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Abstract: Modeling fault behaviors such as fault oc- 
currences and active/benign durations is an essential step 
to the design and evaluation of fault-tolerant controller 
computers. 

We use a beta-binomial distribution to model fault 
occurrences both in the presence and in the absence of 
environmentally-induced (thus common-cause) faults. A 
multinomial distribution is used to model fault active 
durations. The proposed model is validated by testing 
it against the data generated by a simulation program 
that mimics a common-cause fault environment. The 
model is then applied to the determination of an opti- 
mal time-redundancy recovery method for EMI-induced 
failures in an N-modular redundant controller computer, 
demonstrating its utility and power. 

1 Introduction 
It is commonplace to use digital computers for the con- 

trol and monitoring of safety-critical real-time systems, 
such as avionics systems and nuclear reactors, where 
controller-computer failures may be life-threatening. 
Massive hardware redundancy has been widely used for 
such controller computers to meet the ultra reliability 
requirement. Three to five modules are often used to 
execute independently the copies of each critical task 
and the execution results are then voted on to mask 
the effects of the faulty modules. This method, called 
N-Modular Redundancy (NMR), is effective only when 
faults occur independently on different modules. 

Most of the popular fault models used for the deign 
and analysis of fault-tolerant systems and the evdua- 
tion of system reliability cover independently-occurring 
faults. However, all modules of an NMR system are sub- 
jected to the same environment (temperature, humidity, 
and electro-magnetic interferences) and often share the 
same clock and power supply, for which the assumption 
of independence of fault behaviors in different modules 
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no longer holds. The faults resulting from environmental 
disruptions such as electromagnetic interferences (EMI), 
radiation, temperature, or vibration are likely to be tran- 
sient , because (1) the main effects of the abnormal oper- 
ating environment may be functional error modes with- 
out actual component damages and (2) the adversary 
environmental conditions are in general temporary. The 
harsh environment resulting from EM1 will affect the en- 
tire system and induce coincident, or common-source, 
faults in multiple modules of the NMR system. It is 
therefore important to develop a model (for fault oc- 
currences and durations) that integrates both the cor- 
related faults (due mainly to environmental disruptions) 
and independently-occurring faults. One can then use 
this fault model for more realistic design and evaluation 
of fault-tolerant controller computers. 

Several researchers proposed models for correlated 
faults in hardware or software. In [4], a simple model of 
correlated faults treated the case of two modules using 
linear correlation but did not include coincident faults 
induced by a common source. The author of [5] consid- 
ered correlated faults in multiversion programming for 
fault-tolerant software by using an appropriate intensity 
(or distribution) function. An example in [l] treated the 
problem of failure patterns in separately-located comput- 
ers to investigate the effects of a common environment 
on reliability. 

To develop a more effective model integrated for both 
correlated and independent faults in redundant hard- 
ware systems, we classify the operating conditions of a 
controller computer to be normal or abnormal, depend- 
ing upon the occurrence of harsh environment like EMI. 
We propose a (compressed) beta-binomial distribution - 
whose range is less than one by excluding independent 
fault sources and using the parameters of this distribu- 
tion one can- measure the level of correlation - to  model 
fault occurrences under both the operating conditions. 
The beta-binomial distribution was used to model the 
correlated incidence in the households of an infectious 
disease [2]. We also represent fault durations by a multi- 
nomial distribution, which discriminates the active faults 
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according to their durations. 

The proposed model of fault occurrences is compared 
against a binomial distribution by fitting the data col- 
lected from a simulation program that imitates a harah 
environment. (Unfortunately, there are few real data on 
correlated faults available in the open literature.) This 
model is then applied for the analysis and design of a 
fault-tolerant controller computer and the evaluation of 
system reliability, which are shown by an example NMR 
controller computer: (i) assessment of the reliability of 
a static-redundancy system and (ii) computation of the 
probability of successful recovery from faults when ap- 
plying time redundancy. 

Section 2 addresses the generic properties of faults and 
their effects on a fault-tolerant controller computer. Sec- 
tion 3 presents the models for fault occurrences and dura- 
tions by using the (compressed) beta-binomial distribu- 
tion and the multinomial distribution, respectively. In 
Section 4, we justify the proposed distribution models 
with the simulated data of a harsh environment. An ex- 
ample of applying the proposed model is also presented 
there. The paper concludes with Section 5.  

