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Short Notes 

Operationally Enhanced Folded Hypercubes 

Jong Kim and Kang G. Shin 

Abstract- Recently, several variations of the hypercube have been 
proposed to enhance its performance and reliability. The folded hy- 
percube is one of these variations, in which an extra link is added to 
each node providing a direct connection to the node located farthest 
from it. In this short note, we propose a new operation mode of the 
folded hypercube to enhance its performance and fault-tolerance. There 
are (,:I) regular k-cubes within a folded hypercube of dimension R ,  

denoted by FQ,. We introduce another type of hypercube, called the 
twisted hypercube, to improve the performance and fault tolerance of 
the folded hypercube. The problems of finding a subcube of given size 
in an FQ, and routing messages within the subcube are addressed for 
the proposed operation mode. The advantages of the proposed operation 
mode over the regular-hypercube operation mode are analyzed in terms 
of dependability and robustness. The proposed operation mode is shown 
to make significant improvements over the regular-hypercube operation 
mode in both dependability and robustness. Because the new operation 
mode can be applied to only an ( R  - 1)-subcube level for a given FQ,, 
we present a general form of folded hypercube, thus enhancing the 
availability of subcubes of any dimension m < n. 

Index Term- Distributed architectures; regular, folded and twisted 
hypercubes; communication diameter; average message distance; subcube 
fault tolerancelavailability 

I. INTRODUCTION 
Selection of an appropriate interconnection network is the key 

to the design of any distributed/multiprocessor system, because the 
speed of internode communication, rather than that of computation, is 
known to be the bottleneck in accomplishing speedup with multiple 
processors. Over the past two decades, an overwhelming number 
of interconnection networks have been reported in the literature. 
Examples include crossbars, multiple buses, multistage interconnec- 
tion networks, and hypercubes, to name a few. Among these, the 
hypercube has received considerable attention due mainly to its rich 
topological properties. The hypercube is a regular structure, has 
a small diameter, and offers good connectivity with a relatively 
small node degree. Moreover, a number of other well-known topolo- 
gies, such as rings, trees, and meshes, can be mapped onto the 
hypercube [ 1 1. 

The recent surge of interest in the hypercube has also led to 
the development of several variations of the hypercube, mainly to 
enhance the performance and fault tolerance of the original hypercube 
[2]-[5]. Preparata [2] introduced cube-connected cycles to provide a 
fixed degree of connection for each node. Esfahanian [3] introduced 
the twisted hypercube to reduce the communication diameter. Meyer 
and Pradhan [4] discussed the concept of the folded hypercube as 

Manuscript received June I I ,  1992; revised May 7, 1994. This work was 
supported in part by the Office of Naval Research under Grants N00014-92- 
5-1080 and “14-94-1-80. 

J. Kim is with the Department of Computer Science and Engineering, 
Pohang University of Science and Technology, Pohang, Kyungpook 790-784, 
Korea. 

K.G. Shin is with the Real-Time Computing Laboratory, Division of 
Computer Science and Engineering, Department of Electrical Engineering and 
Computer Science, University of Michigan, Ann Arbor, MI 48109-2122 USA. 

IEEE Log Number 9405018. 

Fig. 1. A folded hypercube of dimension 4, FQ4 

the topology that has a reduced communication diameter, and Latifi 
[5] analyzed its properties and performance. Among these variations, 
the folded hypercube is shown to have advantages over the others in 
subcube fault tolerance/availability; i.e., one can find, with a higher 
probability, subcubes of a given dimension in the folded hypercube 
than in the other hypercube variations in case nodes fail. The main 
objective of this short note is to analyze and enhance the performance 
and fault tolerance of the folded hypercube. 

A folded hypercube [5]-[8] is the hypercube with an extra link 
connecting each node to its antidote node or to the node located 
farthest from it. Fig. 1 shows a 4-D folded hypercube, or FQ,. 
Latifi and El-Amawy [5]-[7] showed that a folded hypercube has all 
the salient properties of the regular hypercube and some additional 
advantages. For example, the node degree of an FQ, is n + 1, and its 
communication diameter is [;I. An FQ, has ( n L 1 ) 2 n - m  different 
regular m-cubes, or Qm’s, whereas there are (:)2n-m Qm’s in a 
&,, where n > m. Additional attractive properties of the folded 
hypercube can be found in [5]-[8]. 

