
Combining Contracts and Exemplar-Based Programming for Class 

Hiding and Customization * 

Victor B. Lortz Kang G. Shin 

Real- Time Computing Laboratory 

Department of Electrical Engineering and Computer Science 

The University of Michigan 
Ann Arbor, Michigan 48109-2122 

{ vbl, kgshin} @eecs. umich. edu 

Abstract 

For performance reasons, client applications often 
need to influence the implementation strategies of 
libraries whose services they use. If an object- 
oriented library contains multiple service classes 
customized for different usage patterns, applica- 
tions can influence service implementations by in- 
stantiating the customized classes that match their 
needs. However, with many similar service classes, 
it can be difficult for applications to determine 
which classes to instantiate. Choosing the wrong 
class can result in very subtle errors since a cus- 
tomized class might use optimizations that work 
only over a restricted domain. In this paper, 
we show how client-side software contracts and 
exemplar-based class factories can be used to con- 
struct customized server objects. By expressing 
priorities and requirements in contracts, clients can 
delegate service class selection to the library and 
thereby avoid implicit dependencies on the library 
implementation. We have used this approach in the 
implementation of a real-time database system. 

‘The work reported in this paper was supported in 
part by the Office of Naval Research under grant NOOO14- 
92-J-1080, by the National Science Foundation Indus 
try/University Cooperative Research Center at the Univ. of 
Michigan, and by the NSF under grant DDM-9313222. 

PenMSion to copy without fee all or part of this material is 
g!anted provided that the copies are not made or distributed for 
direct commercial advantage, the ACM copyright notice and the 
title Of the publication and rts date appear, and notice is given 
that cppying is by permission of the Association of Computing. 
Machwy. TO copy otherwise, or to republish, requires a fee 
and/or specific permission. 
OOPSIA 94- 1 O/94 Portland, Oregon USA 
@ 1994 ACM O-89791 -688-3/94/0010..$3.6o 

1 Introduction 

Traditionally, designers of software services (lan- 

guages, libraries, operating systems, etc.) define 

abstract interfaces to the services and hide all im- 

plementation details from the clients. However, 

this model has proven inadequate when imple- 

mentation decisions bias the resulting server per- 

formance in favor of certain usage patterns and 

against others. For example, an LRU paging strat- 

egy for a virtual memory system is optimal for 

clients that exhibit locality of reference and sub- 

optimal for those that do not. 

Kiczales and Lamping call the problem of choos- 

ing a service implementation strategy a mapping 

dilemma [l]. Since the service provider cannot 

control client usage patterns, successful resolution 

of mapping dilemmas requires prior knowledge of 

client needs. In some cases, it is possible to collect 

historical usage patterns on a per-client basis and 

use that data to predict future usage. However, a 

more general solution is to allow clients to help re- 

solve mapping dilemmas through a meta-protocol. 

Kiczales and Lamping categorize meta-protocols as 

either deckuratiue, in which clients choose among 

pre-defined service implementations or imperative, 

in which clients are free to override part or all of 

the service implementations. Well-designed meta- 

protocols minimize the effort required to achieve 

453 



acceptable server behavior. 

In this paper, we describe a technique for con- 

structing server objects that combines the advan- 

tages of declarative and imperative meta-protocols. 

The declarative part of our meta-protocol consists 

of client-side “contracts” that determine which cus- 

tomized service classes will be used and configure 

server objects according to client needs. Client-side 

contracts expose the otherwise hidden assumptions 

that clients make about servers, and they indicate 

the client’s willingness to abide by any semantic re- 

strictions required by the server. Furthermore, the 

same contract language can be subsequently used 

by the client to extract meta-level information from 

the server object. Therefore, our contract meta- 

protocol can support a dialogue between clients 

and servers regarding characteristics that are not 

captured in the base-interface to the service. Prior 

meta-protocols do not support bidirectional meta 

information flow. 

The imperative part of our meta-protocol is the 

ability to derive new service classes and merge them 

with those of the original library through exemplar- 

based programming. This provides good incre- 

mentality since only those service methods that 

are being customized need to be reimplemented. 

Exemplar-based server construction also improves 

encapsulation by hiding part of the library’s inter- 

nal class hierarchy from applications. In our real- 

time database research [a], we use this exemplar- 

based technique to customize database services ac- 

cording to the real-time and semantic characteris- 

tics of applications. 

The remainder of this paper is organized as fol- 

lows. Section 2 discusses our use of contracts 

to communicate semantic information needed for 

server construction. Section 3 explains our 

exemplar-based approach for selecting service 

classes and extending library functionality. Sec- 

tion 4 presents a C++ implementation of our tech- 

nique. Section 5 discusses related work. Section 6 

concludes and discusses future work. 

2 Contracts 

By analogy to contracts employed in civil law, a 

“software contract” metaphor is sometimes used 

to describe relationships between software entities. 

The software entities could be two interacting pro- 

cesses, an application and a software library, a 

server object and a client object or application, 

or a base class and a derived class. Wirfs-Brock 

et al. [3] and Meyer [4] consider software contracts 

to be properties of server classes. Since the server 

defines the contract, there is no way for an applica- 

tion to add clauses or establish its own contracts. 

With our technique, applications can create client- 

side contracts to specify requirements and commu- 

nicate application-dependent semantic information 

to servers. 

Our approach to software contracts is motivated 

by the following analogy with contract law. When 

a legal contract is established between a service 

provider and a client, there is both an express and 

an implied contract. The express contract consists 

of the specific clauses in a contract document. The 

implied contract consists of the reasonable and cus- 

tomary duties of that kind of service provider. For 

example, a contract with a plumber might spec- 

ify the brand of faucet to install in a kitchen. If 

the plumber installs the right type of faucet but 

the plumbing leaks, the plumber is liable for dam- 

ages even if the contract does not specifically men- 

tion leaks. This is because a plumber’s profes- 

sional duties routinely include leak-free installation 

of plumbing. A leaky installation is a violation of 

the implied contract. 

