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This paper eritically surveys methods for the automated probabilistic diagnosis of large
multiprocessor systems. In recent years, much of the work on system-level diagnosis
has focused on probabilistic methods, which can diagnose intermittently faulty
processing nodes and can be applied in general situations on general interconnection
networks. The theory behind the probabilistic diagnosis methods is explained, and the
various diagnosis algorithms are described in simple terms with the aid of a running
example. The diagnosis methods are compared and analyzed, and a chart is produced,
showing the comparative advantages of the various diagnosis algorithms on the basis
of several factors important to probabilistic diagnosis.

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple Data
Stream Architectures—MIMD; parallel processors; D.4.5 [Operating Systems]:
Reliability—fault tolerance; G.3 [Mathematics of Computing]: Probability and
Statistics—probabilistic algorithms (including Monte Carlo)
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INTRODUCTION

As large multiprocessing systems are in-
creasingly being used in safety-critical
applications, it is imperative that such
multiprocessor systems be provided with
good fault tolerance capabilities. Addi-
tionally, in order to maintain a highly
reliable system, faulty PEs (processing
elements) must be diagnosed and period-
ically removed (either physically or by
reconfiguration) from the system. In large

systems with more than about 1000 PEs,
the fault diagnosis and reconfiguration
tasks should be automated for efficient
operation. However, the problem of iden-
tifying the faulty PEs in large systems is
an extremely difficult task, especially
since it is possible for faulty PEs to ac-
cuse nonfaulty PEs of being faulty. PEs
can be intermittently faulty (a fault is
defined to be intermittent if it is only
occasionally present due to unstable
hardware or varying hardware or soft-
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ware states [Siewiorek and Swarz 1982]),
and tests to detect faulty PEs may fail to
catch all possible faults.

This article presents a critical survey
of the probabilistic approach to multipro-
cessor diagnosis. Due to the size of the
systems being considered and the diffi-
culty of the problem, we will only con-
sider diagnosis at the level of a PE. This
type of diagnosis is referred to as
system-level diagnosis. A fundamental
model for system-level diagnosis was de-
veloped some 25 years ago by Preparata
et al. [1967]. In their model, referred to
as the PMC model, it is assumed that
PEs can test each other to arrive at sepa-
rate conclusions about the fault status of
other PEs. The system is modeled by a
directed graph, called the testing graph,
in which the vertices correspond to PEs,
and the edges correspond to inter-PE-
testing assignments. The (fault) syn-
drome is defined to be a binary labeling
of the directed edges in which each label
represents the result of the correspond-
ing inter-PE test. As can be imagined,
this can lead to an extremely large num-
ber of fault syndromes. The diagnosis
subsystem is faced with the task of ana-
lyzing a syndrome to identify the set of
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faulty PEs. However, for every set of
faulty PEs, there are a myriad of syn-
dromes that can result because of the
arbitrary manner in which faulty PEs
and even nonfaulty PEs can evaluate
other PEs. Nonfaulty PEs may exhibit
arbitrary behavior due to other intermit-
tently faulty PEs or because of the use of
tests that are not able to catch all faults.

The currently available methods for
system-level diagnosis can be broadly
categorized into deterministic and prob-
abilistic methods. Deterministic diagno-
sis methods are defined as those methods
in which the entire fault set (or a well-
defined subset of the fault set) can be
uniquely identified from the syndrome
provided that certain assumptions on the
structure of the testing graph and the
behavior of faulty and nonfaulty nodes
are satisfied. By contrast, probabilistic
diagnosis methods are defined as those
methods that only attempt to correctly
diagnose faulty nodes with high proba-
bility and require no restrictive assump-
tions on the structure of the testing
graph.!

In the deterministic diagnosis meth-
ods, a restriction is imposed on the set of
faulty nodes (such as an upper bound on
the size of the fault set), and it is guaran-
teed that all faulty nodes (or a well-
specified subset of the fault set) are
caught by the diagnosis procedure. In
these methods, the important issues are
the characterization of testing graphs for
which the diagnosis procedure is valid,
procedures for determining the number
of faulty nodes that can be diagnosed
given a testing graph, and procedures for
identifying the fault set.

In the probabilistic diagnosis methods,
instead of placing restrictions on the set
of faulty nodes, a probability model is

! Note that, using this definition, Maheswari and
Hakimi’s [1976] diagnosis method, which has been
termed “probabilistic” in the past, belongs to the
deterministic category since it uniquely identifies
the entire fault set provided that (1) the sum of the
prior fault probabilities of the faulty nodes is less
than a prespecified bound and (2) the structure of
the testing graph satisfies certain properties.



used to model the behavior of faulty and
nonfaulty nodes, and based on this model,
a procedure, which may be heuristic, is
used to identify a set of nodes as faulty
based on the syndrome observed. The im-
portant issues in probabilistic methods
are the complexity of the diagnosis proce-
dure and the “quality” of the diagnoses
obtained. These methods frequently use
probability parameters to describe the
probabilistic behavior of nonfaulty and
faulty nodes and to evaluate the quality
of the diagnoses produced.

This article surveys and analyzes the
currently available methods for prob-
abilistic system-level diagnosis, since
deterministic system-level diagnosis
methods have been studied extensively,
and several good surveys on this subject
already exist [Dahbura 1988; Friedman
and Simoncini 1980; Kime 1986]. For
completeness, however, Section 1.4 in-
cludes a short discussion and analysis of
the main results in deterministic diagno-
sis methods. The rest of Section 1 intro-
duces the notation and definitions used
in this survey and describes the proposed
diagnosis classification scheme. Section 2
provides a preliminary discussion of
probabilistic diagnosis, and Section 3 de-
scribes the probabilistic diagnosis algo-
rithms in the literature, using examples
to illustrate the algorithms. The issue of
distributed self-diagnosis is discussed
briefly in Section 4. Comparisons of the
various methods are made in Section 5,
and the survey concludes with Section 6.

1. PRELIMINARIES
1.1 Notation and Definitions

A system is composed of N nodes
(processing elements), denoted by the set
V ={uy,...,uy}, where eachnode u, €V
is assigned a particular subset of the
nodes in V to test. The set of testing
assignments is represented by a directed
graph G = (V, E), called the testing
graph, where (1) vertex u, € V repre-
sents a node (processing element) and (2)
edge (u,, u,) € E represents the fact that
u, tests u,. The set of nodes that test a
glven node u, will be denoted by I'"'(,)
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and I'Y(u,) = ITNu,) U Ty (u,), where
Fkl(u)~{u Erl(u)a k} k=0,
1. y = max, eV{IF 1(u s used to de-
note the maximum 1n-degree of the test-
ing graph. The fault coverage of a test is
defined as the probability that the test
can detect a fault in the tested node given
that there is a fault present. Test out-
comes are represented by binary vari-
ables a,, such that a;; = 1if u; fails u,’s
test and a, =0ifu, passes u,’s test. a

is undefined if u; does not test u, 1{
(fault) syndrome Sis a mapping from E
to {0, 1}, defined such that for all («,, u;)
ek, Slu,u)) =aqa,.

Flgure 1 shows an example of a testing
graph and a syndrome. We assume that
the testing graph is a subgraph of the
graph representing the interconnection
structure of the system. Although this
assumption is not adopted by everyone, it
makes the task of testing nodes substan-
tially easier. Thus, if the system has a
point-to-point interconnection structure,
then a node can only test those nodes to
which it is directly connected. The test-
ing graph of Figure 1, for example, can
map directly onto a 2D torus-wrapped
mesh interconnection topology.