The operation of an FQ, in the presence of faulty components 
was analyzed by Latifi [7] under the assumption that an injured FQ, 
“functions” or “works,” as long as one can find a Qm,  m < n, that 
includes all faulty components. This implies that in order to function 
properly, an injured FQ, must have at least one healthy Qn-l in 
it. Because all subcubes under this operation mode are the regular 
hypercubes, identification of these subcubes and routing in each of 
them are straightforward. However, using only regular hypercubes 
does not exploit the full advantages of the folded hypercube, because, 
as mentioned earlier, it contains other hypercube variations. 

We therefore present a new operation mode under which the folded 
hypercube can be fully exploited. First, we uncover new topological 
properties of the folded hypercube that have not been reported in 
the literature, including the existence of twisted hypercubes in a 
folded hypercube. Next we analyze the advantages of the folded 
hypercube over the regular hypercube in terms of the number of 
distinct subcubes, average message distance, and subcube availability. 
Finally, we propose a new operation mode to fully exploit the 
advantages of the folded hypercube. The subcube dependability and 
robustness under the proposed operation mode are analyzed. We also 
propose a folding method that enhances the availability of healthy 
subcubes. 
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Fig. 2. Two types of subcube of dimension n - 1 in an FQ,. 

This short note is organized as follows. Section I1 introduces 
the topological properties of the folded hypercube. We analyze the 
advantages of the folded hypercube over the regular hypercube. The 
new operation mode is presented in Section 111. The advantages of 
the proposed operation mode are comparatively analyzed in Section 
IV. A folding method to enhance the availability of healthy subcubes 
is discussed in Section V. The short note concludes with Section VI. 

11. TOPOLOGICAL PROPERTIES 
For completeness, we begin with the list of useful properties of the 

Lemma I :  The node degree and the diameter of an FQ, are n + 1 
and [n/21, respectively [5 ] .  0 

Lemma 2: The number of regular m-cubes in an FQ, is 
(nL1)2n-m, and that in a Q,  is (:)2"-", where 0 5 m 5 n 
[61, [I. 0 

Lemma 3: The problem of identifying an m-cube in an FQ, can 
be reduced to that of identifying an m-cube in a Q,+l, where 

0 
One attractive property of the folded hypercube that has not yet 

been reported in the literature is the availability of twisted hypercube. 
As can be seen in Fig. 2, we can observe that there are two different 
types of subcube in an FQ,. The first type is a regular subcube. A 
regular subcube, Q m ,  1 < m < n, can be formed by combining 
two neighboring (m - 1)-cubes or two antidote ( m  - 1)-cubes. 
For the latter case, every node in the subcube includes a link to 
its antidote node. The second type is the twisted subcube. One-half 
of the nodes in the twisted subcube include links to their antidote 
nodes, and the remaining half do not. Since there are many ways 
of generating twisted subcubes from a regular hypercube by cross- 
connecting any two nodes [3], the symbol TQ is used to denote the 
twisted hypercube induced by a folded hypercube. Also, we call the 
link between antidote nodes a twisted link, and those links that are 
not twisted we call straight links. 

An n-dimensional twisted hypercube TQ, (Fig. 2) is constructed 
by connecting two &,- 1 's. One-half of the nodes in one Q,  - have 
straight (connection) links to the nodes in the other Q n - l ,  and the 
other half have twisted (connection) links. In Fig. 2, the dotted line 
represents a straight link, and the solid line represents a twisted link. 
Note that a TQ, is still a regular structure. For example, if we turn 
one &,-I in the figure upside down, the half that used to have twisted 

folded hypercube that have already been reported in the literature. 

0 5 m 5 n [6]. 

links will have straight links, and the half that used to have straight 
links will have twisted links. The following lemma characterizes the 
communication diameter and the average message distance of a TQ, . 
Lemma 4: The communication diameter of TQ, is n - 1, and its 

average message distance is ' 4 n ~ ~ ~ 1 n - 3 .  

Proof: Since each node is connected to its antidote node via 
a twisted link, the maximum distance between a pair of nodes in 
a TQ, is less than n. Since there are two regular (71  - 1)-cubes 
in a TQ,, the maximum internode distance or the communication 
diameter cannot be smaller than n - 1. 

A TQ, can be partitioned into four disjoint groupskubes (either 
regular or twisted) of dimension n - 2, labeled A, l?, C ,  and D such 
that B and D are regular cubes neighboring A, and B and C are 
antidote pairs (see Fig. 3). Since the TQ, is a regular structure, 
without loss of generality, one can derive the average message 
distance with respect to a node in group A. Specifically, let us assume 
that the source node is located in the upper half of group A if group 
A is divided into upper and lower halves. The summation of message 
distances to other nodes in group A is (n  - 2)2"-', because group A 
is a regular (n  - 2)-cube [9]. The summation of message distances to 
the nodes in l? and D is 2(  (n - 1)2"-2 - ( n  - 2 ) 2 " - 3 ) ,  because the 
combination of A and B or the combination of A and D is a Q n - l .  