We consider the methods and any class invari- 

ants exported by a service class to constitute an 

implied contract between the service class and the 

application. By instantiating a server object from a 

service class, an application establishes an implied 

contract with the server that covers most aspects 

of its subsequent use. 

However, just as in legal contracts, an applica- 

tion may want to specify explicit terms that must 

be fulfilled in addition to the implied terms. It 

may be that only certain specialized service classes 

454 



can satisfy the explicit terms. In this case, the con- 

tract can be used to select an acceptable class from 

the general population of service classes. In other 

cases, the explicit terms might relax certain con- 

straints and thereby permit server objects to op- 

timize various aspects of their services. For exam- 

ple, a server object that supports concurrent access 

could use simplified locking protocols if it knew the 

application would not perform concurrent update 

operations. This semantic constraint could be sup- 

plied by the application in the contract. Therefore, 

explicit client-side software contracts are comple- 

mentary to implicit server-side contracts. In the 

remainder of this paper, we restrict our discussion 

to client-side software contracts, which we simply 

call “contracts.” 

Contracts are composed of clauses that contain 

either requirements or preferences. Requirements, 

such as “persistent,” are mandatory. Preferences, 

such as “minimize-execution-time,” can be used to 

decide between servers that meet the mandatory 

requirements. If no service classes in the library 

can meet the requirements of the contract, then the 

library can set an error flag or throw an exception. 

When contracts are used to select and con- 

figure the implementations of server objects, the 

contract becomes a declarative meta-protocol for 

those services. Selecting servers through contracts 

resembles service specification and acquisition in 

distributed computing systems [5, 61, except our 

server objects are much lighter-weight and are con- 

structed from local libraries rather than remote 

server processes. In the next section, we discuss 

how client-side contracts can help determine which 

customized service classes to use. 

2.1 Contracts for Customization 

Through customization, object-oriented program- 

ming can partially overcome the classic tradeoff 

between flexibility and efficiency in software li- 

braries. Instead of supporting a single, general- 

purpose implementation of a function or abstract 

data type, an object-oriented library can provide a 

variety of specialized classes that collectively cover 

the same domain but are individually more effi- 

cient than a general-purpose implementation. Spe- 

cialized classes can be more efficient since the best 

implementation of a given service often depends on 

the patterns of use within the application. 

For example, a Set class that keeps members in 

a hash table would perform well if a client mainly 

tests for set membership. However, a linked-list in- 

ternal representation might be better if memory is 

scarce, the set contains few members, or the ap- 

plication adds members frequently and rarely tests 

for membership. Instead of using a single com- 

promise implementation, an object-oriented library 

can contain multiple compatible classes, each opti- 

mized for certain operations. This example is re- 

alistic: the library of generic container classes sup- 

plied with the gnu C++ compiler includes eleven 

customized Set classes, each using different under- 

lying data structures and algorithms. An applica- 

tion using such a library can choose the customized 

class that best meets its needs. 

However, with the flexibility of choosing from a 

group of similar server classes comes the burden 

of understanding their subtle differences and mak- 

ing a good choice. As libraries become larger and 

more complex, this problem becomes increasingly 

difficult. Furthermore, since many of the differ- 

ences between customized classes may reflect se- 

mantic differences that are not expressible in the 

syntax of the language, there is a danger of mis- 

match between the semantics supported by a cus- 

tomized server class and its actual use in an appli- 

cation. For example, a server object used in a mul- 

tithreaded environment might use a concurrency 

control protocol that supports a single writer and 

multiple readers. If the single writer restriction is 

violated by the application, as could happen ac- 

cidentally since the restriction is only implicit in 

the service implementation, the object is likely to 

become corrupted. 

Class browsing tools are often proposed to as- 

sist application writers in selecting classes [7], but 

these tools expose the full complexity of the class 

hierarchy and do not enforce any semantic restric- 

tions. Furthermore, applications that explicitly use 

455 



concrete service classes in a customized class hier- 

archy can become dependent on the internal class 

structure of the library. Such dependencies make 

future reorganizations of the library classes difficult 

to accomplish without propagating changes to ex- 

isting applications. Therefore, applications should 

be kept as independent as possible from the struc- 

ture of a library’s internal class hierarchy. Class 

browsing tools do not address this need. 

The most common approach to choosing a 

customized class is to instantiate the class by 

name. The customized characteristics are usu- 

ally encoded in the class name. For example, 

the generic container class library distributed with 

the gnu C++ compiler contains a base class and 

eleven customized classes that implement sets with 

different data structures and algorithms: Set, 

AVLSet, OSLSet, VHSet, BSTSet, OXPSet, SkipSet, 

VOHSet, CHSet, SLSet, SplaySet, and XPSet. 

While this technique for specifying customization 

is easily understood, in practice it is unwieldy. As 

additional semantic attributes such as persistence 

or concurrency are added, the class names either 

become very long or very cryptic. It also becomes 

difficult to remember the correct order for semantic 

attributes in class names. 

Worse yet, each combination of semantic at- 

tributes implies a unique class. Thus, the addition 

of new semantic attributes results in an exponen- 

tial explosion in the number of classes. If persis- 

tence and two types of concurrency control (e.g., 

single-writer and multiple-writer) were added to 

the gnu Set classes, the eleven subclasses would be- 

come sixty-six (persistent and non-persistent ver- 

sions of the original classes plus persistent and non- 

persistent versions for each type of concurrency 

control). Figure 1 illustrates the class hierarchy 

for the Set classes and how an application creates 

an instance of a Set class. 

Because selecting an appropriate customized ser- 

vice class is so dependent upon application seman- 

tics, software contracts specified by applications 

can aid in the selection process. Instead of using 

class names directly, applications can use contracts 

to provide a mapping between application require- 

VHSelcinb application-set: //application must explicitly choose the class 

Figure 1: Generic Set Classes. 

ments and service classes. With this more flexible 

means of communicating semantic requirements, 

it is possible to avoid unnecessary proliferation of 

classes by supporting several combinations of se- 

mantic attributes in a single class. Exemplar-based 

programming, discussed in Section 3, can further 

reduce the number of distinct classes required to 

implement customized services. For instance, a 

single concurrent implementation of a class could 

support several locking protocols for single-writer 

or multiple-writer semantics, each protocol repre- 

sented by a separate exemplar of that class. 