On the basis of a syndrome S, a diag-
nosis is performed when a set of nodes is
identified as faulty. The diagnosis is said
to be correct if there are no nonfaulty
nodes mistakenly identified as faulty;
otherwise, it is an incorrect diagnosis.
Similarly, the diagnosis is said to be
complete if all faulty nodes are identified
as such; otherwise, the diagnosis is in-
complete. If a diagnosis identifies the ex-
act set of faulty nodes, then it is a correct
and complete diagnosis; the diagnostic
accuracy of a diagnosis algorithm refers
to the percentage of diagnoses produced
that are both correct and complete. A
diagnosis algorithm is said to be optimal
if it results in the highest possible level
of diagnostic accuracy.

1.2 Testing Models

A testing model describes the test out-
comes that are possible given that
the testing and tested nodes are faulty
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faulty node u,. Hence, under a perma-
A o P nent fault model, p,, is the fault cover-
) ) age of the test applied by u, on u,. For
Figure 1. A testing graph and a syndrome.

and nonfaulty. Friedman and Simoncini
[1980] present a complete tabulation of
all of the nonequivalent testing models.
The most general testing model, referred
to as the O-information tester model, is
one in which all test outcomes are possi-
ble regardless of the fault status of the
testing and tested nodes. This testing
model was actually used by Blount [1977]
to produce a diagnosis method that guar-
anteed the most probable diagnosis but
had exponential computational complex-
ity.

Table 1 shows the probability parame-
ters for the O-information tester model.
The probability parameter f, is used to
denote the prior fault probability of node
u,. The notation fs,,, m =i or j, denotes
the fault status of «,,. All possible combi-
nations of fs, fs,, and a,, values are
shown in Table 1 along with
P(a,l|fs,, fs,), the probability of the test
result a,, given the fault status of the
testing and tested nodes. Thus, q,, is the
probability that a nonfaulty node will in-
correctly evaluate another nonfaulty node
to be faulty. Since a,, can only take on
the values 0 and 1, the probability of
a,, = 0 under the same situation is 1 —
q,,- The parameter g, was used by
Blount [1977] to model the possibility of
a faulty link between two nonfaulty
nodes. p,, is the probability that a non-
faulty node u, will correctly evaluate a
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ease of notation, p,;, will be referred to as
fault coverage even when intermittent
faults are permitted. r,, and s,, are the
probabilities of a faulty node correctly
diagnosing a nonfaulty and faulty node,
respectively. As explained by Blount, r,,
and s,; can model the extent to which a
faulty node u, can pass judgment on u,.
These two parameters are useful in mod-
eling the behavior of faulty nodes.

Most probabilistic diagnosis methods
use a testing model that is more restric-
tive than the O-information tester model.
In the commonly wused partial-tester
model, the restriction ¢, =1 is used.
This implies that a nonfaulty node must
always evaluate another nonfaulty node
that it tests to be nonfaulty. Since the
only way for g,, < 1 is with a faulty test-
ing link, the use of the partial-tester
model is justified if the testing link
(u,,u,) is assumed to be part of the node
u,. Another restriction that is sometimes
used is p,, = 1. This implies that faulty
nodes can always be detected as such
and thus requires tests with 100% fault
coverage.

In many of the diagnosis algorithms,
all nodes and all tests are treated identi-
cally. In this case, fixed values are as-
sumed for the prior fault probability of a
node, test fault coverage, and other pa-
rameters. Fixed probability parameter
values will be denoted by the correspond-
ing letters without subscripts. Thus, for
example, f and p will refer to the aver-
age f, and p,; values, respectively.
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Diagnosis Methods
Deterministic Probabilistic
Complete-Test Incomplete-Test Complete-Test Incomplete-Test
PMC  sequential adaptive pessimistic Blough Somani  Scheinerman
majority & Agrawal
intermittent-faults hybrid-faults ... Blount  Blough Dahbura Lee multiple Berman

threshold syndrome & Pelc

Figure 2. Classification of diagnosis methods.

1.3 Classification of System-Level Diagnosis
Methods

Figure 2 shows the classification of diag-
nosis methods proposed in this survey.
The categorization of deterministic and
probabilistic methods has been described
in the introduction. Diagnosis methods
are further categorized into complete-test
and tncomplete-test methods. Complete-
test methods assume p,, = 1, ie., that
the system-level tests conducted by one
node on another have complete (100%)
fault coverage. Incomplete-test methods
place no restrictions on p, , values. Thus,
complete-test methods must assume that
all faulty nodes are permanently faulty
and do not become faulty during the di-
agnosis. On the other hand, incomplete-
test methods permit intermittently faulty
nodes and nodes which become faulty
during the diagnosis.

1.4 Overview of Deterministic Diagnosis
Methods

This section provides a brief overview
and analysis of the main results in deter-
ministic system-level diagnosis methods.
The interested reader is referred to Dah-

bura [1988], Friedman and Simoncini
[1980], and Kime [1986] for more de-

tailed surveys on deterministic diagnosis
methods.

Complete-Test Methods

Most of the deterministic diagnosis
methods that have appeared in the liter-
ature make the complete-test assump-
tion (p,, = 1). The PMC diagnosis model
[Preparata et al. 1967] is representative
of the efforts in this class of methods.
A system is said to be #-diagnosable if
all faulty nodes within the system can
be identified without replacement pro-
vided the number of faulty nodes does
not exceed #. Hakimi and Amin [1974]
gave a complete characterization of ¢-
diagnosable systems: specifically, a sys-
tem with N nodes in which no two nodes
test each other is ¢-diagnosable if and
only if each node is tested by at least ¢
other nodes. Figure 1 is an example of a
t-diagnosable graph with ¢ = 2.

An extremely large number of exten-
sions and generalizations of the PMC
model have been proposed in order to
reduce the testing-graph requirements
for diagnosability and expand the
range of applicability of the diagnosis
model. These include sequential
diagnosis [Huang et al. 1989; Preparata
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et al. 1967] (diagnosis with repair—diag-
nosis is done in stages with previously
identified faulty nodes replaced at each
stage), adaptive diagnosis [Hakimi and
Nakajima 1984] (multistage diagnosis
procedure in which a minimal number of
tests are chosen at each stage based on
the test results of the previous stage),
pessimistic diagnosis [Friedman 1975;
Kavianpour and Friedman 1978; Kavian-
pour and Kim 1991] (some nonfaulty
nodes can be included in the diagnosed
fault set), p-t-diagnosability [Maheswari
and Hakimi 1976] (weighted
diagnosis—prior node fault probabilities
are used in the diagnosis), the asymmet-
ric invalidation model [Barsi et al. 1976]
(the restrictions q,, = 1, p,, = 1, and s,
=1 are used), Somani et al’s [1987]
model (diagnosis with respect to a family
of allowable fault sets), and Russell and
Kime’s [1975] model. Russell and Kime’s
model is a generalization of the PMC
model in which the relationships be-
tween faults and tests are formalized.
Their model permits a test for a given
fault to be invalidated by the presence of
other faults.