The shortest path from the source node to a node in the upper half 
of group C is A -+ D -+ C through straight links. Similarly, the 
shortest path to a node in the lower half of group C is A + B + 

C through straight and twisted links. The summation of message 
distances to the nodes in group C is the summation of message 
distances to the nodes in the upper half of groups B and D with 
the addition of extra hops from B or D to C. This summation is 
2( ( n  - 1 ) Y P 4  + 2,-'). By adding up all message distances, we get 
(4n - l )2n-3 .  By dividing it with the total number of nodes, we can 

0 
Lemma 5: A twisted subcube exists in an FQ, only if the size of 

this subcube is n - 1. For other sizes, only regular subcubes can exist. 
Proofi Let m be the dimension of a subcube in an FQ,. To 

form a twisted cube of size m, two antidote subcubes of dimension 
m - 2 connected with twisted links should be combined with two 
regular ( m  - 2)-cubes connected with straight links. Assume that one 
subcube from the antidote pair is combined with a subcube from the 
pair of regular subcubes. Then the distance between the other subcube 
from the antidote pair and the other subcube from the pair of regular 

get the average message distance as given. 
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\ 
Fig. 3. The structure of a twisted hypercube, TQ,. 

subcubes cannot be less than 2 if the subcube size is less than n - 3. 
0 

As discussed in Lemma 4, the communication diameter of TQ, is 
n - 1. The gain in communication diameter for a TQ, over a Q, 
is nominal as the system size, n, increases. Based on the result of 
Lemma 4, we can also compute the gain in average message distance. 

Theorem 1: The gain in average message distance for a TQ, over 
a Q,  is given as: 

Hence, there is no twisted cube in the FQ, if m < n - 1. 

(4n  - 1 ) 2 n - 3 p n  - 1 - (4n - 1)2"-, - .In - 1 
n2"-'/2" - 1 n2"-1 4n 

- - . (2.1) 

Proof: The average message distance in a Q, is n2"-'/2" - 1 
[9]. The average message distance in a TQ, follows directly from 
Lemma 4. 0 

The result of Theorem 1 is very indicative. Since the 
communication-distance advantage of a TQ, is almost negligible as 
the size of system increases, it is better not to use this advantage 
if it complicates the operation. 

111. OPERATION MODE 
In this section, we present two operation modes of the folded 

hypercube that can use its subcube fault tolerance capability. First, we 
summarize the operation mode discussed in [7], in which the system 
is assumed to work or function as long as one can find a healthy 
Qn-l in an injured FQ,. Next we propose a new operation mode 
that uses not only regular subcubes but also twisted subcubes. 

A. Regular-Subcube Operation Mode 

A regular (n - 1)-cube in an FQ, can be formed in two different 
ways. First, two neighboring Q , - ~ ' s  form a & , - I .  This is the same 
as the case of finding an (n  - 1)-cube from a Q,. Second, two 
antidote Q)12--2's form an ( n  - 1)-cube, which is not possible in 
regular hypercubes. When the system operates in this mode, the two 
most important issues are the identificationhecognition of a &,-I  and 
the routing within the identified Qn-l .  Because these issues for the 
folded hypercube are different from those for the regular hypercube, 
they are reviewed briefly as follows. 

IdentiJication of an m-Cube: As stated in Lemma 3, the problem 
of identifying an mi-cube in an FQ, is the same as that of identifying 
an m-cube in a Qn+l .  A node in an FQ, can be represented by two 
nodes in a &,+I .  For example, node 0 0 0  in an FQ, corresponds to 
nodes 0 0 0 0 and 11 11 in a Q4, If node 0 0 0 in an FQ3 failed, then 
nodes 0 0 0 0 and 11 11 in a 624 are marked as failed. If we can find an 
m-cube in a Q4, then there is an m-cube in an FQ,, where ni < 4. 

Routing in a Subcube [SI: Since the routing method for a regular 
hypercube is well established and well understood, what we need 
is to show how to adapt this routing method to the subcubes of a 
folded hypercube. For example, consider the deadlock-free wormhole 
routing in a subcube [IO]. If the links connecting antidote nodes are 
the ones in the lowest dimensional direction, one can easily apply 
e-cube routing [lo]. In case the subcube is formed using the link to 
the antidote node, messages must traverse the antidote link first if 
they need to traverse it as well as other dimensional links. For the 
other dimensional directions, messages can follow the rule of e-cube 
routing. 

