switching and inter-process com- 
munication for bus-based transactions. Further- 
more, MDARTS provides hard real-time guaran- 
tees, whereas prior real-time database systems do 
not guarantee response times and thus are suit- 
able only for soft real-time applications. Our ex- 
periments show that MDARTS can provide ex- 
cellent performance under extremely heavy load 
conditions. Furthermore, we have successfully 
used MDARTS to monitor and control a multi- 
axis robotic manipulator in real time. 
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