Incomplete-Test Methods

Several incomplete-test deterministic di-
agnosis methods have been proposed.
Mallela and Masson [1978] described a
system as ¢,-diagnosable when it is such
that if no more than ¢, nodes are inter-
mittently faulty, then a nonfaulty node
will never be diagnosed as faulty, and
the diagnosis is at worst incomplete (i.e.,
some faulty nodes may not be identified).
This model was generalized to combina-
tions of permanently and intermittently
faulty nodes in Mallela and Masson
[1980] and Yang and Masson [1986].
Yang and Masson defined a syndrome to
be pf-compatible if there is a set U, C V,
|U;| < ¢,, such that the syndrome can be
produced under the assumption that only
permanent faults exist and that Uy is the
set of faulty nodes. They also gave an
O(|E|) fault diagnosis algorithm for ¢,-
diagnosable systems that finds all per-
manent fault sets U, consistent with pf-
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compatible syndromes and identifies at
least one faulty node over collections of
syndromes significantly larger than the
set of pf-compatible syndromes.

Analysis

Much progress has been made with de-
terministic diagnosis using the complete-
test model, and there exist several
methods which can be used effectively
with sparse graphs and/or large num-
bers of faulty nodes (sequential diagno-
sis, adaptive diagnosis, pessimistic diag-
nosis, ete.). However, the basic limitation
of the complete-test assumption (p,, = 1)
prevents the application of these meth-
ods in situations with intermittently
faulty nodes, which is a severe limitation
since intermittent faults are known to
account for a large portion of the faults
that occur in real systems. In fact, exper-
imental studies have shown that more
than 80% of the faults that occur in real
systems are transient or intermittent
faults [Horst et al. 1993; Siewiorek and
Swarz 1982].

Deterministic incomplete-test methods
tend to be too conservative and only iden-
tify nodes that are definitely faulty given
the syndrome and fault set size limit.
Thus, many intermittently faulty nodes
can be missed. While deterministic diag-
nosis methods may be appropriate for the
complete-test model, the probabilistic ap-
proach is more appropriate for the in-
complete-test model.

2. PROBABILISTIC DIAGNOSIS —
PRELIMINARY DISCUSSION

Probabilistic diagnosis methods do not
make any prior assumptions about the
set of faulty nodes and, in general, can be
used with arbitrary testing graphs (it fol-
lows that the concept of diagnosability is
not applicable to probabilistic diagnosis).
As a consequence, probabilistic methods
cannot guarantee that a correct and
complete diagnosis is made. Thus, the
quality of the diagnosis methods must be
substantiated by other means.

Three arguments used to support prob-
abilistic diagnosis algorithms are: (1) us-



ing analysis to show that high diagnostic
accuracy is achieved in certain situa-
tions, (2) guaranteeing that the set of
nodes most likely to be faulty given the
syndrome is found, and (3) showing that
as the number of nodes in the system
grows to infinity, diagnostic accuracy ap-
proaches 100%. While argument (2)—
guaranteeing the most probable diagno-
sis—is the most appealing, it has been
shown that finding the most probable
diagnosis given the global syndrome in-
formation is an NP-hard problem [Blough
1988; L.ee 1990]. From a practical per-
spective, argument (3) is insufficient
since good diagnostic accuracy is desired
for finite systems. However, since auto-
mated diagnosis is particularly impor-
tant for large systems, asymptotically
correct and complete diagnosis is cer-
tainly a desirable property of any proba-
bilistic diagnosis algorithm. All three ar-
guments have been used to support the
probabilistic diagnosis methods surveyed
in this article.

Probabilistic diagnosis methods have
two serious limitations that must be un-
derstood before attempting to use the
methods. Probabilistic methods usually
require the use of probability parameters
to model the behavior of faulty and non-
faulty nodes and to evaluate the quality
of the diagnoses produced. The issue of
obtaining these probability parameter
values in real computer systems is an
important unsolved problem which needs
to be investigated. However, some of the
diagnosis methods to be described can be
implemented without knowing the proba-
bility parameter values or with impre-
cise, estimated values—in these meth-
ods, the probability parameters are used
primarily for analyzing the diagnosis al-
gorithms. A second limitation of all of the
incomplete-test probabilistic diagnosis
methods described in this survey is that
they assume that the results of inter-PE
tests performed by different nodes are
statistically independent. However, since
most of the diagnosis methods described
permit arbitrary behavior of the faulty
nodes, statistically dependent test re-
sults of faulty nodes do not negate the
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usefulness of the diagnosis methods,
although they may lower the level of
diagnosis accuracy produced.

Probabilistic methods differ in the
types of probability parameters used and
in the probability model used to define
the probability of occurrence of partic-
ular syndromes. In the following, we
discuss the different ways in which prob-
ability parameters and models are used
in probabilistic diagnosis methods.

2.1 Probability Models

A probability model is characterized by
defining a probability space, which is a
triple (1, ®, P), where Q is the sample
space; © is the event space; and P is a
probability measure. The probability
model that is most often used, implicitly
or explicitly, in most probabilistic meth-
ods is referred to as the common proba-
bility model. In this model, the sample
space {} is defined to be the set of all
possible syndrome and fault set pairs
given a testing graph G. Formally,

QO ={SD,F):FcCVandSD
is a function from E to {0, 1}}.

Then, the event space © is taken to be
the set of all possible subsets of Q. The
probability measure P is easily defined
using the probability parameters defined
above by assuming that all nodes in the
set F are faulty and that all nodes in the
set V-F are nonfaulty. If the 0-informa-
tion tester model is used, all possible
syndrome and fault set pairs can have a
finite probability value. However, if the
partial-tester or complete-test model 1s
used, then certain syndrome and fault
set pairs will have zero probability value.
As an example, under both testing mod-
els, a situation in which u,, u;, €V —F
and SD((x,, uj)) =a,; = 1 can never oc-
cur, and thus the probability of such a
syndrome and fault set pair is 0.

Blough [1988] introduced a probability
model that is more general than the com-
mon probability model. In his model,
Blough modeled the behavior of faulty
nodes, not by the parameters r,, and s,;
defined in Section 2, but by assuming
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that the faulty nodes behave in the man-
ner most detrimental to the diagnosis
algorithm. In Blough’s model, the sample
space () is the same as for the common
model. However, the basic events of the
model are defined to consist of all sets of
syndrome and fault set pairs which have
the same fault set and whose syndromes
are identical except for the edges out of
faulty nodes. Thus, a syndrome and fault
set pair (SD’, F') is contained in a basic
event B defined as

B-{(SD,F):F=F’
and V(u,,u,) € E with
u, €V —F,SD((u,,u,))
= SD'((u,,u))}.

B,,, is defined as the set of all sets B
such that B is a basic event of the test-
ing graph G. The event space @ is the set
of all subsets B,,,. In this model, the
probability of correct and complete diag-
nosis by an algorithm A is defined to be
the minimum of the probabilities of the
syndrome and fault set pairs in the event
B such that the fault set F' is the set of
nodes diagnosed to be faulty and B con-
tains the actual syndrome observed.