In our implementation, contracts are composed 

of constraint clauses encoded in character strings. 

These contract strings are passed by applications 

to the service library at runtime during server 

object initialization. The syntax of the con- 

tract language is implementation-specific. A typ- 

ical contract string might be: “range-checked; 

lookup-time<=O(log n);“. Using strings for con- 

tracts is simple, portable, convenient, and offers 

more flexibility than plausible alternatives such as 

defining language extensions for processing con- 

tracts at compile time. An application may need to 

dynamically determine contract constraints at run- 

time, so compile-time contract processing is not al- 

ways possible. Furthermore, by leaving contract in- 

terpretation to class member functions rather than 

embedding it in the compiler, we preserve the abil- 

ity to define new types of constraints with what- 

ever syntax is most convenient in the context of a 

particular class. It is even possible to define new 

constraints in customized subclasses without mod- 

ifying the base class. This provides great flexibil- 

456 



ity and helps keep contract constraints orthogonal 

to the class hierarchy. Another reason we chose 

to use character strings for contracts is that our 

real-time database performs remote object creation 

by passing contracts across the network using re- 

mote procedure calls. Character strings are easy 

to transmit via RPC, whereas more complex con- 

tract representations (i.e., contract objects) would 

be possible but more difficult to support. 

The contract string is supplied as a parameter 

to an abstract service class constructor function. 

The abstract service class is equivalent to the “ab- 

stract factory” of [8, 91. Multiple classes corre- 

sponding to concrete implementations of the ab- 

stract service can exist within the library, but ap- 

plications need never know which concrete class 

will be used. The factory class constructor exam- 

ines the contract string during object initialization 

and either creates a new object to meet the terms 

of the contract or rejects the construction request. 

We use exemplar-based programming to implement 

the class factory. Section 3 describes our use of ex- 

emplar objects in more detail. 

For example, an application might declare a per- 

sistent array object as follows: 

MdartsArray<int> parts-list(“parts-list”, 

“persistent; range-checked; sparse; 

size=lOOO"); 

The prefix MDARTS is the acronym for our real- 

time database system [2]. In this case, the abstract 

factory class MdartsArray is specified along with the 

database name of the object and its contract string. 

Some constraints, such as “persistent”, might be 

supported only by specialized subclasses that ac- 

cess a disk-based database system. Some, such as 

“size”, can be implemented in the MdartsArray base 

class and be inherited by the subclasses. The map- 

ping of contract constraint clauses onto the sub- 

classes of the MdartsArray class is of no concern to 

the application. The library either will construct 

a customized, correctly-configured server object or 

will signal an error (return NULL or raise an ex- 

ception). 

2.2 Advantages of Using Contracts for 
Customization 

There are many advantages to customization 

through software contracts. One advantage is that 

application-specific semantic attributes can be ex- 

plicitly stated in object declarations. This is espe- 

cially helpful when the attributes represent hints 

to server objects that enable various optimizations. 

By declaring these hints, the application is express- 

ing a willingness to abide by whatever restrictions 

are implicit in the hints. 

For example, single-writer concurrency control 

protocols can reduce locking delays compared to 

more general concurrency control methods [lo]. 

However, a server object cannot control application 

behavior to ensure that the single-writer restriction 

is followed. With contracts, a single-writer service 

class would not be chosen unless the application 

explicitly indicated in the contract that it would 

avoid concurrent updates (by specifying a concur- 

rency constraint such as “exclusive-update”). For 

software reliability and maintenance reasons, it is 

important that such restrictions be declared in the 

code itself rather than existing only in documenta- 

tion or in the memory of the application developer. 

Another important advantage of customization 

through contracts is that it allows applications to 

maintain a simplified view of the library’s class 

structure. We call this “class hiding” because the 

class hierarchy beneath each abstract factory class 

is hidden from applications. The MdartsArray ex- 

ample discussed above illustrates this idea. There 

could be dozens of different classes in the library 

that support the abstract interface defined in the 

MdartsArray base class. Because the semantic at- 

tributes that determine which subclass to use are 

passed in the contract, the application can safely 

ignore the underlying complexity and still be as- 

sured that a server customized to its needs will be 

created. If no server can be created, the library can 

signal an error condition (throw an exception). 

457 



2.3 Disadvantages of Contracts 

Naturally, there are also disadvantages to using 

client-side contracts, and the technique should not 

be applied indiscriminately. Contracts add com- 

plexity to the library implementation, and they im- 

pose runtime overhead as they are evaluated during 

server initialization. Contracts may not be worth- 

while for libraries with few customized class hier- 

archies. The runtime overhead during initializa- 

tion is amortized over subsequent server use, so the 

efficiency gained through customization in server 

functions must exceed the initialization overhead 

for the method to be worthwhile. If an application 

wants to avoid the overhead of processing contracts 

during initialization, it always has the option of ex- 

plicitly specifying a service class. Doing so will lose 

the benefits of class hiding and semantic checks, 

but that decision can be left up to an application. 

In general, contracts are best for server objects 

that will be used frequently by applications and 

that can achieve significant performance improve- 

ment through customization. However, even for 

cases in which efficiency gains through customiza- 

tion cannot justify the use of contracts, contracts 

may still prove useful for specifying semantic con- 

straints to reduce errors in server usage. 

Another limitation of our contract implementa- 

tion is that errors in contract strings are not de- 

tected until runtime. This problem is unavoidable 

if dynamic creation of contract strings is allowed. 

Finally, since it is unknown until runtime which 

service classes will be used, application executa- 

bles might become very large as they incorporate 

all of the customized classes. We address this issue 

in Section 3. Although contracts are not necessar- 

ily useful in all circumstances, a library need not 

support contracts for every service class hierarchy. 