2 Generic Properties of Faults 
Faults are classified into two types, internal and ex- 

ternal, depending on the location (inside or outside the 
system) of their origin. Internal faults represent the mal- 
functioning/damaged parts of a system that induce er- 
rors. These faults occur due to physical defects during 
manufacture or due to  component aging. Most internal 
faults are likely to  be permanent or intermittent becawe 
the effects of physical defects (e.g., broken, short, or loose 
connections) tend to persist or cycle between active and 
inactive states. The sources of internal faults are usually 
independent , ao their occurrences in different modules 
are assumed to  be independent. 

External faults, on the other hand, result from en- 
vironmental interferences or disruptions, such as electre 
magnetic perturbation, radiation, temperature, or vibra- 
tion. These external faults are transient because disrup 
tive environmental conditions are temporary and may 
cause functional error modes without actual component 
damages. The harsh environment with lightning, HIRF 
(high intensity radio frequency fields), or NEMP (nuclear 
electromagnetic pulses) generally affects the entire BY& 
tem, regardless of the degree of redundancy used, thereby 
making the occurrences and durations of external faults 
dependent on one another. 

In addition to  the occurrence rate of external faults, 
their active durations are also important in characteriz- 
ing them, because most external faults are known to be 
transient. Time redundancy can be applied effectively 

against such faults using the knowledge of their dura- 
tions. Any critical computation corrupted by transient 
faults can be recovered by reexecuting the contaminated 
part of the computation after waiting a sufficient time for 
the transient faults to die away but soon enough to meet 
the application timing constraints. 

3 Modeling of Fault Behaviors 
A controller computer consists of multiple modules. 

Each module is a self-contained entity with input/output 
from/to others. Let N and Nf be the numbers of all 
modules and faulty modules, respectively, in the con- 
troller computer. Since we are mainly interested in the 
number of faulty modules, we do not consider how many 
faults are active in a single module. In other words, if 
a module contains at least one active fault regardless of 
the number of faults in that module, it contributes one 
faulty module to the calculation of Nj . 

3.1 The Fault-Occurrence Model 
As mentioned earlier, the operation of a controller 

computer is either normal or abnormal, depending on the 
absence or presence of EMI. EM1 is generally character- 
ized by a long latent period followed by a relatively short 
period of presence. We assume that EM1 arrivals follow a 
timeinvariant Poisson process with rate Ae and each ar- 
rival remains active for an exponentially-distributed ran- 
dom period with rate p e .  Consequently, environmental 
disruptions arrive at an exponential rate Ae and disap- 
pear after an active duration with mean k. 

Under the normal operating condition, we assume that 
no external faults occur since their occurring frequency is 
much smaller than that of internal faults. Internal faults 
were assumed to behave (occur/persist) independently 
in different modules. Thus, fault occurrences under the 
normal operating condition are modeled by a binomial 
distribution with constant mean pa.  That is, the proba- 
bility of k faulty modules is: 

P"(Nf = k) = (T) 
where the expected number of faulty modules is Npo.  

Under the abnormal operating condition, however, 
some external correlated faults may occur due to the 
presence of EMI. Since the sources of faults are still active 
under the abnormal operating condition, the number of 
faulty modules (Nj) is certainly larger (in a probabilisti- 
cal sense) than that without EMI. Since NI depends on 
the level of correlation - determined by the intensity of 
EM1 and the structural/material properties of the sys- 
tem - it is modeled by a random intensity parameter 
p with a probability density function f(p). That is, the 
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number of faulty modules becomes N p  with probability 
f(p). Thus, the expected fraction of faulty modulee in 
the system is p = J p f ( p ) d p .  Under the normal operating 
condition, the probability density function of p is simply 
represented by a unit impulse at PO, i.e., f(p) = b(p-po) .  
Thus, the random intensity parameter p of the abnormal 
operating condition must have the following properties: 
(i) po < p < 1, (ii) p increases with stronger EM1 and 
weaker shielding, (iii) p spreads out over a wider range 
as inter-module correlation increases. Properties (ii) and 
(iii) can be satisfied by randomizing the parameter p of 
the binomial distribution and by using a beta distribu- 
tion [3] for the probability density function of p :  

where I' is the Gamma function. 
Property (i) is also satisfied by modifying the range of 
the random variable (intensity parameter) in Eq. (3.2). 
The probability density function with the required 
compressed-range (po  < p < 1) is: 

Then, the resulting probability mass function of the 
number, N j ,  of faulty modules is a (compressed) beta- 
binomial distribution [2]: 

