
Pmandlnps 01 lha
Amrdcrn Control Conference

Baltlmon. Yawland June 1OB4

MDARTS: A Real-Time Database for the Control and
Monitoring of Manufacturing Systems

Victor B. Lortz Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, Michigan 48109-2122

(313) 763-0391 {vbl, kgshin}@eecs . umich. edu

Abstract

In this paper, we describe an object-oriented
memory-based real-time database system called
MDARTS (Multiprocessor Database Architecture
for Real-Time Systems). MDARTS is specifically
designed to support high-speed hard real-time ap-
plications such as next-generation manufacturing
system controllers. MDARTS allows applications
to specify their real-time requirements in appli-
cation code, and during object initialization it
attempts to guarantee that these requirements
will be met. We have implemented MDARTS on
Sun workstations and VME-based multiproces-
sors and have used our prototype to control an ac-
tual manufacturing machine. Our MDARTS pro-
totype can guarantee transaction response times
of about 100 microseconds for typical memory-
based transactions on VME multiprocessors using
68030 processors.

1. Introduction

As real-time manufacturing systems become more
complex, it is desirable to use a database system
to manage data shared between different software
entities (tasks, processes, modules). This shared
database can store a wide range of information:
e.g., part specifications, part programs, machine
characteristics, control equation gains for ma-
chine axes, histories of performance data, and the

lThe work reported in this paper was supported in part
by the National Science Foundation under Grants DDM-
9313222 and IRI-9209031.

current state of the machine(s). If all of this in-
formation is in a globally-accessible database, it
can be used for both low-level servo control and
for high-level supervisory control of manufactur-
ing workcells. Furthermore, it becomes much eas-
ier to integrate new sensors and software mod-
ules into the controller because their interactions
with other parts of the controller can be defined
in terms of operations on the central database.

The primary difficulty in using database technol-
ogy to implement high-speed manufacturing sys-
tem controllers is that these controllers are hard
real-time systems, and conventional database sys-
tems do not provide the performance levels or
response-time guarantees needed for this type of
application. It is possible to use a conventional
database system to maintain information such as
production histories and part inventories, but it is
not possible to use these databases directly within
the low-level feedback loops of a machine con-
troller, because their response times are simply
too slow and unpredictable. Tasks in real-time
controllers may need to execute several read and
write transactions in less than a millisecond. Not
even experimental main memory database sys-
tems reported in the literature can achieve these
performance levels [l, 21.

Therefore, manufacturing system controllers have
traditionally used ad hoc methods for data man-
agement. Control systems often keep data struc-
tures representing control parameters and the
state of the system in memory as ordinary vari-
ables. When this information is local to the con-
trol tasks, it is inaccessible to other software mod-

3328

Remote Workstation VME-based Multiprocessor
I I

0-- U..UlbU ' - r I ---- I obiect , ... " ". ..."., -

~

CPU-1

Figure 1: Access to shared memory data.

ules that might need it to perform execution mon-
itoring or higher-level control. To permit more
flexible data sharing, some systems make the
memory addresses of certain data objects known
to multiple tasks by using pointers or declaring
global data structures at predefined shared mem-
ory addresses. Sharing data in this way is anal-
ogous to the "common block" feature of FOR-
TRAN. As with common blocks, and for simi-
lar reasons, there is danger that a software com-
ponent will inadvertently misuse or misinterpret
the data and possibly corrupt the common data
areas. Such errors are difficult to find and can
have catastrophic consequences. In general, it is
a bad idea to give independently-developed soft-
ware modules raw pointers to common data areas.

In this paper, we describe a memory-based
database system suitable for high-speed real-time
manufacturing applications. Our database sys-
tem is called MDARTS (Multiprocessor Database
Architecture for Real-Time Systems). A more de-
tailed description of MDARTS may be found in
[3]. Our MDARTS prototype is implemented in
standard C++. It runs on Sun workstations or
VME-based multiprocessors, and we have used
it to control a multi-axis robotic mechanism in
real-time. To our knowledge, MDARTS is the
first real-time database system for multiproces-
sors that is capable of supporting hard real-
time applications with transaction response times
of less than a millisecond. MDARTS encapsu-
lates access to shared memory using database ob-
jects, which are ordinary C++ objects that have
been carefully implemented to support concurrent
transactions. Since all manipulation of the data

~~

CPU-2

is performed by the object methods, application
code never uses the raw memory addresses. The
object methods ensure that the shared data is ac-
cessed consistently by all tasks.