B. The New Operation Mode 

The proposed new operation mode assumes that the system is 
operational as long as one can find any kind of (n - 1)-cube 
that is either regular or twisted. The inclusion of twisted subcubes 
complicates the operation mode, because a twisted subcube has 
different characteristics as compared to a regular hypercube. For ex- 
ample, regular and twisted hypercubes have different communication 
diameters and average message distances. However, we do not use 
the communication-diameter advantage of the twisted hypercube in 
order to simplify the operation mode. Similarly to the regular-subcube 
operation mode, we consider only the identification of a given size 
subcube and the message routing within the subcube. 

Zdent$cation ofan (n  - 1)-Cube: The following lemma and the- 
orem show results on how to form and identify an (n - 1)-cube in 
an FQ,. 

Lemma 6: Any two disjoint (n - 2)-cubes in a Q, can form an 
( n  - 1)-cube (regular or twisted) in an FQ, that is either of the two 
types of subcube in Fig. 2. 

Proof: Choose any two disjoint (n -2)-cubes in a Q,. There are 
only three possibilities of connecting them. First, these two (n - 2)- 
cubes are neighbors of each other, so that they naturally form a regular 
(n  - 1)-cube. Second, these two cubes are an antidote pair, so that 
they can form a &,-I in an FQ,. Last, these two cubes are partially 
connected in a Q,. Let A and B denote two disjoint (n - 2)-cubes. 
When the addresses of cubes A and B are compared, there should be 
three bit positions that do not match. At one of these three positions, 
one cube should have 0 ,  and the other 1, in order to be disjoint with 
each other. At the other two positions, one cube has X and x, and 
the other has x and X. One can easily see that in a Qn, one-half of 
the nodes in A have connections to one-half of the nodes in B, and 
each node in the other half of A has an antidote node in the other 
half of B. Since there is a link between each antidote pair in an FQ,, 

0 
Theorem 2: The problem of identifying an (n  - 1)-cube in an 

FQ, can be reduced to that of identifying two disjoint (n  - 2)-cubes 

The problem of identifying two disjoint ( n  - 2)-cubes in a Qn can 
easily be solved using the information on faulty nodes. Fig. 4 shows 
an algorithm that identifies (n - 1)-cubes. The R and a [ i I in the 
algorithm represent the set of all faulty nodes and the ith bit value 
of element a in the set R, respectively. 

This algorithm finds an (n  - 1)-cube in two different ways. First, 
the set R is searched for a &,-I that contains all faulty nodes. If 
such a &,-I does not exist, then the faulty nodes are divided into 
two groups, depending on their ith bit value in the next step. (These 
divided groups are denoted as U and L in the algorithm.) If we can 
find an (n  - 2)-cube from each group, then there exists a twisted or 
regular (n  - 1)-cube in an FQ,. The search must be performed for 
all values of i 5 n. 

Routing in a Subcube: The communication diameter of a TQ, is 
n - 1. However, this reduction of the communication diameter makes 

the subcube of the last case becomes a TQVLhl. 

in a Q n .  0 
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1: Algorithm : Subcube-identification 
2: begin 
3: 

4: 
5: if a[il = b[i] for all elements a and b in R then 
6: there existe a healthy (n-l)-cube. Exit. 
7: 
8: 

9: 

/* check if there is a healthy (n-1)-cube */ 
for any i such that (0 <= i < n) 

for any i such that (0 <= i < n) 
divide the set R into two groups, U and L, 
according to the bit value at position i. 

10: If a[jl = b[jl for any j such that i < j < n 
11: and for all elements a and b in U 
12: and c[k] = d[kl for any k such that i < k < n 
13: and for all elements c and d in L 
14: 
15: end; /* of algorithm */ 

there exists a healthy (n-1)-cube. 

Fig. 4. The algorithm for identifying an ( n  - 1)-cube. 