Lee and Shin [1993] introduced an-
other generalization of the common prob-
ability model. They noted that most
probabilistic diagnosis methods use less
than the global syndrome information in
diagnosing the fault status of each node.
They assumed a distributed self-diagno-
sis method in which each node diagnoses
itself as faulty or nonfaulty based on a
limited form of the global syndrome in-
formation, referred to as partial syn-
drome information. A different probabil-
ity space was used for the diagnosis of
each node. For a given node u,, let the
partial syndrome used in the diagnosis of
u, be denoted by SD,, and let SD*! de-
note the set of all such partial syn-
dromes. Then, for u,, the sample space is
defined as

Q, ={(SD,, fs,): SD, € SD*",
fs, € 18,,8")).
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The event space 0, is the set of all pos-
gible subsets of ,. Finally, the defini-
tion of the probability measure P, used
is dependent on the partial syndrome

information used.

Comparison of Probability Models

There are pros and cons to all of the
probability models introduced. Using the
common probability model, an exact eval-
uation can be made of the posterior fault
probability of each fault set given a syn-
drome. Thus, it is possible to come up
with a diagnosis algorithm which guar-
antees that the most probable diagnosis
is made. Such a diagnosis algorithm can
be shown to be optfimal in diagnostic
accuracy [Blough 1988]. However, since
finding the most probable diagnosis in
general testing graphs is NP-hard, this
diagnosis algorithm has exponential
computational complexity.?

Using Lee and Shin’s probability
model, it is possible to produce the most
probable diagnosis given partial syn-
drome information using a polynomial-
time algorithm. It can also be shown that
such a diagnosis algorithm is optimal in
diagnostic accuracy among all diagnosis
algorithms that use the same type of par-
tial syndrome information. This will be
referred to as locally optimal to contrast
with the definition of optimal diagnosis
given previously. A serious limitation of
both the common and Lee and Shin’s
probability models is the requirement
that the behavior of both nonfaulty and
faulty nodes must be known or esti-
mated, in terms of the probability pa-
rameters, before any probability analysis
can be done.

2 An interesting, but restrictive, result in Blough
and Pelc [1992] shows that if complete fault cover-
age is assumed ( p,; = 1) and the asymmetric inval-
idation model [Barsi et al. 1976] is used (s, =1,
i.e., a faulty node is always able to correctly diag-
nose another faulty node that it tests), then most
probable diagnosis can be achieved for bipartite
graphs in time O(EWN). Under these same re-
strictions, an O(N)-time algorithm is also pre-
sented for ring graphs.
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Table 2. Pros and Cons of Three Probability Models

Model Pros Cons
common Exact analysis, Requires estimates of
optimal diagnosis possible | how faulty nodes behave,
exp. computational complexity
for optimal diagnosis
Lee & Shin | Exact analysis, Requires estimates of
locally optimal diagnosis how fauity nodes behave,
limits syndrome info used
Blough No parameterization of Exact analysis not possible,
behavior of faulty nodes many indistinguishable algorithms,
optimal diagnosis not possible

The main advantage of Blough’s [1988]
probability model is that the behavior of
faulty nodes do not have to be parame-
terized before the model can be used.
However, the result of this is that many
diagnosis algorithms that produce differ-
ent diagnosis results will all be evaluated
as being equal under Blough’s model.
Thus, Blough’s model will not be able to
distinguish between two diagnosis algo-
rithms, one of which may perform signifi-
cantly better than the other in terms of
diagnostic accuracy. It follows that exact
probability analysis and optimal diagno-
sis are not possible using Blough’s model.
With his probability model, Blough only
makes statements regarding the asymp-
totic or upper-bound behavior of various
diagnosis algorithms. The pros and cons
of the three probability models discussed
are summarized in Table 2.

2.2 General Asymptotic Results

Blough [1988] presents several impor-
tant results concerning the asymptotic
behavior of diagnosis algorithms. Asymp-
totic diagnostic accuracy refers to the
limiting value of diagnostic accuracy of
an algorithm given that the number of
nodes in the system is increased to infin-
ity while retaining the original testing-
graph structure. While Blough uses his
own probability model, Blough’s asymp-
totic results extend to the other probabil-
ity models discussed above.

The first set of results address condi-
tions under which no diagnosis algorithm
is able to produce asymptotically correct
and complete diagnosis. Blough [1988]
proved that if the number of edges in the
testing graph grows slower than N, then
the diagnostic accuracy of all diagnosis
algorithms approaches 0. This is intu-
itively obvious since isolated nodes must
exist if the number of edges grows slower
than N, the number of nodes. A regular
graph is a graph in which the number of
edges adjacent to a vertex is the same for
all vertices in the graph. Blough proved
that for regular testing graphs, the diag-
nostic accuracy of any diagnosis algo-
rithm approaches 0 as N - « if the
number of testing edges grows slower
than N log N. Recently, Berman and
Pelc [1990] were able to show that this
same result holds for general testing
graphs.

Several results have also been shown
regarding conditions under which diag-
nosis algorithms can produce 100% accu-
rate diagnosis. These results are given in
the description of the various probabilis-
tic diagnosis methods in the next section.

3. DESCRIPTION OF PROBABILISTIC
DIAGNOSIS METHODS

In this section, we give an overview of
the methods available in the literature
for probabilistic system-level diagnosis.
Unless otherwise stated, the probabilistic
diagnosis methods described use the

ACM Computing Surveys, Vol 26, No. 1, March 1994



130 .

common probability model. A running ex-
ample based on the testing graph and
syndrome shown in Figure 1 is used to
Hlustrate some of the concepts and algo-
rithms. Note that Figure 1 is a contrived
example intended to illustrate some of
the differences between the various diag-
nosis methods presented. Thus, many of
the methods to be described produce an
incorrect or incomplete diagnosis. How-
ever, with a larger testing graph and
more example syndromes, it is expected
that most of these diagnosis methods will
perform reasonably well.

3.1 Complete-Test Probabilistic Methods

If system-level testing is assumed to have
100% fault coverage, then several good
deterministic methods exist that can
guarantee that the unique set of faulty
nodes 1is identified provided that the
number of faulty nodes is less than an
upper bound ¢. The reason that proba-
bilistic methods have been introduced for
this problem is to permit diagnosis in
situations with more than ¢ faulty nodes
and for general testing-graph structures.

Scheinerman [1987] presented a prob-
abilistic diagnosis method for the
complete-test model with desirable
asymptotic properties. In this algorithm,
a core group of nonfaulty nodes is identi-
fied by finding a strongly connected sub-
graph of G in which all links are labeled
with a 0 and in which more than half of
the total nodes are present. Every node
with a path of O-links from this core group
is then added to this set of nonfaulty
nodes. All other nodes are identified as
faulty. Scheinerman showed that his al-
gorithm produces asymptotically correct
and complete diagnosis in random graphs
in which a node is connected to another
node with probability (¢ log N)/N, where
¢ > 1/(1 — f). Scheinerman’s algorithm
does not work for the testing graph and
syndrome shown in Figure 1. This is be-
cause if all 1-links are removed, the re-
maining graph does not contain a
strongly connected subgraph of more than
4 nodes. Scheinerman’s work is signifi-
cant, however, since it provided the first
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proof of asymptotically correct and com-
plete diagnosis.