If one or more of the following criterion are met, 

contracts may be appropriate for that hierarchy: 

l Multiple service classes with similar function- 

ality are present in a hierarchy. 

l Server objects can achieve significantly better 

performance if they are implemented for spe- 

cial cases. 

l Server classes depend on application us- 

age patterns such as no concurrency or re- 

stricted concurrency (e.g., single-writer, mul- 

tiple reader). 

l Server characteristics important to applica- 

tions are outside the language syntax or se- 

mantics (e.g., persistence, concurrency, mem- 

ory requirements and real-time performance). 

If contracts are restricted to static values, it 

might be possible to do the contract processing at 

compile time. This would detect errors in contract 

strings and eliminate the runtime overhead of se- 

lecting service classes. If the compiler itself could 

not be modified, a preprocessor could determine 

which concrete service classes should be used for 

each server object. The preprocessor could then re- 

place the factory construction call with an explicit 

call to the concrete class constructor. 

2.4 Types of Constraints in Contracts 

An important design decision in implementing con- 

tracts for a class library is what types of constraint 

clauses will be supported. We do not believe it is 

appropriate to seek a universal taxonomy of con- 

straint types, because software designers should be 

free to evolve contracts and constraints to express 

whatever semantics a library or application domain 

needs. This philosophy in part motivated our de- 

cision to use character strings to implement con- 

tracts. Classes in a hierarchy can interpret the con- 

straint strings using whatever technique is appro- 

priate, from simple string comparisons to parsing 

and interpreting some constraint language specific 

to that hierarchy. Nevertheless, it is illustrative 

to consider the constraints we have developed as 

part of our real-time database research. Our list of 

constraints is still evolving, but thus far we have 

identified the following generic constraint types: 

concurrency semantics: Specify whether multi- 
ple clients will share the server object and how 
many concurrent writers are allowed. 

persistence: Indicate if persistence is required for 
this server object. 

458 



staleness: Signal a problem if data accessed by a 
read transaction has not been updated within 
the specified period. 

read and write transaction response times: 
Specify time constraints on database transac- 
tions according to needs of real-time applica- 
tions. 

read-only or write access: Declare access re- 
strictions for particular database objects. Per- 
missions are checked during initialization to 
reduce overhead during transaction process- 
ing. 

units for numeric values: Configure the server 
object to scale numeric values of data it man- 
ages according to the units an application 
needs. 

transaction priorities: Declare priority to use 
for this client in real-time transaction schedul- 
ing. 

type constraints for service classes: 
Specify that the server be of a particular class 
or sub-hierarchy in the library class hierarchy. 

2.5 Meta-level Queries 

Thus far, we have described our contracts exclu- 

sively in terms of their use in choosing and con- 

structing suitable server objects. However, it is 

also possible to use the contract meta-protocol to 

extract information from the server object after it 

has been instantiated. In most cases, an instanti- 

ated server object will exceed the specifications of 

the contract. It can be useful for a client appli- 

cation to discover what the actual characteristics 

of the server object are once it is constructed. To 

support bidirectional meta-level information flow, 

the server class can include methods for directly 

querying for server characteristics. Once the code 

for contract processing during object construction 

is written, relatively little effort is required to add 

support for direct meta-level queries. 

For example, a contract in a real-time applica- 

tion might specify a timing constraint for reading 

the state of a database object. If the database ob- 

ject is successfully constructed, the application will 

know that the timing constraint will be met. How- 

ever, the application might be able to relax its con- 

straints on other objects if it knew the extent to 

which this object exceeded the performance spec- 

ified in the contract. A real-time database class 

could export a method called QueryTiming to per- 

mit such queries: 

Time readTime = 

dbArray.QueryTiming(“read(element)”); 

The class of dbArray would already need to 

implement a method for computing response 

times to evaluate contract constraints such as 

“read(element) <= 50usec;“, so most of the work to 

add query support would already be done. Query- 

Timing0 could call the same method and simply 

return the response time instead of performing a 

comparison. 

3 Exemplars and Customized 
Classes 

Exemplar-based programming, in which prototype 

objects play a role similar to that of classes, is often 

cited as an alternative to more traditional object- 

oriented architectures. For example, the Self lan- 

guage uses exemplars and delegation to dispense 

with classes altogether [ll]. While exemplars in 

Self form the basis of a complete programming 

paradigm, exemplars can be useful in a class-based 

object-oriented context as well [la]. Coplien illus- 

trates the use of exemplar-based programming in 

C++ [13]. In our implementation, we combine soft- 

ware contracts with Coplien’s autonomous generic 

exemplar idiom (in which exemplars register them- 

selves with a base class and object construction re- 

quests iterate over the exemplars). 

Exemplars are special objects that are prototype 

representatives of an entire class. In general, a class 

can have multiple exemplars, but often only a single 

exemplar is used. Given an exemplar object, ap- 

plications can construct copies of the exemplar by 

invoking a special clone0 method. Because exem- 

plars are objects, they can be stored in data struc- 

tures. In some object-oriented languages, classes 

are first-class objects, so class objects could be used 

with our technique instead of exemplars. 

459 



Rather than choosing a specific service class, an 

application chooses a base class and specifies the 

rest of its requirements in a contract string. The 

base class is an abstract factory class that only de- 

fines the service interface. The contract is passed 

to the population of exemplars derived from that 

base class. The exemplars then bid on the contract 

to determine which class meets the application’s 

requirements. The winner of the bidding process 

is cloned, and the clone object is returned to the 

application. 

If a given service class can be configured for a va- 

riety of usage patterns, an exemplar can be created 

for each configuration of that class. This reduces 

the number of distinct classes needed to reflect a 

combination of service characteristics. 