1: 
2 :  
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 

Algorithm : Message-routing 
begin 

/ *  S is the source node and D is the destination node */  
if S and D in the same subcube (i.e., U or L) 

else 
send a message to D using the e-cube routing 

find the antidote node of D and let it be D' 
if S and D' in the same subcube 

send a message to S' through the antidote link 
and send it to D via S' using the e-cube routing 

find the neighboring node of S in the opposite subcube 

send a message to S" through the neighboring link 

else 

and let it be S" 

and send it to D via St' using the e-cube routing 
end; /* of algorithm */ 

Fig. 5. The message routing algorithm. 

only a negligible improvement in the average message distance, as 
shown in Theorem 1. That is, the average message distance gain of 
a TQ, over a Q ,  converges to 1 as n gets large. Moreover, we 
cannot implement e-cube routing in a TQ, if every message takes 
a minimum-hop path. Hence, it is preferable not to take advantage 
of the shorter communication diameter of a TQ, . One can then use 
e-cube routing within a twisted subcube. 

Fig. 5 shows the routing algorithm that can be applied to both 
regular and twisted subcubes. The notation U and L represent two 
disjoint Q,-z ' s  in an FQ,. The algorithm is developed based on the 
fact that any node in one Qn-2 has only either the antidote node or the 
neighboring node in the other Q,-2, but not both. Thus, we classify 
links between two disjoint Q , - ~ ' s  into antidote and neighboring 
links. Antidote links are the ones between antidote nodes, and the 
other links are called neighboring links. 

Iv. PERFORMANCE ANALYSIS OF THE PROPOSED OPERATION MODE 

The proposed operation mode is comparatively analyzed in terms 
of number of distinct subcubes, robustness, and dependability. 

A.  Number of Distinct Subcubes 

Lemma 2 shows the number of regular subcubes in an FQ, and 
that in a Qn. From Lemma 6, we know that if there are two disjoint 
( n  - 2)-cubes in a Q,, then we can form a subcube of dimension 
( n  - 1) in an FQ,. The resulting subcube could be either regular or 
twisted. The next lemma shows how many different pairs of disjoint 
(n  - 2)-cubes exist in a Qn.  

LRmm 7: The total number of both regular and twisted (n  - 1)- 
cubes in an FQ, is n(4n2 - l l n  + 9). 

Proof: The number of (n  - 2)-cubes in a Q,  is (,")22. 
Without loss of generality, we can choose one (n  - 2)-cube and 
assume its address to be 0 OX. .x. We can find another disjoint 
(n - 2)-cube from 4n - 5 different subcube locations, because there 
are 2(n- 1) subcube locations in either 1xx.. .X or xlx.. e x ,  and one 
(n  - 2)-cube, whose address is 11~. . .x, is counted in both (n  - 1)- 
cubes. We have to divide the product of (,T2)2* and 4n - 5 by 2, 
because positions of two disjoint (n  - 2)-cubes are interchangeable. 
Also, we have to subtract the redundant count from the result of 
the above computation. Since a regular ( n  - 1)-cube can be formed 
by combining two ( n  - 2)-cubes in n - 1 different ways, n - 2 is 
the redundant count for each regular (n  - 1)-cube. Hence, the final 
equation becomes as follows: 

The above lemma shows how many (n  - 1)-cubes exist in an 
FQ,. We also know that no twisted subcubes exist if the dimension 
of subcube gets smaller than n - 1 by Lemma 5. Now we want to 
determine the gain of the folded hypercube over the regular hypercube 
in terms of the number of different subcubes available. 

Theorem 3: Let NQ,,, and NFQ,,, be the number of different 
m-cubes in a regular as well as a folded n-cube, respectively. Then 
the gain in the number of m-cubes available is given by the following: 

(regular cubes only) 
4n2 - l l n + 9  . if m = n - 1  - - 

2 
(both regular and twisted cubes). 

(4.2) 

Proof: This follows from Lemmas 2 and 7. 0 

B. Robustness 

One of the major advantages of the hypercube is that each of 
its subcubes possesses the same properties of the original hypercube, 
except for the reduced cube size. Hence, a task that consists of several 
modules is usually mapped onto a subcube, rather than a set of nodes 
that do not form a subcube. The ability of finding a given size subcube 
in the presence of faulty nodes is thus an important measure for the 
fault tolerance of the hypercube and variations thereof. So, we want 
to analyze the availability of a subcube of dimension m < n in both 
a FQ, and a Q ,  in the presence of faulty nodes as a measure of the 
system's fault tolerance. Note that the availability of an m-cube in 
an injured Q ,  with z faulty nodes was studied in [ 1 I], but that in an 
injured FQ,, to our best knowledge, has not been reported elsewhere. 