The remainder of this paper is organized as fol-
lows. Section 2 presents an overview of the
MDARTS architecture and application program-
ming interface. Section 3 reports response times
and throughput of shared-memory MDARTS
transactions on a multiprocessor. Section 4 de-
scribes how MDARTS was used to implement
a prototype manufacturing machine controller.
Section 5 concludes the paper.

2. MDARTS Overview

MDARTS consists of one or more servers called
Shared Data Managers (SDMs) and an object-
oriented library of database classes. Real-time
tasks needing to share data with other tasks de-
clare objects belonging to the MDARTS database
classes. These objects are automatically regis-
tered with an MDARTS SDM server that per-
forms object lookup, allocates shared memory,
and supports remote data access via remote pro-
cedure calls (RPC). Each MDARTS database
class implements its own concurrency control pro-
tocol according to the semantics of its transac-
tions (for a discussion of semantic and object-
based concurrency control, see [4, 51).

MDARTS fully exploits the hardware capabilities
of shared-memory multiprocessors by supporting
both remote network-based transactions and lo-

3329

Client-Server Multiprocessor Database Transactions

C-IPC I Switch]

a.

CPU-1

CPU-2

CPU-3

CPU-1

CPU-2

CPU-3

D.
Response time for client task on CPU-1

C-IPC 1 Switch I

MDARTS Transactions

EqgZJii

Worst Response time

Figure 2: The advantage of avoiding a client-server architecture.

cal bus-based transactions. The locations and im-
plementations of MDARTS objects are transpar-
ent to applications. Since the networking pro-
tocols we use (Sun RPC and TCP/IP) do not
support response-time guarantees, only the bus-
based transactions in our MDARTS prototype
have guaranteed response times. A major dif-
ference between MDARTS and other real-time
database systems (RTDBSs) is that local bus-
based transactions on multiprocessors are exe-
cuted by application tasks without communicat-
ing with a separate database server. This permits
MDARTS to achieve much better performance
and predictability than prior real-time database
systems.

Figure 1 shows an MDARTS Shared Data Man-
ager and three application tasks sharing a com-
mon object on a shared-memory multiprocessor.
The shaded boxes in each task on the multiproces-
sor represent local MDARTS objects that contain
internal pointers to a common data structure in
shared memory. The arrows in the figure repre-
sent data flow to and from the shared memory
or across the network. In this example, an exclu-
sive update constraint has been declared by the
sensor task, so only it is allowed to write updates
into the shared memory (hence the direction of its
arrow vs. those of the other tasks in Figure 1).
One of the application tasks (the factory monitor
task) is running on a remote computer, so it uses
a proxy MDARTS object that uses remote proce-
dure calls to forward transactions to the Shared

Data Manager.

The Shared Data Manager uses its instance of
the MDARTS object to perform transactions on
behalf of the remote task. The object instances
used by the SDM and the control and sensor tasks
on the multiprocessor point to the same shared-
memory region, so data consistency is guaran-
teed across the tasks. Mutual exclusion is pro-
vided through spinlock queues that use test-and-
set instructions 161. Spinlock queues cause tasks
to busy wait, which is more efficient than block-
ing if critical sections are short. They can be ei-
ther FIFO or priority queues. Note that once the
shared MDARTS object is constructed, transac-
tions performed by tasks with direct memory ac-
cess require no inter-process communication. In
this case, the MDARTS transactions are ordinary
C-t+ function calls performed by the application
tasks. Avoiding inter-process communication is
extremely important. It is the primary reason
MDARTS can achieve such high performance on
multiprocessors.