One of the key advantages of using exemplars 

for class selection is that the “class factory” does 

not need to know how many concrete classes it 

contains. Users needing special-purpose concrete 

classes that were not supplied in the original li- 

brary can derive those classes from some point in 

the library hierarchy, override the specific methods 

that need tuning, and reflect those differences in 

the exemplar’s contract processing code. Since the 

exemplar adds itself to the factory, this new class 

will automatically be considered as a candidate for 

future server creation with no changes required in 

the implementation of the abstract factory class or 

existing application code. Without the exemplar 

mechanism, existing applications can benefit from 

new service classes only if the application code is 

changed to specify the new classes or the factory 

object-creation function is modified to include the 

new classes. The abstract factory approach also 

allows the library implementer to restructure the 

internal hierarchy of concrete classes without dis- 

turbing existing application code. 

For example, a library might initially contain 

an array base class and two customized subclasses: 

one that supports concurrency and one that does 

not. Each of these subclasses would contain vari- 

ous configuration options to support different com- 

binations of semantic attributes. Suppose applica- 

tions using this library are developed. Now sup- 

pose that the library developer decides to split the 

class that supports concurrency into three sepa- 

rate classes, each customized to support a subset of 

the attributes supported by the original concurrent 

class. The developer may want to do this to im- 

prove efficiency. As long as applications use the ar- 

ray base class and specify semantic requirements in 

contracts, multithreaded applications whose con- 

tracts originally mapped to the single concurrent 

class will now automatically use one of the new 

classes. No source code modifications in the appli- 

cations are required. The programs need only be 

relinked with the new library. 

Given exemplar-based object construction, there 

are still numerous implementation issues to con- 

sider. For instance, how are the exemplars orga- 

nized?, how is the bidding process accomplished?, 

how can applications avoid linking in unneeded ex- 

emplars?, etc. In the remainder of this section, 

we consider these issues. In Section 4, we present 

an example C++ implementation of contracts and 

exemplar-based object construction. 

Since we are interested in groups of exemplars 

derived from a common base class, the data struc- 

ture containing the exemplars should belong to the 

base class. The simplest way to do this is to create 

a linked list for each abstract factory class. Ex- 

emplars of classes derived from the factory class 

are added to the list during exemplar initialization. 

Bidding can then proceed by iterating over the list 

and submitting the contract to each exemplar in 

turn. Either the first exemplar to satisfy the con- 

tract is cloned or the exemplar that best satisfies 

the contract is cloned. In the former case, the it- 

eration proceeds until one of the exemplars clones 

itself. In the latter case, each exemplar returns a 

“bid” value in response to the contract. The func- 

tion performing the exemplar iteration keeps track 

of the most attractive bid and clones that exemplar 

once all of the bids are examined. 

Clearly, if large numbers of exemplars are associ- 

ated with each base class, iteration over all of them 

will be slow. If the first exemplar to satisfy the 

contract is cloned, performance will be somewhat 

better. However, in this case the order of exem- 

460 



plars in the list may influence which service class 

is constructed. Since applications might prioritize 

different service characteristics, there may not be 

a single list ordering that is best for all applica- 

tions. Nevertheless, the “first bid wins” approach 

does ensure that the server returned will satisfy the 

requirements specified in the contract. 

To improve the performance of the bidding pro- 

cess, one could use more sophisticated techniques 

than iteration over a linked list. The selection of a 

service class can be viewed as a search process over 

exemp!ars using the contract as the key. If the ex- 

emplars are organized during library initialization 

into a classification network or a signature-based 

hash table, the search could be guided at runtime 

by the contract. If there are many exemplars, this 

could dramatically reduce the number of exemplars 

asked to bid on a contract. 

However, the value of complex algorithms must 

be weighed against their cost. More complex data 

structures require more memory and more complex 

search algorithms. Since the library maintains mul- 

tiple exemplar lists, each attached to a different 

base class, most of the exemplars in the library are 

eliminated from consideration when the application 

specifies the base class. Since the exemplar bidding 

process is performed only during server object con- 

struction, it is unlikely to occur inside tight appli- 

cation loops where efficiency is crucial. The best 

technique for exemplar bidding ultimately depends 

upon the particular class hierarchy and expected 

patterns of use by applications. This is an inter- 

esting research problem on its own. 

A naive implementation of contracts and exem- 

plars would include all exemplars (and their asso- 

ciated code) in applications using the library. If 

most of these exemplars are never used (cloned) 

by an application, which is likely, this means lots 

of unused code will be linked into the application. 

Furthermore, the presence of unused exemplars will 

slow the bidding process. Ideally, one would like to 

have each exemplar list contain only those exem- 

plars that will be used by the application. Unfortu- 

nately, this information is not known until runtime. 

If the contracts do not depend on runtime infor- 

Exemplar I&t (instances of Set sutxlassea) 

/I note that with contracts. applications d&are their needs directly 
I/ in the contract rather than implicitiy through choosing a specific 
/I class from the lbmry. 

Figure 2: Generic Set Classes With Exemplars. 

mation, this problem can be solved with the follow- 

ing technique. For each abstract factory class there 

is a header file that causes all customized exemplars 

to be linked into an application. Applications dur- 

ing development and testing use this header file so 

all exemplars are included. If a certain mode is 

enabled during testing, the base class keeps track 

of which exemplars are actually cloned in each ap- 

plication run. As the application terminates, the 

base class exemplar (in its destructor) writes a 

new header file that includes only the classes of 

cloned exemplars. Applications ready for produc- 

tion can use the new header files and thereby avoid 

linking in unused exemplar code. With this tech- 

nique, the exemplar-based approach to customiza- 

tion does not necessarily lead to bloated code size. 

Another approach for eliminating unused exem- 

plars would be to process contracts at compile time 

or during a preprocessing stage. However, as mem- 

ory prices fall and operating systems add support 

for shared libraries, code size becomes less impor- 

tant. Therefore, in the long run it may be unnec- 

essary to eliminate unused exemplars. 

Figure 2 shows how exemplars and contracts 

could be used to simplify the application interface 

to the generic Set classes introduced previously. 

The object declaration below the diagram in Fig- 

ure 2 shows that applications do not need to specify 

a particular service subclass if exemplars are used 

to create the servers. Instead, the application can 

use the base template class, Set<T>. This exam- 

ple raises an interesting question: how difficult is it 

to add support for contracts to an existing class li- 

461 



brary? If one has access to the library source code, 

it is possible to add constraint-checking methods 

and exemplar objects to the existing classes. 