Let Pr{C, = m 1 X, = z} denote the probability (called the 
availability of an m-cube) that there exists a healthy m-cube in 
an injured Qn with z faulty nodes, where C, and X ,  are random 
variables representing the size of subcube and the number of faulty 
nodes in a Q,  , respectively. If we subtract the probability that there 
is only one fault-free Qn-2 from the probability that there exists at 
least one fault-free Q n - 2  in a Q,, then we get the probability that 
there are at least two disjoint fault-free Q , - ~ ' s  in a Q,. Thus, the 
probability that there exists an (n- 1)-cube (either &,-I or TQ,-,) 
in an FQ, after the failure of IC nodes is as follows: 

Pr{C, 2 n - 2 I X, = IC} 
- Pr{C, = n - 2; NC, = 1 I X, = k}, (4.3) 

where NC, is a random variable representing the number of disjoint 
fault-free Q,-z subcubes in a Q,. The computation of the first term 
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1.0 Regular (n-1)-cube from regular n-cube 
----t. Regular (n-1)-cube from a folded n-cube 
d (n-1)-cube from a folded n-cube 

0 . 8  

x - 0.6 

R 

U 

4 
-4 

4 

-r( 0.4 9 
4 

0 . 2  

0 . 0  
0 10 

Number of f a u l t y  
Fig. 6. Subcube availability vs. the number of faulty nodes. 

was reported in [ 1 11. The computation of the second term in the above 
expression is much more involved, so it is given in the appendix (for 
better readability). 

Theorem 4: The gain in the availability of an ( n  - 1)-cube (either 
a Qn-l or a TQ,-,) in an FQ, over a Qn in the presence of k 

0 
In Fig. 6, we have plotted the subcube availability as a function 

of the number of faulty nodes. The availability of a &,-I in an 
FQ, is computed by using the result in [7]. As can be seen from 
Fig. 6, the availability of an ( n  - 1)-cube (either Qn-l or TQ,-,) 
in an FQ, is much larger than that in a Qn. This gain in subcube 
availability/fault tolerance is very important to critical applications, 
because, as mentioned earlier, each application task usually needs to 
be assigned to a subcube, rather than to a set of nodes that do not 
form a subcube. 

We define the robustness of a system as the average number of 
node failures that prevent us from finding an operational subcube, 
i.e., finding an ( n  - 1)-cube from an n-cube system. The average 
number of faulty nodes that prevent us from finding a healthy Qn-l 

in an FQ,, denoted as SaUg(n- l ) ,  is the summation of probabilities 
that all possible new faulty nodes do not block us from finding a 
healthy Qn-l. This can be represented as follows: 

faulty nodes is given in (4.4) at the bottom of this page. 

n-1 2n-l  

Savg(n  - 1) = Pr{F, < n; k I F, = i; k - 1) 
k=l t = O  

x Pr{F, = i I C, = k - l}, (4.5) 

where F, is the random variable representing the smallest subcube 
that can include all faulty nodes in an FQ,. The first term is the 
conditional probability that a new faulty node does not prevent us 
from finding a maximal healthy subcube, &,-I. The final equation 
becomes: 

2n- l  

Savn(n - 1) = (1 - Pr{F, = n 1 X, = k } ) .  (4.6) 
k = l  

The probability term Pr{F, = n I X ,  = k }  was studied in [12]. 

20 
nodes (n=8) 

TABLE I 
COMPAR~SON OF ROBUSTNESS 

I I 

9 I 5.55327 I 6.93313 I 9.98389 

Let Tavg(n - 1) be the average number of node failures to block 
us from finding any (n - 1)-cube (either Qn-l or TQ,-,) in an 
FQ,. Then Tavg(n - 1) is as follows: 

Table I shows the robustness of both operation modes. Rav,(n - 1) 
represents the average number of node failures that block us from 
finding an operational (n  - 1)-cube in a Q,. Again, the proposed 
operation mode shows a significant improvement in robustness over 
the regular-subcube operation mode. 

C. Dependability 

Recall that the n-cube system is said to be operational if one 
can find a regular or twisted (TI  - 1)-cube in the system. The most 
suitable measure for the dependability of the proposed operation mode 
and the regular-subcube operation mode is the mean time to failure 
(M'ITF), because we are interested in the average operation period 
before failure. The MTTF of the regular-subcube operation mode is 
reported in [7]. To compute the MlTF of the proposed operation 
mode, we use the following reliability equation that Kim and Das 

(4.4) 
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4094 5091 8023 
2117 2663 4191 

TABLE I1 

(in hr) 
COMPARISON OF MITF WITH NODE FAILURE RATE, = l o r 5  

91 1090 1363 2168 

[ 111 developed: 

where R,,(t; k)  represents the reliability of completely connected 
machines at time t ,  when k out of 2" nodes failed. The first term 
comes from (4.3). By integrating R(t),  we can get the M'ITF of the 
proposed operation mode. 