Using Blough’s probability model,
Blough et al. [1992a] presented a com-
plete-test probabilistic diagnosis method
in which each node u, simply diagnoses
itself to be faulty or nonfaulty based on
the majority opinion of its testers I "*(u,).
Thus, u, diagnoses itself to be faulty if
and only if I{uJ ta, =1 and u, €
T~ Yu)} > IT"(u,)l/2. Blough et al. were
able to show that asymptotically, as the
size of the system grows to infimity, 100%
accurate diagnoses can be obtained for
testing graphs in the form of hypercubes
if f<0.067. Additionally, they showed
that asymptotically correct and complete
diagnosis can be obtained for a special
class of testing graphs with N X o(N)
testing links, where w(N) is any function
that approaches infinity, albeit arbitrar-
ily slowly.

Example 1. Let us use Blough et al’s
[1992a] algorithm on the testing graph
and syndrome shown in Figure 1. Since
u, and u, are the only nodes tested to be
faulty by more than |I""'(x,)|/2 = 1 other
nodes, the set of nodes diagnosed to be
faulty is F = {u,, u;}. It is noted that
this diagnosis is incomplete since one
of uy or ug must be faulty because u;
accuses u4 of being faulty.

Somani and Agrawal [1989; 1992] in-
troduced three more complex probabilis-
tic diagnosis algorithms for this problem.
These algorithms are based on initially
identifying all nodes as being potentially
faulty or nonfaulty, using the potentially
nonfaulty nodes to identify definitely
nonfaulty nodes, and then using the defi-
nitely nonfaulty nodes to identify other
definitely nonfaulty and faulty nodes. In
the first algorithm, majority voting is
used in the first step to identify each
node as potentially faulty or nonfaulty.
In the second step, an iteration is used in
which majority voting among the poten-
tially nonfaulty nodes is used to identify
certain nodes as definitely nonfaulty; the
test results of the nodes identified as
definitely nonfaulty are then used di-



rectly to identify other nodes as defi-
nitely faulty or nonfaulty. In the third
step, any remaining potentially faulty
and nonfaulty nodes are identified as def-
initely faulty and nonfaulty, respectively.
The second algorithm differs from the
first algorithm only in that unanimous
voting among the potentially nonfaulty
nodes is used to identify definitely non-
faulty nodes. The third algorithm differs
from the first algorithm in that unani-
mous voting is used in both the first and
second steps. The second and third algo-
rithms are meant to be successively
simpler algorithms from the first algo-
rithm. Somani and Agrawal use several
lemmas and theorems to describe the
conditions under which their algorithms
can guarantee to produce correct or cor-
rect and complete diagnosis. They also
use examples to show that good diagnos-
tic accuracy is obtained for several YN
X VN meshes.

Example 2. To illustrate Somani and
Agrawal’s [1989] algorithms, let us again
use Figure 1 as an example. Using the
first algorithm, majority voting in the
first step results in identification of
{u,, u;} as potentially faulty and the rest
of the nodes as potentially nonfaulty.
Then, using majority voting among the
nodes in V — {u,, u,}, we obtain the set
of definitely nonfaulty nodes NF =
{uy, us, uy, ug, ug). Using the test results
of the nodes in NF we obtain the set of
definitely nonfaulty nodes NF = NF U
{ug} and the set of definitely faulty nodes
F ={u,,us,u;}. Using the second and
third algorithms, we obtain the same di-
agnosis as in the first algorithm since
majority voting among 1 or 2 incoming
links is the same as unanimous voting
among the incoming links.

3.2 Incomplete-Test Probabilistic Methods

Probabilistic diagnosis methods are most
useful in those situations where nodes
can be intermittently faulty and where
system-level tests have significantly less
than 100% fault coverage. However, even
the best probabilistic diagnosis method is
not able to produce accurate diagnosis
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when the percentage of faulty nodes is
too large and/or the fault coverage of
system-level tests is too low.

The best possible probabilistic diagno-
sis method, in terms of diagnostic accu-
racy, is the one that guarantees that the
most probable diagnosis given the syn-
drome is found. Blount [1977] described
an early diagnosis method for solving this
problem. Blount used the 0O-information
tester model and the common probability
model to define a mapping from syn-
dromes to fault patterns. Blount’s algo-
rithm finds the syndrome SD for which
P(SD, F) is the maximum for each possi-
ble fault set F. This information is en-
coded into a lookup table. Whenever a
diagnosis needs to be made from an
observed syndrome, the lookup table is
accessed to find the most probable diag-
nosis F. Given |E| edges and N nodes,
there are 2'* possible syndromes and 2V
possible fault sets. Thus, to create the
lookup table, O(2Y*/E)) calculations and
O(2'"1) memory locations are required.
Lee [1990] used the partial-tester model
and the common probability model to
produce a more efficient method for find-
ing the most probable diagnosis given a
syndrome. In his method, he introduced
several heuristics for making the search
for the most probable diagnosis more effi-
cient by bounding the search tree as early
as possible. Although the average behav-
tor of Lee’s diagnosis algorithm is fairly
good, the worst-case computational com-
plexity of the method is O(2'¥!), where F
is the set of faulty nodes found.

Realizing the limitations of finding the
most probable diagnosis, Blough et al.
[1992b] used Blough’s probability model
and presented an O(| E)) algorithm which
produces asymptotically correct and com-
plete diagnosis provided that the number
of testing links incident on each node is
greater than log N. Examples were also
given to show that this algorithm per-
forms well for testing graphs with 100
and 1000 nodes and several sets of prob-
ability parameter values. In their algo-
rithm, the number of 1-links directed to-
ward a given node u, is compared with a
threshold value. Every node in which the
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threshold value is exceeded is included
into the fault set F. Next, all outgoing
links from nodes in the set F' are changed
to be 1-links. Any nodes which then ex-
ceed the threshold value are included into
F. This process is repeated until none of
the nodes in V — F' exceed their respec-
tive threshold values. The property of
asymptotically correct and complete di-
agnosis is proven with threshold values
chosen as follows:

Yu, eV,

1 (1)
K, = —2—IF‘1(u,)|(f+p(1 - .

Blough et al. [1992b] also describe a
heuristic procedure by which better
threshold values may be chosen. This
heuristic procedure is based on the fol-
lowing lower-bound estimate of the prob-
ability of correct diagnosis:

P(Correct-Diag)
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where a common threshold £ = «, (i, €
V) is used and y = max, . {{I " *(u ).
Equation (2) is evaluated for all possible
values of k, and the threshold value
k resulting in the largest value for Eq.
(2) is chosen. It is noted that since
Eq. (2) only gives a pessimistic lower-
bound value for P(Correct_Diag), it can
produce negative values, and the
threshold % chosen based on Eq. (2) is
not necessarily optimal.