However, what if it is not feasible or not desir- 

able to modify the library source code? Our basic 

contract and exemplar techniques would not work 

in this case, since the exemplars are instances of the 

classes, and they must include constraint-checking 

methods to bid on contracts. There are two al- 

ternatives to modifying existing library code. One 

possibility is to create a new class hierarchy de- 

rived from the original library using multiple in- 

heritance to add the necessary methods. This ap- 

proach is illustrated in Figure 3. The class MySet in 

Figure 3 contains the exemplar list and the meth- 

ods for checking contracts and selecting exemplars. 

The new subclasses such as MyCHSet inherit the 

constraint-checking interface from MySet and also 

inherit the Set functions from the original library 

classes. Applications use the cloned exemplar ob- 

jects through the MySet interface. 

MySekint> application_set(“space=O(n):time=test~membership~=O(logn)’); 

Figure 3: Adding Contract Support via Inheri- 

tance. 

A second approach is to create shadow classes 

that simply encapsulate knowledge of the existing 

classes and do not inherit from them. The exem- 

plars of the shadow hierarchy process the contracts 

and determine if the classes they represent would 

satisfy them. When one of these shadow exemplars 

is chosen, it creates a new instance of the original 

class it represents instead of cloning itself. Figure 4 

illustrates this approach. 

Note that it is not actually necessary to create 

Set&t> * application-set = 

//note that the ap lication interface with a shadow hierarchy requires a different 
I/ syntax: an expl at will to MySet<int>::make() Is required, and a polnter to Pi 
II an original Set object is returned. 

Figure 4: Adding Contract Support via a Shadow 

Hierarchy. 

a complete shadow hierarchy corresponding to the 

original class hierarchy. A shadow exemplar could 

contain knowledge of multiple classes in the original 

hierarchy and could represent all of those classes 

during server construction. Furthermore, it is pos- 

sible to add new, application-defined service classes 

without modifying the original library by merging 

the exemplars of the new classes with shadow ex- 

emplar(s) in the abstract factory. 

4 Example C++ Implementa- 
tion 

Although our approach to contracts and cus- 

tomization is not language-specific, our proto- 

type library includes a C++ implementation of 

exemplar-based customization. In this section, 

we present this implementation. We first dis- 

cuss support for constraint processing in the base 

class “Md-Base.” We next present two example 

service classes: an abstract factory class called 

“MdartsArray” and a customized service class called 

“RangeCheckedArray” that supports the semantic 

constraint “range-checked”. For brevity, part of 

the class hierarchy and some class member func- 

tions are omitted. 

462 



// The “Constraint” struct is used to store one 

(constraint, operator, value) 

// clause. 

struct Constraint { 

Constraint(int ct, char *c, char * o, char * v); 

&onstraint(); 

int constraint-type; 

char * constraint; // constraint name 

char * oper; // operator string 

char * value; // value string 

class Exemplar { public: Exemplar(){} }; 

class Md-Base { 

protected: 

// ConstructServer() parses the constraints and 

/ / tries to c/one an object that meets them. If 

// successful, returns server object, else NULL. 

/I 
Md-Base * ConstructServer(const char * 

contract) { 

Md-Base t ex; // exemplar object ptr 

Plist<Constraint> cl; 

MakeConstraintList(contract,cl); 

// find an exemplar that meets a// constraints 

Plist<Md-Base> & elist = 

getExemplarList(); 

for (Pix p = elist.first(); p; elist.next(p)) { 

ex = elist(p); 

if ( ex-+checkAIIConstraints(cl) ) 

return ex+clone(); 

return 0; 

1 

// Pure virtual functions below. These must 

// be implemented by derived service classes. 

virtual void registerExemplar(MdBase * ptr) = 0; 

virtual int checkConstraint(const 

Constraint& c) = 0; 

virtual void stageConstraintCheck() = 0; 

virtual Md-Base * clone0 = 0; 

virtual Plist<Md-Base>& getExemplarList() = 0; 

1; 

Code common to all exemplar-based class hierar- 

chies is factored into the abstract base class called 

“Md-Base.” This class contains methods for pars- 

ing contract strings and cloning server objects from 

lists of exemplars. Since Md-Base declares pure 

virtual functions needed for exemplar-based object 

construction, derived classes are forced to imple- 

ment the required functions. 

The Exemplar class is used as a dummy parame- 

ter to a special constructor in each derived service 

class that adds the exemplar to the base class ex- 

emplar list. By declaring a static pointer to the ex- 

emplar in the service class, C++ static member ini- 

tialization can be used to automatically construct 

and register exactly one exemplar per class. This 

technique is borrowed from Coplien [13]. 

class MdartsArray: public Md-Base { 

public: 

static MdartsArray + make{ 

const char * contract) { 

return (MdartsArray *) 

ConstructServer(contract); 

71 public MdartsArray methods here . . . 

protected : 

// constructor for array object 

MdartsArray(int s) { 

sdatap = shared-memorymaIloc( 

sizeof(shared-data)+(s-l)*sizeof(int) ); 

sdatap+theSize = s; } 

// define basic constraints recognized by 

// MdartsArray classes. 

enum ConstraintType { unknown = -1, size, 

range-checked, expandable, sparse, 

persistent, concurrency }; 

// array representation: size and first element in 

// array stored together in shared memory. A 

// more realistic class wouid use templates 

463 



struct shared-data { 

int thesize; 

int theArray; // start of array 

1; 
shared-data * sdatap; 

// list of derived exemplars - subclasses add 

// their own exemplars to this list by calling 

// registerExemplar(). 

static Plist<Md-Base> TheExemplarList; 

Plist<Md-Base> & getExemplarList() { return 

TheExemplarList; } 

// Implementation of pure virtual functions 

// defined in class Md-Base. 

void registerExemplar(Md-Base * ob) { 

TheExemplarList.prepend(ob); } 

void stageConstraintCheck() { 

sdatap+theSize = 1; } // initialize state 

// check a single constraint 

int checkConstraint(const Constraint& c) { 

switch (c.constraint-type) { 

case size: 

sdatap+theSize = atoi(c.value); 

return 1; // success 

default: // only “size” supported by base 

return 0; 

// definition of static (one per class) exemplar list 

Plist<Md-Base> MdartsArray::TheExemplarList; 

The constraint checking function in each service 

class consists of a switch statement over the enu- 

merated constraint type. This design permits rela- 

tively efficient processing of constraints. The con- 

tract string is parsed once and converted to a list 

of Constraint structures. Once this is done, the 

constraint-checking methods of the exemplars can 

iterate over the Constraint list and need not per- 

form expensive string comparisons to determine the 

type of constraint to check. 