Wj (1 - g g - ' d p ,  (3.4) 

where 0 5 k 5 N ,  po < p < 1, and cr,P > 0. 
This equation can be rewritten by using the beta function 
as: 

where 

Accordingly, the mean and variance of this distribution 
are given by: 

E ( N j )  = N T ,  

where 

1 
x = ( l - p o ) L  +po, x=l-x ,  and e=-. (3.7) 

a + P  ff+P 

In Eq. (3.7), x > 0 is defined as the mean value of the 
binomial parameter p for each individual module (i.e., 
f i ) .  x represents the mean probability of a module not 
being faulty. When 0 + 0, the beta-binomial distribu- 
tion becomes similar to the pure binomial distribution 
(0 = 0), in which there is no correlation among modules. 
Thus, 0 can be used to measure the level of inter-module 
correlation. 

We proposed a probability distribution model for the 
number of faulty modules by using the beta-binomial dis- 
tributions, whose parameter density functions are a unit 
impulse function (deterministic) and a beta distribution 
for the normal and abnormal operating conditions, re- 
spectively. Now, a proper model of fault occurrences over 
the whole operating period is obtained by combining the 
two conditions with the model of EM1 behaviors: 

P ( N f  = k) = Pn(Nj = k ) P ( n o ~ m )  
+Pa(Nf = k ) ( l  - P ( ~ o F ~ ) ) .  (3.8) 

 norm) = e-'.' + 1' Xee-'e"(1 - e-Pe(t-2) )dx, 

where t is the time interval from the beginning to the 
instant of interest. 

3.2 The Fault Duration Model 
The duration of a fault begins with the moment of 

physical or logical deviations from the specified values. 
The duration of a transient fault measured from that mo- 
ment is generally a random variable with a distribution 
governed by the source of the fault. To distinguish per- 
manent faults from transient faults, we define a threshold 
duration, i.e., all long-lasting transient faults beyond the 
threshold are treated as permanent faults. All faults of 
duration longer than this threshold are treated as per- 
manent by the recovery methods in a given fault-tolerant 
controller computer. 

To model fault durations we first consider a transient 
fault in one module and then extend this resulting model 
to include the effects of correlated faults in multiple (re- 
dundant) modules. A control mission can be divided 
into a number of mission segments/phases. The active 
duration of a fault can also be represented by an integer 
multiple of the unit time interval like a sampling period. 
This integer representing the fault duration is a random 
variable. Let t d ,  T,, and Tt be the fault duration, the 
unit time, and the threshold duration, respectively, and 
let M be the largest integer such that MT,  5 z. Then, 
the probability that the integer multiple is i (0 5 i 5 M )  
is derived by using the probability distribution,l F, ( t ) ,  

'The exponential distribution is the most commonly- 
encounteredmodel for the active duration of a transient fault, i.e., 
F,(t)  = 1 - e-'''o1 with mean active duration L. 

CO 
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of the active duration (1 5 j 5 (M-1)) :  

where the probability of a permanent fault is q M .  

Now, we use a multinomial distribution to model fault 
durations in multiple modules. Let Ni be the number 
of faulty modules with an active duration, i d ,  such that 
(i - l)Td 5 t d  < iT,, among the Nj faulty modules. If 
there is no correlated fault, the probabilities of all pos- 
sible durations of N f  (independent) faulty modules are 
obtained by: 

(3.10) 

where xEo ki = N f  and xi"=, qi = 1. 
To include the effects of external (correlated) faults, we 

must modify Eq. (3.10). If the present faults were caused 
by the same source, they are unlikely to  become inactive 
until the source disappears. We assume that all faults 
disappear according to  a certain probability distribution 
model, i.e., the duration of faults is distributed with a pdf 
such as an exponential distribution. We can also assume 
independence among (active) faults after the common 
source of faults (EMI) disappears. 

If T, is defined as the active duration of EMI, which 
has a distribution function Fe,  the probabilities of all 
possible durations of N f  faulty modules caused by the 
EM1 are modified from Eq. (3.10) to: 

P d ( N o = k o , . . . , N ~ = k ~ ) =  
I = M  

C P r ( N o  = ~ o , . . . , N M = ~ M I ( ~ - ~ ) T ~  LTe < j T s )  
j=1 
P ~ [ ( l - l ) T s  < T e < j T s ] + P ~ ( N o = k o , N 1  = k ~ , . . . ,  
... , N M  = k ~ l T ,  2 MT,)Pr[T,  2 MT,]  

Pr(  No = ko, ' . . , N M  = k~ ITe 2 M T , ) ,  (3.11) 

where 

0.99088 

Table 1: + = 1.019e-3 and 6 = 4.81e-4 0 when p = 0: 
SD=Simulation Data, BD=data of the fitted Binomial 
Distribution (with parameter it), BBD=data of the fitted 
Beta-Binomial Distribution (with parameters % and 8). 