Example 3. To illustrate Blough et al’s
[1992b] algorithm, we need to add the
parameters f, and p,, to the testing
graph and syndrome shown in Figure 1.
Let us use the fixed values f = 0.01 and
p = 0.9. Then we obtain, for all u, €V,
k, = 0.901. Every node with 1 or more

incoming 1-links exceeds this threshold.
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Thus, the set F = {u,, us, u;, ug} is the
initial set of faulty nodes. However, after
changing all of the outgoing links from F
to be 1-links, every node has at least one
incoming 1-link. Thus, the final fault set
is F = V. If the heuristic procedure for
selecting a better threshold % is used,
the largest value for Eq. (2) is 0.98 with
k = 1. Then, every node with 2 incoming
1-links exceeds this threshold, and the
initial set of nodes diagnosed as faulty is
F = {u,, u;}). In iteration (2), u, is added
to F, and in iteration (3), ug is added to
F. Thus, the final fault set in this case is
F=Auy,ug, uq, ugh

Dahbura et al. [1987] gave an O(N?)
probabilistic diagnosis algorithm that is
based on comparison testing. In their
algorithm, they repeatedly select and
remove from the testing graph a node
which is incident on the largest number
of 1-links until no 1-links remain in the
testing graph. Using an assumed upper
bound on the number of faulty nodes,
Dahbura et al. show that for a completely
connected testing graph, the probability
of misdiagnosis is extremely small. Later,
upon a reanalysis of Dahbura et al’s al-
gorithm, Lee [1990] was able to show
that this algorithm had the same desir-
able asymptotic properties as Blough et
al’s algorithm [1992b]. Simulations also
showed that Dahbura et al’s algorithm
performed significantly better than
Blough et al.’s algorithm with the thresh-
old in Eq. (1) for several different topolo-
gies and sets of probability parameter
values. This demonstrates that asymp-
totic accuracy is not a sufficient measure
of the goodness of a probabilistic diagno-
sis algorithm.

Example 4. Applying Dahbura et al’s
[1987] algorithm on the example of Fig-
ure 1 with £ = 0.01 and p = 0.9, we find
that nodes u, and w4, with two incoming
1-links each, have the largest number of
incoming 1-links. Arbitrarily choosing u,
from among these nodes, we find that the
initial fault set is F = {u,}. u, and its
incoming and outgoing links are removed
from the graph G. Next, in G — I, u;,
has the largest number of incoming 1-



links—thus, F = F U {u,}. After remov-
ing u, and u; from the graph G, u; and
ug each have one incoming 1-link, and
the rest of the nodes have no incoming
1-links. Arbitrarily choosing u from the
set {ug, ug), we obtain F=F U {uy) =
{uy, us, u,}. Finally, in the graph G — F,
there are no 1-links, and the algorithm
terminates.

Lee and Shin [1993] presented another
set of diagnosis algorithms. It was first
noted that many of the previous proba-
bilistic diagnosis algorithms used only
partial syndrome information in diagnos-
ing the fault status of each node. Several
categories of diagnosis were defined
based on the type of partial syndrome
information used in the diagnosis of each
node. Then, for each category of diagno-
sis, Lee’s probability model was used to
calculate posterior fault probability val-
ues for each node. Faulty nodes were
identified based on these posterior fault
probability calculations. All algorithms
developed were shown to have the
same desirable asymptotic properties as
Blough’s algorithm. The main advantage
of Lee and Shin’s diagnosis algorithms is
that they produce the most probable
diagnosis given a particular type of
syndrome information (a locally optimal
diagnosis). The main limitation of this
type of method is that the diagnosis
method is dependent on the use of proba-
bility parameter values.

Two of Lee and Shin’s [1993] diagnosis
algorithms are described here. The other
algorithms are of similar character. In
Algorithm OPT3A, each node u; com-
pares the number of 1-links incident on it
with a threshold z,, . z,, is obtained as

log(l_fl)

) 7
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where A=Q —f)p + fs and B = f(1 —
r). All nodes in which the threshold is
exceeded are diagnosed to be faulty. In
Algorithm OPT2A, each node u, calcu-
lates its posterior fault probability as-
suming partial syndrome information.
The fault set F is initialized to &. The
node u, with the highest posterior fault
probability is added to F. The posterior
fault probabilities of all neighbors of u,
are updated given the knowledge that u ;
is faulty. Then the node with the highest
posterior fault probability in V — F is
again added to F. This process is re-
peated until all 1-links in G originate
from or terminate on nodes in F.

Example 5. We again use the example
of Figure 1 with the added parameters
f=0.01, p =09, and r = s = 0.5. Using
the equation shown above, we get A =
0.896, B = 0.005, and z,, = 1.224. Thus,
using Algorithm OPTS3A, we obtain the
fault set F = {u,,u,}. For Algorithm
OPT2A, we will use intuitive calculations
rather than the complex equations that
can be found in Lee and Shin [1993].
Initially, nodes », and u, will have the
highest posterior fault probabilities since
u, and uw; have the largest number of
incident 1-links. Starting with the fault
set F' = (J, first one, then the other of u,
and u; are added to F. Next, we note
that the nodes u;, u4, and ug each have
one 1-link incident on them. However,
the 1-link incident on ug comes from u,
€ F. Thus, u, and u4 are more likely to
be faulty than ug. Next, the 0-link inci-
dent on u; comes from the known faulty
node u, € F while ug’s incident 0-link
comes from u; € V — F. Thus, uy is the
node with the highest updated posterior
fault probability. The final fault set is
F ={u,,uy, u,;} since all 1-links are ac-
counted for by the nodes in F.

Fussell and Rangarajan [1989] intro-
duced an entirely different type of diag-
nosis method. Given that the testing
graph is a subgraph of the graph repre-
senting the interconnection structure, the
previous incomplete-test diagnosis meth-
ods require each node to be tested by at
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least log N other nodes for asymptoti-
cally correct and complete diagnosis.
Fussell and Rangarajan improved on
previous methods by showing that the
same asymptotic result can be obtained
for systems with lower connectivity (e.g.,
meshes or rings) if each pair of nodes
conducts multiple tests and if the num-
ber of these tests on each node grows
faster than log N. Fussell and Rangara-
jan’s algorithm uses R stages of compari-
son testing. In testing stage i, all nodes
are assumed to execute the same test
task. After a testing stage, each node
compares its results with the results of
all adjacent nodes. The testing link be-
tween two nodes is labeled with a 1 for
that testing stage if the two nodes have
different results for the test task. In this
manner, R independent syndromes are
obtained. Two thresholds sv, and kv, are
used. A node u, is identified as faulty if
and only if the number of testing stages
in which it had greater than kv, 1-links
incident on it is greater than the second
threshold sv,. For all nodes u, € V, ko,
was chosen to be [T *u)l—1, and a
range of values was indicated as being
acceptable for sv,. Rangarajan and
Fussell [1992] derive better kv, and sv,
threshold values and discuss a hierarchi-
cal version of the above algorithm in
which (1) testing and diagnosis is con-
ducted in clusters and (2) a third thresh-
old is used for the number of clusters in
which a node u, is diagnosed to be faulty.
For simplicity, we will only consider the
algorithm by Fussell and Rangarajan
[1989] since Rangarajan and Fussell
[1992] is a hierarchical generalization of
the first paper.

Example 6. To demonstrate Fussell
and Rangarajan’s [1989] algorithm, we
need several syndromes of the form
shown in Figure 1. Let us assume R = 10
testing stages with the first 2 syndromes
identical to the syndrome shown in Fig-
ure 1. In syndromes 3 through 10, sup-
pose that a,; = 1 and that all other link
labels remain unchanged. Let us choose
the threshold values kv, = 1 and sv, =
75. uy, and u,; have 2 (> kv,) 1-links
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incident on them in 10 (> sv,) syn-
dromes. u; also has 2 (> kv,) 1-links inci-
dent on it in 8 (> sv,) syndromes. No
other nodes have 2 1-links incident on
them in greater than sv, = 7.5 syn-
dromes. Thus, the fault set is F =
{ug, ug, uq}.