Note that class MdartsArray exports a pub- 

lic function called “make()” that invokes the 

Md-Base::ConstructServer() function. This is the 

function used (directly or indirectly) by appli- 

cations to create customized server objects. A 

direct use of make0 by an application would 

look like: MdartsArray<int> “arrayob = Mdart- 

sArray::make( “size=80,rangerhecked”);. If make0 

fails to create a valid MdartsArray server object (as 

could happen if the contract contains constraints 

not supported by any of the exemplars), it returns 

NULL. If this object construction syntax is unde- 

sirable, it is possible to encapsulate the server ob- 

ject pointer and the make0 call in an envelope class 

that forwards server functions to the internal ob- 

ject. 

The make0 f unction in each abstract factory 

class passes ConstructServer() the contract string 

and the list of exemplars of derived classes. Con- 

structServer() parses the contract and converts it 

into a list of Constraint structs. It then submits the 

constraint list to each exemplar until one of them 

returns a clone (we use the simple “first contractor 

to accept the contract wins” bidding technique). 

The Md-Base pointer returned by ConstructServer() 

is cast to a pointer to an MdartsArray object. This 

is a type-safe operation since all exemplars on the 

list belong to classes derived from MdartsArray. 

Each exemplar’s stageConstraintCheck() function 

is invoked by the Md-Base::ConstructServer() func- 

tion before the constraints are checked. StageCon- 

straintCheck() is used to initialize the state of the 

exemplar to eliminate carryover from prior con- 

tracts. For example, if an exemplar derived from 

MdartsArray processes the constraint “size=lOOO”, 

it sets its internal theSize variable to 1000. This 

size variable is used to determine how big the clone 

object’s array will be. If a subsequent and com- 

pletely different contract is processed that does not 

specify the MdartsArray size, we want theSize to de- 

fault to some constant value rather than retaining 

the value from the previous contract. 

It may be that state variables must be ini- 

tialized at multiple points in the class hierarchy. 

Therefore, if derived classes implement stagecon- 

464 



straintCheck() t 0 initialize any state specific to 

that subclass, before returning they should also 

invoke their base cla.ss(es) stageConstraintCheck() 

function(s). Once the exemplar state is initial- 

ized via stageConstraintCheck(), each constraint in 

the contract is evaluated by the exemplar’s check- 

Constraint0 function. CheckConstraint() returns a 

boolean result to indicate whether the constraint is 

acceptable. 

class RangeCheckedArray: public MdartsArray { 

typedef inherited MdartsArray; 

protected: 

// constructors 

RangeCheckedArray(Exemplar) { 

registerExemplar(this); } 

RangeCheckedArray(int s) : MdartsArray(s) { } 

static RangeCheckedArray * TheExemplar; 

Md-Base * clone0 { return new 

RangeCheckedArray(sdatap+theSize); } 

int checkConstraint(const Constraint& c) { 

switch (c.constraint-type) { 

case range-checked: 

return 1; 

default: // defer other constraints to base 

return inherited::checkConstraint(c); 

1 

> 

h 
// definition of static (one per class) data members 

RangeCheckedArray * 

RangeCheckedArray::TheExemplar = 

new RangeCheckedArray(Exemplar()); 

Each service class need only recognize a sub- 

set of the constraints defined by the abstract fac- 

tory class. Like stageConstraintCheck(), checkcon- 

strainto chains up the inheritance hierarchy, de- 

ferring to its base class when unrecognized con- 

straints are encountered (see the default clause 

in the switch statement of RangeCheckedArray’s 

checkConstraint() function). 

Figure 5 illustrates the object creation sequence 

in our real-time database (called MDARTS). The 

r declaration of MDARTS obpct ‘I 
MdarlsArraycPoinb obj(“obj .‘constraints”); 

2. SDM finds exemplar list fa Md8rtiray<poin~. 

*,B 

passes mfrainrs to exemplafs 
typ? and &Led memory 1ocali00 

MdartsArray<Poinl> ob’ 

Figure 5: MDARTS Object Construction. 

application declares an object, and the constructor 

for that object forwards the type information of 

its class and the object’s name and contract string 

to an MDARTS database server. This server uses 

exemplar-based object construction to select and 

instantiate a server object that satisfies the con- 

tract. 

5 Related Work 

There has been considerable recent interest in al- 

lowing applications to influence implementation 

mapping decisions of services in the domains of sys- 

tem software and languages. Mach allows users to 

implement and replace some of the basic services 

of the operating system [14]. In [153, Krueger et al. 

present an approach to application-specific virtual 

memory management. Jones discusses tools for re- 

placing system services by redirecting system calls 

to user code [16]. Anderson argues that operat- 

ing systems should place as much functionality as 

possible under application control [17]. The trend 

toward application customization can also be seen 

in the domains of compilers (e.g., Open C++ [18], 

parallelizing compilers [19], and Traces in Scheme 

[20]), and window systems (Silica [21]). Kiczales 

and Lamping examine the trend toward service cus- 

tomization and identify the key themes of mapping 

dilemmas and meta-protocols [l]. 