0.990879 

8 

Table 2: % = 1.039e-3 and 6 = 5.278e-3 when p = 5e-3. 

In the above equation, pi (0 5 i 5 M - j )  is obtained 
similarly to Eq. (3.9). 

pi = Pr[iTs 5 t d  < ( i  + 1)T8] 
= Fa,((i+ 1)T,) - Fae(iT8) for O < i < M - j - l ,  

where C E O J p i  = 1 and Fa, is the probability distri- 
bution of active durations of faults caused by EM1 after 
EM1 disappeared. From Eqs. (3.10) and (3.11), we can 
obtain the probabilities of all possible durations of N j  
faults involving both internal and external faults. 

4 Validation and Application 
In this section, the proposed distribution of fault oc- 

currences is justified by comparing fitted distributions 
with the data collected from a simulation program for 
both the beta-binomial distribution and the binomial dis- 
tribution. An example of applying the proposed model 
is also presented. 

4.1 Fitting the Model to Simulation 
Due to the unavailability of actual data on common- 

cause faults, we use the data on the number of faulty 
modules2 collected from a simulation program which im- 
itates a common-cause fault environment. When the sys- 

2A fault may disappear without inducing any error/failure and 
a failure can be detected only after a certain interval (the fault 
and error latencies) following the occurrence of a fault. Since it is 
not feasible to directly detect faults, we approximate the number 
of modules in which an error/failure is detected, as the number of 
faulty modules. 
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1.0293% - 16 
1.1839e-23 

4.19986e-4 
1.30365e-6 
2.61283e-9 

1.83465e-12 

Table 3: ii = 1.035e.4 and e = 1.2553e-2 when p = le-2. 

Nf \ II SD I BD I BBD 
0 11 0.991375 I 0.989484 I 0.991412 

1.23227e - 3 
5.56469e -5 
1.92125e- 6 

Table4: ii = 1.174e-3 and ê  = 6.1497e-2 when p = 5e-2. 

tem is composed of n modules, the probability of fault 
occurrences is represented by: 

P(m1, m ~ r ‘ .  ., m,)=p(ml)p(m2lml)P(m3lm2, ml), 
. . . ,P(mnlm”-l,. . ., ml)=n;,p(mtImk-l,.  . .,m1), 

where mi E ( 0 , l )  is a random variable indicating the 
occurrence of a fault in the i-th module. We consider 
a simple example for common-cause fault environments, 
in which fault occurrences are governed by P(m1) = po 
and 

k - 1  

~ ( m k  lmk-1, . . . , ml) = po + mip for 2 5 IC 5 n. 
i=l 

(4.1) 
Under this condition of fault occurrences and po = le-3, 
we collected the data in Tables 1-4 from simulation runs 
for a period of 2 x lo5,  while incorporating the various 
levels of correlation. When p = 0 (i.e., independent fault 
occurrences under the normal operating condition), both 
the binomial distribution and the beta-binomial distribu- 
tion represent the number of faulty modules with little 
difference. However, it is evident that the binomial dis- 
tribution becomes inappropriate to model fault occur- 
rences as p increases, as shown in Tables 2-4. By con- 
trast, the beta-binomial distribution fits the data quite 
well regardless of the level of correlation. Since one can 
easily see the significant improvement of the BBD fitting 
over the BD fitting, we do not perform any hypothesis 
testing like X2-test. 

4.2 Application of the Model 
We now present a simple example to demonstrate the 

usefulness of this model by using an N-modular redun- 
dant (NMR) system, which will fail to form a majority at 
the time of voting if more than module outputs are 

l r  - 

l r  - 

l r - 0 8  c (4 -e- 4 
Probability 

l r  - 10 

Figure 1: Reliability of a 7-MR system while varying 
the mission lifetime from 2e+04( Lg]) to  2e+05( [E]) 
with the fault-occurrence model equal to (a) the BD and 
(b)-(e) the BBD, where (b) B = 0.005, (c) B = 0.01, (d) 
6 = 0.05, (e) B = 0.1 with PO = l e -04 ,  R = l e -03 ,  
P(norm) = 1 - le-07. 

erroneous. In the example, (i) the reliability of a static 
redundant system is assessed, and (ii) the necessary in- 
formation on fault durations is derived to determine an 
“optimal” time-redundancy strategy to  enhance system 
reliability using the proposed fault model. 