2.1. Avoiding the Client-Server Architec-
ture
Figure 2 contrasts the MDARTS approach with
the usual client-server architecture for multipro-
cessor databases. The database transactions
themselves are highlighted with the bold dashed
lines. Each transaction is decomposed into a
start-up region S, a critical section CS (in which
mutual exclusion is required), and an end region

3330

11
/I Declaration of MDARTS object in sensor task that will be updating it:
/I
MdartsArraycinb position-sensors("position-sensors",

"exclusive-update; size = 6; write(e1ement) <= 50usec", CREATE);

// Sensor task updates the data. The update will take no more than 5Ousec.
/I
position-sensors[5] = GetEndEffectorPosition();
._. ~ ~ _ _ _ _

I/
11 Corresponding declaration of MDARTS object in control task:
11
ReadOnlyMdartsArray<inb position-sensors("position-sensors",

/I Control task reads the data:
/I
int end = position-sensors("size") - 1 ;

int end-effector-position = position-sensors[end];

"read(e1ement) <= SOusec; read(size) <= 40usec");

~~ ~

Figure 3: MDARTS C++ application programming interface.

E. The relative lengths of these regions depend on
the particular transaction. The client-server over-
heads are labeled as follows: C-IPC represents
client-side inter-process communication, Switch
represents context-switching (we assume that the
server task on CPU-2 requires only one context
switch to service both client requests), S-IPC
represents server-side inter-process communica-
tion, and Q represents time required to enqueue
client requests in the server.

The relative sizes of these overheads are not
drawn to scale. The overheads depend on the
characteristics of the target hardware and operat-
ing system. In most cases, the context-switching
and inter-process communication overheads will
be much larger compared to the transaction ex-
ecution than Figure 2 implies. Although some
operations are executed in parallel, the server
remains a serial bottleneck in the system. In
MDARTS, transactions proceed in parallel, exe-
cuted directly by application tasks. Only the crit-
ical sections force serial execution and thus limit
parallelism. Note that queueing of waiting tasks
runs in parallel with the critical section of the
lock holder. By avoiding client-server overheads,
MDARTS can achieve extremely high perfor-
mance on multiprocessors. Bus-based MDARTS
transactions in our prototype implementation are
two to three orders of magnitude faster than
RPC-based MDARTS transactions.

2.2. The MDARTS Application Program-
ming Interface
A unique feature of MDARTS is that it sup-
ports explicit declarations of real-time require-
ments and semantic constraints within applica-
tion code. The MDARTS object constructors ex-
amine these declarations at runtime and create
objects that are consistent with the application
requirements (or signal a problem, if the require-
ments cannot be met). By registering applica-
tion needs during object initialization, MDARTS
is able to track resource allocation at runtime
and guarantee response times before the trans-
actions are actually performed. Prior RTDBS re-
search has not considered the possibility of mak-
ing response-time guarantees during initializa-
tion. From the perspective of a real-time task,
each MDARTS transaction is an atomic opera-
tion with a bounded, worst-case execution time.
Given worst-case execution times, it is possible to
guarantee higher-level task deadlines through a
straightforward application of real-time schedul-
ing theory [7].

Figure 3 illustrates the MDARTS C++ applica-
tion programming interface (API). The MDARTS
classes in Figure 3 are MdartsArray<T> and
Read0 n I y M dartsArray <T > , where <T > indicates
a template class that is parameterized by an arbi-
trary class or structure T. In this case, T is simply
an integer. Each object declaration specifies the

3331

database name and a list of semantic and timing
constraints. The MDARTS library verifies at run-
time that the constraints will be met. The same
MDARTS template classes that manages arrays
of integers in Figure 3 can also manage arrays
of other types of data objects. Thus, with tem-
plate instantiation, new data structures designed
by application programmers can be added to the
MDARTS database library very easily. Note that
the MDARTS API is extremely simple, compared
to embedded query languages typical of database
interfaces to C or C++ programs.

3. Experimental Results

Table 1 shows the performance of our MDARTS
prototype on a VME-based multiprocessor with
three 20 MHz 68030 CPUs. The experiments re-
ported in Table 1 used an MDARTS object that
contained a 10-element integer array. Each CPU
executed 1,000 transactions in each experiment,
so the two and three CPU cases performed a to-
tal of 2,000 and 3,000 transactions, respectively.
The transactions were performed in tight loops,
and the start times of the experiments on the
CPUs were synchronized. We used a hardware
timer with a resolution of 6.25 microseconds to
measure the execution times of individual trans-
actions. The “get” and “set” transactions locked
the object and returned or set the values of in-
dividual array elements. The “size” transaction
returned the size of the array without locking the
object. The “increment” transaction locked the
object and added an integer to each of the ten
array elements. The “sum” transaction locked
the object and returned the sum of the ten ele-
ments. The relatively long critical section lengths
of “increment” and “sum” limited the speedup
(and hence the throughput) as more CPUs were
added.