The techniques we describe in this paper com- 

465 



bine meta-protocols with class hiding through ab- 

stract class factories. Gamma et al. [8, 91 dis- 

cuss using abstract class factories to hide concrete 

classes from applications. We expand on this idea 

by showing how exemplar-based server construc- 

tion allows applications to extend factories with- 

out modifying existing code. Furthermore, our 

declarative contract meta-protocol provides a flex- 

ible means of communicating application require- 

ments and server characteristics that are not cap- 

tured in the abstract service interface. 

6 Conclusion 

We have described a new approach to service cus- 

tomization and specification based on client-side 

contract strings and exemplar-based server con- 

struction. Our techniques permit the encapsu- 

lation of entire subtrees of classes in an object- 

oriented library. Instead of exposing the applica- 

tion developer to many similar customized classes, 

the library implementer can define a small set of 

abstract factory classes and hide the hierarchies 

of specialized concrete service classes from applica- 

tions. Besides simplifying the application interface, 

this “class hiding” permits radical restructuring of 

the library implementation without breaking ex- 

isting applications. Our techniques should prove 

very useful for the development and management 

of large class libraries. 

Although our exemplar and client-side contract 

implementation requires class library implementers 

to follow certain protocols, the price is not high 

compared with the benefits of software contracts 

and class hiding. Much of the complexity of our 

technique is localized in the Md-Base class and in 

the abstract factory class of each service hierar- 

chy. The additional support required in customized 

service classes is nominal. Nevertheless, in simple 

class libraries the additional complexity and over- 

head of our techniques may not be justified. Li- 

brary designers can determine which service classes 

are sufficiently complex to benefit from our ap- 

preach. 

There are many ways our techniques could be 

extended. The runtime overheads associated with 

class factories could be eliminated if the server 

selection were performed at compile time. Fur- 

thermore, it would be interesting to develop more 

sophisticated techniques for organizing exemplars, 

conducting the bidding process, and negotiating 

constraints with exemplars if none of the exemplars 

were willing to bid on the original contract. 

Acknowledgements 

We would like to thank Gregor Kiczales and the 

other reviewers for their helpful feedback on an ear- 

lier draft of this paper. 

References 

PI 

PI 

PI 

PI 

PI 

PI 

G. Kiczales and J. Lamping, “Operating sys- 

tems: Why object-oriented?,” in Proc. of 

IWOOOS, pp. 25-30, October 1993. 

V. B. Lortz, An Object-Oriented Real-Time 

Database System for Multiprocessors, PhD 

thesis, University of Michigan, March 1994. 

R. Wirfs-Brock and B. Wilkerson, “Object- 

oriented design: A responsibility-driven ap- 

proach,” in Proc. of OOPSLA, pp. 71-75, Oc- 

tober 1989. 

B. Meyer, “Applying “design by contract”,” 

IEEE Computer, vol. 25, no. 10, pp. 40-51, 

October 1992. 

R. N. Chang and C. V. Ravishankar, 

“A service acquisition mechanism for the 

client/service model in Cygnus,” in Proc. Int’l 

Conf. on Distributed Computing Systems, pp. 

90-97, May 1991. 

K. Ravindran and K. K. Ramakrishnan, “A 

model for naming for fine-grained service spec- 

ification in distributed systems,” in Proc. Int’l 

Conf. on Distributed Computing Systems, pp. 

98-105, May 1991. 

466 



[7] R. Helm and Y. S. Maarek, “Integrating in- 

formation retrieval and domain specific ap- 

proaches for browsing and retrieval in object- 

oriented class libraries,” in Proc. of OOPSLA, 

pp. 47-61, October 1991. 

WI T* Eggenschwiler 

and E. Gamma, “ET++swapsmanager: Using 

object technology in the financial engineering 

domain,” in Proc. of OOPSLA, pp. 166-177, 

1992. 

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlis- 

sides, “Design patterns: Abstraction and 

reuse of object-oriented design,” in Proc. of 

ECOOP, pp. 406-431, 1993. 

[lo] K. Vidyasankar, “Concurrent reading while 

writing revisited,” Distributed Computing, pp. 

81-85, 1990. 

[ll] D. Ungar and R. B. Smith, “Self: The power 

of simplicity,” in Proc. of OOPSLA, pp. 227- 

242, October 1987. 

[12] W. R. LaLonde, D. A. Thomas, and J. R. 

Pugh, “An exemplar based smalltalk,” in 

Proc. of OOPSLA, pp. 322-330, September 

1986. 

[13] J. 0. Coplien, Advanced C++ Programming 

Styles and Idioms, Addison Wesley, 1992. 

[14] M. Accetta, R. B aron, W. Bolosky, D. Goiub, 

R. Rashid, A. Tevanian, and M. Young, 

“Mach: A new kernel foundation for UNIX de- 

velopment,” in Proc. Summer 1986 USENIX 

Technical Conference and Exhibition, June 

1986. 

[15] K. Krueger, D. Loftesness, A. Vahdat, and 

T. Anderson, “Tools for the development of 

application-specific virtual memory manage- 

ment,” in Proc. of OOPSLA, pp. 48-64, 1993. 

[16] M. B. Jones, “Transparently interposing user 

code at the system interface,” in Workshop on 

Workstation Operating Systems, pp. 98-103, 

April 1992. 

467 

[17] T. E. Anderson, “The case for application- 

specific operating systems,” in Workshop on 

Workstation Operating Systems, pp. 92-94, 

April 1992. 

[18] S. Chiba and T. Masuda, “Designing an exten- 

sible distributed language with a meta-level 

architecture,” in Proc. of ECOOP, pp. 482- 

501, 1993. 

P 93 L. H. R. Jr., “A study on the viability of a 

production-quality metaobject protocol-based 

statically parallelizing compiler,” in Proc. of 

the Int ,I Workshop on New Models for Soft- 

ware Architecture, pp. 107-112, November 

1992. 

[20] G. Kiczales, “Traces (a cut at the “make isn’t 

generic”) problem,” in Proc. of the Int’l Sym- 

posium on Object Technologies for Advanced 

Software, pp. 27-43, 1993. 

[21] R. Rao, “Implementational reflection in sil- 

ica,” in Proc. of ECOOP, pp. 251-267, 1991. 