Table I1 shows MTTF's of the two operation modes. The first 
column shows the operation mode of the regular hypercube, and 
the second and third columns show the two operation modes of the 
folded hypercube. R-mode and T-mode represent the regular-subcube 
operation mode and the proposed operation mode, respectively. This 
table shows the superiority of T-mode over R-mode via its significant 
improvements in dependability. The comparison is made using a node 
failure rate of The data for R-mode is obtained from [7].  

V. GENERALIZATION TO ENHANCED HYPERCUBE 
Thus far, we have discussed the advantages of the folded hypercube 

and a new operation mode that includes the twisted hypercube. One 
disadvantage of the new operation mode is that it cannot be extended 
to subcubes of dimension smaller than n - 1. When the system 
is allowed to degrade further (lower than an (n  - 1)-cube) or the 
dimension of subcube preferred by applications is lower than n - 1, 
this limitation may negate the advantages of the proposed operation 
mode. We alleviate this problem by proposing a general form of the 
folded hypercube. 

The enhanced hypercube, or a general form of folded hypercube 
(denoted as EQ,), was introduced first by Tzeng and Wei [13]. They 
generated hypercube variations by adding an extra link between each 
pair of nodes that are j hops apart, where j 5 n. Let EQ3, denote the 
n-dimensional enhanced hypercube resulting from the addition of an 
extra link between each pair of nodes that are j hops apart. These 
hypercube variations are then compared with one another in terms of 
average message distance, traffic density, and diameter. The authors 
of [ 131 concluded that the hypercube with an extra link between each 
pair of nodes that are farthest apart (i.e., the folded hypercube) offers 
the best performance improvement. However, they did not consider 
the fault tolerance aspect of these enhanced hypercubes. 

When fault-tolerance is important and the degradation below an 
(n- 1)-cube is allowed, we want to determine which enhanced hyper- 
cube offers the best fault tolerance for a given subcube dimension m. 
This result can be used for the design of an enhanced hypercube for 
those critical applications that require a high degree of fault tolerance. 
The following lemma states how many regular m-cubes can be found 
in an enhanced hypercube, E Q , .  

Lemma 8: All enhanced hypercubes have the same number of 
regular subcubes. 

Proof: Let the links of a node in different dimensional directions 
be labeled from 0 to n - 1, and let the extra link be the nth 
dimensional link. Without loss of generality, we can assume that 
an extra link is added to connect each pair of nodes that are k hops 
apart. In other words, an EQ; is formed by replacing each node of a 
Qn-k  with an FQk.  Suppose a Qm is selected from the EQ;. Then 
one can get a Qm by selecting an s-cube from the &n-k and the 
same regular (m - s)-cube from each FQk that corresponds to a node 
of the selected s-cube. Since k and s are arbitrarily chosen, selection 
of m different dimensional links from EQ, can always guarantee the 
formation of a Qm. Hence, the number of Qm's generated by the 
addition of extra links does not change with the dimension of their 

By adding an extra link between each pair of nodes that are 
m + 1 hops apart to form an enhanced hypercube, we can maximize 
the ability of finding m-cubes (either regular or twisted) in this 
enhanced hypercube. The combined number of Om's and TQ,'s 
in this enhanced hypercube is given in the following lemma. 

Lemma 9: Let NET$' be the combined number of Qm's and 
TQm's in an E&:+'. Then we have: 

placement. 0 

(5.1) 

ProoJ An enhanced hypercube EQ:" can be formed by 
replacing each node of an (n  - m - 1)-cube with an FQ,+,. 
The term 2n-m-1 represents the number of disjoint FQ,+,'s in 
an E&,"+'. The term NFQ,+,,, represents the combined number 
of Qm's and TQ,'s in an FQ,+,. The second term in the square 
bracket represents the number of Qm's in an FQ,,, . The subtraction 
of second term from the first term in the square bracket results in 
the number of twisted hypercubes in an FQ,+,. The final term 
(nL1)2n-m is the total number of Qm's  in an FQ,. Since the number 
of Q,'s in an E($:+' is equal to that of an FQ,, we can use the 
number of Q,'s in an FQ, for the number of Qm's in an EQ,"". 
Hence, the final result (5.1) is the total combined number of Qm's 

0 
It is obvious that the combined number of Q,'s and TQ,'s in the 

enhanced hypercube E&,"+' is significantly larger than the number 
of Q m ' s  in the EQ,"+'. When an m-cube is preferred for certain 
applications, one must consider the enhanced hypercube EQ,"" as 
a candidate structure and must include use of twisted subcubes. 

and TQ,'s in an E&:+'. 