The probability of more than 9 module faults is 
derived by using the fault occurrence model as: 

N - 1  - 
N - 1  

Pr[Nf 1 7 1  = 1 - E P(Nf = I C ) ,  (4.2) 
k=O 

where P ( N f  = I C )  is calculated using Eq. (3.8). Thus, 
the NMR system reliability for a control mission lifetime 
T ,  R(T), is: 

where [A]  is the smallest integer such that [A]  1 A ,  and 
T, is substituted for the variable t inEq. (3.8) to compute 
P(normal). As shown in Fig. 1, the beta-binomial dis- 
tribution is used for the fault-occurrence model, and the 
merit of static redundancy is significantly diminished, es- 
pecially for the case of high-degree correlation (i.e., large 

When the timing constraints are stringent3 or the cost 
of spatial redundancy is not high, the faulty modules will 

6 ) .  

30ne can determine the timing constraints of the controller 
computer by analyzing the controlled processes in the context of 
certain fault models [SI. 
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be replaced with healthy ones from a large pool of spares. 
This increases the cost of spatial redundancy significantly 
and the time overhead of switching in new spares. In 
case the external fault durations are correlated, most of 
them may become inactive upon disappearance of the 
source of faults, and thus, re-executing part or whole of 
the program (retry, rollback, or restart) may recover the 
system from the errors caused by external faults without 
avoiding the premature retirement of (transient) faulty 
modules. The information about the fault durations is 
required to apply these time-redundancy recovery meth- 
ods effectively. That is, re-execution must be initiated 
after a sufficient backoff time, during which the faults 
are likely to disappear, and thus, at least modules 
become nonfaulty. When the number of faulty modules 
is N j  > v, we can derive the probability that the 
number of faulty. modules after a backoff time t (de- 
noted as N P ( t ) )  by using the proposed fault duration 
model. Let q be the smallest integer such that qT, 2 t ,  
or q = [$-I, and let K, denote the set of all combinations 
of (k1 ,  kz, . . . , k ~ }  such that ki > v, then: 

N - 1  
2 

P r [ N p ( t )  5 -1 = (4.4) 

1 - Pd(N1 = k l ,  Nz = k2, . . . , NM = k ~ ) ,  
K. 

where I‘d(.-.) is calculated using Eq. (3.11). The prob- 
ability of successful recovery in applying time redun- 
dancy depends on Eq. (4.4). Some numerical examples of 
P r [ N p ( t )  5 v] are plotted in Fig. 2, which are derived 
from Eqs. (3.11) and (4.4) by varying backoff times or 
mean durations of fault/EMI. In this figure, one can see 
that the probability of successful recovery is more depen- 
dent upon the mean duration of EM1 than that of fault 
when comparing the curves of p j  = 1/5,pc = 1/3 and 
p j  = 1/3,pe = 1/5. This is because no fault is likely to 
become inactive before EM1 disappears. 

5 Conclusion 
Our model using a beta-binomial distribution (and a 

multinomial distribution) for fault occurrences (and fault 
durations) to represent fault behaviors in NMR systems 
differs from the previous models which usually assumed 
independence of modules or dealt only with two or three 
modules. 

Our future work includes the problems of (i) develop- 
ing a fault model which can be validated by analytical 
and experimental tools and cover sources of correlated 
faults other than EM1 and (ii) detecting the correlated 
faults caused by EM1 and assessing their effects. We 
are planning to conduct experiments in the HIRF Lab 
currently being set up at the NASA Langley Research 
Center which will shed some light on these problems. 

1 

0.8 

0.6 

Probnbilii y 

0.4 pf = 1/5.p,  = 118 8- 

#, = 1/54, = 113 e 
= 115.~1, = 115 A- 

pi = 113.~1, = 115 f 

0.2 I I 
6 a 10 12 14 16 

B.&& Time (k) 

Figure 2: Probability of successful time-redundancy re- 
covery in a 7-MR system with f e ( t )  = pee-pe‘,  f o e ( t )  = 
p f e - p t ‘ ,  and M = 20. 
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