Referring to the use of multiple test-
ing stages and multiple syndromes as a
multiple-syndrome diagnosis method,
Lee and Shin [1990a] derived a locally
optimal multiple-syndrome diagnosis al-
gorithm using their own probability
model. The only change introduced by
Lee and Shin’s multiple-syndrome diag-
nosis algorithm is the way in which the
thresholds kv, and sv, are chosen. Lee
and Shin’s multiple-syndrome diagnosis
algorithm ig the same as Fussell and
Rangarajan’s algorithm except for the
choice of the kv, and sv, thresholds. Pos-
terior fault probability calculations are
used to derive optimal values for kv, and
sv,. This algorithm shares the same de-
sirable asymptotic properties as Fussell
and Rangarajan’s algorithm.

Similar to a multiple-syndrome diag-
nosis strategy is a sequential diagnosis
strategy for probabilistic diagnosis. In se-
quential diagnosis, diagnosis is con-
ducted in stages, with nodes identified as
faulty in the ith stage replaced with
spares before commencing with the (i +
D)th stage of diagnosis. From a diagnosis
viewpoint, the only difference between
multiple-syndrome diagnosis and se-
quential diagnosis is the replacement of
nodes identified as faulty in the sequen-
tial diagnosis strategy. Blough and Pelc
[1993] present four algorithms for se-
quential diagnosis given the four possible
combinations of complete and incomplete
system-level tests and perfect and imper-
fect spares. Using their algorithms, the
total number of tests required to produce
asymptotically correct and complete di-
agnosis is O(N) in the complete-test,
perfect-spare model, O(N log N} in both
of the intermediate models, and O(N log?
N)in the incomplete-test imperfect-spare
model. The basic diagnosis strategy takes
place in two phases. A core set of non-



faulty nodes NF is identified in the first
phase. This is followed by a second phase
in which the nonfaulty nodes are used to
determine the fault status of other nodes.
The nodes found to be nonfaulty are
added to NF, and the nodes found to be
faulty are replaced by spares and tested.
Multiple tests and multiple replacements
of spares are used in the case of incom-
plete tests and imperfect spares, respec-
tively. Blough and Pelc’s sequential diag-
nosis algorithms permit asymptotically
correct and complete diagnosis using
testing graphs in the form of rings and
meshes.

3.3 Distributed Self-Diagnosis

Distributed self-diagnosis can be exe-
cuted with minimal message overhead if
complete testing is assumed. In deter-
ministic complete-test diagnosis methods
such as in Hosseini et al. [1988] and
Kuhl and Reddy [1980], test information
is only transmitted once from a node u,
to another node u,, that it tests to be
nonfaulty. By passing information along
paths that are known to be fault free (on
the basis of complete fault coverage tests),
no redundant messages are transmitted.
If a single test may be incomplete, but a
collection of tests conducted by different
testers of a common node u, is assumed
to be complete, as in Buskens and Bian-
chini [1993], then a similar method can
be used to distribute testing information.
Probabilistic complete-test methods can
also use the same type of method to dis-
tribute testing information. However, if
incomplete testing is assumed, then
faulty nodes can never be identified with
100% certainty, and thus, the above
methods cannot be used.

Three general approaches can be iden-
tified for performing distributed self-
diagnosis using a probabilistic incom-
plete-test diagnosis model. In the first
type of method, the communication of
test results is mixed in with the actual
testing and diagnosis. Thus, redundant
copies of test results and /or partial diag-
nosis results must be communicated over
multiple paths. The diagnosis is made
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taking into account the redundant copies
received. In the second type of method, a
reliable broadcast procedure is used to
distribute every node’s test results to ev-
ery other node. After this is done, every
nonfaulty node can then execute the ap-
propriate diagnosis algorithm to arrive
at its diagnosis of the overall system.
Although the reliable broadcast opera-
tion incurs an extremely high message
traffic overhead, methods such as in Lee
and Shin [1990b] have shown that this
operation can be implemented extremely
efficiently on regular mesh and hyper-
cube topologies. In the third type of
method, each node only diagnoses the
fault status of its immediate neighbors.
This requires much less communication
overhead than the alternative methods.

Berman and Pele’s [1990] diagnosis
method is an example of the first ap-
proach to distributed self-diagnosis.
Berman and Pelc’s algorithm is designed
for a special class of testing graphs with
O(N log N) edges. These graphs are
such that the set of nodes can be parti-
tioned into subsets of completely con-
nected nodes with ¢ log N nodes each.
Within a completely connected subset of
nodes, a maximum clique of nodes con-
nected by 0-links is found and labeled as
nonfaulty; all other nodes in the subset
are labeled as faulty. In the second stage,
all nodes in each subset of completely
connected nodes receive the diagnosis re-
sults of all other nodes. The final diagno-
sis for a given node u, is the majority
value of the received messages on u,. The
computational complexity of this algo-
rithm is O(N°¢), where ¢ is a constant
that depends on the probability parame-
ters f and p. Berman and Pelc are able
to show that their algorithm has a diag-
nostic accuracy of at least (1 — N~1) X
100%.

Pelc [1993] improved on Berman and
Pelc [1990] by using a modified diagnosis
algorithm with an O(N) computational
complexity. In his improved algorithm,
the computationally expensive step of
finding a maximum clique of nodes con-
nected by 0-links is deleted. Instead, the
set of nodes is partitioned into subsets of
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nodes with ¢ log N nodes each. The sub-
sets are then connected in a cycle. All
nodes within a subset test one another
and test all nodes within an adjacent
subset in the cycle. All test results are
then communicated to the same set of
nodes. This test-and-send procedure is
repeated r times, for a fixed r. Then
majority voting is used to determine the
faulty nodes, and this diagnosis result is
communicated to other nodes using a
procedure similar to that in Berman and
Pele.

The second approach to distributed
self-diagnosis is very general but re-
quires high communication overhead.
Each node must initiate a reliable broad-
cast procedure to broadcast its test re-
sults. This reliable broadcast procedure
is described in general terms in Yang
and Masson [1988]. Algorithms designed
for specific architectures such as hyper-
cubes [Ramanathan and Shin 1988] are
also available. After testing, suppose that
the test evaluation results of each node
are combined into a single message. Up
to ¢t faulty nodes can be tolerated by
having each node send 2¢ + 1 copies of
its message to every other node along
node-disjoint paths [Yang and Masson
1988]. Since there are N(N — 1) possible
sender—receiver pairs, there are (2¢ +
DN(N — 1) such message transmissions.
Lee and Shin [1990b] describe a method
for implementing such an “all-to-all reli-
able broadcast” operation within a few
milliseconds on large systems with over
10K nodes by using wormhole routing.
After this reliable broadcast procedure,
each node can use majority voting to de-
termine the test evaluation results of all
other nodes.

The third approach to distributed self-
diagnosis applies to those diagnosis
methods that identify each node as faulty
or nonfaulty based only on the test evalu-
ations of nodes directly connected to it.
In these diagnosis methods, each node u,
must reliably receive the tests results of
nodes u, € [~ 1(u,). If comparison testing
is being used, then no extra communica-
tion is required for diagnosis since each
node knows the results of its comparison
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tests with its neighbors after the testing
phase. With other inter-PE-testing meth-
ods, it may be necessary to execute a
reliable multicast procedure in which
each node sends a message reliably to all
of its adjacent nodes. Although this
method has extremely low communica-
tion overhead when compared to the pre-
vious methods, the diagnosis result is
dispersed throughout the system. To ob-
tain a global diagnosis, the results of the
individual diagnoses must be combined.