Occasional task preemptions and scheduler inter-
rupts during transaction execution made it diHi-
cult to precisely determine the worst-case trans-
action execution times, so we report the average-
case times. However, we deliberately created
worst-case conditions, with the CPUs simultane-
ously performing a thousand transactions each on
the same database object. Analysis of the trans-
action code and the VME bus access latencies

shows that the worst-case transaction response
times were very close to the times reported in
Table 1.

CPUs I get I set I size I incr. I sum
average response times in microseconds

1 1 76 I 75 I 23 I 105 I 97

Table 1: Measured Performance of MdartsArray
Transactions.

4. Demonstration

One of the key objectives of MDARTS is to sup-
port the development of real-time manufacturing
control applications. To evaluate the suitability
of the MDARTS design in this domain, we used
MDARTS to implement a motion controller for a
six degree-of-freedom robotic manipulator.

Rather than build an entire control system from
scratch, we used MDARTS to provide a software
interface to a commercial motion control board
from Delta Tau Data Systems. The MDARTS
object corresponding to the motion control board
allows local or remote tasks to get and set fields
in the object and thereby invoke the functionality
of the motion control board. As the manipulator
moves in real time, a control task on a Motorola
68030 host processor monitors the performance
of the manipulator and supplies offset values to
dynamically alter the path followed by the ma-
nipulator.

To access the Delta Tau board, the controller on
the 68030 uses a local MDARTS database object.
MDARTS can easily meet the response-time re-
quirements of this task (each of the transactions
performed by the controller completes within 25
microseconds). The path followed by the machine
can be programmed remotely using an X Window
System interface on a Sun workstation. The X
Window interface uses the proxy object capabil-
ity of MDARTS to query or update the internal

3332

Figure 4: MDARTS Controller Demonstration Platform.

state of the controller across the ethernet. The
results of motion experiments can also be imme-
diately displayed graphically on the Sun worksta-
tion. Figure 4 illustrates the hardware platform
used in this demonstration.

5. Conclusion

We have developed a new approach to real-time
databases suitable for hard real-time control sys-
tems. The performance levels achieved by our
prototype implementation are at least two or-
ders of magnitude better than prior real-time
database implementations. The primary reason
for this performance advantage is that MDARTS
avoids context switching and inter-process com-
munication for bus-based transactions. Further-
more, MDARTS provides hard real-time guaran-
tees, whereas prior real-time database systems do
not guarantee response times and thus are suit-
able only for soft real-time applications. Our ex-
periments show that MDARTS can provide ex-
cellent performance under extremely heavy load
conditions. Furthermore, we have successfully
used MDARTS to monitor and control a multi-
axis robotic manipulator in real time.

References
[l] H. Garcia-Molina and K. Salem, “Main
memory database systems: An overview,” IEEE
fians. Knowledge and Data Engineering, vol. 4,
no. 6, pp. 509-516, December 1992.
[2] K. Li and J. F. Naughton, “Multiproces-
sor main memory transaction processing,” in
Proc. IEEE Int’l Symp. on Databases an Parallel
and Distributed Systems, pp. 177-187, December
1988.
[3] V. B. Lortz, An Object-Oriented Real-Time
Database System for Multiprocessors, PhD thesis,
University of Michigan, March 1994.
[4] B. R. Badrinath and K. Ramamritham,
“Semantics-based concurrency control: Beyond
commutativity,” ACM fians. Database Systems,
vol. 17, no. 1, pp. 163-199, March 1992.
[5] L. B. C. DiPippo and V. F. Wolfe, “Object-
based semantic real-time concurrency control,” in
Proc. Real- Time Systems Symposium, pp. 87-96,
December 1993.
[6] T. S. Craig, “Queueing spin lock algorithms
to support timing predictability,” in Proc. Real-
Time Systems Symposium, pp. 148-157, Decem-
ber 1993.
[7] R. Rajkumar, L. Sha, and J. P. Lehoczky,
“Real-time synchronization protocols for multi-
processors,” in Proc. Real- Time Systems Sympo-
sium, pp. 259-269, December 1988.

3333