VI. CONCLUSION 
In this short note, we proposed a new operation mode of the folded 

hypercube based on twisted hypercubes. We have found that there is 
a twisted subcube in an FQ, and that the size of available twisted 
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subcube is n - 1. The algorithms to solve the problems of identifying 
subcubes and routing in a subcube are presented. A l s o ,  we have 
shown that the new operation mode provides significantly better fault 
tolerance and robustness than the operation of a Qn and the regular 
subcube operation of an FQ,. Finally, we analyzed the enhanced 
hypercube that is a general form of folded hypercube in terms of 
the number of distinct subcubes available. The result of this analysis 
can be used to design or choose application-specific fault-tolerant 
hypercube variants. 

The inclusion of twisted hypercubes in the operation mode en- 
hances the value of the folded hypercube to a great extent. One 
disadvantage of the proposed operation mode is the added complexity 
in the routing algorithm. However, the fault tolerance advantage is 
significant enough to offset this disadvantage when critical applica- 
tions must be handled by the system. 

APPENDIX 
COMPUTATION OF (4.3) 

Let us assume that there are k faulty nodes in an injured FQ,. To 
have only one healthy Qn-z, IC faulty nodes should be dispersed 
to prevent the finding of another disjoint Q n - 2 .  Without loss of 
generality, we can assume that one healthy QnP2 is OOX. . .X. Let 
A, B ,  and C denote subcubes 01x...x, 10X...x, and 11X...X, 
respectively. If k faulty nodes are dispersed into three Q , - ~ ’ s  and 
they block us from finding another healthy disjoint Q n - 2 ,  then there 
will be only one Qn-2 in the system. Assume that there are i faulty 
nodes in A, j faulty nodes in B, and k - i - j faulty nodes in C .  
The probability that no Q,-z can be found from the combination of 
A, B ,  and C is as follows: 

The first term represents the case that no Q n - 2  can be found from 
the combination of B and C. Similarly, the second term represents the 
case that no Qn-2 can be found from the combination of A and C. 

P r l  in (Al)  still includes some cases of two disjoint Qn-2’s.  Let 
us consider the case that there are healthy Q , - ~ ’ S  in A and B, and 
that they are located at antidote positions. For example, the healthy 
Q n - 3  in A is OlOx...X and the healthy Q n - 3  in B is 101x...X. 
When these two Q , - ~ ’ s  are merged with a subcube 0 OX. . .X, they 
form two disjoint Q,-z ’s ,  even though such a case is regarded as 
having a single Q,-z in the Prl if no Q n p 2  can be found from A, 
13, and C. To find the probability of this kind of cases, let us assume 
that the faulty nodes in A can be included in an s-cube and that the 
faulty nodes in B can be included in a t-cube. If s and t overlap, 
i.e., if any node in one fault group has an antidote node in the other 
fault group, then there are no two disjoint Q n - 2  ’s. Mathematically, 
we have the following relation: 

( 3 2 “ - ”  (’I;-’,”) 
mrn(n-2-s,t)  

F ( n  - 2, s ,  i )  Prz = t,=o c ( ” 3 2 ” - 2 - ‘  

x F ( n  - 2 , t , j ) ,  (A2) 

where F ( d , p , Z )  is Pr{Fd = p I - y d  = l}/Pr{Fd 5 d - 1 I 
-Xcl = Z}. The summation represents the size of the overlapping 
subcube between two faulty subcubes s and t. The combinatorial 
term represents the probability that the dispersed faulty nodes prevent 
the finding of two disjoint Qn-z’s. The last two terms provide the 
probability that the smallest subcube sizes that can include all faulty 
nodes are s and t in A and B ,  respectively. 1 - Pr2 is the probability 
that there are two disjoint Q,-z ’s .  Hence, with the probability that 
there are healthy Q n - 3 ’ s  in A nd B ,  the probability that we can find 

two disjoint Q , - z ’ s  is as follows: 

The summation represents all possible sizes of the smallest faulty 
subcubes in A and B.  

Now we have to find the probability that i, j ,  and k - i - j faulty 
nodes are dispersed in A, B, and C,  respectively. Considering this 
probability, we get the final equation: 
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