4. COMPARISON

A large number of probabilistic diagnosis
methods have been introduced in this
survey. Table 3 shows a comparison of
the various diagnosis methods on the ba-
sis of several factors important to proba-
bilistic diagnosis. Acronyms based on the
authors’ last names are used to refer to
the various diagnosis algorithms or sets
of diagnosis algorithms. The computa-
tional complexities of the FR [Fussell and
Rangarajan 1989} and LS2 [Lee and Shin
1990a] algorithms are dependent on R,
the number of testing stages used, and v,
the maximum number of nodes testing
any given node u, € V. The computa-
tional complexity of the BEP [Berman
and Pelc 1990] algorithm is O(N°), where
¢ 1s a constant dependent on the
probability parameters f and p. The O(N
log N) complexity of the PEL [Pelc 1993]
algorithm is for sequential diagnosis with
perfect spares. If imperfect spares are
assumed, the computational complexity
increases to O(N logN).

All of the diagnosis algorithms shown
except for the SA [Somani et al. 1987]
algorithm have been proven to produce
asymptotically correct and complete di-
agnosis provided certain prespecified
conditions are met. An “optimal-diagno-
sis” diagnosis algorithm is one which
identifies all of the faulty nodes correctly
with the maximum probability. The nota-
tion “local” under the “Optimal Diagno-
sis” column in Table 3 refers to the fact
that those algorithms only produce lo-
cally optimal diagnoses (i.e., with the
restriction that only local syndrome in-
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Table 3. Comparison of Probabilistic Diagnosis Methods
Comput. Optimal  Asymptotic # Links # Prob.
Complexity Diagnosis Guarantee Required Parameters
Complete-Test:
SCH [Scheinerman 1987] O(N?) No Yes O(N log N) None
BSM1 [Blough et al. 1992a] O(N) No Yes O(N w(N)) None
SA [Somani and Agrawal 1989] O(N?) No No N.A. None
Incomplete-Test:
BLO [Blount 1977] O@N+IE] Yes Yes O(N log N) All
LEE [Lee 1990] o2y Yes Yes O(N log N) 4
BSM2 [Blough et al. 1992b] O(E)) No Yes O(N log N) 2
DSK [Dahbura et al. 1987] O(N?) No Yes O(N log N) None
LS1[Lee and Shin 1993] O(N?2) Local Yes O(N log N) 4
FR [Fussell and Rangarajan 1989] O(Rvy) No Yes O(N) 1
LS2 [Lee and Shin 1990a] O(Rvy) Local Yes O(N) 2
BLP [Blough and Pelc 1993] O(N log N) No Yes O(N) 2
BEP [Berman and Pelc 1990] O(N¢) No Yes O(N log N) None
PEL [Pelc 1993] O(N) No Yes O(N log N) None

formation is available). The number of
testing links necessary for the asymp-
totic guarantee are shown in the fourth
column. For the BSM [Blough et al.
1992a] algorithm, w(N) is any function
that approaches infinity as N — o, albeit
arbitrarily slowly. The proofs for the fig-
ures in this column can be found in the
respective references and in Blough
[1988] and Lee [1990]. Finally, the fifth
column shows the number of probability
parameters used in the respective diag-
nosis algorithms. While probability pa-
rameters are necessary in analyzing the
probabilistic diagnosis algorithms, the
diagnosis algorithm itself need not neces-
sarily use all or even any of the parame-
ters.

From Table 3, several patterns are ap-
parent concerning the probabilistic diag-
nosis algorithms. The algorithms that
guarantee the optimal diagnosis all have
exponential computational complexity.
Polynomial-time algorithms can only
guarantee locally optimal diagnosis. At
most O(N log N) testing links are
required to guarantee asymptotically
correct and complete diagnosis. The
incomplete-test algorithms requiring
O(N) testing links are either multiple-
syndrome or sequential diagnosis algo-
rithms. Although the BSM1 [Blough et
al. 1992a] algorithm requires only
O(N w(N)) testing links, it is a

complete-test algorithm that uses a spe-
cial type of testing graph not normally
used for computation purposes. Several
of the probabilistic diagnosis algorithms
do not require any probability parame-
ters. However, these algorithms are not
necessarily better than the algorithms
that require 1 or more probability pa-
rameters since the latter algorithms with
rough estimates of the necessary param-
eters may produce better diagnosis re-
sults than the former algorithms.

Besides the factors listed in Table 3,
another factor that is important in evalu-
ating a probabilistic diagnosis algorithm
is diagnostic accuracy. However, it is dif-
ficult to quantify and compare this pa-
rameter since different probability and
diagnosis models are used by the proba-
bilistic diagnosis algorithms. Analyses of
diagnostic accuracy can be found in some
of the respective references, and compar-
isons of the diagnostic accuracies of sev-
eral of the algorithms shown can be found
in Lee [1990].

Since most practical computer systems
will not be operational with large num-
bers of faulty nodes, it can be argued
that the simplest probabilistic algorithm
that works well with small numbers of
faulty nodes should be used for diagnosis.
However, since there is still the question
of the validity of the complete-test as-
sumption, the complete-test determinis-
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tic and probabilistic diagnosis methods
may not be desirable. The deterministic
incomplete-test methods are also ques-
tionable because they tend to produce
incomplete diagnoses in many cases.
Thus, the polynomial-time algorithms in
the incomplete-test section of Table 3 are
all appropriate for fast diagnosis with
small numbers of possibly intermittently
faulty nodes. If a multiple-syndrome or
sequential diagnosis algorithm is accept-
able, the FR [Rangarajan and Fussell
1992], LS2 [Lee and Shin 1990a], and
BLP [Blough and Pelc 1993] algorithms
are the most suitable. For one-step diag-
nosis, the BSM2 [Blough et al. 1992b],
DSK [Dahbura et al. 1987], and LS1 [Lee
and Shin 1993] algorithms have similar
execution times. Although the PEL [Pelc
1993] algorithm has lower computational
complexity (O(N)), it has a fairly high
constant factor and requires a special
type of testing graph.

5. CONCLUSION

This article has surveyed probabilistic di-
agnosis methods, which in recent years
have shown much promise of bridging
the gap between the theory and practical
application of system-level diagnosis
ideas. All of the components necessary
for the automated probabilistic diagnosis
of large multiprocessor systems have
been discussed. Additionally, the theory
behind the probabilistic diagnosis meth-
ods, including testing models, probability
models, and asymptotic diagnostic accu-
racy, has been presented. The various
probabilistic diagnosis algorithms in the
literature have been described in simple
terms, and the algorithms presented have
been analyzed and compared on the basis
of several factors important to probabilis-
tic diagnosis.

While significant progress has been
made toward the development of diagno-
sis algorithms that are suitable for the
diagnosis of large multiprocessor sys-
tems, their practicality and usefulness
have yet to be demonstrated with physi-
cal experimental systems. Toward this
end, Bianchini et al. [1990; 1992] re-
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cently presented the first application
and implementation of theoretical diag-
nosability results to a real distributed
network environment. Their results are
limited to the original PMC model of
diagnosis [Preparata et al. 1967]. More
general experimental work of this nature
needs to be conducted in the future to
determine whether the newly proposed
probabilistic diagnosis methods can be
practical and useful.
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